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The main goal of this paper is a detailed analysis of the
problem of imposing a topological bundle structure on a
spherical fibre space over a simply connected base. The method
involves a careful study of the notion of fibre homotopy
transversality due to N. Levitt. The point is, a topological
disc bundle satisfies strong transversality properties for maps
from manifolds to the associated Thom space. These pro-
perties can be formulated at least for spherical fibre spaces.
Thus, obstructions to transversality can be interpreted as
obstructions to imposing a topological bundle structure on a
spherical fibre space. It turns out that over a simply con-
nected base the obstructions to transversality coincide exactly
with the obstructions to a topological structure.

The obstructions to transversality for a spherical fibre
space £ can be interpreted as obstructions to a deformation
of the identity map on the Thom space T¢ to a certain sub-
complexes W&, The fibre of the map W& — T¢ isa sp ace with
a suitable iterated loop space homotopy equivalent to G/TOP.
The total obstruction to transversality becomes the obstruction
to a KO @ Z[1/2] orientation of the Thom space 7%, mixed
with certain cohomology classes of 7%, Fe H**Y(T¢, Z ) and
Fe H* Y(T¢, Z/2). These obstructions are then also interpre-
table as the obstructions to lifting in the fibration sequence
G/TOP — BSTOP — BSG.

In this introduction, we give a rather detailed outline of our
results and describe the relationship with work of others, particularly,
N. Levitt [10], F. Quinn [18], and L. Jones [8]. Suppose that
7w &— Bf is a spherical fibre space, with Thom space T&, and let
fiM—T¢ be a map from a PL manifold to T The primary
question is, very roughly, when can one deform f, so that f™(Bf) M
is a Poincaré duality space?

If £— B¢ is a (block) PL sphere bundle, the answer is always.
In fact, in this case we may deform f so that L = f"(B§) M is a
PL submanifold of M, with a tubular neighborhood V = f~*(D¢), where
D¢ is the associated PL block bundle of & V is a block bundle over
L and f induces a bundle map
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Note that V itself is Poincaré duality space, homotopy equivalent to
L, and the inclusion of the boundary oV GV is, up to homotopy, a
spherical fibration.

These considerations lead one to a correct definition of transver-
gality if z:&-— B¢ is only a spherical fibration. Namely, let #¢ =
& X I'U.y, BE be the mapping cylinder of x: £ — B&. (If £ is an honest
sphere bundle, .#Z¢ is the associated disc bundle D) Then T¢& =
AEJ: €8, where £ is the cone on &.

DEFINITION (approximate). f: M — T& M a closed manifold, is
globally Poincaré tromsversal if the inclusion f™ (&) G f(.Z¢) is a
spherical fibration, induced by f from & C _#Z¢.

If & has fibre S**' and M has dimension q + ¢, the definition
implies that f~%(.#¢&) is a Poincaré duality space (PD space) of
formal dimension 7. There is an analogous definition if the manifold
M has a boundary; in this case, (f(.#Z¢), f(#Z&NoM) is a PD
space with boundary.

Now the theory of Levitt states that if B£? is 1-connected, ¢ = 3,
there is an Eilenberg-MacLane obstruction theory, with obstructions
in H*"*Y(M, Q,), to deforming f: M — T&‘ to a transversal map, where
(at least if ¢ > 4) the group Q, is isomorphic to the surgery obstruction
group

P,=2Z0,Z/2,0 as +=0,1,2 3(mod4).

Quinn’s theory of surgery on PD spaces implies that if M has dim-
ension ¢ 4+ j + 1, there is a single obstruction, in P; to deforming
f:M— T& to a transversal map. This discrepancy is easy to
explain. By “transversal map,” Levitt means that M is triangulated
such that for each simplex 4 © M, f|s: 4— TE&* is Poincaré transversal,
whereas Quinn uses “transversal map” in the global sense of the
definition above. One problem which interested us then was whether
we could identify a global, “top” obstruction in the context of Levitt’s
cell-by-cell obstruction theory. We do define a global obstruction to
transversality, using the Levitt theory, much as one picks out the
surgery obstruction from all the invariants of a normal map. How-
ever, the methods of this paper only enable us to prove that this
top obstruction is the obstruction to cobording (rather than homo-
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toping) a map f:M— T¢ to a transversal map. Our obstruction
does agree with Quinn’s, however, and thus from his theory it follows
that it is the obstruction to homotoping f to a globally transversal
map.

A second problem was to extend the results of Levitt and Morgan
[11] relating Poincaré transversality and topological structures on
a spherical fibration &. They prove (roughly) that if the base space
Bt is 4-connected and if every map f: M — T& can be made Poincaré
transversal, then & admits a topolgical structure. In fact, there is
a 1 — 1 correspondence between topological structures on & and
“Poincaré transversality structures” on &, We extend these results
to 1-conmected base spaces. A homotopy theoretic reformulation of
these geometric results gives that at odd primes p, a topological
structure on ¢ is equivalent to a KO Q) Z,,-theory orientation of T¢,
(this is a well-known theorem of Sullivan [23]) and at »p =2, a
topological structure is equivalent to null-homologies of certain stable
cohomology characteristic classes of £, .97 (&)e H* (Bt Z/2) and
(&) e H**(Bg, Z,,). Similar results were proved by Quinn [Q,, Q,];
the p = 2 results have also been proved by Madsen and Milgram [12]
and Jones [8]. A very precise definition of the classes 4 (&) and
(&) and a detailed study of their properties accounts for much of
the bulk of the present paper.

Our third main problem was to understand the relations between
the top obstruction to Poincaré transversality in dimensions 4n + 1
and the index of Poincaré duality spaces. We prove, for example,
that the obstruction (&) e H*(BE, Z.) to a topological structure
(or to Poincaré transversality, since these are the same) is the
Bockstein (for the coefficient sequence 0 — Z, — Z,, — Z/8 — 0) of a
characteristic class [(§) e H*(B¢, Z/8). Among the properties of (&)
is this: if K** is a 4n-dimensional PD space and v, is its stable normal
spherical fibration, then {l(vg)), [K]) = index (K) (mod 8). (The exis-
tence of such a class was shown by D. Frank, also using Levitt’s
theory of transversality. We gives additional properties of [(&)
which characterize it uniquely.) The result .<~(&) = BI(¢) is intimately
related to the theorem of Morgan and Sullivan [15] that there is a
Z, characteristic class L(¢) e H*(BE, Z,) of topuological bundles &,
which measures the index in Z of topological manifolds. L is defined
using topological transversality, and reduces modulo 8 to our class
1(§). The connection is clear: if one has enough transversality, the
Z/8 index class (&) lifts to a Z, index class L(¢), which gives a
homology of . (¢) = BI(&) to 0.

We now begin a more detailed outline of the individual sections
of the paper. Chapter I, consisting of the first four sections, contains
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the geometric machinery and results of the paper. In §1 we develop
a modified version of the Levitt obstruction theory. Namely, we
strengthen the definition of a Poincaré transversal ¢ + 2 simplex,
fi4*— T&, by adding the condition that f~'(.#Z&) c 4" have
the homotopy type of a 2-manifold with boundary. In other dimensions,
the definition is unchanged. It is an old conjecture [24] that all 2-
dimensional PD spaces are homotopy equivalent to manifolds. If this
is true, our obstruction theory agrees with Levitt’s. The advantage
of the stronger definition is that it is possible to compute the obstruction
groups in all dimensions, whereas Levitt’s low dimensional obstruction
groups were unknown.
The fundamental lemma in §1 is the following local result.

THEOREM A. Suppose that the spherical fibration & admits o
PL structure, q = 8, w(B&Y) = 0, and let f: D' — TE& be a0 map
such that f|,p: S — TE&* 15 Poincaré transversal. Assume further
that if ©+ = 2, (. #&) N S is homotopic to a 2-mamifold. Then
there is a well-defined obstruction o(f)e P, such that f deforms
rel 0D to a Poincaré transversal map tf and only if a(f) = 0.

a(f)e P, is the surgery obstruction of a degree one normal map
L'— L, where L' is an ¢-dimensional PL manifold and L is an %-
dimensional PD space. Namely, L = f(.#Z¢ N S and L'CL is
obtained by deforming f: De*+'— T&? slightly to a PL transversal
map, keeping f (.7 &) setwise fixed.

Using the local result, we set up an obstruction theory, with
obstructions in H*"**Y(M, P,), to deforming a map f: M — T& to a
strongly transversal map, where £? is any spherical fibre space with
simply connected base. The idea is, we may cover the base B&? by
simply connected, open sets U,, all containing the base point such
that &’[,, admits a PL structure. This induces a cover {V,} of T¢’,
and our first step is to triangulate M such that for each simplex
A4c M, f(4)cV,, some . If f is strongly transversal on the q + 4
skeleton of M, the local result enables us to define an obstruction
cocycle in C*"**Y(M, P,), which vanishes if and only if f deforms rel
the ¢ + ¢ skeleton to a map which is strongly transversal on the
g + 1 + 1 skeleton.

In §2 we reformulate the obstruction theory. Specifically, let
W be the subcomplex of the singular complx of T&? consisting of
simplexes f: 47**—TE which are Poincaré transversal, with f(4)C V,,
some V,c{V,}, and with f(_#Z &) C 4°** homotopic to a 2-manifold
if ¢ =2. As a corollary of the obstruction theory of §1, we deduce

7tq+i+1(T§q’ WE’I) '_N—" Pz .
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In fact, the obstructions to deforming f: M - T&? to a strongly trans-
versal map can be interpreted as the obstructions to lifting f to a
map f in the diagram

W Tée .

The space W, was also studied by Levitt, without the extra
condition on ¢ + 2 simplexes. Our space W, is more natural for
studying topological structures on &9, since if & is a topological bundle,
topological transversal simplexes 49— Té&? clearly belong to W..
On the other hand, Levitt’s original space was more closely related
to Poincaré duality cobordism, the problem he was studying at the
time.

Let F., be the fibre of the natural map W, — T¢. In §2 we
also define very powerful homomorphisms on the Z/n bordism of
Foa,nz=0,

20t Q0o Feay ZIn) — P, Zjn .

(A Z/n manifold is an oriented manifold M, together with an orien-
tation preserving isomorphism of the boundary of M with n disjoint

copies of a manifold M, ¢: [, 6M — oM. A Z/0 manifold is thus a
closed, oriented manifold. oM is called the Bockstein of M; a Z/n
bordism element must map the n copies of the Bockstein equivariantly.)
To define 7, we first give a geometric interpretation of bordism
elements of F.q. Namely, ¢: M — F.q corresponds to a strongly
transversal map f: M — T&, together with a homotopy F: M X [ — T&
from F, = f to F, = co, coc € T the cone point. Using the obstruec-
tion theory of §1, we show that if M*** is Z/n manifold, there is a
well-defined obstruction <7,[M, @]le P;Q Z/n to deforming F: M X
I— T&, rel M x oI, to a globally transversal map. Z[M, f] is (not
surprisingly) the surgery obstruction of a degree one normal map
L' — L, where L' is a Z/n PL manifold and L is a Z/n PD space.

To see how these surgery problems arise, suppose first that &
admits a PL structure. Shift F: M x I— T&? slightly to a PL trans-
versal map, G, keeping F~'(_#&%) setwise fixed. Then L' = G™Y(BE)N
Mx{0cG(AZE)VNMx {0} =F(Z)NMx{0} =L is a degree
one normal map.

If & is an arbitrary special fibre space, we use the obstruction
theory to produce a normal map. Namely, since H*(M x I, M x {0})=0,
we may deform F' rel M x {0} to a strongly transversal map G: M x
I— T&, such that G|, M x {1} — T(&*|,), where U is a contractible
neighborhood of the basepoint of B&'. (See Chapter I for details.)
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Moreover, G|y, M X {1} — T(&%|y) is homotopic to the constant map
e, oo € TE*, since G is the deformation of F. Now &7|, admits a PL
structure since U is contractible, hence we apply the construction of
the paragraph above to G|y.,, to obtain a normal map.

We point out that if &7 admits a PL structure, the normal map
produced by this general construction is cobordant to the normal map
produced directly from PL transversality. Thus the surgery obstruc-
tion is well defined.

The resulting homomorphisms 7,: 2, (F 'z, Z|1n) — P; R Z|n satisfy
properties essentially identical to the properties of the classical
surgery obstruction homomorphisms of Sullivan;

S,: 2(G/TOP, Z,[n) — P; Q Z|n .

The most important properties are (i) the composition

Tyl Fea) — Qg Fea) — P,

is an isomorphism and (ii) <7, satisfies a multiplicative formula like
those of [15] with respect to the index; that is, if ¢: M***—> F, is a
Z/n bordism element and N’ is a Z/n manifold, then

UMt Q N, pr,] = &, [ M, p]-index (N) .

(See [15] for a definition and properties of the “product” M Q N’
of Z/n manifolds.)

Just as Sullivan showed that the surgery obstruction homomor-
phisms S,: 2,(G/TOP, Z{n)— P,R Z|n completely determine the homotopy
type of G/TOP, we show in §5 that the obstructions 7,: 2,, (F'e, Z/n)—
P, & Z/n completely determine the homotopy type of Fq. The result
is that F'., is a copy of G/TOP, shifted ¢-dimensions. (We will discuss
this further below.)

These results of §2 were known earlier to Levitt and Morgan
[11] for the (q¢ + 4)-connected cover of F',. The results of this paper
simply extend their results, thanks to the stronger definition of
transversality in dimension ¢ + 2.

In §3 we define obstructions to global transversality, up to
cobordism. The main idea is that, in the stable range, 7 < ¢, there
is an isomorphism

Qoriei Weay Freay Zjm) —— Do TEY, Zfm)

Composing the &7, of §2 with the boundary homomorphism for the
pair W, F., thus defines homomorphisms

Spe ‘Qq+i+1(TEq7 Z/n) - Pz @ Z/% ’
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for 1€ q,q=3. We prove

THEOREM B. If 7 is even (resp. ¢ odd) and f:M* ' — TE& 4s
a Zin manifold, then [M, f] is Z/n-bordant to a globally transversal
map 1f and only if s,[M, f1=0¢eP,Q Z/n (vesp. s(0M, fl;x) =
0eP,_).

As remarked earlier, Quinn [18] has sharper results about these
obstructions to global transversality, namely that these are the obs-
tructions to homotoping f: M — TE&® to a globally transversal map.

As a corollary of Theorem B, note that any map f: M*™ — T¢'\, M
closed, is cobordant to globally transversal map g: N — T, Let
LY = g (A& N™ Dbe the associated PD space. We prove in
§3 the following.

LEMMA C. Index (L*)e Z/8 in an invariant of the bordism class

of M, f].

Since there is a null-homotopic PD transversal map g: S7* —
S¢ = Te?, with g7 (_#¢?) = W*, where W* is the almost parallelizable
Milnor manifold of index 8, we see that the modulo 8 reduction of
the index is the best invariant we can obtain from a transversal
map g: N** — T¢ge,

In §8 we generalize Lemma C to Z/8 manifolds. Not all Z/8
manifolds f: M*** — T¢? are cobordant to globally transversal maps,
because of the obstruction s[0M, f|;x] € Py, = Z/2, provided by
Theorem B. However

LemMA D. If g: N**© — T&? 4s a globally transversal Z/8 mani-
fold, and L* = g (.#Z& C N 4s the associated Z/8 PD space,
then index (L**)e Z/8 is an invariant of the Z|8 bordism class of
[N, g].

This is the main result we need to define Z/8 characteristic
class of spherical fibrations, which measures the index (mod 8) of
PD spaces. (We will discuss this further below.)

In §4, we extend the main result of Levitt and Morgan [11]
concerning the equivalence of topological structures on bundles &°
over 4-connected base spaces and liftings ! in the diagram

We«’] —_ T{;’;q
N\

N lId

Tee
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Our result is

THEOREM E. If & is a spherical fibration over a simply con-
nected base, ¢ = 3, then there is a matural bijection between equi-
valence classes of topological structures on &% and equivalence classes
of lifting 1 in the diagram

Weq _— qu

K,
\,

t Id
AN
Tee .

The proof breaks into two parts. The first part uses topological
transversality to construct a lifting ! for a topological bundle &°.
This step is somewhat indirect since topological transversality cannot
be assumed in codimension 4. We use a “crossing with CP(2) trick”
to overcome this difficulty. The second part of the proof essentially
uses the fact that G,/TOP, and F'., are very closely related to establish
that the map from topological structures on &7 to liftings ! in the
diagram is a bijective correspondence.

Chapter II, consisting of §§5 through 7, deals with homotopy
theoretic consequences of the geometric results of Chapter I. In §5,
we show how the homomorphisms &,: 2,.(F e, Z/n) — P;Q Zn, n = 0,
determine the homotopy type of F... In particular, the 2-localization
of F.; is a product of Eilenberg-MacLane spaces,

(Fe)o = g K(Z/2,q + 4i — 2) X K(Zw), q + 47) .
The p-localization of F., p odd, is a loop space of a connected cover
of BO,. Except for computing the low dimensional homotopy groups
of Fq, these results were proved in [11] by the same techniques.
The 2-localization result is equivalent to establishing a cohomo-
logical formula for 2: Q,.,(F:)— P; and for Z: Q.. (F s, Z/27) —
P,® Z/2",r = 1. Namely, we prove
THEOREM F. There are unique cohomology classes
I = 3 K g € H Y (F ey Z2)
and
&£ = ZZ‘: L g € HW (B, Z )
such that given f: M *—F, M a Z/2 manifold,
M, f1= (VM) f*(%), [M]) € Z]2

and given g: N**Y — Fy, N a closed or a Z[2" manifold,
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elM, 1= (L(N)-g*(L), IND) + KVS¢' V(6M)-g*(%"), [oN]) € ZJ2r
(eZ if N is closed)

where 1. Z|2 — Z|2" is the inclusion.

The formulae of Theorem F giving & 2414 o(Feo, Z/2) — Z[2 in
terms of 27" and giving 7,: 2,,.(Fs, Z/n)— Z|n, » = 0 or 27, in terms
of & and 27, are identical to the formulae in [15] for the surgery
obstruction homomorphisms S,: 2,(G/TOP, Z/n) — P, ® Z/n in terms
of cohomology classes

9% e H*XG/TOP, Z/n) and ¥ c H*(G/TOP, Zy) .

This is no accident, since the 7, are defined as surgery obstructions.

The proof of Theorem F is essentially given in the Appendix,
where we give a detailed discussion of how homomorphisms on the
bordism of a space can be used to define cohomology classes. The
version we present is due to Sullivan, [23], although variants of the
idea have been used earlier, (for example, in Thom’s definition of
rational Pontrjagin classes for PL manifolds). The classes .2 and
% of Theorem F then define a homotopy equivalence

X L (Fa)o = [LK(ZI2, g + 4 — 2) X K(Za, ¢ + 4) .

From the cohomology exact sequence of the fibration F,—W,—
T¢ (in the stable range) we see that the classes %" and & in the
cohomology of F'. determine classes in the cohomology of T¢. From
the Thom isomorphism ®&: H*(B&) — H*(Tg), we then get classes
7 (&) e H* (Bt Z/2) and (&) e H**(BE, Z). Precisely, ®(577(8)) =
7(2%") and @(ﬁ(&)) = 7(%¥) where 7: H*(F',) — H**(T¢) is the trans-
gression, in the stable range, of the fibration F,—W,— T¢.

The classes 57 (£) and Q(S) are stable characteristic classes for
spherical fibrations. From the definition of the global transversality
obstructions s,: 2,,,..(T&%, Z/n)— P,® Z/n, in terms of

Tt Lol Fey Z[n) — P, Q Zjn ,

we obtain cohomological formulae for the s,- in terms of the classes
O(7°(5)) and B(F(8)): (see Theorem F above)

s[M+97, f] = (VM) F*O(2£ (), [M]) € Z/2
if f: Mo — T& is a Z/2 manifold, and

sy [N+ g] = (L(N)-g*®(Z (@), [N
+ i(VSg V(ON)-g*®(7Z (8)), [AN]) € Z/2"
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if g: N**¥+" — T¢? is a Z/2" manifold. Here ¢: Z/2 — Z/2" is the
inclusion. We thus regard .57 (¢) and (&) as obstructions to global
Poincaré transversality.

The main theorem of §6 is that, at the prime 2, 57(¢) and
,25(5) are the only obstructions to a topological structure on &, More
precisely, let 5% e H*(BSG, Z/2) and & e H**(BSG, Z,) be the
universal characteristic classes and let ¢: X — BSG,,, be the inclusion
of the fibre of the map

% X &:BSGy — 1 K(Z/2, 45 — 1) X K(Z, 41 + 1) .

THEOREM G. There 1s a commutative diagram

X

v,

S
BSTOP(z) - BSG(Z)

with B the natural map and I ¢ homotopy equivalence.

Thus a lifting of &Y — BSG, to &:Y — BSTOP, is equivalent
to null-cohomologies of the characteristic classes .57 (£) and £ (8).

F. Quinn has proved a theorem very similar to Theorem G, [19],
[20]. In fact, his thoerem is probably identical to Theorem G, but
his definition of characteristic classes, corresponding to our % and
&, is rather abstract. I. Madsen and R.J. Milgram, [12], have also
proved that BSTOP,, is the fibre of a map

BSG o, — 12 K(Z/2, 41 — 1) X K(Z,, 4i+1) .

Namely, they prove that B(G/TOP),, is a product of Eilenberg-MacLane
spaces. The resulting cohomology classes of BSG are mot identical
to our .% and & but they are closely related. At present, there
is no geometric explanation of the connection between B(G/TOP),
the classifying space for G/TOP with the Whitney sum structure,
and Poinaré transversality. The transversality theory seems more
closely related to a second H-space structure on G/TOP. See also
L. Jones [8] for a version of Theorem G.

In §7, we identify the suspensions of the cohomology classes
¢ and &; that is, o() e H* %SG, Z/2) and o(Z) e H*(SG, Zs),
where o: H**(BSG) — H*(SG) is induced by the natural map 3, SG —
BSG.

THEOREM H. 0(%) = n*(9%") and o(F) = n*(<~), where
SG — G/TOP 1is the projection and .22 ¢ H*¥G/TOP, Z|2) and
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< € HY(G|TOP, Z,)) are the canonical surgery obstruction classes of
[15].

Chapter III, which consists of §§8 and 9, gives the definition
and properties of the Z/8 indexclassl =1+ 1,+ I,+ - - € H*(BSG, Z/8).
In §8,1 is defined in terms of a homomorphism on the Z/8 bordism
of MSG, ¢: 2.(MSG, Z/8)— Z/8. If f:M-— MSG is a transversal
map, M a Z/8 manifold, with L = f%(BSG)C M the associated Z/8
PD space, then

4[M, f1 = index (L) — & VSg'V(M)- f*&(57), [M]) € Z/8..

Using results of the Appendix, we show that ¢ determines a class
l e H*(BSG, Z/8) with

glM, f1 = (L(M)- f*0(l), [M]) € Z]8 .

REMARK. Not all elements of 2,,(MSG, Z/8) are represented by
transversal maps f: M — MSG. In fact, the subgroup generated by
transversal maps has index 2, in each dimension 4k. To extend the
above definition of ¢ to all of 2,(MSG, Z/8), we need to choose a
very specific non-transversal element [K, «a], set ¢[K, a] = 0, and then
prove that this is consistent with the definition of ¢ on transversal
elements.

The class | has the following properties

THEOREM 1. (i) If L is o Z/8 PD space and v: L — BSG s its
normal fibration, then

(@), [L]) = index (L) e Z/8 .

(ii) The Z/2 reduction of 1 is V*e H*(BSG, Z/2).
(iii) The class | satisfies the Whitney sum formula

(& x 1) = U @ UY) + U VSE V() ® % (1) + (&) VSq'(x))
€ H*(B¢ x B, Z/8)

where v: H*( , Z|2) — H*( , Z/8) is the natural coefficient map.
(iv) Bl =<~ e H**Y(BSG, Z,), where 8 is the Bockstein homo-
morphism of the coefficient sequence 0 — Z, — Z o — Z/8 — 0.

Property (iv) relates the Z/8 index class | and transversality
obstruction <% and was discussed earlier. Here is a more precise
statement of the relation between transversality and the index (mod 8).
Suppose f = M+ — T¢&" is a Z/n manifold such that f|,,: M — T¢&*
is globally transversal. Let L* = f~%(_#Z¢%) N dM, a closed PD space.
If f: M— Té is itself transversal then index index (L*) = 0, since
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then %-L* bounds a PD space, namely fY(.#&)c M. Thus index (L)
is an obstruction to cobording the map f: M — T& to a transversal
map. We prove, in fact, that the transversality obstruction s,[M, f]e
Z|n of §3 always has order dividing 8, and is exactly index (L) € Z/8.
(In particular, if » is odd, s, = 0.)

Theorem I(iii), the Whitney sum formula for [, is quite difficult.
Its proof requires all of §9, the longest section of the paper. The
term which measures deviation from multiplicativity, (VSg'V(¢) ®
F ) + () QVSq'V(n)), arises for the following reason. If we
form a product of tramswversal maps f and g, f X g: M?** X N —
Ter A Ty, with ¢ and b odd, @ + b = 0(mod 4), then clearly the index
of the inverse image of B& x Bv is zero, since this inverse is a
product of odd dimensional PD spaces. However, if f or g is not
transversal, it can occur that f x g is transversal with nonzero
index for the inverse image of B X Bn. This implies that, in BSG x
BSG, the I class can evaluate nontrivially on products of odd dimen-
sional manifolds.

Since &~ = Bl, the Whitney sum formula for [ implies a Whitney
sum formula for &2 We also establish in the paper a Whitney sum
formula for the class .9%, namely

THEOREM J.

TE X ) = @) QVH)) + VHE) ® 5 () e H(B: x By, ZJ2) .

Using this formula and the fact that
o(5%) = n*(%") e H*(SG, Z/2), w: SG — G/TOP,

(see Theorem H). We deduce

COROLLARY K. % =V &, where & = S iy, and e €
H*"Y(BSG, Z/2) is the unique primitive element with

o(es_) = T (F5_,) € H**(SG, Z/2) .

Clearly .5 (¢) = 0 if and only if & (§) = 0, Thus, although o
is nonzero in every dimension 4t — 1,7 =1, the “marrow” of the
5% -class is concentrated in dimensions 2¢ — 1. There is evidence that
this class & is the same as the class defined by D. Ravenal in terms
of twisted secondary operations [21]. & is definitely equal to the
class in dimensions 4* — 1 produced by Madsen and Milgram’s result
that B(G/TOP)y, = s K(Z/2, 47 — 1) X K(Z,, 41 + 1).

Chapter IV, which consists of §§10 and 11, is concerned with
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giving homotopy theoretic definitions of the classes .% and & Section
10 extends slightly recent work of W. Browder, [1]. Namely, Browder
observed that if a sphere a: S***~'— T&? is transversal, then a lifts
to a: STt — T¢%(w,,>, where K(Z/2, 21 — 1) — B&{v,;y — B¢ is the
fibration which kills the Wu class v,,(8) € H*(B¢, Z/2), and £%(v,;) is
the bundle &’ lifted to B&(v,). « lifts to & because if K*'isa PD
space of dimension 47 — 1, v,,(K*™) = 0. Browder then proved that
the homomorphism

Os: Tapas—o TE) — Topsii(TE[TEwy:))

has image (0,) C Z/2 and that p.(a) agrees exactly with the Levitt
obstruction to transversality on spheres a: S*"*~*— Tg&? Moreover
he showed how p.(@)eZ/2 is computed as an explicit functional
cohomology operation.

We observe that since 2.(T%, Z/2) = n.(T¢ A MO A RP(2)), we
can use Browder’s functional operation on homotopy elements in the
Thom space Té¢ A MO A RP(2) to compute s,: 2,.4_.(T, Z/2) — Z/2.
Since s, defines .57°(£), we obtain an alternate definition of .SZ(€),
purely in terms of homotopy theoretical constructions. We use this
functional operation definition, in fact, to prove the Whitney sum
formula of Theorem J for the class .-

In §11, we give a somewhat similar homotopy theoretic definition
of the Z/8 index homomorphism 2,,,(T&) — Z/8 (see Theorem B and
Lemma C). Since this determines the transversality obstruction homo-
morphisms s,: 2,..,..(T&%, Z/n) — Z|n, (see the discussion of Theorem
I(iv)), we obtain a homotopy theoretical definition of the class Z2(¢).

The paper concludes with an Appendix describing how to define
Z/2, Q, Z,, or Z/2" cohomology classes of a space X, in terms of
homomorphisms on the bordism of X with various coefficients. The
cases Z/2, Q, and Z, are discussed thoroughly in [23] and [15]; the
Z|2" case is implicit in [15] and [13]. We include the Appendix
primarily for completeness.

CHAPTER I

1. The obstruction theory. In this section we will set up an
obstruction theory for the question of putting a manifold fiber homo-
topy transverse regular to the base of a spherical fiber space. This
obstruction theory is just a recasting of the one originally developed
in [10] except that we make different technical assumptions about
the class of maps which we will consider. This allows us to avoid
the difficulties encountered in the original theory. We will prove
that if f: D"* — T(¢%) is f.h.t. on the boundary and & admits a PL
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structure (though none is preferred) then there is one obstruction
ae P,_, to shifting f relative to the boundary to a transversal map.
a is the surgery obstruction of the following normal map. Put a
PL structure on & and shift f slightly to be PL transverse. Let
Y?= f~*(0-section). Then 0Y?C f~(M,) N S**** is a degree one normal
map. We show that « is well defined independent of the PL structure
we put an &9,

Using this local result we are able to develop an obstruction
theory. Namely, let f: M*** — T(£%). Suppose we are given a trian-
gulation of M such f (any simplex) is contained in the Thom space
of a bundle admitting a PL structure. Then we have an obstruction
theory to inductively deforming f over the skeleta of M to be f.h.t.
The obstructions lie in H*(M; P,_,_,). The rest of this paper involves
ramifications of this theory.

We begin by recalling the definition of fiber homotopy transverse

regular (denoted f.h.t.). Let E(S")-—n% X be a spherical fiber space
(i.e., the homotopy theoretic fiber of 7 is S**). Let M, be the mapping
cylinder of 7 and let

T(E") = M \J cone (E(E)) -

T(&%) is the Thom space of &% E(&%) C T(£%) has a trivial line bundle
as normal bundle

DEFINITION 1.1, f: M**"— T(&%), M a closed PL manifold, is
globally fiber homotopy transverse to X, (f.h.t.) if and only if
(1) f is PL transverse to E(&%) c T(&%) and

(2) FEE) L BE

o

F(M) —— M,

is a map of spherical fiber spaces. Of course, the spherical fibration
on the right is canonically equivalent to E’(EZ)—LX.

From this definition it follows easily that f~(M,) is a Poincaré
duality space, (PD space) of formal dimension = (see [24] for a
definition), and that its normal bundle in M**" is induced from ¢ by
f restricted to f(I,).

If M*t* is a manifold with boundary, we require
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FEE) 0 oM C F(EE) -1 BE)

L

(M) NoMC f~H(M) —— M,

to be maps of spherical fiber spaces. It follows in this case that
(f~ (M), f(M,) N oM) is a Poincaré duality pair (PD pair), of formal
dimension n.

We will use a stronger, local concept of transversality.

DErFINITION 1.2, Let M?'™ be a PL manifold with a given com-
binatorial triangulation, and let &% be as before. We say that
f: M — T(&%) is strongly f.h.t. if and only if

(1) fl4% 4 — T(g%) is f.h.t. for each simplex 4’ in the triangula-
tion of M, and

(2) (f7'(M) N g2, f~(M,) N 04" is then a 2 dimensional PD
pair; we require that this pair be homotopy equivalent to a PL 2-mani-
fold with boundary.

This definition requires some explanation. First, there is a great
difference between a map of a manifold into a spherical fibration
being f.h.t. and strongly fiber homotopy transverse, even if we ignore
the extra low dimensional condition. We will see later that the
former is analogous to requiring a map between simply connected
manifolds to have 0 surgery obstruction (i.e., be normal cobordant
to a homotopy equivalence), whereas the latter is analogous to requiring
all the splitting invariants of the map to be 0. (Which of course
makes it normally cobordant to a homeomorphism.) The analogy is
easily understood from the remark that if f; M — T(¢) is strongly
transverse then so is f restricted to any simplicial singular subman-

ifold of N (ie., N— > M -2 T(¢) for N a manifold and r simpli-
cial). Secondly, the condition on the (¢ + 2)-simplicies is to circumvert
our lack of understanding of G-framed PD bordism in dimension 2.
We will reduce problems about f.h.t. on (¢ + k)-simplicies to problems
about G-framed PD bordism in dimension k. We will be able to
handle the problems about G-framed PD bordism except in dimension
2 where we will use the extra hypothesis.
The main theorem of this section is the following.

THEOREM 1.3. If & —— X 4s a spherical fibration, m(X) =0,
q = 3, & admits a block PL structure, and
fi Dot —— T(&7) 4s f.hot. on ST,

then
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(1) <f n =+ 2 there is well-defined element in P, (the nth surgery
obstruction group) whose vanishing is mecessary and suffictent for
f to be homotopic relative to S*™* to a f.h.t map.

(2) If n=2 the above conclusion holds tf in addition
JH M) N ST is homotopy equivalent to a 2-manifold.

(8) If h, is & homotopy relative to S from f to a f.h.t.
map we may assume hi'(M.U E(&9) x [0, 1/2]) is constant. (Here
E(&?) x [0, 1/2] < E(&%) x [0, 1J/{E(E") x [1]} = cone (E((Y)).)

We emphasize that we do not have a PL structure for &%, only
the hypothesis that one exists.

Proof. We first need a lemma from the theory of PD spaces
to the effect that 1-dimensional surgery is possible.

LEMMA. Let M*» L T(&) with 3<n,8<gq, z.(M)=0 and

7(X) = 0. Assumé also that f is f.h.t. Then there is a homotopy
F:MxI—TEY), FIMx[0] = f which is f.h.t. with FF~(M,) N M x [1]
stmply connected.

For a proof when n = 4 see [10]. For n = 3 use the fact [24]
that any 3 dimensional PD space is bordant to S°% (In fact this
bordism can be taken to be framed.)

We now return to a proof of the theorem. Put a block PL
structure on &4 E*— &% In this structure shift f slightly to f’
which is block PL transversal to a small block tube around the
0-section of E. We clearly may do this so that /(M) N S and
S, U E(€) x [0, 1/2]) do not change. That is to shift a map to a
PL transversal one we need only alter it in a neighborhood of the
0-section. Let Y™*' = f'"}(0-section) and Z = f'(M,). Y™ is a PL
manifold. of dimension (n + 1) with boundary equal to Y N S*** = W=,
Z N S is an n-dimensional PD space, and W< Z N S*". We claim
that W™ c Z N S naturally has the structure of a degree one normal
map. This is proved by the following lemma.

LEmMA 1.4, Let f: M*™ — T(&9) be f.h.t. with f(M,) = X.
Suppose & has o PL structure, E, and h, is o homotopy from f
to a block PL transversal map f': M— T(&%) with the property that
hi'(M,) is constant. Let f'7%(0) =Y.

Then Y X is a degree one map and is naturally covered by a
bundle map.
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vy — [*E @D vyl

L

Y ——X

Proof. YcC X since Y = hi'(0-section) C k(M) = ko' (M,) = X.
X = fY(M,) is a codimension 0-submanifold of M**" and the funda-
mental class, [X]e H,(X) is f*U.N[X, 0X] where U, is the Thom
class of &. 4, [Y]eH(X)=h{U.N[X,0X]. Since h, = f we see
that 7,[Y] = [X] in H,(X). Thus YC X is degree +1

Yy = Yyey D Vuly -
Vyeu = V*hIE = 1*hiE = 1*f*E .

Thus we have a natural bundle map

Vyey — [*E

L

Y—X.

This induces

Yy = chM@”M[Y__a—)f*E@leX

L,

y— ' X

which is the bundle map covering z. This proves the lemma. Applying
this to the situation in Theorem 1.3 we see that W=Y N S —
Z N S*™ is a degree one normal map. Thus there is naturally as-
sociated an element in P, (the surgery obstruction of this normal
map). We call this element o(f). We must show that:

(1) o(f) is well defined depending only on the homotopy class
of f (the homotopy required to be f.h.t. on S**" x I) and

(2) if o(f) =0, then we may put f f.h.t. relative to f[S*™"
keeping the preimage of M. U E(&) x [0, 1/2] constant.

We consider the second question first.

Case m = 5. By the first lemma we may assume that

T(Z NS =0,

Thus if the surgery obstruction vanishes, we may do surgery until
W — Z N S™*" is a homotopy equivalence. These surgeries are realized
by shifting f’ slightly but may be done so as not to change the
preimage of M, or M, U E(&%) x [0, 1/2]. Here we are using the fact
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that surgery is possible in codimension 3. Thus we may assume that
in addition to all the above conditions that W c Z N S*** is a homotopy
equivalence. Thus (Z N S*"") U (tubular neighborhood of Y) is a PD
space in M. It is the f.h.t. preimage of a map f': D — T(&9).
In constructing this map f’ we have shifted f on the boundary S*~,
but we have not moved f~'(M, N S**") during the homotopy. Thus
the standard collaring trick allows us to work relative to S***. This
verifies the second condition for » = 5. For n < 5 we use the same
general argument but we must show that we can do the requisite
surgery.

Case m = 4. Here again we may assume that Z N S?** is simply
connected. Use the fact that in dimension 4 surgery is possible
after sharping enough times with S* X S* see for example [24]. It
is always possible to add to Z N S*™ a copy of S* x S? by performing
a f.h.t. homotopy. Thus if the surgery obstruction vanishes we may
make Wc Z N S a homotopy equivalence.

Case n = 8. Here we may assume Z N S?** is homotopy equivalent
to S®. Then we use the fact that any surgery problem with domain
a PL manifold and range S® may be solved.

Case n = 2. Here we must use the extra hypothesis that Z n S**
is homotopy equivalent to a 2-manifold, and the fact that for surgery
problems between 2 manifolds surgery is possible (after a bordism
of the range) if and only if the Kervaire obstruction vanishes.

Cases n < 1 are trivial.

Using all these special tricks in low dimensions one then pushes
the high dimensional argument through. The details are left to the
reader.

We now turn to the question of the well-definedness of the obstrue-
tion o(f). We will use the following standard fact from surgery
theory.

(=) If f: L — R** is a normal map between PD space then
o(f|oL) is 0 in P,. See [2]. Suppose that F: D" x [— T(&%) is
f.h.t. when restricted to S x I. Let F"'(M.) NS x I=X and
XNS x [i] = X,,7=0 or 1. Suppose that in D" x [1] we have
a PD pair (R"*, 0) obtained as follows. Let M/cC M, be a smaller
copy of the mapping cylinder. We shift F'|D x [1] to G which is
f.h.t. with respect to M; in such a way that G™'(M,) = (M) N
Dttt x [1]. Then 6RcC X, is a degree one normal map between
PD spaces. (As an example, R could be the tubular neighborhood
of the preimage of the 0-section under some map PL transverse in
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a different PL structure on &%) Since the homotopy from F to G
on D x [1] left the preimage of M, constant, we may assume that
F|D x [1] =G.

Now put a PL structure on & and shift F' slightly to F’ which
is block PL transverse. Do this keeping F~%(M.) and F (M) constant.

Let A = F'7'(0-section), and A, = AN D x [1]. We wish to show
that the surgery obstruction of 04,— X, equals that of R — X..
This will then prove the well definedness of ¢(f). Since A, — R is
a degree one normal map, (*) implies that ¢(0A, —0R) is 0. Also
0(04,— X,) = 0(0A, — X)) since 0A — X is a degree one normal map.

0A, — X, is the composite of two surgery problems 94, BRCINPY - BN X..
Thus o(n,°n,) = 604, — X,) and g(n,) = 0. If we knew that a(n,°n,)=
o(n,) + o(n,) it would follow that o(n,) = 0(84,— X) which is what
we wish to prove.

In the signature case such an additivity formula is obvious. In
the Kervaire invariant case it is not true in general that o(n,on,) =
o(n,) + o(n,). We need additional information,

In this case we may do surgery on aAl—fl—w?R until it is a
homotopy equivalence. (In the low dimensions first cross with CP2)
After doing this the crucial point is that the bundle map covering

aAL—”—le is dn,: Vs, — Vi, OF equivalently if we use the homotopy
equivalence n, to identify 04, with 0R then the bundle maps given
by #n,om, and n, are the same. This is clear since F” is homotopic
to F' as maps of spherical fiber spaces

F':y,,——v, and F:y,, — vy, .

This proves the well definedness of o(f) and completes the proof
of Theorem 1.3. Once we have this theorem the obstruction theory
now follows by the usual formal type arguments. Setting it up is
the aim of the rest of this section.

Statement of the obstruction theory. Let £&2— X be a spherical
fiber space. Suppose we are give an open cover {U,} of X such that
the base point of X, x, is in each U,, U, N --- N U,, is connected
and simply connected for all [«, ---, @], and such that ¢|Ua admits
a PL structure. Form the open cover {V, of T(&%) where V, =
M. |U,Uopen cone (E(8). Let M be a triangulated PL manifold,
and suppose f: M*™ — T(£%) has the property that f(4°) is contained
in some V, for each 4° in the triangulation of M, (i.e., f issmall
with respect to the cover {V,}). Then there is an Eilenberg-MacLane
obstruction theory for deforming f inductively over the skeleta of
M until it is strongly f.h.t. such that if f(4°)CV, then 4° stays in
V. during the deformation.
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NoTeE. The conditions that all U contain * and that all intersec-
tions are connected and simply connected implies that 7z, (X) =0 by
Van Kampen’s theorem. The converse is proved in next lemma.

LEMMA 1.5. Any stmply connected complex X has a covering
{U,} satisfying all the above properties and such that for any
spherical fibration &' — X, &|U, admits a PL structure for each U,
wn the cover.

Proof. Let X be a simplicial complex. For each vertex a of
X, let U, be the open star in the second derived subdivision of the
closed set (X® U closed st(«)). Then any intersection U, N --- NU,,
deforms to the two skeleton of X which is connected and simply
connected if X is. Also £|U, admits a PL structure since any spherical
fiber space over a 2 complex does.

DEFINITION. We call covers satisfying all the above properties
good covers. Note that each simplex of X is in one of the open
sets of the cover. We will need this later in the paper.

NoTE. The cover that we constructed in the above lemma is
natural with respect to simplicial maps. F: X—Y. The condition
that a map be small with respect to an open cover can always be
realized by subdivison. However, it is not clear that if a map is
strongly f.h.t. that the domain can be subdivided and the map shifted
until it is strongly f.h.t. and small with respect to the cover. Philo-
sophically, this smallness condition is related to the fact that PL
transversality can be accomplished by an arbitrarily small shift.

To set up the obstruction theory we need some corollaries of
Theorem 1.8. Let 7,.,.,(T(£9), s.f.h.t.) be, as a set, the set of homo-

topy classes of maps D" —— T(&%) such that f is f.h.t. on 9D*™"*
and in addition if » = 2, then f'(M.) is homotopy equivalent to a 2-
manifold. The group structure is given by connected sum along the
boundary where we sum small disks which go to the cone point.

COROLLARY 1.6. If &°— X 1is a spherical fiber space with X
connected and simply connected and such that & admits a PL struc-
ture then we have an tsomorphism

Tyini T(E), s.£.0.t) — P, for q=3.

Proof. Theorem 1.8 sets up a well defined function

Toner(T(EY), s.£.h.t.) —s P,
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which is easily seen to be a group homomorphism. If z(f) = 0, then
f is homotopic relative to 0D to a f.h.t. map. This, of course means
[f]=0emy (T, s.f.h.t.). Thus 7 is 1-1. To show that 7z is
onto let e P,. Then there is a G-framed PD space

f

Vi —— ¢’

|

Xn 3*

such that if we make f PL transverse regular to 0 €¢?, say f(0) =
Y", then 6(Y" — X") = @. Furthermore, ¢: S*" — T(»*) — S? is homo-
topic to 0. See [10]. Define f: D****' T(e?) to be a homotopy from
¢ to x. One sees easily that D" — T(e?) C T(&?) is a map with
obstruction a. This proves 7 is onto.

Definition of the obstruction cochain. Let f:M*™ — T(&) be
small with respect to the good cover as in 1.5, {V,}, and suppose
fl(g + 7 — 1)-skeleton is s.f.h.t.. Let 4" be a (¢ + 7)-simplex in
Met",  There is at least one of the open sets U, of X for which
flavtt 47— T(E|\U,) U C(€) and f |04 is s.f.h.t. Since U, is connected
and simply connected and &|U, admits a PL structure, we assign to
47 a(f 147 — T(&|U,)). We must show that ¢ is independent of
U,, i.e., if f|4°"" is also contained in U}, then o(f|4"" — T(¢|U,")) =
o(f|4°"" — T(&|U,)). This follows easily from Lemma 1.4. This gives
us a well defined cochain o(f) e Hom (C,..(M), P,_).

o(f) is @ cocycle. To see this we must show that {(o(f), 04°7**)=0.
We have f: 477" — T(|U,) and &|U, admits a PL structure. In
047+t = St take a collar neighborhood of the (¢ + ¢ — 1)-skeleton,
C. We may easily shift f to be f.h.t. on this neighborhood. aoC
has one component equal to S*"*~! for each (¢ + 7)-simplex of 04, ;...

Shift all of C PL transverse to some PL structure on &|U,. Let
Y = the preimage of the 0-section then Y < f'(M,) N C is a degree one
normal map. Thus o(YNoCcf(M;)N9dC)=0. On the other hand one
sees that this latter surgery obstruction is >}I%7' (—1;)o(jth face).
Where o(jth face) means {o{f), jth face of 4?***'>. Thus <{o(f),
045 =0,

If o(f) =0 as a cochain we may shift f relative to the (¢+1—1)
skeleton of M to f, which is f.h.t. on the (¢ + 1) skeleton. Further-
more, we can do this in such a way as to keep 4 in Vo whenever

(&)< V.

Proof. We work one (¢ + 7)-simplex at a time. Since f(4")C V,.
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We have all the hypothesis to apply Theorem 1.3. The result follows
easily from it. Note that we may do this keeping the preimage of
M. U E x [0, 1/2] constant by Property 3 of 1.3.

By shifting f on the (¢ + 1 — 1) skeleton by a homotopy (but
not a transversal homotopy) relative to the (¢ + © — 2)-skeleton we
may change o(f) by an arbitrary coboundary.

Proof. Here we will use the fact that the base point is in all
of the U,’s, and thus T(¢?) cV, for every p. We will change o(f)
by ode,_, where {e,_,, 47> = aecP,_, and {e¢,_, 47> =0 for all
other 4t Given ac P, , we know there is a map S SN T (&%)
which is homotopic to 0, and which is transversal on S+~ obstruction
a to extending the transversality on D", Pick a disk a disk
D¢t < 487" missing f(M,) and change f by a homotopy on this
disk relative to its boundary until on the interior of D¢™*' it agrees
with @. Then use homotopy extension to extend this to all of M**".
One checks easily that this changes o(f) exactly by de,_,. This com-
pletes the proof of the obstruction theory.

NoTE. There is one condition that we must verify and that is
in going from the (¢ + 1)-skeleton to the (¢ + 2)-skeleton that all
(M) N 472, f~(M,N047+?) are homotopy equivalent to PL 2-manifolds
with boundary. This, howevery, is easy to arrange. Then for any
A7 7 (M) N 0" will be homotopy equivalent to a 2-manifold.

Note. If we wish to change o(f) by de,_, where {¢,_,, 427> =1
and {e,_, 477 =0 for all other 4**! we may do this keeping
M U.: E x [0, 1/2]) constant providing only that

(M0 B % [o, %]) N dgvt
contains a small disk D?"*"', To see this we use the following lemma

LEMMA 1.8. Given ac P,, there is a map g: D" — T(&9), which
1s f.h.t. on ST with obstruction a with g(D?t"™') contained in an
arbitrarily small neighborhood of * e T(&%) = S°

Proof. The argument in 1.6 produces g: D*""*' — T(e?) f.h.t. on
Set* with obstruction . Let 0 be the image of the base of ¢’ in
T(¢") and 1 the antipodal point on T(¢?) = S% Leaving g¢/S**" fixed
near 0 we wish to make it miss 1. Since we have g¢: S — S’ the
only obstruction to making ¢ miss the point 1€ S? is the element in
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framed bordism ¢g(1) after g has been shifted transverse to 1. But
since g bounds D*™"*! this element is 0. Thus we make shift g slightly
near 1¢ S’ to make it miss 1€ .S?. Once we have g|0D?""* missing 1
by changing the map by an element in 7,,,.(S% we may make g on
all of D™ miss 1.

Now if we wish to change o(f) by de,_, as above and if 4{™ ' N
S M. U E x [0, 1/2]) contains a disk D{*""* we may first assume that
this disk is contained in f'E x [0, 1/2] and that it maps by f to a
point. Now use the previous lemma to shift f near this disk. Since
g(D*™)y c M,q < T(E*) the process never moves any point near DI
outside of M. U K x [0, 1/2].

NOTE. Since this theory is “one simplex at a time relative to
its boundary” there is clearly a relative obstruction theory for de-
forming a map f: Mt — T(£%) relative to a subcomplex K on which
it is already strongly f.h.t. The obstructions lie in H*"Y(M, K; P,_,).

Also note that if L is a subcomplex of M which f sends to the
cone point, then, after f is shifted to f’ which is strongly f.h.t., f’
maps L into T(£|U) where U is an arbitrary contractable open set
containing the base point.

NoTE. The obstruction theory is natural with respect to simplicial
maps of bases covered by bundle maps, i.e.,

S

E'I N TLI

||

X— Y

where f is simplicial. The fact that f is simplicial implies that it
respects the chosen covers on Y and X. From this naturality follows
easily. The obstruction theory is also natural with respect to sus-
pensions.

Namely given f: M*™ — T(£%) small with respect to the cover we
may suspend to form M x I —Z—L T @ e') where >, f|M x I is the
point map. The obstructions for f lie in H*™*(M*™"; P,) and the obs-
tructions for 3 f are in Ho ' *(Mi** x I, Mo I; P,) = H#+(S M; P,).
If we have a deformation of f to be f.h.t. on the (¢ + ¢)-skeleton,
then this gives a deformation of >, f on the (¢ + 7 + 1)-skeleton of
M x I. The obstructions to extending the maps further agree under
the suspension isomorphism.

2. First consequences of the obstruction theory. In this section
we wish to formulate homotopy theoretic consequences of the obstruc-
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tion theory of §1. Let £&— X be a spherical fiber space, ¢ =3, 7(X)=0
and {U,} be the cover of X and {V,} the associated cover of T(&%) as
in 1.5. (We shall always work with these covers unless otherwise
specified.)

DEFINITION 2.1. Wy is the semi-simiplicial complex of all strongly
f.h.t. maps 4°— T(&% which are small with respect to the cover {V,}.
Denote by T(S“) the total singular complex of 7'(¢%). Then we have
a natural map W., — T(£). Let F., be the homotopy theoretic fiber
of this inclusion. The following is a representative semi-simplicial
complex for F. The i¢-simplices are maps h: 4* X I — T(&%) with
h|4%x {0} strongly f.h.t. and small with respect to the cover and
h|4* x {1}: 4* x {1} — cone point.

We shall construct in this section homomorphisms from bordism
groups of this fiber to the surgery obstruction groups These homo-
morphism will measure the obstruction to global transversality.
We shall show that they satisfy all of the natural compatibility
relations and product formulae analogous to those for surgery obs-
tructions. (In fact the homomorphisms are surgery obstructions.)
Later in this paper we shall use these homomorphisms and the product
formulae that they satisfy to derive further homotopy theoretic
consequences. This is the reason that we state them now. First,
however, we relate the homotopy groups of F. to the surgery obs-
truction group.

THEOREM 2.2. 7w(F.) = P,_, provided that q = 3.

Proof. We show that there is a natural z(F.) = 7..(T(&),
strongly f.h.t.). But by the obstruction theory =z, (T(¢?), strongly
f.h.t.)_%Pi_q. An element in 7,(F) is a map S x 7", T(&") such
that #|S* x {0} strongly f.h.t. and S° x {0} is triangulated so that
h is small with respect to the cover and A(S® x {1}) = cone point.
Thus we may factor A through S° x I/S® x {1} = D, This gives
the map 7,(F'.¢) — 7, (T(£7), strongly f.h.t.). The proof that it is well
defined and the construction of the the inverse are analogous.

LEMMA 2.3. The PL bordism groups of the geometric realization
of F.q are naturally isomorphic to the following groups. As repre-
sentative elements we take H: M™ X I— T(&) with H|M x {0} small
with respect to the cover and strongly f.h.t.and HIM x 1: M X 1—
cone point. Such an element is equivalent to zero if there is an
H:W x I — T(&%) with H|W x {0} small with respect to the cover
and strongly f.h.t. and H|W x {1} — cone point. And 6W = M with
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H|oW = H.

Proof. This follows from the standard arguments in semi-sim-
plicial theory.

THEOREM 2.4. There are natural maps

o
ort, (Fu) -2 P,
ort (Fu; ZIn) -2 P,® Zin
M (Fu)—> Zj2 satisfying

(i) & and the [7,] are compatible with the mnatural maps
me

d
Z 25 Zin and Zin — Z/n-k in dimensions q + 4+ + 1.
(ii) &, &, and o are compatible with the natural maps

‘Qq+4*71(F6q) E— *Qq+4*«1(F5‘1; Z/Z) - 77(1+4*—1(F7‘f") ‘

(iii) These maps measure the obstruction to global transversality.

(iv) They satisfy the product formulae as in [15] and [22]

(@) 7:(Fe) @ 0x(0t) = 95 (F)— Piy,  sends (M, )@ N to
(M, f)-(N)

(b) QU(F) ® 2 (pt) —» X (F) — Py, sends (M, f)QN" to
(M, f)-I(N)

(¢) QLF; Z[n) @ 25K (p1); 2[n) — HF; Z[n) — P @ Z[n for n
odd sends (M, f) QN to &M, f)-I(N) for n = 2% the map sends

(M, f)-I(N) I =04)

jz"“/j’n(M, F)-d(6NY) m, 1l = 2(4)

M™, f) Q N* to <22 (f|oM)-d(NY) m = 3(4)
l=14)

0 otherwise

Here d(L*™) is the de Rham invariant of skew symmetric linking
pairing on a group associated with the homology of L. It is given
by the characteristic number {VSq¢'V, [L]> € Z/2. See[15]. If M isa
Z|2¥-manifold, 6 M means the closed codimension one manifold which
is the singularity set.

Proof. Construction of the homomorphisms. Let Mo x I —fl—>
T(&%) with H|M x {0} strongly f.h.t. and small with respect to {V,},
and H|M x {1} the point map to the cone point. Triangulate M x I
relative to M x {0} so that H is small with repect to {V,}. Since
H*(M x I, M x {0}; Py_,_,) = 0 we may shift H relative to M x {0}
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to H' which is strongly f.h.t. Since H(M x {1}) = cone point,
H'(M x {1})cT(|U) U cone E(&) where U is a contractible neighborhood
of the base point. Thus H'*(M,)C M x {1} is a PD space with a
G-framed normal bunle in M x {1}. We also have a homotopy of
M x {1} = TVu—10rpnuxw) — T(E|U) to zero. From this we shall read
off the obstruction o. Let X"=H (M, N M X {1} and ¢: Vycpyxy —&"
be the trivialization. Put ¢ PL transversal to Oce™. This gives

Y”—i» X™ a degree one normal map. Define ~7(M x I, H) to be the
surgery obstruction of this normal map. If M is closed and oriented,
then it lies in P,. If M is unoriented, then it lies in 0 if % is odd
and Z/2 if n is even. If M is a closed oriented Z/k-manifold, then
it lies in P, ® Z/k. (See [15] §§1 and 5.)

We now prove that < is well defined depending only on the
cobordism class of (M x I, H). Let J: We* x I — T(&%) satisfy

(1) J|W x {0} is small with respect to {V,} and s.f.h.t.

(2) J|W x {1}: W x {1} — cone point

(3) oW =M and J|oW x I = H. (i.e., (W,J) is a bordism of
(H, H) to 0 in F§,.)

Since H*(W x I, W x {0}, P,_,_, =0, we may deform J until
it is s.f.h.t. on all of W x I, relative to W x {0}. This then gives
a G-framed PD subspace of W x {1}, (Y"*, t: Yycwwiy — €"). The
surgery obstruction of ¢7%(0) N v,y —dY™ is then 0. Thus to show
bordism invariance of <7, we need only show that this construction
on (M x I, H) gives the same obstruction as any other similar cons-
truction.

To show this, suppose we have H: M x I— T(&%) as above and
two deformations of H to H' and H" both relative to M x {0} and
both s.f.h.t. on all of M x I. Let H: M*™" x I x — T(£%) be a homo-
topy between H’' and H” with H|M x {0} x I = (H|M x {0}) x I and
H|M x {1} x I contained in T(¢|U) U cone E(£) where U is a contrac-
tible neighborhood of * in X. Then H|M x [I x [U{0} x Il is s.f.h.t.
Since H*(M x I x I, M x [I x TU{0} x I]) is 0 we may shift H to
s.f.ht. HM)NMx {1} x I then is a G-framed PD bordism
between H'"'(M,)N M x {1} and H' (M) N M x {1}. This shows the
two surgery obstructions agree, and proves ¢ is well defined.

We now check that these homomorphisms satisfy (i)-(iv) as
claimed in the theorem.

(1) and (ii). The compatibilities claimed in (i) and (ii) follow
easily from the analogous compatibilities for surgery obstructions,

see [15] §§5 and 6.

(iii) Global tramsversality. We say that f: Mt — T(&9) is
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globally transversal if it is f.h.t. (but not necessarily f.h.t. on each
simplex). If f is globally transversal, then f~'(M,) is a PD space
of formal dimension n. We will show here that if (M x I, H) = 0,
then we may deform H relative to M x I to make it globally trans-
versal and conversely if H may be deformed relative to M X I until
it is globally transversal then ~(M x I, H) = 0.

If &~(Mx I, H) =0, we deform H by a f.h.t. map to make
H*(M,) N M x {0} connected and simply connected. Let J be the
homotopy from the cone point to H'|M x {1}. The image of J is
contained in T(£¢|U) where U is a contractible neighborhood of the
base point in X, and J of one end goes to the cone point. Thus we
may shift J to be PL transverse relative to this end: Let Y" be
the preimage.

{\/
y»

HYomy)

M x {0} Mx {1} Mx {2}

The element (M x I, H) then is by definition the surgery obstruction
of YNMx {1}c H (M) N M x {1}. If it vanishes then we may do
surgery by further shifts of J until Y N\ M x {1} c H' (M) N M x {1}
is a homotopy equivalence. Then H’' U J will be f.h.t. and homotopic
relative to the ends to H.

REMARK 2.5. Note that ~2(M x I, H) is the surgery obstruction
of a surgery problem where the domain bounds and the range is
PD cobordant to H'(_#)N M x {0}. Note also that if dim (M) =
g + 1 with ¢ odd, then the obstruction to transversality lives on the
Bockstein of M. That is, the obstruction to global transversality is
ZOM x I, H| ;yx1) € Pi.

Now suppose that H: M x I— T(£% is homotopic rel M X Itoa
globally transversal map. We wish to show that ~(M x I, H) = 0.
This will require a brief digression and alternative definition of
oM x I, H).

Roughly, we will deform H: M x I— T(&) rel M x {1} (rather
than M x {0}) to a globally transversal map H’ with respect to a
smaller mapping cylinder _#Z., C _#. We will do this in such a way
that H(_#:) remains setwise fixed. It then follows from a slight
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generalization of Lemma 1.4 that the inclusion (H')™(_#:) N M X {0} —
H_#)N M x {0} is a degree one noamal map of PD spaces.

There are theories of surgery on PD spaces ([8], [18]), but for
our applications, it is enough to observe that given a degree one
normal map X —Y of i-dimensional Z/n-PD spaces, there is defined
homotopy theoretically an obstruction s(X—Y)e P, Q Z/n ([3], [4]).
s(X—Y) an invariant of the normal bordism class of X—Y and
vanishes if X —Y is a homotopy equivalence. If X is a PL-manifold,
s(X —Y) is the usual surgery obstruction.

We will argue that in the situation above, &~ (M x I, H) =
S(HY(A)NM x {0} — H(#) N M x {0}). It follows that if H
is globally transversal, then ~2(M x I, H)=0, since then (H')'(_#:.)—
H™(_#) is a normal map of PD spaces with boundary equal to
(H') () N M x {0} — H () N M x {0}.

Now return to H: M x I— T(£%). Let .. C _# be a slightly
smaller mapping cylinder for & By Theorem 1.3.13 and Note 1.7,
the obstruction theory allows us to deform H rel M x {1} to a globally
transversal map H' with respect to .., such that H'(_#;) is kept
setwise fixed throughout the deformation, provided that H(_#:)N 4%
contains a disc D’ for each cell 4777 of M x I — M x {1}, 5= 1. So
our first step is to run thickened arcs from H '(_#:) to any such
cell 427 which does not intersect H '(_#:). This can be interpreted
as a deformation of H with does not change homotopy properties of
the inclusion H*(§)c H*(_#). In particular, H'(.#) N M x {0}
remains a PD space.

This step provides us with our normal map of PD spaces
(H) (Ai) N M X {0} — H () N M x {0}. It is not difficult to use
the obstruction theory in a similar manner to prove that the normal
bordism class of this map is an invariant of the bordism class of
the map M — F., which corresponds to H: M X I — T(&). Thus
7' (M x I, H) = s(H') " (#) N M x {0} — H'(_#) N M x {0}) is an
invariant of the bordism class of M — F,. To complete the proof
of Theorem 2.4(iii), we need to prove that (M x I, H) =
(M x I, H).

Recall that ~(M x I, H) is defined as follows. Deform H rel M x {0}
to a transversal map H”: M x [0, 1] — T(&%) such that H"(M x {1}) C
T(¢"|,), where U is a contractible neighborhood of the basepoint of
B&. Let J: M x [1,2]— T(&"|,) be the homotopy, given by the
deformation of H, from J|,.u = H"|yxy t0 J|yxp = oo, 0 € T(&Y)
the cone point. Using a PL-structure on &?|,, we may assume that
J is PL-transversal to a smaller mapping cylinder _#Z.. C ._#;.. Then
Y" = JY(Bg) is a PL-manifold, and 0Y" = J ' (B&)NM x {1} —
J(AZ)N M x {1} = (H") (_#) N M x {1} is a degree one normal map.
By definition, &2(M x I, H) = s(@0Y" — (H") "(#) N M x {1}).
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Mx {0} H Mx (1} T Mx (2}

(H") " my) T "H(my)

Now, H”|y.y, is transversal with respect to both . and ..
We may as well assume, just as above, that (H") {(_+:) meets all cells
of M x {0,1} — M x {1}. Then we can deform H” rel M x {1} to H"",
which is transversal with respect to ., on all of M x [0, 1], keeping
(H") () setwise fixed. This gives a PD space with boundary,
Z" = (H"Y(A) < (H'Y N A), with Z"N M x {1} =3Y". We now
compute

oM x I, H) = s(0Y" — (H") " (_4) N M x {1})
= s(Z" N M x {0} — (H") () N M x {0})
= oM x I, H' U J)
= 7'(M x I, H)

as desired.

Theorem 2.4(iii) is one of the key points of the paper. It is
precisely here that we obtain a global obstruction to transversality
(in a rather specific situation), using a call-by-cell obstruction theory.
The remainder of the paper exploits this global obstruction.

(iv) Product formulae. Suppose we have H: M x [— T(&%) as
above, and we deform H relative to M x {0} to H’ which is s.f.h.t.
Let (Y"CM X {1}, t: Yy — €7) be the resulting G-framed PD
subspace in M x {1}. If we cross (M x I, H) with L' in the bordism
of F, then the new element is represented by

Mx LxI-">Mx 121

where we use a product triangulation on M x L. Thus we may
shift Hom to H'ozw which is s.f.h.t. in the product triangulation.
The G-framed PD space in M x L x {1}is (Y x L, t). This shows that
the surgery problem is just crossed with L.

The product formulae in (iv) now follow from those in [15], [22],
and [23] for ordinary surgery problems.

2.6. We have already observed that the open covers which we
are considering are natural with respect to 7(f) where f is a map
of spherical fiber spaces which is simplicial on the base. From this
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it follows easily that the homomorphirms on F, are also natural with
respect to such maps.

3. The obstructions to global transversality. Let £?— B&7 be
an oriented spherical fibration, with z,(B&%) = 0, and let F,, - W,,—
Te* be the fibration considered in §2. (We have suppressed the cover
{Vp} of T& from the notation.) In §2 we defined homomorphisms
(if ¢ = 3)

T Qi (Fe)) — P,
s 5L (F ey, ZIn) — P, R ZIn
O NEF) — P, Q Z[2 .

In this section we will work in the stable range; that is, we
assume 1<q — 2. We will use the homomorphisms &, &,, ¢ to define
homomorphisms on the bordism of T%¢ which measure exactly the
obstruction to global transversality, up to cobordism, of a map

Mo L e

Thus S(M**, f) is 0 if and only if (M, f) is cobordant to a globally
f.h.t. map. (See Def. 1.1.)

Stably, the fibration F,—W,.— T&’ is also a cofibration. Thus,
there is a natural isomorphism of bordism groups z: QI (W, F)—
ﬁg’fj(TE"), j < q — 2. The map = is described geometrically as follows.
A relative bordism element (M, oM)— (W, F.) is defined by giving,
first, a strongly fiber homotopy transversal map f: M — T¢ and,
secondly, a homotopy F:0M x I— T& of f|0M to the trivial map.
We obtain a bordism element (D(M), g) of T& by doubling M, D(M) =
MUy (—M) and defining g: D(M) — T¢& by setting g|M to be f and
setting g|_, to be F on a collar oM X I < (—M) and the trivial map
outside this collar oM x I < (—M) and the trivial map outside this
collar. Isomorphisms =x,: 272(W., F., Z/n) i.Qf,’ L(TE, Zn) and
7 it (We, Fy) = HEE(TEY) are similarly defined if 7 <q — 2.

We now define homomorphisms

8. gffi-f-l(TEq) — P,
Sus ggqu(Téq: Z/%) —_ Pt ® Z/n
8 005, (Te) —> P, ® Z/2

to be the compositions (i < ¢—3) s = 0oz ": Q2% (TE%) — Q2L (W, F.)—
QPL(F) — P, and similarly, s, = o0,0m,;* and § = 06077\

LeEmMA 8.1, If f:&—n" is a map of spherical fibrations, then
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the diagram

rE, (Te")
| 8
(T« l > P;
~ / s
QrL (T

commutes, and similarly for s, and §.

(ii) s, s,, and § satisfy the same compatibity relations as &7, &,
and &. (See Theorem 2.4(i), (ii).)

(iii) s, s, and § satisfy the same product formulae as 7, &,
and O. (See Theorem 2.4(iv).)

@iv) s, ., and § are stable. That 4s, of 1 < q¢ — 3

7t (TE)
xslll > P,
s

D2 AT(E @ &)

commutes, and stmilarly for s, and §.

Proof. This is immediate from the definition of s,s,, and § in
terms of ~, &,, and 2.

Also, since the homomorphisms o, o, and 0 are defined as surgery
obstructions, the homomorphisms s, s, and § are (indirectly) computed
as surgery obstructions. For example, let f: (M, oM) — (W, F.)
represent an element of 2V, (W,, F.). This means we have a strongly
transversal map ¢g: M — T¢ and a homotopy to zero of g¢gl,,. Let
(V,0V)c (M, oM) be the (7 + 1)-dimensional Poincaré pair (g9 '(B&Y),
g (B&) N oM), defined by the transversal map ¢g. (We assume B&?
is the mapping cylinder M, of &%) Then

st([M, oM, f1) = o([oM, faxl) € P

is the surgery obstruction of degree one normal map L’ — L, where
L is PD cobordant to oV and L’ is a PL manifold which is a
boundary. (See Note 2.5.) Thus both the domain and range of the
surgery problem used to compute s(x), x € O7%,.(T&9), are PD boun-
daries. We conclude, for example,

3.2. s: Q7L (T&) — P, = Z is identically zero. In this case, s
is computed as the difference of indices of two oriented boundaries.
Similarly, both the domain and range of the surgery problem
used to compute s,(y), y € 25, (T&, Z/n) or 5(2), zefrE, (TEY) are
PD boundaries; in the first case, boundaries as Z/n PD spaces and
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in the second case, boundaries as unoriented PD spaces.

REMARNK 3.3. 3.2 could also be established by appealing to the
fact that @7, (MSG,) is finite and using naturality of s with respect
to bundle maps.

_ THEOREM 3.4(1). Suppose f: M — T&' represents an element of
Qi (T [resp. 571 (TED].  If s(IM, f1) = O[resp. §([M, F]) = 0],
then f: M — T& i3 cobordant to a globally transversal map.

(ii) If f:M-— T& represents an element of Q0L (T&, Zln), i
even, [resp. ¢ odd] and s,(M, f]) = 0 [resp. s([0M, f|;x]) = 0], then
f: M— TE& is cobordant to a globally transversal map.

Proof. Choose a relative bordism element g: (N, oN)— (W, F,)
such that ([N, oN, g]) = [M, f] where 7 is the doubling construction
defined above. g corresponds to a map G:oN X I— T& with G|,y
strongly transversal and G|,y., the trivial map. By assumption
0=s(M, Fl) = &GN x I, G). Thus by Theorem 2.4(iii) we may
assume that G:0N x I— T¢& is globally transversal. It is then
obvious (see figure below) that the induced map #([N, oN, ¢g]) =g U G:
NU(—N)— T¢ is globally transversal. This proves (i).

N aNxI

N —N

<

g_l(BE) GY(Bg)

The proof of (ii) is essentially the same. There is the additional
complexity that one must keep track of Z/n manifolds with boundary
in QYW F., Z/n), but we leave the details to the reader.

Our next goal will be to prove the converse of Theorem 3.4. In
the process, we establish an alternate definition of the homomorphisms
s and s, on the bordism of T&? which is of independent interest.

There is a natural Pontrjagin-Thom isomorphism p: ﬁffj(qu);
Tagii( TEAMSPL,,), 7 < q — 2. Namely, given f: M7 — Tg& embed
M S** and cover f by a map of bundles
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Vi — TE x E*

Lo

M-1Z, e x BSPL,,

where E* is the universal PL bundle. Now apply the Thom con-
struction to obtain S** — TVY — (T€)*AMSPL,,. Since [M, f]e
Qrr(Te?) = kernel (227 T&%) — Q7F(pt)), we obtain a well-defined element
of 7y, (T AMSPLy,).

Now, T&"AMSPL,, is itself a Thom space; namely, the Thom space
of the Whitney sum & x E* — & x BSPL,,. From §2, there is a
fibration F',, -—»WE>< g — TEAMSPL,, and 7y ;(Fexp) = P;. We thus
define s’ = dp: Qq+1+1(T$q) — T s41(TEAMSPLy,) — 7oy i(Fe ) = P,

Similarly, there is an isomorphism

D2 QPEATE, Zn) — wyy, (TEAMSPL,,, Z|n)

and we define s, = dp,: @25, (TE%, Z|n) — Togrir( TEAMSPL,,, Z|n) —
Tagsi(Fenn Zin). It is easy to see that if n is odd 7y, (Flexz, Z/n) =
Zin,0,0,0 as = 0,1, 2,3 (mod4), respectively, and, if » is even,
Taqiil Fexmy ZIM) = ZIn, 0, Z/2, Z]2 as ¢ = 0, 1, 2, 3 (mod 4), respectively.
Moreover

s = 0: 008, (Te) — Z
s’ = S;p?.' Nq+4z 1(T5q) a— §q+41 1(T5q Z/Z) - Z/2
s, = 8'0: QFk, (TE, Zjn) —> QFL, (TE) — ZJ2 .

THEOREM 3.5 @. s=s" Qrr. (Tg) — P;.
(ii) s, = si: Q2L (T&, ZIn) — P; Q Zn, j even.

Proof. Statement (i) is trivial if j = 0(mod 4) since s = s" = 0,
and if j = 2 (mod 4), statement (i) follows from (ii).

To prove statement (ii) if j = 0(mod 4), we will show that if
fi: M — T¢ represents an element of Q7Z,..(T&) and f|,,: M — T&
is globally transversal, with (f|,,) (B&%) = L* C (6M)*** the associated
PD space of dimension 4¢, then s,([M, f]) and s,((M, f]) € Z/n are
determined by the index of L* modulo 8. (By 3.2 and 3.4(i), the
hypothesis that f|,, is globally transversal puts no restriction on
M, fle Q.. (Te%).) First, we show that index (L*) (mod 8) depends
only on the bordism class of [6M, f];ux]-

From the definition of p above, it is clear that a« = ([0 M, f|..]):
St — T&AMSPL,, is global transversal: in fact

X% = a7(Bg" x E) 8™ and LY = (f]a) (B C OM)™

are equivalent as PD spaces. By 1.3(3) and a slight generalization
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of 1.4, we can homotope a: S***™* — T&AMSPL,, to a strongly trans-
versal map B (see Def. 1.2) such that Y* = 87(B&* x E*) C X* and
Y*— X* is a degree one normal map. In particular, index (L*) =
index (X*) = index (Y*) (mod 8). Moreover, it is not difficult to show
using the obstruction theory of §1 that index (Y*‘)(mod 8) depends
only on the homotopy class of the strongly transversal map B: S+ —
T&AMSPL,,. (In fact, Y* is well-defined modulo cobordism of PD
spaces and connected sum with the G-framed Milnor manifold M**
of index 8.) We conclude from this paragraph the following.

LEMMA 38.6. If g: N — T¢? 4s globally tramsversal with
g (B = K*C N*** and if [N, g] = 0 € 2,..(TE%), then index (K*) =
0 (mod 8).

Now we return to the Z/n bordism element f: M — T&, with
(f1::)7(B&%) = L*¥. By definition, s,([M, f])e€ Z/n is computed as the
surgery obstruction of a normal map of 47 dimensional Z/n PD spaces,
W’ —W, (in fact, W’ is a PL manifold) where both W’ and W bound as
Z[n objects. This means that 6W' =0V’, W =0V and W U, (—nV")=
0Q", WU, (—nV) = 0Q, where V', Q" are PL manifolds with boundary,
V,Qare PD spaces with boundary, dim(V')=dim (V) =41, and dim(Q")=
dim(Q) =41 + 1. Since the dimension is odd, we may assume that
OW' =03V'— oV = oW is a homotopy equivalence. (There are no low
dimensional problems since we are allowed cobordisms of both the
domain W’ and the range W of the surgery problem W — W.)
Moreover, the closed PD space K* =V U,(—V’) can be identified
with (¢9|,y) " (B&?), where g: N— T¢& is a Z/n bordism element cobordant
to f: M — T¢. (Specifically, [N, g] is constructed in terms of the
map 7,: 2ei0ii(We, Foy ZIn) — 244000 (TE%, Z/n).) By Lemma 3.6,
index (L*) = index (K*') (mod 8). On the other hand, by the Novikov
additivity property of the index, index (K*') = index (V) — index (V"),
and also 0 = index (0Q') = index (W’)— = index (V') and 0 = index (0Q) =
index (W) — nindex (V). Thus we have the following equation

index (W') — index (W) = % index (V) — % index (V")
= 1 index (K*) .

Since s,([M, f]) € Z/n is defined as the mod % reduction of the integer
(1/8) (index (W’) — index (W)), we have proved the following.

LEMMA 3.7. If f: M4t — T¢ 4s a Z/n bordism element and
Slonw s globally tramsveral with L* = (f|:x) (BEY), let I(L*¥) =
index (L*) (mod 8) € Z/8. Then

(1) of n=2,s,(M, f]) = 2 [(L*¥) e Z]2,
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(ii) <f » 4s odd, s.(M, f]) = 0.
(In 3.7(0), if r<3, I(L*)e2"Z/8ZC Z/8Z. Thus, 2" °I(L*)e Z/2"
makes sense.)

Finally, s,([M, f]) is also (indirectly) defined as the surgery obs-
truction of a normal map of Z/n P.D. spaces, via the identification
Tagisi(Fexz ZIM) = Py @ Z|/n = Z/n. One can apply the same argument
used in the proof of Lemma 3.7 to deduce that s,([M, f])eZ/n is
determined by I(X*)e Z/8, where

X4 = a(Bg x IY), @ = p(6M, fs]): S+ — TEAMSPL, .

But we already know from the discussion preceding Lemma 8.6 that
index (X*) = index (L*). Thus, s,([M, f]) = s.((M, fl)eZ/n. This
proves Theorem 3.5(ii) if 7 = 0 (mod 4).

If fi M7 — Té& is a Z/2" bordism element, s,»([M, f]) and
sir((M, f]) € Z/2 depend only on the Z/2 reduction of [M, f]. That
is, s,7([M, f1) = s.0.[M, f1) and s:r([M, 1) = s:0([M, f]) € Z/2. Thus
we assume M is a Z/2 manifold. Let N°® be a Z/2 6-manifold with
d(dN®=1¢ Z/2. By Lemma 3.1(iii) and Theorem 2.4(iv), S,((M, fl[N])=
s:([M, f1)-d(ON°®) = s,([M, f]) € Z/2. Also from Theorem 2.4(iv) and
the definition of s, si([M, fIIN] = si[M, f1)-d(ON®) = si([M, f]) € Z/2.
Thus the case j = 2 (mod 4) of Theorem 3.5(ii) follows from the case
J = 0 (mod 4) considered above. This completes the proof of Theorem
3.5.

We have now developed sufficient machinery to prove the converse
of Theorem 3.4, in most cases.

THEOREM 3.8. (i) If [M, f]e 27F;, (T&%)[resp. nit; . (TE)] and f: M—
Tz is globally tramsversal, then s([M, f]) = O[resp. 3([M, f]) = 0).
(i) If [M, fle 222, (T€, Zn), j even, [resp. j odd] and f: M — TE
18 globally tramversal, then s,([M, F1) = O[resp. s([0M, f|;x]) = 0O].

Proof. We will postpone the unoriented case of 3.8(1) until
Chapter IV. The oriented case of 3.8(1) has content only if j =
2 (mod 4), and follows from 3.8(ii) with » = 2, j = 2 (mod 4).

To prove 3.8(ii) with 7 = 0 (mod 4), we observe that if f: M**** —
Tée is globally transversal, with f%(Bg&?) = K**"' < M*"™*", a Z/n PD
space with 0K**' = L* — 6 M, then 0 = index (0K**') = n index (L*)e Z,
hence index (L*) = 0. Thus, by Lemma 3.7, s,([M, f]) = 0. The case
J = 2 (mod 4) is deduced from the case 7 = 0 (mod 4) by crossing with
N°® where d(0N°®) = 1€ Z/2, just as in the proof of Theorem 3.5. The
case j odd of 3.8(ii) follows from 3.8(i).

REMARK 3.9. Lemmas 3.6 and 3.7, along with the trick of crossing
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with N° d(0N°®) = 1e Z/2, imply that the homomorphisms
8,: Q7L (Te, Z|n) — P, Q Zn

(and hence also s: 975, (T&%) — P,) are independent of the cover {V,}
of T& which occurs implicity in the original definition of s,. We
will prove in Chapter IV that §:7,,,..(T&) — P, ® Z/2 is also inde-
pendent of the cover {V,}. ‘

We have shown above that if f: M**** — T&? is a map, M a closed
oriented manifold, then f: M — T& is cobordant to a globally trans-
versal map g: N— T¢ (3.2 and Theorem 3.4) and, moreover, if L** =
9 Y(B&Y) < N***», index (L**) e Z/8 is an invariant of [M, f]e Q7L (T¢€%)
(Lemma 3.6). However, we have given no indication of how one
might compute index (L*") e Z/8. Similarly, we have defined

8,1 Q28 (T&, Z[n) — P, @ Zn

and proved that s, is exactly the obstruction to global transversality,
up to cobordism (Theorem 3.8). But we have not discussed how
s, (P h)e P,Q Z/n might be computed if h: P***'—TE& is a Z/n
manifold, although Lemma 3.7 reduces this question to the evaluation
of an index. The following discussion remedies these defects to some
extent, and will prove useful in §9.

Let 7:&?— B&? be a spherical fibration. Let M, C T be the
mapping cylinder of z; that is, M, = & X [0, 1] U.exo BE%. Let M M,
be a “smaller” mapping ecylinder. Say M; = &7 X [0, 1/2] U= j:x, BE".
It makes sense to say that a map is transversal with respect to either
M. or M; (see Definition 1.1).

DEFINITION 3.10. Let f: M*"" — T&* be a map, M a closed mani-
fold. A partition of f: M — T& consists of two codimension zero
submanifolds U, and U, of M such that M =U,J,U,, oU, =U,NU, =
0U,, and such that f1{,:U, — T¢ is transversal with respect to M.
and f|,,;: U,— T¢ is transversal with respect to M;.

Lzzg_l(M;)ﬂ U,
U,

L =g‘1(M,)n U, 7
2
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Let L, = f7(M,)NU,, L, = f(M;) N\ U, as in the figure. Thus
L; is an i-dimensional PD space with boundary, 5 = 1, 2. By Lemma
1.4, the inclusion 6L, — oL, is naturally a degree one normal map of
PD spaces.

Let us assume 4 =4mn, f: M — T&® partitioned as above. Then
there is defined an invariant O(L,— oL, e Z/8, [15], [4], [13].
Namely, let K;, , be the torsion subgroup of kernel (H,,_,(d0L,, Z)—
H,, (0L, Z)). The normal bundle map v;,;, — v;;, covering 6L, — oL,
can be used to define a quadratic function +: K,, ,— Q/Z, refining
the natural linking pairing on K,, ,. Let O(@L,— oL,) = Arf (v) e Z/8.

If W* — 0L, is any normal cobordism between oL,— oL, and a
homotopy equivalence, then ©(OL, — oL,) = index (W**) ¢ Z/8, Thus if
we could do “Poincaré surgery” on oL,— 0L, to a homotopy equi-
valence, we could prove that f = f,: M — T&? is homotopic to a
transversal map f;: M — T&%, and, if L* = f{(B£%), then index
(L*") = index (L,) + index (L,) — @@L, — oL, € Z/8. We assert that
even without Poincaré surgery we can establish this last formula.
That is,

LeEmmaA 3.11. Let M = U, U, U, be a partition as above, Li*C U,.
If f:M*™ — T& is bordant to a transversal map g: N — Tgo,
with L*™ = g7 (B&7) < N, then index (L*") = index (L,) + index (L,) —
0L, — oL,) € Z/8.

Proof. The idea is the same as that used in the proof of Lemma
3.6. Namely, by a Pontrjagin-Thom construction, we define p =
o({M, f)): S**** — TeAMSPL,,. Moreover, we preserve the partition,
that is, we embed (M****; U,, U,)(S****; D,, D_), where D, are upper
and lower hemispheres. It is easy to see that then p: S —
Te*AMSPL,, is partitioned, S**" = D, |J, D_, with the same trans-
versal inverse images Li"C D", L;»C D" oL, C oL, C S¥*H» 1 =
D.ND_.. (Strictly speaking, L!* and L{ are replaced by their
thickenings.)

D, Slatanil o 1

SEoE
2

L

[

S—

But we know that the two transversal maps S*** ' = T¢AMSPL,,
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defined by oL, S***~! gnd oL, < S*™ ' are homotopic. Moreover,
there is no obstruction in this dimension to deforming a homotopy,
rel the boundary, to a transversal homotopy, with transversal inverse
image W*rc S**»t x I. (See figure above.) Then index (W*) =
6(L,— 0L,) and the lemma follows since index (L*") = index (L,) +
index (L,) — index (W).

Lemma 3.11 reduces certain index computations to computation
of a @-invariant. We state here some product formulae for evaluating
© which will be used in §9. For proofs see [14], [5].

LEmMA 3.12. (i) Let f: M*— N° be a degree one normal map of
closed PD spaces, and let L® be o closed PD space, a + b = 3 (mod 4).
Then O(M*x L*—N*x L})=01if =0, b=8 (mod 4) O(M* x L*->N*x L*)=
48, (M* — N°)-d(L®) if a =2,b=1 (mod4). (Here S, (M?— N°)e Z/2
1s the Kervaire obstruction, which is defined homotopy theoretically,
d(L*) € Z/2 is the de Rham invariant.)

(ii) Let f:p*— Q° be a normal map of Z/2" and 4:Z|2 — Z|8
PD spaces, and let R* be a Z/2" PD space, & + b = 0 (mod 4). Form
the normal map of closed PD spaces 6(P @ RB) =P X R UwspxondP X R

(f x1)u(af x1)

3Q x R)=Qx0R U 0Q x R.

(20QX6R)

Then

OOP "X RY— H(Q*®R)) =0 1if a =0,b=0 (mod4)
OO(P*RQR) — (Q*RXR) =04if a=1b=3 (mod4)
O((P* ® B’) — 6(Q" ® E")) = 4d(0R)S\(p" — Q)
if o =2,b=2 (mod4)
O0(P* ® B') — (Q* ® R) = 4d(R")S(6P — Q)
iWfa=3,b=1 (mod4).

Now let f: P*™*" —— T& be a Z/n manifold.

DerFINITION 38.13. A Z/n partition of (P, f) consists of two
codimension zero Z/n submanifolds with boundary, U, and U,C P,
such that P=U, Y, U,, 6P = 06U, U;:0U,, fly:U, — T& is transversal
with respect to the mapping cylinder M.c T¢ and f|,,;: U,— T& is
transversal with respect to M M..

The transversal inverse images Li™' = f'(M,)NU, and L} =
MY NU, are also Z/n manifolds with boundary. Moreover,
oL, = f"MH)NUNU,CcfWM)NUNU, #+ oL, and the inclusion
oL,— 0L, is a degree one normal map of i-dimensional, Z/n PD
spaces.
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Given a normal map M*— N*® of Z/n PD spaces, we can define
a “surgery obstruction” S, (M‘— N%)e P, ® Z/n as follows:

S, (M* — N**y :—:SL—(index (M*) — index (N*) — n@OM — 6N)) € Z/n
S, (M*#~* — N*~%) = S(M — N) e Z|2® Z/n .

Thus S, is defined homotopy theoretically for PD spaces, without
any knowledge of PD surgery. S, is an invariant of the normal
bordism class of M — N, and clearly vanishes if M — N is 2 homotopy
equivalence.

THEOREM 3.14. If P=U,J,U, is a Z/n partition of f: P —T&,
with tramsversal inverse tmages Ly C U™, 7 =1, 2, as above, then

S, ([, f1) = S,(0L,— dL)e P, Q Z|n .

Proof. If 4 = 0(mod 4) this follows from Lemma 3.11, the de-
finition of S, in terms of the index and @, and the proof of Lemma
3.7. We leave the details for the reader.

If ¢ =2 (mod 4), cross with [L°], where d(6Lf) = 1¢ Z/2 and use
Lemmas 3.1(iii) and 3.12(ii).

We conjecture that given any f: M — T& M a closed or a
Z/n manifold, partitions always exist. If so, we could then use PD
surgery to prove that S([M, f)e P, or S.([M, f)eP,® Z/n was
exactly the obstruction to homotoping f: M " — TE? to a transversal
map.

4. Geometric bundle structures and fiber homotopy trans-
versality. Let & be a spherical fiber space, T'(€) the total singular
complex of the Thom space, W, the complex of f.h.t. maps 4° — T().
We have a natural inclusion W. G 7). The geometric realization
of T(¢) is canonically homotopy equivalent to T(£). If X ER T(e),
then a lift of f through W, is the same thing as a deformation of
f into the subcomplex W, i.e., F: X x I— T(¢) with F,=f and
F/(X)c W.. Two such lifts (or deformations) are equivalent (concord-
ant) if and only if there is a homotopy between them which is con-
stant on X x {0} and which keeps X x {1} in W.. We say two PL
structures are equivalent if they are concordant.

In [11] it is shown that an equivalence class of PL structures
for £ gives a well defined equivalence class of deformation retracts
of T(2) into W, (i.e., liftings of (&) — 7(¢)). These deformations
are given by homotopies of 4*— T(f) to a PL transverse map. If
we do this construction universally we have



40 GREGORY W. BRUMFIEL AND JOHN W. MORGAN
Wsa(g) =— MSG(q)

\ l‘
lpL ™~__
MSPL(q) .

This same construction works relative to an open cover, and may
be done so that all 2-dimensional preimages are homotopy equivalent
to 2-manifolds. Thus we have

WSG(q) =— MSG(q)
\ T
lpr™~_
MSPL(q)

where WSG(q) is the space of strongly f.h.t. maps small with respect
to the cover of BSG(q)-l,, is again define by PL transversality and
is well defined up to equivalence as a lift. In this section we shall
construct a lifting of

WSG(q) = MSG(g)

l;;;’\\\\ T
MSTOP(q)

which will commute with /., up to equivalence as a lift.

The lack of a topological transversality theorem in dimension 4
prevents us from defining this liftining directly. We use instead an
enhanced version of the “crossing with CP?’ trick of Sullivan, [23].

Let M* be a closed, oriented, connected, simly connected mani-
fold. Define T(E)M" to be a semi-simplical complex whose i-simplices
are maps 4° x M*— T(&) which are contained in one of the sets in
the open cover constructed in §1, i.e., all of 4° x M" is contained
in one of the open sets. Let W¥" be all the above maps which are
globally fiber homotopy transverse on 4' x M™ and on all faces
4* x M*. In addition we require that whenever the primage has
dimension 2, that the PD space with boundary be the homotopy type
of a 2-manifold with boundary. Let F.(l{) be the homotopy theoretic
fiber of

Wy — T(¢)" .
THEOREM 4.1. @) 7(F.qM") = Py, tWf ¢ =3,9=n—1, and

M* is closed, oriented, connected and simply connected
(d) if in addition dim M = 0(4), then

X M*: F, — F.(M")
induces multiplication by I(M™), . (F;) — w (F(M™)).
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NoTE. Theorem 2.4 is the special case of 4.1 when M" is a point.

Proof. (a) Given a map 4° X M™— T(£%) which is f.h.t. on
04* x Mr; with & admitting a PL structure, use PL transversality
to produce a surgery problem of dimension 7+ n — 1 — q. Taking
its obstruction gives a map «,(F(M")) — P,,,_q_,- The same argu-
ments as in 2.1 show that this map is an isomorphism for 7 = 2 and
t+n*3+n When ¢+ n =384+ n we use the fact that the two
dimensional PD space in 04° x M™ is homotopy equivalent to a PL
manifold, to know that if the obstruction in P, vanishes then surgery
to a homotopy equivalence is possible. When 7 = 2, we have the extra
difficulty that 04* x M™ is not simply connected. Thus our surgery
problem is not necessarily one with trivial fundamental group but
rather one with fundmental group Z. If ¢ = » — 1, then the dimen-
sion of the surgery problem in 04* X M™ is n +1— ¢ £ 2. Thus
having fundamental group Z causes no trouble.

(b) Obviously (xM") induces maps

F. W, =— T()

[ P

Fy(M") — W =— T(E™

We see easily that the induced map on the fibers crosses the
surgery problems involved with M®. Thus it multiplies the surgery
obstruction by the signature of M". Since 7.(F,) and 7. (F.(M)) are
identified by surgery obstructions to P,., this proves part (b).

COROLLARY 4.2. If M™ 1s closed, oriented, conmnected, simply
connected and of index 1, then (X M") induces a homotopy equivalence

XM"
Fe— Fy(M") .

COROLLARY 4.3. Given X-> MSG and M" as above, then lifts
of 7 to Wsz are in matural 1-1 correspondence with liftings of
XM og to W¥.

Fso0(M™) ‘—_’Wigmq)f — MSG(¢)"

T XM T XM T XM
F Wsaw MSG(q)
AN /
NS
X
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Now we use topological transversality to give a lifting of
MSTOP(q) — MSG(q) — MSG(q)°**. TUse topological transversality
inductively on simplies of dimension < ¢ + 3 and then cross with CP*.
This gives a lifting on the (¢ + 3)-skeleton of MSTOP(q). On the
(¢ + 4)-skeleton we have

47 x CP*, — MSG(q)

7 is topologically transverse on the boundary with preimage of di-
mension 7. Thus we can apply relative topological transversality to
shift 7 transverse. Continue in this manner up the skeleta of
MSTOP(q), using only that ¢ + % + 4 > ¢ + 4. This provides the
lift, and a similar argument proves any two such lifts are equivalent.
Thus by corollary 4.3 we have a well defined equivalence class of lifts

Wsewy = MSG(q)

F‘\
S N
lrop™__

MSTOP(q) .

THEOREM 4.4. The lift induced on MSPL(q) by the above lift
on MSTOP(q) agrees with any lift produced by PL transversality.

MSPL(q) —*— MSTOP(q) — MSG(q)

i.e., lyopo 0 s equivalent as a lift to lp;.

Proof. To show this we need only show that it is true after
crossing with CP%. After crossing with CP? compatibility of the lifts
comes from the fact that PL transversality and topological trans-
versality are compatible.

In [11] it is proved that for a spherical fiber space £? over a
four-connected space X, there is a 1-1 correspondence between
equivalence classes of PL structures on & and liftings.

WSG(q) — MSG(q)

|

")

The correspondence is as follows. If f: X — BSPL(q) is a lifting of
f: X— BSG(q), the classifying map for &%, then we form

T(f lrr =
(e 2 MSPL(g) 25 Wi,
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which is the lifting of T(f): T(§) — MSG(q). We now wish to streng-
then this theorem by replacing Wy, by Wge.

THEOREM 4.5. If X s a conmected, simply connected space,
and & — X is a spherical fiber space which is classified by f: X —
BSG(q) then there is a matural one-to-onme correspondence between
topological structures on & and liftings.

L T¢E) —— WSG of T(f): T(§) — MSG(q) .
The correspondence is given by

{f: X — BSTOP(q) lifting f}
> {lrope T(f): T(€") — MSTOP(q) —> WSG(q)}

Proof. The argument proceeds exactly like the one in [11].
Namely we work one simplex at a time supposing we have a spherical
fiber space & — D' a topological structure E — &|0D'™, and an
extension of strong fiber homotopy transversality over all of &
Using this we show that the topological structure extends in a unique
way so that topological transversality (after we cross with CP?)
agrees with the strong f.h.t. (after crossing with CP?). Essentially
we have shown that the obstruction to extending the f.h.t. over &
in all of D'*' is naturally identified with an element in P, and all
such elements occur as obstructions. Of course P, is naturally iden-
tified with 7,(G/TOP) and the topological structure on &|oD gives
an element in 7,(G/TOP) which is the obstruction to extending the
PL structure over & — D'*', What we show is that that these two
obstructions are the same element just as in [11]. This argument
works in all dimensions since 7,(F.,) = P, — ¢ — 1 in all dimensions;
wheras the argument in [11] only works in dimensions > 4 since the
low homotopy groups of the fiber of W., — T(5%) are unknown.

CHAPTER II

5. F., G/TOP, and localization at 2. In this section we use
the results of §2 and an argument similar to one in [11] to prove
that F, is naturally homotopy equivalent to copy of G/TOP shifted
g dimensions. This result is a slight strengthening of the one in [11]
in that the map constructed here is an isomorphism on all the homo-
topy groups where as the one in [11] is only an isomorphism on the
high (=5) dimensional groups. The argument is the same. The impro-
vement in this version is that by strengthening the notion of fiber
homotopy transversality in dimension 2 we get a hold on the low
dimensional homotopy of F,,.
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The results in [23] and [9] give a canonical equivalence 24G/TOP)

with G/TOP x Z. Let G/’I%q be the g-connected cover of G/TOP.
Define G/TOP{q> to be 2*~%G/TOP*) for any j such that 45 > q.
This is independent of j (as long as 45 > q) by the fact that 2‘G/TOP =
G/TOP x Z. QG|TOP{q> = G/TOP{q — 1), G/TOP{0) = G/TOP and
G/TOP{q) is q-connected.

THEOREM 5.1, (a) There exist canonical homomorphisms
(1) 2.(G/TOP(g)— P,.,
(2) Q2.GITOP(q); Z|k) = Pv_, @ 2]k
satisfing (&) 0 and o, are compatible with Z — Z/k and Z/k — Zk-1
if + —q =0 (mod4).
(b) o is multiplicative with respect to the index
(¢) oy for k odd is multiplicative respet to the index
(ozk(M, N-I(N) n=04)
0:k(M, f)-dN) m = n = 2(4)
o (floM)-d(N) m =3, n = 1(4)
0 otherwise

(d)  ak((M™™, [)QN") =

(b) G/TOP{q)> is universal with respect to these homomorphisms
in the category of g-connected spaces.

NoTE 1. When we say that G/TOP{qg) is universal with respect
to these homomorphisms in the category of ¢-connected spaces we
mean that given X ¢g-connected and homomorphisms

QuX; Z)~> P,_, and Q.(X; Z/k)— Ps_, R ZIk

satisfying (a) through (d) above, then there is a unique homotopy

class of maps X—f—> G/TOP{q> such that f*¢ = 7 and f*o, = 7, for
all k.

Note 2. It follows from the usual universality argument that
the homomorphisms satisfying (a) through (d) above completely deter-
mine G/TOP{q¢>.

Sketch of proof of 5.1 Case I ¢ = 0. The surgery obstruction
maps, S and S, give the required homomorphisms on 2.(G/TOP) and
Q.G/TOP; Z[k). In [23] and [15] it is proved that they satisfy (a)
through (d) in the theorem and that G/TOP is universal with respect
to them.

Case 11 q = 4l. G|TOP4l) = G/T,:BI/’”. Thus we have a map
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G/TOP{4l) SN G/TOP. Let ¢ = n*S and o, = #*S,. The range of
o is P, = P,_, if = > 4] and the range of 0, is P, ® Z/k = P,_, R Z/k
if * > 4]. Thus in dimensions greater than 4/, ¢ and o, have the
correct ranges. In dimension less than or equal to 4l the bordism
groups of G/TOP{4l> are 0 and thus the ranges of ¢ and o, are 0
as they are supposed to be. ¢ and o, clearly satisfy (a)-(d) since S
and S, do.

To show that {G/TOP{4l), ¢, and o,} are universal let = and <z,
be given a bordism of X satisfying (a) through (d). Again identifying
P,_, with P, for = = 4] we use 7 and 7, to define a unique map, f

G/TOP4l>
X/\ jvzr
>~
G/TOP

with f*S =17 and f*S, =7.. This map factors uniquely through
G/TOP{4ly since X is 4l-connected.

Case 111 q arbitrary. In this case we pick 41 > ¢ and use the fact
that %77 G/TOP{4l) = G/TOP{q>. We define ¢ and o, on G/TOP{q)
to be

0.,(2 G TOPAL) — 24, oG/ TOPALY) —2 P, _,
and
0.(29 G/ TOPLALY; ZJk) — Q,_,,u(GITOPAL; ZJk)
TP, Q 2k

where ¢’ and o, are the maps from case II on G/TOP{4l).

The homomorphisms are easily checked to satisfy (a)-(d) and to
be be universal.

Apply 5.1 to F.q, ¢ =3, and the homomorphisms of Theorem 2.4
we have a canonical map

Fu -2 G/TOP )

which is natural with respect to spherical fiber space maps which are
simplicial on the base.

THEOREM 5.2. p, is a homotopy equivalence.

Proof. We have an isomorphism, <7 oh



46 GREGORY W. BRUMFIEL AND JOHN W. MORGAN

h Iz
T Fe) — 2(Fe) — Py .

For the universal homomorphisms on G/TOP{q> the analogous state-
ment is true. That is, the composition below is an isomorphism

h

7{(G/TOP{qy —> 2,(G/TOP{¢>) — P._, ,

Since (0,)*0 = ¢, we see that p¥ is an isomorphism on =, for all 4.
Now we wish to specialize to the prime 2. According to
[15] the homomorphisms gives cohomology classes in G/TOP, & ¢
H*(G/TOP; Z,)) and .57"e H***(G/TOP; Z/2). These classes are uniquely
determined by cohomological formulae involving them which deter-
mines the homomorphism S and S,.. The formulae are
(1) Q,..(G/TOP; Z|2)— P,.., R Z|2 = Z|2 R Z|2 = Z|2 is given by

s(M, f) = (f*2e- VIM), [M]) .

(2) Qu(G/TOP)—S- P, = Z and Q,.(G/TOP; Z/2) > P.® Z/2*
= Z/2* are given by S(M, f) = {f*.& - F, [M])
+ O¥(f* 2 VSq V(M)), [M])

Here &~ is a Z,, characteristic class of M lifting the rational Hirzebruch
Z-class, VSq* V(M) means the Z/2 characteristic class

(VM) S V(M) ,

and 6* is the Z/2 integral Bockstein. See [23] and [15] for proofs.
There are analogous classes and formulae G/TOP{q). The classes
in G/TOP{4l> are obtained by pulling back the ones in G/TOP under

the natural map G/TOP{4l) —— G/TOP. The classes and homo-
morphisms still satisfy the same formulae by naturality. The classes
in G/TOP{q) are then obtained from those in G/TOP{45>47 > q, by
looping. Once again since both the classes and homomorphisms are
obtained in this way the formulae are still satisfied in G/TOP{q).
Using 0.: Fo'e — G/TOP{q> to pull back the classes to F'.,, we see
that we have classes .27 e H* "™ (F; Z/2) and &¥ € H*"'(F,; Z,)
satisfying:

THEOREM 5.3. (1) The obstruction homomorphism
' Qoo (Feo; Z[2)
Z]2 is given by
oM, 1) = {2 VM), IM]) .
(2) The homomorphisms i Quif(Fe; L) — Zy, and
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O Rpro(F)ea; Z12F) — Z[2% are given by
M, f) = {f*F L [M]) + O5(f* 22 VS VM), [M]) .

(38) 2% and ¥ ecH*(F.) are uniquely determined by these
Sformulae.

Now consider the fibration F,, —W. — T¢? of §2. In the stable
range, j < ¢ — 2, we have 2 homomorphism z: H*V(F',,) — H(T¢9),
with any coefficients. Thus the cohomology classes 22" € H* *"Y(F'.q, Z/2)
and ¥ e H"*Y(F'.,, Z,) determine classes 7(.%") e H* '*¢(T¢?, Z/2) and
o(F)e H*"""(T¢, Z,,), if 4, < q — 3. From the cohomology Thom
isomorphism we have (%) = B(.5%7), 9% € H*Y(B&, Z/2) and n(~) =
(P, & e H* “(B&, Zy). The classes % and &~ are natural with
respect to bundle maps, since .2 and .&© have this property. More-
over, .% and & are stable classes, since 7(277) and 7(.&°) commute
with the suspension homomorphism H#/(T&%) ~—— Hit e (T(& @ &),
J < q—2. Thus we have universal, stable characteristic classes
97 ¢ H*"(BSG, Z/2) and .<# ¢ H**(BSG, Z.).

We can also define .57 and & in terms of the homomorphisms
50 008 (T&) — P; and s,r: Q0 (T€, Z/27) — P; ® Z/27 of §3. Namely,
s and s,r are defined in terms of ¢ and &% and %" € H*"* ¥(F,,, Z/2)
and & ¢ H"(F4Z,) are defined by a cohomological formula for ~
and Z%r (see 5.3). Thus we have in the stable range

THEOREM 5.4, (1). The obstruction to global transversality
s,0 Q0L (T, Z)2) — Z/2
18 grven by
s([M, f1) = (VM)-F*0(5F), [M] > e Z/2 .
(2) The homomorphisms s,r: 94*+1+Q(TE", Z|2"y— Z|2" are given by:

s(IM, f1) = (2 (M)- f*0(%), [IM])
+ W VS VOM)-(f | 5)*0(%), [0M]) € Z/2"

where
. Z]2 —— Z/27

1s the inclusion.
(38) % and & € H*(BSG) are uniquely determined by these
formulae.

6. Geometric bundle structures, localized at 2. In this section
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we continue to focus our attention on information at the prime 2.
We will show that if we use the classes % and & defined in §5
to form

BSG,, LT K(Z/2, 4i — 1) X K(Z, 4i + 1)

=1

then the homotopy theoretic fiber admits a natural equivalence with
BSTOP,, i.e.,
BSTOP,, 2, BSG,, = Z5 [T K(Z/2, 4 — 1) X K(Zuw, 4i + 1)

iz1

is a fibration where 7(2) is the localization at 2 of the natural map
7: BSTOP — BSG.

The map of BSTOP,, into the fiber of (% x &) is obtained
from the localization at 2 of the lifting

MSTOP(q) — W,
N
N
MSG(q)
constructed in §4 by applying the Thom isomorphism. Thus

Weq — MSG(q)y — G/TOP{q + 1),

NN
o\, O\,
MSTOP(q)e

after applying the Thom isomorphism gives
X — BSG(q),y — G/TOP{1),,
NI
N
BSTOP(q).

That [ is a homotopy equivalence is essentially a reformulation (by
applying the Thom isomorphism) of the Theorem 4.5 that a topological
structure for &? is equivalent to a section of

Wi — T(Eq) .
Let X be the fiber of (%% x &)

X — BSGoy L1 K(Z)2, 41 — 1) X K(Z, 4 + 1)

=21
Stabilizing the results of §4, we have a fibration of spectra

FSG —__)WSG — MSG
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Since we are in a stable category, the fibration is also a cofibration
and extends to the right as follows

Fg, wSG MSG 2F .

Localizing at 2 we have

FSGo —WSG, — MSG, —,}_’ 2 F 50
SN
lTOP(z)\\
MSTOP,,

From this we shall produce a canonical lifting of BSTOP,,, — BSG,,,
to BSTOP, — X, using a stronger version of the Thom isomophism.
Let I be a product of Eilenberg-MacLane spaces, and I7{q)

another product which is g-connected and with 277{q) 1.
Then there is a map, well defined up to homotopy,
K(Z, q) x IT -* 1I{g)
given by cupping with ¢,, the fundamental class of K(Z, q). We
may arange this map so that o(xxll) = =.
LEMMA 6.1. Let & — B be an oriented q-dimensional spherical
fiber space. Then we have a natural homotopy equivalence

U Thom class

s —— RSN (]]<q>, *)(T(fq),*) .

Th ]
NoTeE. The statement on 7, translates to H‘*‘(B)—U—om 2,

H**(T(&%) is an isomorphism.

Proof. Let Ue H(T(¢"); Z) be the Thom class.
Let U: (T(¢%), *) — (K(Z, q), *) be a representative for U. Define

17 25 (11(g), +)76, by (f: B— IT) > [(DE"), S(E) — (D(E), SE) x
D(Eq) 1 X proj

U, (D), SE) x B-2L k(2,9 x T 1)) We

identify T(¢%) with D(£%)/S(¢%). Notice also that the base point of

T(£%) goes to o(x, /) = +x. Thus we have a map I7* £, (IT{q),*) T,
On 7, it is just the usual map H*(B) -7 H**(T(2%) and thus is

an isomorphism. We now show that it is an isomorphism on =,.

Since II* and (II{q), *)"%¢"» are H-spaces it suffices to show that

Pt [SY TP — [SE, (ITg), =) %] is a bijection.

[St, IT%] = w(I1**5") = H*(B x SY)

[S', (11¢g), )] = mlII(g), ») 555"
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But
(T(E) x S)/(x x 8% = T() A (S8 = T(£?) A (S* — pt)
= T(¢" x 15,
where &7 X 13— B X S* is the product fiber space. Thus
[S%, (TT{g), »)"¢"7] = H*(T(&" x 15)) .

The map induced by g* from H*(B x S') to H*"(T(&* x 1)) is easily
seen to be U (U ® 1) which is the Thom class of this bundle. This
proves the lemma.

We now apply this lemma to the fibration

WSG(Z) — MSG(z) e ZFSG(Z)

/N0 x 0(Z) l -
lTOPm'[ @(’7(2))/ \ 2AXEZ
| T K(Z/2,4i — 1 + q) X K(Z, 45 + 1+ q) .
MSTOP,,, 1=

The lifting 1,05, is equivalent to a deformation of

)

() X O(L)od(y) = D5 X L oNw) to *.

The previous lemma applied to 7, and 7, of the mapping spaces tells
us that (97 x 5?)0772

X1 BSG, T (212, 45 — 1) X (Zey, 45 + 1)
NN '[ B
lTOP\ @)

BSTOP,,

is homotopic to %, and, in fact picks out up to homotopy a homotopy
(2% X ,(})077(2) to *. This is equivalent to a lift of 7, to the fiber
X, lTOP: BSTOP(z) g .X.

THEOREM 6.2. lsop 15 @ homotopy equivalence.

Proof. Theorem 4.5 says that if B is l-connected and f: B—
BSG@G, then liftings of f to BSTOP.

BSTOP
7

B

“n

~ |
BSG

are in natural 1-1 correspondence with liftings ¢ of T'(f)
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wSaG
" ‘
7)< l

()~
MSG

where ¢ is the spherical ﬁbgr space over B induced by f. The
correspondence is f i+ lpopo T(F).
Localizing at 2, we see that liftings

) BSTOP,,
T /
B < l’?(z)
S \i

BSG.,
are in natural 1-1 correspondence with liftings

WSG.,
F2) 7 ]
T©)<_
T(f) >, l
MSG.,

The correspondence is given by
f(z) I— ZTOZ’(Z)OT(fN)
K P

Let §'—%> X BSG, -~ L1 K(Z/2, 4i — 1) X K(Zu, 4i + 1.
The previous lemma gives a lifting

WSG,

where p is the bundle over S* induced by jog. This is equivalent,
by the above discussion, to a lifting

BSTOP,,,
g ’
Si S~ 72
Jeg ™ l

BSG,
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g is the unique lifting (up to equivalence) for which lTOPoT(f): T(0) —
MSTOP,, —WSG, is homotopic as a lifting to w. Applying the
previous lemma again, we see that TTOPog is homotopic to g for exactly
one homotopy class of maps §: 8! — BSTOP,. Thus Iz is an = on
7w, for ¢ > 1. Since X is the fiber of

BSG, — 1 K(Z/2, 4t — 1) X K(Z, 41 + 1)

the homotopy exact sequence of a fibration impli(is that X is connected
and simply connected as is BSTOP(2). Thus l,op: BSTOP, — X is
a homotopy equivalence.

7. The cohomology suspension of the classes % and & In
§5 we defined classes .% ¢ H*{(BSG, Z/2) and & e H**\(BSG, Z,)
which are obstructions to transversality in the Thom space MSG.
Our goal in this section is to study 0(32”) e H*¥SG, Z/2) and o(F) e
H*(SG, Z,), where the cohomology suspension o: H*(BSG) — H*7(SG)
is induced by the natural map XSG — BSG. We shall show that
o(.%) and o(<”) are the classes induced from the surgery classes
in G/TOP by the natural map G — G/TOP.

There is a fibration

G,/TOP, —— BSTOP, — BSG, .

The bundle over G,/TOP, is the universal topological g-bundle together
with a fibre homotopy trivialization ¢, (¢ corresponds to a map of Thom
spaces T: M(G,/TOP,) — S? of degree one on the bottom cell). Moreover,
the following diagram commutes

Sq
/N
/ ¢
/ d \\
MSG, M(G,/TOP,
< / (Go/ )
J
MSTOP,

where the unnamed maps are the obvious maps of Thom spaces.

We have constructed natural fiber homotopy transversality struc-
tures on both MSTOP, and S% q = 3; that is, liftings of MSTOP,
and S? to WSG,. This provides two liftings, l;opoj and l,o¢ of
M(G,/TOP,) to WSG@G,, as in the diagram follows:
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Sq
le/ / \t
/ AN
« v N
F,—WSG,——— MSG M(G,/TOP,)
/

~. N\ ,
lTOP\ \ /j
. MSTOP,

If we work in the stable range, or with spectra, we thus obtain a
“difference element” d: M(G/TOP) — F, d = lyppoj — l,ot.
Using the homomorphisms of §2, ~: 2,.,(F,) — P, and

ﬁn: ‘Q*-HI(FQ: Z/n) _—)P* ® Z/')’L ’
we constructed in §5 cohomology classes
XL F,—> I>[ K(Z/2, q + 41 — 2) x K(Z,, q + 417) .

Stably, we can form the composition (¥~ x &)od: M(G,/TOP,) —
FII - Hizl K(Z/z,- q + 4-7: - 2) X K(Z(g), q + 47;).

THEOREM T7.1. The map (27 X £)od coincides under the Thom
isomorphism with the cohomology classes 97 € H**(G,/TOP,, Z|2)
and & € H(G,/TOP,, Z,), defined by the surgery obstruction homo-
morphisms S: 2,(G,/TOP,)— P, and S,: 2,(G,/TOP,, Z|n)— P, Q Z|n.

On the other hand, consider the fibrations

SG L2 K(Z)2, 4i — 2) X K(Z, 4i) —> X — BSGe,

of §6, where

X = Fiber ((BSG(Z) X 11 K(Z/2, 4 — 1) % K(Z, 4i + 1)) .

By Theorem 6.2, the two lifts in the diagram
WSGm E— MSG(z)

el AL
M(G/TOP)

correspond to two lifts in the diagram

X ——— BSG,

A
G/TOP
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with a corresponding difference element 4: G/TOP— 1] 5, K(Z/2, 41— 2) X
(Z, 41). But the lift of 0: G/TOP — BSG, corresponding to the
lift [,ot on the Thom space, is the 0 lift, 0: G/TOP — X. From this
remark and Theorem 7.1 it follows that the difference element 4 is
¢ X &7 and that the following diagram commutes

II K(Z/2, 41 — 2) x K(Z,, 41) — X

121

SG < lﬁr x & Tror >1BSG(2)
N /
G/TOP BSTOP

COROLLARY 7.2. 0(.%) = i*(:%") e H**(SG, Z/2) and o() =
i#*(£) e H*(SG, Zuw).

Thus we see that the suspensions of the transversality obstruec-

tions .9 and .~ in BSG are simply the surgery obstruction classes
in SG. We now return to the proof of Theorem 7.1.

Proof of 7.1. For simplicity, we will prove 7.1 for G/PL rather
than G/TOP. This certainly suffices for Corollary 7.2.

The surgery obstruction homomorphisms S: 2%%G,/PL,) — P, and
S,: 2%%(G,/PL,, Z/n) — P, ® Z/n have Thom space analogues .&°:
QY (M(G,/PL,)) — P, and &: QL% (I(G,/PL,), Z|n) — P, & Z|n defined
by composing S and S, with the PL bordism Thom isomorphism
Q% (M(G,/PL,)) — Q24G,/PL,), and similarly with Z/n coeffecients.
The cohomology calasses @(.>7") e H* *"(M(G,/PL,), Z/2) and

(2 )H" " (M(G o/ PLy), Z)

are then defined in terms of .~ and &, by formulae which are
identical to the formulae defining .2 ¢ H**"(F,, Z/2) and < ¢
H**(F,, (Z) in terms of &: 2, (F,)— P, and &,: 2,.(F,, Z/n)—
Z/n. (See §5 for these formulae.) Theorem 7.1 then follows from

(73) = Tdy: ‘Q#=+q(M(Gq/PLq)) — 2, (F;) — P, and
S = 8yt 24 o M(G,/PL,), Z|n) — 24 (Fy, Z|n) — P, Q Z|n .

To prove 7.3, we must examine the “difference construction”
d=10j—1ot: M(G,/PL,) — F, more closely. Let us picture a cell
a: 47— MSG, by:
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I

where the band is the PD space given by transversality. We pic-
ture a deformation 4" x I— MSG, of a« to WSG, by

and a cell of WSG, by:

4x1

A cell of F, is pictured:

-
-
-
-
-

where the shaded top face means the map is to the basepoint of
MSG,. We will work in the stable range, ¢+ € ¢, and assume all our
cells have a “suspension coordinate” in the direction of the arrow
below:

Cells of F, then “act” on deformations of @ by suspension addition,
or juxtaposition:
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_______________

il

followed by the obvious equivalence of

-] AN

With these definitions one shows for complexes X with dim (X) € 2¢
that if f: X— MSG, can be deformed to WSG,, then equivalence
classes of deformations of f correspond bijectively with [X, F].

Now consider a cell a: 477" — M(G,/PL,). We picture the defor-
mation [, 0j(c) defined by PL transversality by:

Li

where L, the core of the band on the bottom face, is a PL manifold
and the band is a tubular neighborhood of Lf. We picture the
deformation [,ot(«) defined by the fibre homotopy trivialization of
M(G,/PL,) followed by transversality for the trivial bundle,
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where L' is a framed submanifold of the tubular neighborhood of L.
The following picture gives a cell, d(a), of F:

(7.4)

L
do Y
where the map on the top half is a canonical homotopy of & — & to
the trivial map. It is easy to see that the deformation I,ot(a) + d(a)
is equivalent to [,.0j(c). Thus d(a) represents the difference construc-
tion Iy 0j(a) — l,o8(a): 477" — F,.

If we have, instead of a single cell, a manifold f: M*"*— M(G,/PL,),
we get d(f): M — F, by iterating the construction above over the
cells of M. This produces a PL submanifold L < M*** and a framed
submanifold L’ of the tubular neighborhood V.., It is easy to see
from the definition of .&: 2, .(M(G,/PL,)) — P, above that

(M, f1) = S(IL'— L)e P,

and similarly for &7 if M, and hence L’ and L, are Z/n manifolds.

On the other hand, from §2, ~([M, d(f)]) is defined as the ob-
struction to making the cells of d(f) pictured in 7.4 globally trans-
versal, keeping the bottom face fixed. We may as well assume that
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f:M— M(G,/PL,) is already PL transversal, so that 7.4 simplifies to

That is, d(f) is already transversal except in the lower left block,
and in the lower left block, d(f) is the homotopy between the Pon-
trjagin-Thom constructions on the PL normal bundle of L and the
framed normal bundle of L’. Thus

(M, d(f)]) = S(L' — L) = <“([M, F]) € P, and similarly for ,.
This proves 7.3 and completes the proof of Theorem 7.1.

REMARK 7.5. If one follows to the letter the prescription of §2
for computing < ([M, d(f)]€ P;,, one acutally gets & ([M, d(f)]) =
S(L' U(—L)— LU(—L)). Of course, this is the same as S(L'— L).

REMARK 7.6. We leave for the reader the details of the argument
for G/TOP. It is only necessary to carry through the “crossing
with CP(2)” construction used in the definition of I;,,: MSTOP, —
wWSa,.

REMARK 7.7. The results 7.2 and 6.2 suggest that the map X
7 BSG —> 11 421 K(Z/2, An — 1) X K(Z, 4n + 1) is in some sense equiv-
alent to the natural map Br: BSG—B(G/TOP),. That is, we have identi-
fied the fibre of .% x &~ with BSTOP,, (Theorem 6.2) and we have
identified 2(.9%7 x °): SG — 11 K(Z/2, 4n — 2) X K(Z,,, 4n) with SG —
(G/TOP),,. 1. Madsen and R. J. Milgram have proved that B(G/TOP),,,
is a product of Eilenberg-MacLane spaces, but they have also shown
that there does not exist a commutative diagram

11 K(Z/2, 4n — 1) X K(Z s, 4n + 1)

Fx 5/ T
BSG(Z) N
Bn\

a

B(G/TOP)q
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with a@ a homotopy equivalence.
CHAPTER III

8. A Hirzebruch index class for PD spaces. In previous
sections, we have defined cohomology classes L%N”GH‘*‘l(BSG, Z/2)
and & ¢ H**(BSG, Z.,) which are obstructions to Poincaré trans-
versality in the Thom space MSG. From Lemma 3.7, it follows trivi-
ally that 85° = 0. Thus, there exist classes l € H*(BSG, Z/8) such
that Bl = 5}% where B is the Bockstein homomorphism of the coef-
ficient sequence 0 — Z,, — Z,,, — Z/8 — 0.

In this chapter, we will define a specific class I=1+1,+1, + -+ €
H*(BSG, Z/8) with Bl = &% Our class [ is a kind of Hirzebruch
class, which measures the index modulo 8 for PD spaces. Among
its properties are the following:

8.1. (i) If M is a Z/8 PD space and v: M** — BSG classifies the
stable fibration of M**, then

), [M*]) = index (M*")e Z/8 .

(ii) p(l) =V*e H*(BSG, Z/2).

(iii) ! satisfies the Whitney sum formula I(¢ X %) = (&) ® I(n) +
WVSEVE) ® 2 () + .2 (9 @ VS¢'V (7)), where i H*(, Z[2) —
H*(, Z/8) is induced by the inclusion i: Z/2 — Z/8.

(iv) Bl = &% e H**(BSG, Z).

(v) w*(l) = py(L) e H*(BSTOP, Z/8), where w: BSTOP — BSG is
the natural map and L e HY(BSTOP, Z,) is the topological L-class
of [15].

(vi) p(l)e H*(BSG, Z/4) is the Z/4 index class constructed in
[6]. In particular, p,l,) = FPW,.) + jo(wws, -, wy,), Where & is
the Pontrjagin square, j: H*(BSG, Z/2) — H*(BSG, Z/4) is the natural
map, and o, is a polynomial in Stiefel-Whitney classes.

It is not difficult to show that properties 8.1(i), (ii), and (iii)
characterize [ uniquely. The existence of a Z/8 class satisfying 8.1(i)
was shown by D. Frank, using the same theory of N. Levitt that
we have exploited in this paper. The existence of a Z/8 class satis-
fying 8.1(ii) has been known for some time, as it is easy to compute
homotopy-theoretically the obstruction to lifting a square to a Z/8
class. It is surprisingly difficult, however, to construct a single class
which satisfies 8.1(i), (i), and (iii). Property (iii) is particularly
interesting for historical reasons, and by analogy with other index
classes (the Z,-class of [15] and the Z/4 class of [6]). One might
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expect the class I to satisfy the sum formula I(¢ X 1) = I(&) ® (V).
However, we can prove there is no class which satisfies this simpler
formula and which also satisfies 8.1(i).

To construct I e H*(BSG, Z/8), we will define a suitable homomor-
phism on the smooth bordism of MSG, ¢: 2.(MSG, Z/8) — Z|/8, and
use Proposition A.11 of the Appendix to obtain @() € H*(MSG, Z/8),
where @: H*(BSG, Z/8) ~ H*(MSG, Z/8) is the Thom isomorphism.

Let

QL(MSG, Z/8) = kernel (2.(MSG, Z/8) —— 0,._.(MSG) —>— Z]2) .

We first define @': 2.(MSG, Z/8)— Z/8. Roughly, given f:M*"™*" —
MSG, with ¢ > 4n, M a Z/8 manifold, and s([oM, f]|;x]) = 0, we use
Theorem 3.4 to cobord f: M *"— MSG, to a globally transversal
map ¢: N**** — MSG,. Let ¢ *(BSG,) = L** c N***" be the associated
Z/8 PD space. Set @'[M, f] = index (L**)e Z/8. It is not obvious
that @' is well-defined, since a globally transversal map g: N**** —
MSG, may be cobordant to 0, but not “globally transversally cobordant
to 0.” We need a generalization of Lemma 3.6.

LEMMA 8.2. If N*™"4s a Z/8 manifold, g: N*™*" — MSG, a globally
transversal map, with K*» = ¢g~(BSG,), and if [N, g] = 0 € 2,.,,(MSG,,
Z/[8), then index (K**) = 0 (mod 8).

Proof. The proof is analogous to the proof of Lemma 3.6. There
is an isomorphism »: 2, ;(MSG,, Z/8) = 7y, (MSG, A MSO,,, Z/8) if
j < q — 2. Elements of =, ;(MSG, A\ MSO,,, Z/8) are represented by
maps St — MSG, A MSO,,, where S{?*/ is the space obtained from
S**7 by deleting 8 dises, and then identifying the boundary com-
ponents. S¥* is a Z/8 manifold, and every Z/8 manifold N*"/ embeds
in S¥* (as Z/8 manifolds) with tubular neighborhood the stable
normal bundle of N, Such an embedding defines p([N, g]) e
Tag i (MSG, N\ MSO,,, Z/8). In particular, if g: N*"**— MSG, is globally
transversal, a = p([N, g]): S — MSG, N MSO,, is globally trans-
versal; in fact, ¢ '(BSG,) = K** and a(BSG, X BSO,)) = X*" are
homotopy equivalent Z/8 PD spaces. Thus index (X*") = index (K*").

Careful use of the obstruection theory of §1, Chapter I (in par-
ticular, Theorem 1.3(3) and Lemma 1.4) implies that we may homotope
a: St — MSG, N MSO,, to a strongly transversal map B3, with
B~Y(BSG, x BSO,,) =Y* c X**, a degree one normal map of Z/8 mani-
folds, which is homotopy equivalence on the Bockstein 6Y c 6X. Thus
index (Y**) = index (X**) (mod 8).

On the other hand, another application of the obstruction theory
implies that the Z/8 PD space Y*", obtained from the strongly
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transversal map 8, is determined by homotopy class of B: S —
MSG, N MSO,,, modulo cobordism of Z/8 PD spaces and connected
sum with the Milnor manifold M*" of index 8. The lemma follows.
Now, si: 2,.,(MSG, Z/8) — Z/2 is nonzero for all » > 0. In fact,
let K = S x I/(x, 0) = (—x, 1) be the ¢ + 4-dimensional Klein
bottle. K*** is a Z/2 manifold with 6K*™ = S**3, In Chapter IV,
§10, we will show that there exists a map a: K™ — MSG,, with:

(8.3) (i) sd[K™, @] = s[S"", a|ss] =1€Z/2 and

(ii) <a*(o(Vy), [K]) = 0¢ Z/2.
By Lemma 3.1(iii), so([K*"*, a][CP(2(n — 1))]) = 1€ Z/2. Thus, on
Q41an(MSG,, Z/8), s is nonzero on t[K*", a] [CP(2(n — 1))], where
1: Q.(, Z/2) — 2.(, Z/8).

Define r: 2,..,(MSG, Z/8) — Q.. ..(MSG, Z/8) by

(M, f1) = [M, f] — ((so[M, FDIK", a] [CP(2(n — 1))]) .

where the coefficient (so[M, f]) is 0 or 1. As the difference of two
homomorphisms, r is certainly a homomorphism. We then define

g)” = gD'o/r: ..Q,,;,(MSG, Z/8) — Z/8 °

It turns out that @' does not quite satisfy the product formulae of
Proposition A.11. We need a correction term on products of the
form [P, g] [Q**'] € Q4isiarn (MSGY, Z/8). So we finally define
@: Q.(MSG, Z/8) — Z/8 by

PlM, f1 = @"[M, f]1 — i VSqV(M)-f*(5), IM]) € Z/8 ,

where .*’/)N,“eH“‘l(BSG, Z/2) is the class of §5 and : Z/2 — Z/8 is the
inclusion. In dimensions #= 0 (mod 4), we set ® = 0.

THEOREM 8.4. (i) ®(IM, f1IN]) = @[M, f]-index (N)e Z/8 if
[M, f]e 2.(MSG, Z/8) and [N]e 2.(pt). ~

(i) PGl FIINY) = PG, F)-indew (N)e Z[2< Z/8 if [M, fle
Q.(MSG, Z/2) and [N]e 2.(pt, Z/2). -

(i) 2(0d([P, FIQD)=P(0d[ P, F))-index (Q) € Z2=Z/8 if [P, F| e
Q.(MSG, Z|2) and [R] € 2.(pt, Z/2).

Before proving 8.4, we establish the main results of this section.
From 8.4 and Proposition A.11, of the Appendix, we have

THEOREM 8.5. There isa unique classl =1+ 10, + 1, +, ---, 1, €
H*(BSG, Z/8), such that, for any map f: M — MSG, M o smooth Z|8
manifold,
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? (1M, £1) )
= <LAM)- QW) [MD + (Vg V)£ (F), (M) e Z[8 .

We next establish properties 8.1(i), (ii), and (iv) for the class /.

Proof of 8.1. (i) Let Si™" be the Z/8 manifald defined in the
proof of Lemma 8.2. If M* is a Z/8 PD space, ¢ > 4n, we may
embed M* C S7™" as Z/8 PD spaces, so that the normal bundle M** in
Sit» is the stable normal fibration v of M**. The Prontrjagin-Thom
construction then gives a globally transversal Z/8 bordism element,
p: ST — MSG,, with »~'(BSG,) = M** and p|, = v: M — BSG,. Then,
by the definitions of @’ and r, and by 8.5,

index (M*) = @'[Si™*", P]
— 'rlSi, Pl
= (@), [SED
= (21", 1)
= &), D e 28 ,

since L(S{™*") = 1 and VSq¢'V(Si™") = 0.

Proof of 8.1. (ii) Let [N, g]e 2,(MSG, Z/2). We will prove, with-
out using 8.4, that

(8.6) Pi([N, g]) = i(L(N)-g*®(V?*), [N]c Z/2C Z/8 .
On the other hand, it is obvious from 8.5 that
PN, g]) = i(L(N)-g*@(0.l), [N]) € Z[2C Z/8 .

(That is to say, in the language of Proposition A.11, or A.3, the graded
class @(p,(l)) e H*(MSG, Z/2) corresponds to the homomorphism @1:
2.(MSG, Z|2)— Z/2 C Z/8.) 1t follows immediately that o, = V2

To prove 8.6, let 2i.(MSG, Z/2) = kernel (so: 2,.(MSG, Z/2) —
Q. (MSG) — Z/2). There is a commutative diagram

2.,(MSG, Z/2) —— 0,,(MSG, Z/8)

l» |

%

2,,(MSG, Z/2) — 2., (MSG, Z/8)
lw; i lsﬂ’
Zj2 ——— — Z/8

where 7,[M ", f] = [M****, f] — (sd[M, fDIK***, «][CP2n — 2)], and
where, if g: N*™*" — MSG, is a globally transversal Z/2 manifold,
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?,[N, g] = index (¢ (BSG,)) € Z/2. (The fact o, ,(MSG, Z/8) — Z/8 is
well-defined implies @;: 2, (MSG, Z/2)— Z/2 is well-defined.) From well-
known properties of V* and L (namely: (a) V* is multiplicative, (b)
¥ (V?H), [M*]) = index (M*") € Z/2 if v: M** — BSG is the normal
bundle of a Z/2 PD space M*", and (c) 0,(L(N)) = V(N) for smooth
manifolds N), it is easy to see that

PN, g] = index (g7/(BSG,))
(8.7 = (VAN)-g*o(V?), [N]
= (L(N)-g*&(V?), [N]) e Z]2..

If f: M***"— MSG, is any Z/2 bordism element, we then have

P M, f1 = P[M, f1— (s3] M, FDIK™, a]lCP(2n — 2)])
= (LM f*@(V?), [M]) — (s0[M, FICL(K™™ x CP(2n — 2))
(@ (V) ® 1), [K*™ x CP(2n — 2)])
= L{M)- fro(V?), [M]) .

The first equality is the definition of 7,, the second equality is 8.7, and
the third equality follows from 8.3(ii) and the fact that L(K***) = 1.

Finally, it is obvious that on elements [M, f] < (@ (MSG, Z/2)) C
2. MSG, Z/8), the error term in the definition of @ vanishes; that

is, «(VS¢'V(M)-f*(.5), [M]> = 0. Thus we have proved 8.6:

Pi[N, g] = ¢'ri[N, g] = i9ir[N, g}
= i(L(N)-g*®(V?), [N] e Z/2 < Z/8 .

Proof of 8.1. (iv) We will prove, without using 8.4, that the
homomorphisms

Qv (MSG, Z/2) = 0,.(MSG) 2% 7/8 |
with image interpreted in Z/2°, s = 1, are exactly the defining homo-

morphisms for the class @(<)e H**(MSG, Z,) (see the Appendix,
A.6 and A.T); that is, if [M, f]e 2.(MSG, Z/2°), we will prove that

POJM, 1= s.(IM, £1) — i VSg VOM)-(f |o)*(-%7), [0M]) € ZJ2* ,

where 1: Z/2 — Z/2°. It follows immediately, as in A.13 of the Appen-
dix, that Al = &~

We obviously have p.2.(MSG)C 2.(MSG, Z/8), because dp; = 0,
hence sop, = 0. Thus 9”0, = ®'ps: 2,.(MSG) — Z/8, hence Pp:
2.,.(MSG, Z|2°) — Z/8 is computed as follows. Given f: M —
MSG,, a Z/2* bordism element, assume (after a cobordism) that f|,,
is globally transversal with f~%(BSG,) = L** M. Then
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PpdM, f] = index (L*) — i VSq' VOM)+(f |5x)* (%), [6M]> € Z/8 .

Of course, we interpret this number in Z/2°. By Chapter I, Lemma
3.7, and 5.4(ii) of Chapter II, this exactly the homomorphism

20 (MSG, Z/2°) — Z/2°

which defines ¢(.&°) e H**YMSG, Z,), as desired.

The proof of 8.1(iii) is rather difficult, and will be discussed in
§9. The property 8.1(v) of our class [ follows easily from’8.1(i), (ii),
and (iii), and the the discussion in [15] where characterizing properties
of p(L)e H*(BSTOP, Z/8) are listed.

Proof of 8.1. (vi) From the definition of ¢: 2,.(MSG, Z/8) — Z/8
and Theorem 8.5, we see that, if f: M — MSG, is a globally trans-
versal Z/4 manifold, with L** = f(BSG,) © M****, then

(a) index (L*") = (L(M)- /*9(o1), [M]) e Z/4 .
Also from 8.1(ii),
(b) 0.0{1) =V*e H¥(BSG, Z/2) .

Since any Z/4 manifold f: M***"* — MSG, can be made transversal by
subtracting j([K*™, a] [CP(2n — 2)]) if necessary, j:2.(, Z/2)—
2.(, Z/4), we see that these two properties (a), (b) uniquely characterize
0(1). But the Z/4 index class of [6] also has these properties, hence
8.1(vi) follows.

We return now to the proof of Theorem 8.4.

Proof of 8.4. (ii) We have already shown in 8.6 that, for any
Z/2 bordism element g: N — MSG,

PUN, g]) = i(L(N)-g*®(V?), [N]
= W VHN)-g*®(V?), [Ny e Z/2C Z/8 .

8.4(ii) is an easy consequence of this and the multiplicativity of V2.

Proof of 8.4. (ili) We have already shown in the proof of 8.1(iv)
that @o.0: 2,(MSG, Z/2) — Z, is the homomorphism on a Z/2 bordism
which corresponds to the cohomology class pz@(g)eﬂ"*“(MSG, VAP
(see Propositions A.3 and A.6 of the Appendix). In particular, @0
is multiplicative with respect to the index, which proves 8.4(iii).

Proof of 8.4. (i) We have four cases, depending on the dimension
of N, namely, dim(N) =0, 1, 2,3 (mod 4). We denote these cases 0,
1, 2, and 3, respectively.
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Case 0. We are given a Z/8 bordism element f: M**** — MSG,
and a closed manifold N*. By definition of @,

(M, f1IN]
= @"((M, FIIN]) — i VSq' V(M x N)f*0(57) @ 1), [Mx NI
= @"((M, FIIN]) — i VSg V(M)- F*&(>2), [IMD{VHN), [N]) .

Thus it suffices to prove @ (M, fIN]) = ®"((M, f])-index (N) € Z/8,
since then

P([M, FIIND = ("M, f]) — i{VSq'V(M)-f*(5), [M]))-index (N)
= (M, f]-index [N] .

Suppose [M, f]e 2..(MSG, Z/8) = kernel (sd: 2,{MSG, Z/8) — Z/2).
Then we may assume that f: M — MSG, is globally transversal,
with f%(BSG,) = L** c M***, By definition of @",

?"(IM, f]) = (M, f]) = index (L**) e Z/8 .

Moreover, it is obvious that fz,: M*™* X N* — MSG, if globally trans-
versal, with (fz,)"(BSG,) = L** x N*. Necessarily,

so(M™e, fIIN*]) = 0
and, thus,

P (M7, FIIN]) = @' ([M**, FILN*])
= index (L** x N*)
= index (L**)-index (N*)
= @"[M, f]-index (N),
as desired.

Finally, by linearity of @, it suffices to check the case [M, f] =
1([K*™, a][CP(2a — 2)]). But we have already shown in 8.6 that

PU[K™, a][CP(2a — 2)])
— ({L(K** x CP(2a — 2))-(a* (V) R 1),
[Ke x CP(2a — 2)]> = 0

by 8.3(ii) and the fact L(K*") = 1 (this is also obvious from the
definition of ®), and we have shown that

Pi([K*™, a][CP, a][CP(2a — 2)][N*])
= (K™ x CP(2a — 2) x N%)
(@ O(V) ® 1 ® 1), [K*** x CP(2a — 2) x N>
=0
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by 8.3(ii) and the fact L(K*"*) = 1. This proves Case 0 of 8.4(i).
In all three cases below, it is easy to check that so([M, f][N])=0.
Thus,

#(1M, 1IN i
= @M, FIIN]) — VS V(M x NS5 @ 1), [M x ND) .

Also, in Cases 1, 2, and 3, index (N) = 0, so what we must show is
that (M, fI[N]) = 0.

Case 2. We have f: M *— MSG, and N**?, where M is a
Z/8 manifold and N is closed. For dimensional reason,

(VS@ V(M x N)f*5% ®1),[M x NI =0.

On the other hand, by Theorem 3.4 we may assume that f: M — MSG,
is globally transversal, with fY(BSG,) = L***c M*™*2, Then f7,:
M x N— MSG, is globally transversal, with (fz,) '(BSG,) = L** X
N#* Thus @'([M, f][N]) = index (L**~* x N**?) = 0, which proves
Case 2.

Case 1. We have f: M*™*'— MSG, and N**. We know from
the structure of 2.(pt) that 8[N] = 0€ 2,,..(pt). Thus there is a Z/8
manifold N with 6N = N. We will now use the fact that the com-
position o0 behaves like a derivation. Thus

oM, f1-IN]) = [M, f1-[N] + [0M, f|su]-[N1€ Qysiasn(MSG,, Z[8) .

The proof of Case 2 above show that @([6M, f|,,][N]) = 0. Thus,
by the proof of 8.1(iv),

P([M, FIIN]
= ppH(M, FIIN])
= s([M, f1-[N]) — i VS¢ V(O(M x N)-(f*% @ 1), [6(M x N)])
= (s M, f1-d(ON)) — (VM- £*57, IM]){VSqV(6N), [IN]))
=0.

This proves Case 1.

Case 3. We have f: M — MSG, and N*'. As in Ca~se 1,
we can find a Z/8 manifgld N, with 6N = N. Then p([M, f][N]) =
[M, fIIN] + [0M, f1:y]-[N], hence

P(M, FIIND) = 2o M, FIND — UM, f1u]IN]) N
= po M, f]-index (N) — @0 oM, f|,,]-index (N)
=0.
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The second equality uses both the proof of 8.4(iii), which implies
that ®p,0 is multiplicative with respect to the index, and the proofs
of 8.4(ii) and Case 0 of 8.4(i) above, which imply that @([ M7+, FIIN*])=
@[+, f]-index (N*), for any Z/8 manifolds if**** and N*. This
proves Case 3, and completes the proof of Theorem 8.4.

REMARK 8.8. The definition of @: 2.(MSG, Z/8) — Z/8 can be
extended directly to PL-bordism, @: 27X(MSG, Z/8) — Z/8. Moreover,
the formula of Theorem 8.5 is true for M any PL Z/8 manifold. This
assertion does not follow from the product formulae 8.4, however.
One needs the more delicate formulae

(U, FIIND) = @G, £])-index (N) e Z/2 < Z/8
and
(0[P, F[Q)) = p(pH[ P, F)-index (@) € Z/2"  Z/8 ,

where M, N, P, @ are Z/2" manifolds, » < 3, dim (Z x N) = 0 (mod 4)
and dim (P x @) = 1 (mod 4). The reason we need stronger formulae
to deduce 8.5 for PL-manifolds is that 2%*(pt, Z/8) is not generated
by oriented manifolds and Z/2 manifolds. (See the Appendix, Remark
A.14.) In the next section, we will establish generalizations of these
more difficult product formulae, which will thus prove 8.5 for PL-
manifolds.

9. The Whitney sum formula for the class I. In this section,
we will establish Property 8.1(iii) of the class [ ¢ H*(BSG, Z/8). That .
is, if & and 7 are two oriented spherical fibrations, we prove

0E X 1) = U @UD) + A VSEV(E) ® 5 (7))

1 ~
@Y + Z(§) ®VSq'V(9) e H*(BE x By, Z/8) ,

where
1. H*(, Z|2) —— H*(, Z/8) .

To establish 9.1, we need the Whitney sum formula for the class
% e H*(BSG, Z/2).

H(EX D) = F% () QV()

9.2) < .
+ V()R . () e H*(BE x By, Z/2) .

9.2 will be proved in §10 by giving a homotopy theoretic de-
finition of the class .97 in terms of functional cohomology operations,
and then proving a product formula for the relevant functional
operations. A proof of 9.2 could also be given by reducing 9.2 to
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known formula for the Kervaire surgery obstruction.
As a first step in the proof of 9.1, we describe generators of
H(X XY, Z/2).

LEMMA 9.3. H.(X XY, Z/2") is generated by the Hurewicz image
of

(i) “products” j([M, fIIN, g1), where M and N are Z/2-mani-
Solds, s=<r, 1 M— X, g: N—Y, and j: 2.(, Z/2°)— 2.(, Z/2"), and

(ii) Bocksteins of products p,0([P, f1Q, g1), whese P and Q are
Z/[2*-manifolds, s<r, f: P— X, and ¢g:Q—Y.

Note in (ii) that, if

s = 7, px0([P, fIIQ, g]) = 0-0[P, f1-0-Q, 9] + 0[P, f]-00[Q, 9] .

A simple proof of Lemma 9.3 can be given by studying tensor
products of elementary chain complexes

O0O— 227 0)@0—Z -2z —0),

since by a classical “standard basis theorem” such complexes account
for the 2-torsion in H.(X, Z) and H.(Y, Z). We leave the details
to the reader.

To prove 9.1, it clearly suffices to prove

PUE x 1)

(94 =20 XU + UVSeV(E) Q 22 () + Z(6) ®VSq V(7))
e HY(Te N\ Ty, Z/8) = Hom (H(T& N\ Tn, Z[8), Z/8) .

By Lemma 9.3, it thus suffices to evaluate both sides of 9.4 on
“products” j([M, fIIN, g]), M, N Z/2*-manifolds, s < 3, f: M — T¢,
g: N— T, and Bocksteins of products o0([P, 1@, g]), P, Q Z/2*-mani-
folds, s <3, f: P—TE ¢g:Q— Tn.

In §8, we defined a homomorphism ¢..,: 2,.(T& A T, Z/8) — Z/8,
and the graded class @(I(& X 7)) = O .20 l.(6 X 1)) was defined so that

$or([X, b)) = (L(X)-R*O(UE % 1)), [X]) € Z/8

for all Z/8-manifolds h: X— T& A Tn. By induction on %, where
=S50l 9.4 follows if we show

$exn[X, B]) = (L(X)-1*OUE) @ L)), [ X1
(9.5) + KVAX)*O(VSq V(E) ® 52 (n)
+ Z @) QVSe V), el X1

for [X, k] = j(IM, F1IN, g]) and for [X, k] = p(P, fIIQ, g]), M, N, P, @
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as above, 4: Z/2— Z/8.

We first dispose of cases [X, k] = j([M, fI[N, g]), where M and
N are Z/2- or Z/4-manifolds. The second term on the RHS of (9.5)
vanishes. Thus we must show

(LM < N)S % g)*@(0::UE % 1)), [M X NI

= (LM x N)(f % 0)*®(palln)) ® pll7)), [M x NIy € Z[2', s =1, 2.
But we know p,l(& X ) = 0,l(§) ® p.l(n), since, by 8.1(ii), () =V
Also, we know that 0,l(¢ X ) = pl(&) ® pl(7), since, by 8.1(vi), p,(l)
is the Z/4-index class defined in [6].

We will now specialize to T¢ = Ty = MSG. By naturality of the
class [, this is sufficient. We write f: M* — MSG instead of f: M***—
MSG,. Of course, we work in the stable range, a < q — 2. There
should be no confusion if we write L* = f~(BSG) C M*, when f: M* —

MSG is globally transversal.
We are left with five cases in 9.5:

Case 1. [X, k] = [M**%, fIIN***, g], M, N Z/8-manifolds.

Case 2. [X, h] = [M*, fIIN*, g], M, N Z/8-manifolds.

Case 3. [X, h] = [M**, fIIN*", g], M, N Z/8-manifolds.

Case 4. [X, h] = pd(P***, fIQR*, g]), P, Q Z/2- or Z/4-manifolds.
Case 5. [X, k] = o0([P*", fIIQ*, g]), P, @ Z/2- or Z/4-manifolds.
We will concentrate on evaluating the RHS of 9.5, ¢([X, 2]), in

these five cases, and leave to the reader the algebraic computation
of the RHS of 9.5.

Proof of Case 1. Recall from §8 the definition of
¢: Q.(MSG, Z/8) —> Z/8 .

If f: X*» — MSG is globally transversal, X a Z/8-manifold, with Y*" =
rY(BSG) c X, then

(9.6) 4(IX, h]) = index (Y**) — L VSg*V(X)-h*®(K), [X]) € Z/8 .

In Case 1, [X, k] = [M**, fIIN**? g]. We may assume that both
fi M — MSG and g: N®**— MSG are globally transversal, since
there is no obstruction in this dimension. Let K**** = fY(BSG)cC M,
L = g(BSG)c N. Then f X g: M x N— MSG A MSG is globally
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transversal, and (f x ¢g)"(BSG x BSG) = K X L. Moreover, by 9.6
and 9.2, and since

VS V(M x N) = VM) @ VSq(N) + VSq¢' V(M) Q V¥N) ,
X (M2, FILN®*, g])
= index (K X L) — & VSq' V(M x N)-(f x g)*
X (D(F QV: +VI® %), [M x NI
= index (K x L) = 0.

The reader can check by dimensional considerations that the RHS
of 9.5 also vanishes in Case 1.

Proof of Case 2. We first argue that we may assume both
f:M*— MSG and g: N®*— MSG are globally transversal. Let a:
K*— MSG be the nontransversal Z/2-manifold used in 8.3. ((K*, «]
will be precisely constructed in §10; this is the step where we use
Té¢ =Tn = MSG.) In any dimension 4a, we get a nontransversal
manifold ar,;: K* x CP(2a¢ — 2)— MSG. If f: M**— MSG is not trans-
versal, write

(M, FIIN®, g] = [M, f'I[N, 9] + i({K*, @][CP(2a — 2))(0’[N, g])) ,

where [M', '] = [M, f] — j(K*, a][CP(2a — 2)]). Since both sides of
formula 9.5 are additive in [X, k], this reduces the general Case 2
to the case [X, k] = [M, f'][N, g], where f': M’ — MSG is transversal.
(We have already dealt with the case [X, k] = j(Z/2-manifold).)
Similarly, we may assume that ¢g: N* — MSG is transversal.

Now, assuming that f: M** — MSG and g: N* — MSG are trans-
versal, let K* = f"(BSG)c M, L* = ¢go'(BSG)c N. Then, by 9.6
and 9.2,

#([M, F1IN, g])
= index (K x L) — 4 VS¢*V(M x N)(f x g)*
X0 @VE+VE® %), [M x NI
= index (K x L) — & V¥(M)- F*O(V?), [MI){ VSq*V(N)-g*&(.5%), [N])
— K VSGV(M)- f*0(5%), [M]><V2N(N)-g*@(V2), [ND
= (index (K) — &K VS¢V(M)- f*(52), [M]))
X (index (L) — & VSq*V(N)- g*®(.5%"), [N]))
= g([M*, f1-3(N*, g)) e Z/8 .
(We have used the identities {(V*(M)- f*&(V?), [M]) = (V¥ K), [K*]) =

index (K**) (mod 2), and similarly, (V¥ N)-g*@(V?), [N]> = index (L*)
(mod 2).)
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It is easy to see that this agrees with the RHS of (9.5).

Case 3 is very difficult, without making use of the results of
Cases 4 and 5, so we postpone it until the end of the section.

To study Cases 4 and 5, we recall that, if #: X**'— MSG is a
Z/2:-manifold, then we may always assume %|,3: 60X — MSG is globally
transversal, with Y* = (k|,») (BSG)céX. If [X, h]l=IP, flQ, gl
then 0,0[X, k] = 8[P, f1-0:[Q, 9] + 0[P, f1-0[Q, g]. The formula 9.6
for ¢p0[P, f1lQ, g] then becomes (by 9.2)

$00([P, f1[Q, g]) = index (Y)
(9.7 — KVSG' VP x Qf x 9)*&(V*QR.% +.% ®@V?), [6P x Q)
— KVSEV(P X 8Q)f X ¢)*O(V:R.% + 5% ®V?), [P x Q]> .

Moreover, we proved in Lemma 3.7 that
(9.8) 27s,0([P, f1Q, g]) = index (Y)e Z/8,

where s,:: ,..,(MSG, Z/2°) — Z/2° is the transversality obstruction of
§3.

Proof of Case 4. We may assume that f: P*"*— MSG is globally
transversal, with K*** = fY(BSG)cC P, K**** a Z/2°-PD space, s =1
or 2. We consider two subcases for products [P**?, f][@% " g].

Subcase 1. g: Q¥ *— MSG transversal, L**' = f(BSG)CQ, L
and @ Z/2°-manifolds.

Subcase 2. Q* ' a closed manifold, g: @* ™ — MSG.

Since there is a nontransversal example on a closed manifold,
a: S*— MSG (e.g., [S? a] = §|K*, ], where [K* a] is as in 8.3), we
see by linearity that Subcases 1 and 2 suffice.

Subcase 1. In this case, f X g: P*" x Q¥ — MSG N MSG is
transversal, with (f x ¢)7*(BSG x BSG) = K** x L*™'. Since
2:0(K**** x L*™) is a boundary, index (6(K*** x L*7*)) = 0. The
hypothesis g¢: Q' — MSG transversal also implies (V*Q)-g*9(K),
[Q]> = 0. We thus conclude from 9.7 that g 0([P**, flIQ" ", g]) = 0.

To evaluate the first term on the RHS of 9.5, it is helpful to
use the identity

(LOX)- (1] 2)*@0E) @ Un)), [0X])
= 27 (LX) - 1* 0(0::8U8) @ 0usl(7) + 0UE) ® 0:8U7), [X])

where h: X — Te A Ty is a Z/2*-manifold, s < 3, and B: H*(, Z/8)—

(9.9)
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H**(, Z) is the Bockstein. Thus the first term on the RHS of 9.5
vanishes if [X, #] = [P**, f][Q“, g]. The second term is easily
calculated, using 0,0[P X Q] = [0P]-0,[Q] + p:[P]-[0Q], and also vanishes
in Subcase 1, as desired.

Subcase 2. If Q is closed, o(P*" x @* ™) =0P x Q. If g: Q*'—
MSG is not transversal, then the map f X g: 0P X Q@ — MSG N MSG
is not transversal, although it is bordant to a globally transversal
map. We want to compute index (Y) € Z/8, where Y=h"(BSG x BSG),
h: Xt — MSG A MSG a transversal map bordant to f X g:dP X
Q@ — MSG N MSG.

Let @' =U,U,U, be a partition of g: @*'— MSG (see §3).
That is, U, and U, are codimension 0-submanifolds of @, g|y:U,—
MSG is globally transversal with respect to the mapping cylinder
M,c MSG of the universal bundle v — BSG, and g|,,;: U,— MSG is
globally transversal with respect to a smaller mapping cylinder
M.c M,

Let L, = (9]y) (M), L, = (¢]4,)"'(M,). Then by Lemma 1.4, the
inclusion 0L, — oL, is a degree one normal map of closed, 4b — 2-dimen-
sional PD spaces. Moreover, the global transversality obstruction
s(Q™, 9) € Z/2 is equal to the Kervaire obstruction S(0L, — oL,) € Z/2.

Since f|;r: 0P— MSG is globally transversal, the partition of
[Q, 9] induces a partition of [P x @, f X g]. Namely,

0P x @ =0P xU, U,0P xU,.

In the intersection, 6P x (U, N U,), we get a normal map of closed,
4¢ + 4b — 1-dimensional PD spaces 0K X oL,— 0K x 6L,. (Recall K =
S (BSG)c P***) This normal map has associated an invariant
000K X 0L,— 0K X 0L,)e Z/8, and, by Lemma 3.11, the index we
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need to compute is given by

index (Y) = index (0K X L)) + index (0K X L,)
— 000K X oL,— 0K x oL)e Z/8 .

Of course, index (0K x L,) = index (0K X L,) = 0. By Lemma 3.12,
90OK x L, — 0K x L)) = 4d(0K)-S(6L, — oL,) .
Since

d(0K) = (VSq'V(éK), [0K])
= (VHoP)f*®(VSq'V) + VSq'V(oP)- f*&(V?), [6P]) c Z/2,

and, since S(0L, — oL, = s[Q*, g] = (VQ)-g*®(5%), [Q]) € Z/2, we
obtain from 9.7

s([P*, fIIQY™, g]) = 4(V(6P)- f*0(V?), [API{VHQ)-*0(5%), [QD) -

It is easy to check that this agrees with the RHS of 9.5.
Proof of Case 5. We deal separately with the following subcases.

Subcase 1. P, Q@ Z/2°*-manifolds, s < 3, and g: Q@ — MSG globally
transversal.

Subcase 2. P, Q@ Z/2-manifolds, f: P*"— MSG transversal.

Subcase 3. P, @ Z/2-manifolds, [P, f]=[L*][S? «a], where [S?, a]=
J[K* al, [K, a] as in 8.3, and L° is a Z/2 6-manifold with d(0L°) =
1eZ/2. Thus s[P, f] = d(6L%)-s[S?, a] = 1e Z/2.

The point is, Subcases 2 and 3 imply Case 5 for all Z/2-manifolds
P and Q, by linearity. The fact that the nontransversal example
[LFI[S?, @] has dimension 9 rather than 5 is no drawback since both
sides of (9.5) “commute with crossing with CP(2).” Subcase 1 is then
sufficient for all Z/4- and Z/8-manifolds since there is the nontrans-
versal example [@, g] = J[K*, ), 7: 2.(, Z/2)— 2.(, Z/2°),s = 2 or 3,
which reduces the nontransversal Z/2°-case to the Z/2-case.

Subcase 1. Consider f: P**™ — MSG. We may assume that there
is a partition P**' =U, U U, such that oPcU, f|y: U — MSG is
globally transversal with respect to the mapping cylinder M,, and
Slu,: U,— MSG is globally transversal with respect to M;c M,.
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Ly=f"M)nU,

Li=f)nt;

U

(We may assume that 0P c U,, roughly because there is no obstruction
to transversality on oP.) Let L, = f*(M,)NU, L, = f7M)NU..
We will use the notation 6L, = L, N 6P, and 6L, = L, N U,. Thus the
inclusion 0L, — 0L, is a degree one normal map of closed, 4a-dimen-
sional PD spaces.

We are assuming that g: Q% — MSG is transversal. Let K* =
g7(BSG) Q. Now, 0(P X Q) =030P X Q Ussspxse P X 0Q. The partition
P =U,U U, induces a partition

AP xQ=EPxQ N UxiQUUXQ=V,UV..

In the intersection, V, NV, = (U, N U,) x 6Q, we have the degree one
normal map oL, x 6K — 0L, x 6K. On side V, of the partition, we
have 0L, X 0K = 0(0L, X K Usssrxox L1 X 0K). On side V, of the
partition, we have 0L, x 6K = d(L, x 0K).

We know that f x g|,: (P x Q) — MSG A MSG is bordant to a
globally transversal map h: X — MSG N MSG. Let

Y = »Y(BSG x BSG) .
From Lemmas 3.11, 3.12, we know that

index (Y) = index (0L, x K U L, X ¢K) + index (L, X 0K)

285 L1 X 0K

— 0(L, x 0K — 3L, x oK)
= index (0L, x K) = index (0L,)-index (K) .

(We have used the Novikov additivity property to compute index
(0L, X K Usesz,xox Ly X 0K) = index (0L, X K).) On the other hand,
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index (0L,)
= gp [P, f] — 4(VSg:V(6P)- f*&(%"), [0P] N
= 27 L(P) - f*0p,(B), [P]) — &VSgV(6P)- f*O(7%),[6P)) ,
and, if s = 3,
index (K) = ¢[Q", 9] — KVS¢V(Q)-g*0(5), QD
= {L(Q)-g*0(), [QD) — KV Sg'V(Q)-9* (%), [Q]) € Z/8 .
(If s < 8, ps(index (K)) = (I(Q)- g*®0,:(1), [Q]) € Z/2°.) Using 9.7, the
reader can check that, for s < 3, this gives

go0([P*™, FIIQY, g])
= 27CIAP) - [ 0o(B1), [PDL(Q)- g*Pox(1), [Q]) € Z/8 .

By 9.9, this establishes 9.5 in Subcase 1.

Subcase 2. Let L**"' = f~(BSG)cC P, where f:P*"'— MSG is
transversal. Choose a Z/2-partition of the Z/2-manifold g: @* — MSG,
say @ =U,UU, Thus U, and U, are Z/2-manifolds with boundary.
The notation is ¢U, =U; N iQ, U, =U,NU, = oU..

\ r_/JU:

U
U,

v,

U, nU,=aU, = U,

Note that 6Q = éU, U 6U, will be a partition of g:0Q — MSG.

We have transversal inverse images, N, = ¢*(M,) N U, and N, =
9 (M) NU,, M CM,. N,and N, are also Z/2-manifold with boundary.
The inclusion 4N, — 0N, is a normal map of (46 — 2)-dimenional Z/2-
manifolds and sé[@*, g] € Z/2 is the surgery obstruction S6(0N,—3dN,) €
Z 2.

Since 0(P X Q) = 0P X @ Ussrxse P X 0@, the partition (Q, 6Q) =
(U, U U, oU, U oU,) induces a partition of the closed manifold J(P X @).
Namely,

6(P % Q) - (BP X Ulz&lk}él] P x 6ljl)nSPx(U NUUPX(3UNU)
X@PxU, U Pxaol)

25PX6U,

=V.uvVv,.
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In the intersection, we get the “Massey product” normal map of closed
4a + 4b — 1-dimensional PD spaces

0L x 0N, U L x 60N,— oL x N, U L X 6N,.

20 LX60N 5 20 LX69N;
By Lemma 3.12, the #-invariant of this normal map is given by

4d(L)-S6(3N, — oN,)
= L VH(P)- f*®(VSq' V) + VSq' V(P)- f*o(V?), [P])
X {V¥0Q)-g*0(>x"), [9Q]) .

In V,, we have

SL xoN, U L xN,=80LxN, U Lx3N), i=12.

25 LX 00N T 20LXN;
LEMMA 9.10.

index <5L XN, U L x 5N1>

20LX3Ny

+ index <3L XN, U L xéN,) =0 (mod8)

20LXIN g

Assuming this lemma, we have shown that, if f X g: (P x Q) —
MSG N MSG is bordant to a transversal map h: X — MSG N MSG,
and Y = "Y(BSG x BSG)C X, then

index (Y)
= K VHP)f*O(VSGV) + VSq'V(P)- f*B(V?), [P])
x{VH6Q)-g*0(5%), [0Q]> € Z/8 .

From 9.7, we compute

spd([P*7, FI1QY, g)
= K VSG(OP)-f*0(5%), [BPDVH(Q)-g*a(V?), [QD
+ KVAP)- f*O(VSq'V), [PV (0Q)-g*P(%), [0Q]) € Z/8 .

The reader can check that this implies 9.5 in Subcase 2. (It is neces-
sary to use index (0L***") = 0, which implies 4(I(P)-f*®p,Bl), [P]) =
4(VSq'V(6P)- f*D(K), [0P]).)

Proof of Lemma 9.10. First, because of the computations above,
this lemma is equivalent to 9.5 in our Subecase 2. If g: Q*— MSG
is transversal, we know 9.5 holds because of Subcase 1. It thus
suffices to consider a single non-transversal example g: Q* — MSG.

We can thus assume that the manifolds N, and N,, which arise
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in the decomposition of g¢:Q* — MSG, have a very simple form.
Specifically, we assume N,=D*x S®x I, 0N, = S* x S® x I, 6N, =
D* x S% and 66N, = S* x S? (the Kervaire 6-manifold), and we assume
N, =D x I,0N, = 8% x I, 6N, = D7, and 60N, = S°.

REMARK 9.11. The Z /2-manifold 6N, is obtained from S* x S* x I
via the diffeomorphism T:8° x §* x {0}—:»83 X S* x {1}, T(x, ¥, 0) =
(¥, z, 0). If we identify S°® x S* with o(D* x S®) in such a way that
the diagonal 48° = {(x, )} C S* X S® bound D* x 1 € D* x S* (for example,
via S x §F 5 8% x Ss-liD4 X S* where p(z, y) = (%, 7'y)), then the
orientation-reversing diffeomorphism 7:S® x $* S® x S°® extends to
T: D* x §*— D* x S% This explains how we regard N, = D* x S* x I
as a Z/2-manifold with boundary.

Similarly, N, = D" x I is a Z/2-manifold with boundary, via the
diffeomorphism 7": D" x {0} = D" x {1}, T'(%, 0) = (—=, 1) .

With these assumptions, it is clear that index (6L x N,) = 0,
1 =1,2. We will prove now that

index (0L x N, U L XN,

20LX0N;

= index (6L X N;) + index (L X 0N,), 1 =1,2.

This will prove Lemma 9.10.
We use the result of Wall on non-additivity of the signature
[24]. Let Y =Y_UY_ be 4n-manifolds with boundary. Let

Xy

X=Y.NY ,X.=0Y,— X, Z=0X,=0X.. Let A, B,CCH,,_(Z, Q)
be the kernels of the maps from H,,_(Z, Q) to H,,_(X., @), H,,_(X,, Q),
H,, (X_, @), respectively. Then there is a non-singular symmetric
guadratic form ¢:V X V— Q, where V=[AN(B+O)/[ANnB+AnC}
Namely, ifa, e’ €c ANB -+ C), writea +b+c¢=0and o’ +b +¢ =0,
where b,0' e B and ¢, ¢'€C. Then define d(a, ¢”) = {a UV, [Z]) Q.
Moreover, index (Y) = index (Y,) + index (Y_) = index (V, o).
In the situation of Lemma 9.10,

X, = 8L x N,

X, =20L x 0N, Z = 20L X 00N,
X_ =L x dN, .
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Thus, if © = 2,

A= H,0L, Q) ® kernel (H,(3(S* x S* x I), Q) — H(S*x S*x I, Q)) ,
B = H,(0L, Q) ® kernel (H.(S*x S*x oI, Q) — H.(D* x §* x oI, Q)) ,
C = kernel (H,(0L, Q) — H.(L, Q) ® H.(S* x S, Q) .

Consider the automorphism of H,(S?® x S?, @) defined by T(xXRy) =
y@ax. It is easy to see that T induces automorphisms of 4, B, and
C, hence also an automorphism of V=[AN B + C)l/[ANB+ AnNC].
Moreover, the reader can check that o(a, a’) = —0(Ta, Ta')eQ. It
follows that index (V, ¢) = 0 in this case.

If ¢ =1, it is easy to see directly that index (V, o) =0, since
oN, = 8" X I,6N, = D" x {0, 1}, and 06N, = S” have such simple homo-
logy. This completes the proof of Lemma 9.10 and Subcase 2.

Subcase 3. We have [P, f][Q%, g] = [LF][S?, «][Q%, g].
We first compute the global transversality obstruction

si([L1IS7, all@”, g})

= d(0L%)s,([S?, a][Q%, g]) by Theorem 2.4(iv)
= dBLYVHS® x Q) a X g)*O(F QV? + V2R.%), [S* x Q*]
by 9.2

= dELYa* 0(57), [SDVHQ)- g*0(V?), [@]
= (VSg:V(3(L* x 8%)-(am)*®(5%), [M(L* x S
XLVHR)-g*o(V?), [QD) -

Using 9.7 and 9.8, this implies ¢p0([L°][S? a][@, ¢g]) = 0. On the
other hand, one can easily check that the RHS of 9.5 also vanishes
in this special case. This proves Subcases 3, hence completes the
discussion of Case 5.

Proof of Case 3. We wish to establish 9.5 for
[X, h] = [M**, FIIN®", gl, M, N

Z/8-manifolds. It suffices to consider the subcases: (1) [N*™, ¢g] =
[S? a], and (2) g: N**— MSG globally transversal. Let [S% a] =
0[N, @l, Na Z/8-manifold. Then [M**, fI[S°, a]= 0 d([M**, FIIN, &)+
[6M, f|:x]lIN, &), and 9.5 holds in this case by our proofs of Cases
5 and 2 above. (Note that we did consider Bocksteins of Z/8-products
in Case 5.)

Now assume that g¢: Q¥ — MSG is globally transversal. This
implies that f x g: P*™ x Q%' — MSG AN MSG is cobordant to a
globally transversal map h: X — MSG A MSG. Let k: R®*— MSG be
a Z/8-manifold with ¢p0[R° k] = 1€ Z/8. (For example, the Pontrja-
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gin-Thom construction applied to CP(2) gives an element of 7, (MSG) of
order 8. This can be used to produce [R® k].) Consider the product
(P, FIIQY ™, gI([ R, k]), which is cobordant to [X****, h][R’ k]. In
Subecase 1 of Case 5, we proved that

SOS(RY, RILX*, R]) = pp R, k]-6[X", ]
= ¢[X4a+4b, h] eZ/S.

On the other hand, let us compute ¢p:0 by associating differently.
We see

"

p00(([Q"™, gD P, FIIR’, k])) = 0,

from Subcase 1 of Case 4. Thus we have proved ¢([P**, f][Q@*7", g])=0
if g: Q% *— MSG is globally transversal. It is easy to check that
the RHS of 9.5 also vanishes in this case.

This completes the proof of all five cases of 9.5, hence we have
established 9.1.

CHAPTER IV

10. Homotopy-theoretic obstructions to global transversality.
Let &— Bf be a spherical fibration, with Thom spectrum 7¢. In
Chapter I, § 3, we defined certain homomorphisms (assuming 7,(B¢) = 0
and & oriented)

s,: Ot (TE, ZIn) — P, R Z/n ,
§: pi(Te) — Z)2,

using the obstruction theory to Poincaré transversality developed in
I, §1 and §2. In this chapter, we will give pugely homotopy-theoretic
definitions of s, and §. Since § determines .9 ¢ H* %(BSG, Z/2) and
since s~ = lims,, determines & e H**Y(BSG, Z ), our homotopy-
theoretic deﬁ_r_lﬁzions of § and s,- give, in some sense, a homotopy-
theoretic definition of the transversality obstructions .5 and <2
Among the consequences of the new definition are these. First,
we can formulate homotopy-theoretic conditions which imply that F
and & vanish, and therefore, by Theorem 6.2, we can formulate
conditions that imply a map f: X — BSG, lifts to frop: X — BSTOP,,,.
Secondly, we prove that, if [M, f]le 78 (T¢) and if f: M— T¢ is
globally transversal then s([M, f]) = 0. This proves the converse of
Theorem 3.4 in the one case we did not deal with in §3 (see proof
of Theorem 3.8). It also follows that §: 75.%,(T€) — Z/2 is independent
of the “good” cover {V,} of T¢, which occurs implicitly in the original
definition of § in §3. Thirdly, based on the new definition of §, we
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outline a purely homotopie-theoretic proof of the Whitney sum formula
for the class 5, namely, (¢ X 7) = (&) @ VX(Y) + V&) ® F ().
Finally, the new definition of § applies to any spherical fiber space
&, and the new definition of s, applies to any oriented &; that is, we
drop the assumptions on w,(B&). (However, § and s, are only partial
obstructions to global transversality in the nonsimply connected case.)

We will first define §: 75.2,(T¢) — Z/2. The main idea is due to
W. Browder ([3]). The homology theory 7»%* is represented by the
spectrum MPL (the Thom spectrum of the universal PL-bundle ¥ —
BPL). Thus, there is an isomorphism p: F25(T¢) 5w, (T& A MPL).
T&é A MPL is the Thom spectrum of the Whitney sum & x v— Bf X
BPL, and the isomorphism p is easily defined directly as a Pontrjagin-
Thom construction. Following Browder, we will define, for any
spherical fibre space 7, a homomorphism ¢,: T, (T%) — Z/2. Then
we define §,: 755,(T€) — Z/2 as the composition

§5 = @exyoPl ﬁgL—l(TE) —_—> 752*_1(T§ A MPL) — Z/2 .

To define ¢,: 7,,_(T7) — Z/2, we recall some results of [3]. Let
K(Z/2, n — 1) — Br{v,> — B7 be the fibration which kills the Wu class
v,(n) e HY(By, Z[2). Let Tn{v,> be the Thom spectrum of the induced
bundle over Bn{v,»>. Roughly, if a:S*"*'— T, ¢,(x) will be the
obstruction to lifting « to &: S** — T9{v,). We regard B7n{v,> as
a subspace of By. Let ve H*(B%, Bn(v,), Z/2) = Z/2 be the generator.
The composition

By, By, — By % (By, B¢v,) 5 By x (K(Z/2, ), o),

where 4 is the diagonal and eec K(Z/2, n) is a basepoint, induces a
map on the Thom space level

T/ Ty (v, -1 Ty A K(Z)2, n)* /T = Ty A K(Z/[2, ).

THEOREM 10.1 (Browder). (i) fi:H'(Tm N K(Z/2, n), Z/2) —
H{(Ty/Tn{v,>, Z/2) is an isomorphism if © < 2n, and o surjection with
Ternel = Z/2 if 1 = 2n. The generator of kernel (f}) in dimension
2n s the element v,())-U, ®¢, + U, Q& = >, S¢'(v,_. (U, R ¢,) e
H*(Tn N\ K(Z/2, n), Z/2), where U, e H*(T7, Z|2) is the Thom class,
and ¢, € H*(K(Z/2, n), Z]2) is the fundamenial class.

(ii) Through dimension 2n, Ty N K(Z/2, n) is a product of
K(Z/|2)-spectra. Specifically, through dimension 2n,

H*(Tn N\ K(Z/2, n), Z[2)

38 o free module over the Steenrod algebra o4, with basis {yU, ® ¢,},
where {y} e H*(BY, Z|2) is a Z|2-basis.
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(iii) Letyec H(B7,Z/2). Then p*ff(yU,Q¢,)=y-v, - U, H**(Ty,
Z[2), where p: Tn— Tn/Tn{v,) is the obvious projection.

Proof. See [3] and [16].
It follows from 10.1(i) and (ii) that, through dimension 2n — 1,
Tn/Tn{v,, is a 2-stage Postnikov system, with k-invariant

X = 3\ S‘(v,.+ U, @) € H™(Tq A K(Z[2, m), Z/2) .
In particular, there is an exact sequence

0 — Z/2 —> m_ (T T70,>) —— H,_(T7/T7(v,>, Z[2)

where h is the Hurewicz homomorphism. Moreover, if B:S* ' —
Ty Tn{»,) represents an element of kernel (k) = Z/2, then B is eval-
uated as follows. Let x,,_, = fi(v._.U, ®¢,) e H* (T Tn{v,), Z[2),
so that >, S¢'(x,,_.) =0. Let %,,_,e H* (Tn/Tn{v.) Use™, Z/2)
be the unique element, 0 < ¢ < », which restricts to

Ty € H* (T TN 00, Z/2) .
Then Be Z/2 is computed as the functional operation
S 8'(.-0) € Z/2
= image (H*7(S™, Z/2) L H*(T/Tn<v,) LﬂJ e, Z[2)) .

From 10.1, we also deduce the following.

COROLLARY 10.2. The composition o.h: w;(T7) — w(Ty/Tn{v,)) —
H(Tyn/Tn{v,), Z[2) is zero, j < 2n. Hence

OxTen(T7) C Z[2 C 7o (T7/ T7(0,) -

Proof. By 10.1(i), (ii), it suffices to show that, for y € H'(B7), Z/2),
1 < m, the element o* ff(yU ®¢,) € H**'(T, Z/2) is decomposable over
the Steenrod algebra. But by 10.1(iii), and since Sq™(y¥) = 0,

iU, ®¢) = y-v, U, = y-x(Sq" U,
= 3, S¢'(y- 1(Sa)U) + Sa*(w)- Uy
= é Sqi(y'?)n_i Ur)) .

(We have used the identity Sq(a-x(Sq)b) = Sq(a)(d).
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We now define ¢,: 7,,_,(T7) — Z/2 to be

(0*: ﬂZn—l(Tyi) E— 77'.271‘—1(1-,‘)7/1-'7]</v%>) ’

with image (0,) C Z/2 = kernel (k). Thus, given a: S* ' — T, ¢,() €
Z|2 is computed as the functional operation

Zz:‘t Sql(fzn—z) S Z/2 C H2n<T77/T77<,Un> LPJ“ 62"', Z/2> .

REMARK 10.3. It is easy to see that ¢, commutes with bundle
maps. That is, if f: Ty — Ty is induced by a bundle map f:7—7/,
then ¢, = ¢y ofs: T (T)) — Z/2. It follows that, if §: T&é— T is
induced by a bundle map g: &— ¢, then §, = §..0§,: PHTE) — Z/2.

REMARK 10.4. Suppose that 7 is oriented, and that =» is odd.
Then v,(7) = 0, hence =,,_.(T9{v,>) — 7,,_.(T7) is clearly surjective.
Thus ¢, = 0: 7, (T7) — Z/2. Since QNfL(TE) = 1w, (Té N\ MSPL), we see
that, if ¢ is oriented, § = 0: 275, — Z/2. With somewhat more work,
one can prove that § = 0: OF%, (T¢, Z/2) — Z/2. In fact, this will
follow below when we prove that § = §: 9L (T¢) — Z/2. The fact
that § = 0: 072 (T%, Z/2) — Z)2 follows from the result of Wall ([24)]
that the Kervaire obstruction is zero for a normal map of 4k-dimen-
sional Z/2-manifolds.

We now begin the proof that § = §: P24(MSG) — Z/2. It is easy
to see that it suffices to prove kernel (8)C kernel (§) and § = O:
N5 MSG) — Z2, n = 1.

THEOREM 10.5 (Browder). If a: S — T%? is Poincaré-globally
transversal, then ¢,() = 0.

Proof. We need to prove that a lifts to &: S ' — Tn«(w,)>.
By assumption, a factors through the Thom space of the normal
bundle of a PD space L' a: S '— T()— T(%Y). Since v,(V})=
v,(LY) =0, we see that a lifts to a:S* ' — T(i) — T%(v,), as
desired.

As a corollary, we see that, if f:M*"™ ' — T& is Poincaré
transversal, then 8[M, /] = ¢..(p[M, f]) = 0, where p: 2%, (TE) =
Tagroni(TET N MPL(2q)) is the Pontrjagin-Thom map. For, if f: M — T¢
is transversal, then p[M, f]: S— Té¢ A MPL is transversal. In fact,
the transversal inverse images f'(B&%) C M and

(p[M; f])_l(BEq X BPL(2q)) (- SSQ’I‘2nf1

can be identified as PD spaces, since p[M, f] is defined in terms of
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an embedding Met*»~t c S¥**t, By Theorem 3.4, we conclude that,
if 8[M, f] =0, then S[M, f] = 0; that is, kernel (3) c kernel (5).

THEOREM 10.6. If n =1, §: L. (MSG)— Z/2 is nonzero.

Proof. This is essentially due to Browder. Here is the idea.
First, we will show that 7,(MSG) = Z/2, and that ¢: 7,(MSG)— Z/2
and is nonzero. It is easy to see that the diagram

7Z-2n+1(TE)
M

p Z|2
Lo
Don+1(TE)

h

commutes, hence 10.6 is true if » = 1. Next, there is the natural
action of 7ZX(pt) on 7LX(TE). We will show that, if [M, f]e755(T%)
[N]eniX(pt), then

(10.7) 8([M, fIIN]) = 8(LM, f1-<V*N), [N eZ/2.

Thus we obtain 10.6 for » > 1 by taking [M, f] to be the generator
of 7(MSG) = Z/2 and [N] to be [RP(2n)].
To prove that 7, (MSG) = Z/2, we recall ([14])

Z/2 if =0,
i1,
H{(BSG, Z/2) — ot
Z[2 if © = 2; generator = w, = v, ,

Zl2P Z/2 if ¢ = 3; generator = w, and e, .

Moreover, Sq'(e;) + 0 € H(BSG, Z/2). (Here, e,€ H*(BSG, Z/2) is the
first exotic class ([7].) This computes H'(MSG, Z/2), + < 3, and it is
easy to deduce that

Z if +=0,
Z/2 if +=3.

(One knows from [17] that MSG is a product of K(x)-spectra, and
it is easy to prove there is no odd torsion in this range.)

To see now that ¢: 7 (MSG) — Z/2 is nonzero, it is obviously
sufficient to prove 7,(MSG{v,)) = 0. From the Serre spectral sequence
for K(Z/2,1) — BSG{v,) — BSG, one computes
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Z/2 ifi=0,
0 ifi=1,

H{(BSG{(v,), Z/2) = .
( (v, Z[2) 0 fi—2,

Z[2 if ¢ = 3; generator = w*(e,) .

Moreover, Sq'(7*e;) 0 € H{(BSG{v,), Z/2). Consider now the Postnikov
system for MSG{w,>. It is clear that it must begin as

K(Z, 0) L2J K(Z/2,1).

Sq<eq
Now
Zj2 if i=0,
. if 1=1,
H'(K(Z,0) U K(Z/2,1), Z]2) = e
Sql if 1=2 ,
Z/2 if i=3,

Moreover, the generator in dimension 3 restricts to
Sq*, ¢ HY(K(Z/2, 1), Z/2) .

From the well-known relation between 7w*e,- U and the secondary
operation corresponding to the relation S¢®Sq*, = 0¢ HYK(Z, 0), Z/2)
(17]), we see that MSG{v) — K(Z, 0) Us, K(Z/2,1) induces an iso-
morphism in cohomology through H® and an injection in H*. Thus
T(MSG{vy)) = 0.

We will deduce 10.7 from the following product formula for
¢ . (Th) — Z /2.

THEOREM 10.8. Let a: S* ' — T¢ and B: S* — T7 be maps. Con-
sider a A\ B: S*t#t = St A S > TeE AN Ty. Then

Sexn(@ N B) = gel@)-<B*O(V7?), [S"]) € Z/2..

To derive 10.7 from 10.8, we have isomorphisms y: 24 TE) —
w.(Té¢ N MPL) and p: n};L(pt);n*(MPL). MPIL, is a ring spectrum
with multiplication ¢: MPL N MPL — MPL induced by Whitney sum.
The module structure of 7L*(T&) over 7i*(pt) is then induced by
1A pu:TeE N MPL N MPL — T& AN MPL, and we have

S([M, FIIN] = ger((L A f)(2[ M, f1 N pINI))
= exrxr(PIM, S1 N p[N]) by Remark 10.3
= ¢exr(PIM, F1)-{(P[ND*O(V[S™"]) by 10.8
= 8([M, f1)-<VAN), [ND .

The product formula 10.7 implies that there is a graded class
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57 (&) e H*(Bg, Z/2) such that, for any f: M — T& §([M, f]) =
<V2(M)-f*(@§£~/ &), [M]>e Z/2. The argument just above deriving
10.7 from 10.8 generalizes easily to give the following. Let f:
Metemt — TE& g: N**® — T? be maps. Then S§([M X N, f A gl) =
S(M, f1)-{g*0(V?, [N € Z/2, where fAg: MX N—Tex Tn—TENTY.
A simple argument then shows that the characteristic class 57 satis-
fies the Whitney sum formula

F(E X 7)
= T OV + V() ® % (1) e H*(BE x B1Z],2) .

If 7(BE) =0, then § = §: 9, (T€) — Z/2. Thus 5% (&) is the class
S, € H*Y(BE, Z/2) defined in II, §5. We have thus used 10.8 to

~
o

prove a Whitney sum formula for .9/5._,. In particular, consider
., € H*(BSG, Z/2).

(10.9)

~

THEOREM 10.10. 2., =V *(Clis: i) € H ' (BSG, Z/2), where
ei_, € H*Y(BSG, Z/2) is the unique primitive class with o(ey_,) =
(i) € H* XSG, Z)2), ¢7_,€ H**(G/TOP, Z|2) the surgery obs-
truction class.

Proof. From 10.9, .5%,._.-(V)*e H*(BSG, Z/2) is primitive.
On the other hand, ¢(%p_.-(V)™?) = 0(F5.) = i*(Fey) by 7.2. In
[4], it is shown that 1*(_97,,_,)=0 if 4n +# 2°, We also have j*(%5_,) =
0¢c H*(BSO, Z/2), j: BSO — BSG. 10.10 now follows from the fact
the primitives in H*(BSG, Z/2) which vanish in H*(BSO, Z/2) inject
under ¢ into H*(SG, Z/2)([14]).

We now return to the proof of Theorem 10.8.

Proof of 10.8. Step 1. It suffices to assume v,(§) = 0, ¢ > @, and
v{(n) = 0,75 > b, hence v,,(§ X 1) = v.(§) ®V,(). For let

I K(Z/2, a + i) — BE — Bt

be the fibration which kills v,,,,.(§), 7 = 0. Similarly, define B% by
killing v,,,..(%), 4 = 0. Let TZ and 77 be the Thom spaces over B
and B7, respectively. It follows from 10.2 that 7,, ,(T&) — 7, (T€)
and 7,(T?) — 7,(T79) are surjective. If @: S*'— TE and 5: 8% — T%
lift a and B, respectively, then, by Remark 10.3, ¢...{a A B) = é:.,
@A B)eZ[2, and also g(@)-(B*O(V?), [S¥]) = g:(@)B*O(V?), [S*]) &
Z/2.

Step 2. There is a commutative diagram
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Se

(TE/TEvap) N (T1/ T1ws) X, e A K(Z/2, a) N Ty N\ K(Z]2, b)
gl l(l/\l/\za®zb)oT

Ts A TH/TE A T(v, @ v,) —27— Tz A Ty A K(Z/2, a + b)

where the map T switches the factors K(Z/2, @) and T7. Moreover,
g is constructed so that

(TE/TE{vap) A (T Tvy))
pAp/ j
Te A Ty < g
I AN [
Té AN Ty/Te N\ Tv, @ v,

commutes.
To see this, one constructs on the base spaces a commutative
diagram of maps of pairs

Bt x (K(Z]2, a), €)
(Bg, B&v,)) X (By, Bnw,)) x By x (K(Z/2, ), e)
ig l(1X1x{a®[b)°T
(Be x By, BE X Bpv, ® v,) X201, (pe s Bp x (K(Z/2, @ +b), o) ,

where v, e HYB¢E, B&(v,), Z/2), v, € H(By, By{vy,), Z/2), and v.,€
H***(B& x By, B¢ X Bn{v,Q v,), Z/2) are the unique nonzero elements.

A1 X vg) X A1 X vy)

Step 3. The functional operation
¢Ex v(a /\ B)

atbd

= lz:‘f SQL(EZaHb—i(S X 77)) € HzaHb(Té/\ TW/TE/\ T77<’Ua®’vb>p(y\ﬁ)ez"“b’ Z/2)

can be computed as

S se( S m @@ unT)

jtk=1

e H““((T&/T&@a}) A T U e+, Z/2> .
Panp
This follows easily from the existence of the commutative diagram

(Te|TE(v)) N\ T
pa /\/,3/
2a—1 2b
S A\ S \ lg
pla A BN
Teé N Tn/Té N TN{va v,
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and computation of the cohomology maps in Diagram 10.11.

Step 4. Finally, we employ the commutative diagram

SN 8 —— (TE/T& o)) N T — (T¢/T&vop) A Tﬁpgﬁe““"

1] | g

SN T —— (TE/TE(va)) N T — (T§/ T w.) H )N Ty

to show that

a+b
; Sqi_giiwza-j(f) Q vy, U,
a-+b
= h* ; SqI‘AHZ:I.’Eu_j(g) X vy, Uy

= B z S@i(Faui(8)) @ W3 U,
= p(@)-(B*O(V?), [S*]y e Z/2 .

This completes our outline of the proof of 10.8. We leave the details
of Steps 2,3, and 4 to the reader.

We point out here that, if £ — B¢ is a spherical fibration, z,(BE) = 0,
then we have proved

THEOREM 10.12. The following conditions are equivalent:

(@) Every map f: Mt ' — Te, qg>2n —1, M an unoriented
manifold, is cobordant to a globally transversal map g: N****~' — Tgq,

(b) (5 =0.

() ¢: 7 (TE AN MO) — Z|2 vanishes.

(Note that (c) is equivalent to the assertion that
Tons((TE N MO)(w,)) — Tz, (TE N MO)

is surjective, n = 1. We can replace MPL by MO because the
restricted homomorphism §: 7,_,(T¢) — Z/2 is sufficient to define
SE (@) e HY(BE, Z/2).)

Finally, we construct the map a: K*** — MSG, used in 8.2. Recall
Ko = 8™ x I/(x, 0) = (—=, 1) is a Z/2-manifold with 0K = S7*,
Since 7y(MSG) = Z/2, there is a map a: K*** — MSG, such that &,
St — MSG, is the generator of wy(MSG). Therefore, sd(K**, a) =
§(8"", «|g+s) = 0. This establishes 8.2(1). Now there exist maps
B: S — MSG, with (8*@(v3), [S*™]) 0. (For example, 8=p([CP(2)]),
p: 2.(pt) = 7 (MSG)). Thus, if necessary, we can change a: K™ —
MSG, on a disc D*"*c K*** such that {(a*@(V?,[K***]> = 0. This
establishes 8.2(ii).
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11. Homotopy definition of s,: 2..,(T¢, Z/n) — Z/n. Our next
goal is a homotopy-theoretic definition of s,: 2RE(TE, Z/n) — Z/|n, &
oriented. By Lemma 3.7, we need only consider s,-, » = 1. Moreover,
given f: M — Tg, we can assume f|,, is globally transversal,
and then s, ([M*™***!, f]) is computed as index (L**) € Z/8 (interpreted
as an element of Z/27), where L*" = f~'(B&) NoM is a closed, 4n-
dimensional PD space.

We will define, for any oriented spherical fibration 7, a homomor-
phism %,: 7, (T79) — Z/8 with the following property: If a: S " — Tn?
is globally Poincaré-transversal, with a (B%%) = L* c S***", then
i,(a) = index (L*")(mod 8). As in the beginning of §10, there is a
natural Pontrjagin-Thom isomorphism p: 22%(T%) = 7. (T¢ N\ MSPL).
Moreover, if f: N— T¢ is globally transversal, then p([N, f]): S —
Té A MSPL is globally transversal, with (p([N, f1))*(B& x BSPL) =
fY(BE) as P.D. spaces. It follows that s,: QRL(T¢, Z/27) — Z/2 is
equal to the composition

P .
Ore (T2, 7)27) —— G7F o 2,.(T A MSPL)—— Z/8

with image interpreted in Z/2".

Thus we need to define 7: 7,,(T)) — Z/8. The key idea is this:
If L*» is a closed, oriented PD space, then the Wu class v,,(L)¢€
H*™(L, Z/2) is the reduction of an integral class ¥ € H*(L, Z), and,
for any such choice of 9, (%% [L*"]) = index (L*") (mod 8). Suppose
the normal fibration of L admits an 7-orientation, v: L — B7. Let
K(Z, 2n) — Bn{Bv,,) — Bn be the fibration with k-invariant B8v,,() €
H*™*(Bn, Z). Then v lifts to ¥: L — B1n{Bv,,), and, on the Thom space
level, a = p[L, v]: S — Ty, — Ty lifts to a:S* — Ty, — T{BV,,>.
Moreover, if 9 € H*(Bn{Bv,,), Z) satisfies

(D) = ¥ (v:,(7)) € H*(BY{BV20), 4/[2) ,
then index (L*) = (@*®(#?), [S*]) (mod 8).

THEOREM 11.1. Given a: S** — T, there exist liftings @: S —
T1{Bvy,y. Moreover, La*@(9%), [S*"]) € Z/8 is independent of the choice
of the class ¥ and the lifting &.

We therefore i: 7,,(T%) — Z/8 by t(a) = {a@*@(v*), [S*"]) € Z/8. The
point of Theorem 11.1 is that (@) € Z/8 is now defined for all a: S** —
T7, regardless of whether « is transversal. If a: S*"— T is trans-
versal, i(a@) gives the index (mod 8) of the inverse image of By because
of the discussion above.

Proof of 11.1. Let z € H*™(Bn, Bn{Bv,,), Z) = Z be a generator.
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The map on base spaces

4
By, Bp(Bv..) —> By x (B, B(Bv,») =5 By x (K(Z, 2n + 1), o)
induces a map on Thom spaces

T T v,y —2 Ty A K(Z, 2n + 1)

One can prove the following, just as Theorem 10.1 is proved in [1].

LEMMA 11.2.
(i) g5 H(Ty N K(Z, 2n + 1), Z) — H(T7/Tn{Bvs.), Z)

18 an tsomorphism if ¢ < 4n -+ 2, and 18 o surjection with kernel =
Z2 if 1 =4n + 2. The generator of kernel (g¥) in dimension 4n + 2
18 the element

Bv2nU® lZ*/H-l + U® [;H-l = B(IUZ‘ILU® 52n+1 + U@ qunlzn-H)
= B3 8¢ (Vs o U @ 1)) € H*(Ty) A K(Z, 2 + 1), Z)
(Recall that since 7 is oriented, v;(») = 0 if j is odd.)

(ii) IfyeH*(By, Z/p), p prime, then p*gi(yU X ¢) = B,,-y-Ue
H*(Tn, Z|p), where p: Tn— T1/Tn{Bv,,).

COROLLARY 11.3. (i) (9,)«: T T/ T9{Bs))—T(THNK(Z, 21+ 1))
s an isomorphism if 1 = 4n.
(ii) (gpsps: Ty —> (T N\ K(Z, 2n + 1)) is zero, © = 4n.

Proof. (i) is immediate from Lemma 11.2(1). To prove (ii), first
note that T A K(Z, 2n + 1) is the Eilenberg-MacLane spectrum
K(H._,,_(T7, Z)), through dimension 4n. It thus suffices to prove
that, for all y € Hi(By, Z|p), j < 2n, 0*9¥(yU & ¢) € H***"" (T, Z|p) is
decomposable over the mod p Steenrod algebra. (We assume here
that H.(T7, Z) is of finite type.) If p is odd, this is obvious from
Lemma 11.2(1i). If p = 2, we have

0*g7 (WU R &) = (8¢'v:,) 4y U = Sq'(vay,y+ U) + :,-(Sq'y)- U
= 8¢'(ve0-y- U) + 2:3 S (Va0 (Sq'v)- U) + S¢*(Sq'y)- U
= 8¢'(veu-y-U) + g S¢*(v2,—.:(Sa'y)- U) + Sg*(y-(Sq'y)- U) .
From Corollary 11.3(1) and (ii), we see that
0 T T7) — T (T9/ T7{BV2))
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is zero, and the first statement of Theorem 11.1 follows.
We must now prove that, given a ez, (T7%), {(&*®(¥?), [S*"]) e Z/8
is independent of ¥ € H*(B7{Bv.,), Z) lifting

7*(024(7)) € H*(B7{Bv207, Z[2) ,

and independent of @:S* — Tn{Bv,,) lifting a: S*»— T7. First, o
may be replaced by ¥ + 2y, y € H*(B){£%:.), Z). Then (¥ + 2y)* =
?* + 49y + 4y®. It thus suffices to prove that @(o(vy + ¥*)) = v,,-yU +
y*U is decomposable over the Steenrod algebra. But

Vo YU + 42U = y- 2S¢ U + Sg*(y)- U
= gsqﬁ(vzn—u'y‘ U) .

Secondly, & e, (Tn{Bv.,)) may be replaced by & + 98, Be
Tani (TN/TN{Bv,,y). The result that i(a) = (@*0(¥?), [S*"]) € Z/8 is
independent of & follows immediately from

LEMMA 11.4. Given any

B: S8+t —— T/ T7{BVz0y, {B*0D(%?), [S**']) = 0 (mod 8),
where 6: H*(Tn, Z) — H** (T Tn{BVs,), Z).

Proof. We assert that 0@(9%) = 4y, where p,(y) is decomposable
over the Steenrod algebra. Specifically,

oY) = 95 (2. UR ¢ + U Sqg*)
= ZZ S (950300 U @ 0)) € H (T T{Bv,), Z/2) ,
where g,: Tn/Tn{Bv,,y — T N\ K(Z/2n + 1) was defined above. The
lemma is immediate, given this assertion.

To see that 0@(7*) = 0 (mod 4) is easy. If m: 89{Bv,,) — By, we
have 7*(v,,) = p,(?), hence T*(F(v,,)) = p(?*), where

F(vs,) € H™(BY), Z/4)

is the Pontrjagin square of v,,. Thus p,0(9°) = 0¢€ H* (B, Bn{Bv,,),
Z/4). We need more delicate information about

(09°) € H* (B, B(Bvuw), Z) »

so we work at the cochain level. Let ¢ e C**(B7, Z) be a cochain such
that 7*(c) € Z*(B7){BV.,y, Z) represents 9 € H**(B7){Bv,,), Z) and such
that o.(c) € Z**(BnBy, Z/2) represents v,, € H*(B7), Z/2). Consider the
cochain ¢ U ¢ + dc U, ceC*(By, Z). (This is a Z/4-cocycle which re-
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presents F(v.,) € H*(Bn, Z/4).) Since
m¥oc) = o(m¥e) = 0, w (¢ U ¢ + dc U ¢) € Z*"(BN{BV:.), 4)

represents 9°. Thus §(9%) € H*"*Y(Bv, Bn{Bv,,», Z) is represented by
the relative cocycle d(c U ¢ + dec U, ¢) = 2(d¢) U ¢ + de U, dc (see [23],
Theorem 5.1 for the coboundary of {J,-products). On the other hand,
oc = 2d, where de Z**(Bn, Bn{fv,,), Z) represents the generator
2 e H*™* By, B7{B8v,,), Z). Thus 0(9*) is represented by the relative
cocycle 4(d Uc + dU,d). Clearly, p(d Uc¢ + dJ,d) represents the
cohomology class v,,-z + S¢*"(z) € H*""(Bn, BN{Bv,.y, Z/2).
Now consider the maps

4
By, B(Bv,,) —— Bn % (B, By(Bu,)) =5 By x (K(Z, 2n + 1), 0),
which induce on the level of Thom spaces the map
gr: T/ T{Bv,y — T N K(Z, 2n + 1) .

Under the “Thom isomorphism”

H*(By, BY{Bv,,>, Z|2) — H*(T7/T19{Bv..>, Z/2) ,

Vy,+2 corresponds to ¢F (v, U & t,..), and Sg¢*"(z) corresponds to
95 (U Q S¢*t,, ). Thus 09(9?) = 4y, where

oY) = 95 (v, U Q¢ +U & Sg*™) ,

as asserted.
Finally, we point out that, if &-— B& is an oriented spherical

fibration, 7,(B&) = 0 and if ,5?(5) € H**'(Bg, Z ;) is the class defined
in §5 (and in this section), then we have proved

THEOREM 11.5. The following conditions are equivalent:

(a) Ewvery map f: Mt — Te&, g > 4dn + 1, M o Z/2-manifold,
18 cobordant to a globally transversal map g: Nettt — Tge,

(b) (@) =0.

() 1:7wu(TE N MSO)— Z/8 vanishes on the torsion subgroup of
7. TE N MSO).

(Note that (c) is equivalent to the assertion that
10: Tp(TE N MSO, Z]28) — 7w (TE N\ MSO) — Z/8

vanishes. We can replace MSPL by MSO since the restricted homo-
morphisms s, Q.. (TE, Z/27)— Z/2", r = 1, are sufficient to define the
class 2(&) e H**(BE, Z).)
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APPENDIX. Constructing cohomology classes from homomor-
phisms on bordism. In this Appendix, we review the technique used
by Sullivan (and earlier by Thom in his definition of rational PL-
Pontrjagin classes) of defining cohomology classes of a space Y in
terms of homomorphisms on the smooth bordism of X. We deal
separately with cohomology classes with Z/2-, Q-, Z,-, and Z/2'-
coefficients.

Case Z/2. The key fact for the construction is the result of
Thom, that the Hurewicz homomorphism #k,: N, (X)— H,(X, Z/2) is
surjective, and that kernel (h,) is generated over Z/2 by the decom-
posable elements in the image of the natural pairing R,.(X) ® N.(pt) —
N.(X), that is, by elements [M"*, f]-[N] = [M X N, fx,], where f:
M*— X and 7 > 0.

As an immediate consequence, we have that a cohomology class
2, € HY(X, Z/2), which is the same as a homomorphism H,(X, Z/2)—
Z/[2, is equivalent to a homomorphism ¢,: N.(X)— Z/2 such that
(M, f1-IN]) = 0 whenever dim (N) > 0.

In practice, the homomorphisms ¢,: N.(X) — Z/2 which arise do
not vanish on decomposables, but satisfy a product formula like

#([M, FIIN]) = ¢.(IM, f])-2(N),

where ¥(N) is the Euler characteristic of N, modulo 2. In such a
situation, we obtain a (graded) cohomology class z,. =z,+ 2, +2,+ -+,
2z, e H(X, Z/2), as follows. Perturb the Hurewicz homomorphism % to
h: R(X)— H (X, Z/2) by setting

MM, f) = f (VM) N [M) e HAX, Z/2),

where V(M) =1+ v¥(M) + vi(M) + --- is the square of the total
Wu class of M. The homomorphism % is not homogeneous; that is, & is
not degree-preserving. However, & is still surjective, and kernel (%)
is generated over Z/2 by elements [M, f]-[N] — [M, f[{V¥N), [N],
where (V¥ N), [N]) = y(N)e Z/2. Thus we have

PropoSITION A.1l. Graded classes z, € H*(X, Z/2) correspond bijec-
tively to homomorphisms ¢y: N (X)— Z/2 which satisfy ¢.(IM, flIIN]) =
6 (IM, f1)-x(N)e Z/2. The correspondence is defined by the equation

$x(M, f) = (VHM)-F*(2:), [M]) e Z]2 .

Proof. This follows easily from the above properties of 4: Bo(X) —
H. (X, Z]2), the relation V(M x N) =V (M) RQVIN)ec H*(M, Z/2) K
H*(N, Z/2) = H*(M x N, Z/2), and the computation
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(VM- F*(24), [M] = (F*(24), VM) O [M]) = <z, R, D)

REMARK A.2., Since V*=1+ v*+ v} + --- is nonzero only in
even dimensions, we have that, if f: M"— X is a map, then

6., £) = (V0D F(5 2.0), (M) -

That is, the homomorphism ¢,, n even, is determined by the classes
20y %oy 24 **+, and the homomorphism ¢,, n odd, is determined by the
classes z,, %s, %5,

Z[2-cohomology classes can also be defined by using the homology
theory “bordism with Z/2-coefficients,” 2.(, Z/2). Namely, 2.(X, Z/2)
is a module over 2.(pt, Z/2), the Hurewicz homomorphism

h: 2(X, Z/2) — H.(X, Z/2)

is surjective, and kernel (k) is generated by decomposable elements
[M, f1-IN]. As in Proposition A.1, we deduce

PRroOPOSITION A.3. A graded class z, H¥(X, Z/2) is equivalent to a
homomorphism ¢é.: 2.(X, Z/2) — Z|2 which satisfies ¢.([M, f]-[N]) =
6.(IM, f1)-x(N). The correspondence is defined by

¢« (M, f1) = CYHM)- f*(z.), [M]) e Z/2 .

ReEmMARK A.4. Since for Z/2-manifolds M, wi(M) = 0, and since
v,,., 18 always divisible by w,, we have that V(M) =1 + v3(M) +
V(M) + .-+ is nonzero only in dimensions divisible by 4. Thus

500, £) = (VO3 ) T € 22

Case Q. Another simple case when cohomology classes are directly
constructed from homomorphisms on bordism is the case of rational
coefficients. Specifically, the Hurewicz homomorphism A: 2,(X) X Q —
H. (X, Q) is again surjective and kernel (%) is generated, over @, by
decomposable elements [M, f]-[N], 1M, f]le .(X), [N]e 2,(pt), and
dim (N) > 0. Thus homomorphisms ¢,: 2.(X) & @ — Q which vanish
on decomposables yield rational cohomology classes.

In practice, the homomorphisms ¢,: 2,(X)® @ — Q which arise
satisfy a product formula like ¢([M, f]-[N]) = ¢.([M, f]-index (N).
Let Lo(M) =1+ L,(M) + L,(M) + --- e H*(M, @) be the (inverse)
Hirzebruch polynomial of the normal bundle of M (so that (Ly(M), [M]=
index (M)e Z). Then we have

PROPOSITION A.5. Graded classes z, € H*(X, Q) correspond bijec-
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tively with homomorphisms ¢4 2,(X) ® @ — Q which satisfy
(M, f1-IN]) = 6+(IM, f1)-index (N). The correspondence is defined
by the equation

6,0, £) = (Lo(M)- (5 20, (1) € Q

Case Z,. A somewhat more complicated situation arises if we
attempt to define a cohomology class with Z,,-coefficients. A complete
discussion is given in [15]. We state here only the final results of
that discussion. Roughly, the idea is that a Z-class determines by
obvious coefficient maps (and is determined by !) a @-class and a
compatible set of Z/2-classes, r = 1.

Here are the relevant facts.

(1) The evaluation map H"(X, Z/27) S Hom (H, (X, Z/27), Z/27)
is an isomorphism.

(2) The Hurewicz map h.(2"): 2.(X, Z/2")— H.(X, Z/2") is sur-
jective.

(3) There is a natural module structure

2.(X, Z/27) @ 24(pt, Z[2") — 2.(X, Z/27)

and, in the limit, kernel (%,(2°): 2.(X, Z/2°) — H,. (X, Z/2")) is
generated by “products” i([M, f]-[N]), where Z/2* = lim Z/2", 14:
72 — 727 -

(4) Therational L-class Lo=1+L,+ L,+ - - - € H*(BSO, Q), used in
Case @ above, can be refined to a unique class L € H*(BSO, Z ) which
satisfies po(L) = Lo € H*(BSO, Q) and p,(L) = V*e H*(BSO, Z/2). More-
over, L is multiplicative; that is, on Whitney sums of bundles,
L& + 1) = L(8)- L(n).

Using these facts, the following is proved in [15].

PROPOSITION A.6. Graded classes z, € H*(X, Z ) correspond bi-
jecttvely with commutative diagrams

2.(X)®Q-2%q

b

0.(X, Z/27) -2 zj2

where 0: Q — Q|Z,, = Z[27 is the projection, which satisfy
(1) ¢olM, f1-IN]) = se([M, f])-index (N) €@,
(ii) (i([P, 9]1-[Q)) = 4.(i([P, g]))-index (Q) € Z/2" C Z/27,
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where P and Q are Z[2"-manifolds, i: Z|2"—Z|2". The correspondence
18 defined by the equations

sol0%, £ = (L) (S, 20u), M€ 20 < Q,
where [M, fle 2,(X), and
S0LP*, g) = (L(P")-0*( S 7 ), [P]) € Z/27 © 727,
where [P, gle 2,(X, Z/27).

REMARK A.7. It is clear that the torsion classes in H*(X, Z.)
correspond to the diagrams in A.6 with ¢, = 0.

Case Z/2". The final result that we need for this paper is a
construction of cohomology classes with Z/2"-coefficients, » > 1 (see
§8). Now, we have the isomorphism

H*(X, Z/2") — Hom (H.(X, Z/27), Z/27)

and the surjection h,(2"): 2.(X, Z/2") — H.(X, Z/2"), as mentioned in
Case Z, above. However, kernel (%,(2")) is somewhat complicated,
and before we can define Z/2"-cohomology classes, we must study
this kernel.

First, consider h.: 2.(X)— H.(X, Z), which is surjective modulo
the class of finite groups of odd order. We know that, since MSO
localized at 2 is an Eilenberg-MaclLane spectrum, there is an iso-
morphism 2.(X) = H. (X, 2.(pt)) (mod groups of odd order). Thus
there is an exact sequence

0— H (X, Z) ® 2.(pt) — 2.(X)
= Tor,_(H(X, Z), 2.(pt)) — 0

(mod groups of odd order). We choose a subgroup of 2.(X) iso-
morphic to H.(X, Z) under h, H. (X, Z) C 2,(X). Then elements in
image (H.(X, Z) ® 2.(pt) — 2,(X)) are clearly constructed as products
[M, f1-IN], [M, fle H (X, Z), [N] € 2.(pt). Now the torsion in 2.(pt)
consists of elements of order 2 ([24]). Let f:P™— X represent an
element of order 2 in H,(X, Z), and let Q"€ 2,(pt) have order 2.
We construct an element [P, f][Q] € 2,...4.(X), Which hits the torsion
product [P, f1+[Q] € Tor (H.(X, Z), 2.(pt)), as follows. Let F:P— X
satisfy 6P = 2P, F'|,; = 2f, and let 9Q = 2Q. Form the map

For, U for: PxQUPXQ@— X.

2P XxXQ
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This is our desired element of 2,....(X). Note that this element
belongs to the Massey product {[P, f], 2, [@]>. Of course, it is not
well-defined, but depends on the choices P, ', and Q. The indeter-
minacy is clearly the same as that of the Massey product ([P, f], 2,
[Q]), namely, the products with [P, f] or [Q] as one factor:

[P, f1® 2,04(pt) + 2,1(X) @ [Q] C 2,0 i(X)

We point out that P and @ give Z/2-manifolds in the obvious way,
and the Massey product constructed above is the Bockstein of the
product of the Z/2-manifolds P and Q. That is ([15]),

AP, 71, 2,1Q) = (P, F)® QD ,

where J: 2., (X, Z/2) — 2,(X) is the Bockstein.
The description of generators of 2.,(X) given above easily
implies

LEMMA A.8. Fkernel (h,: 2,(X) — H,(X, Z)) is generated (mod
groups of odd order) by

(i) Products [M, f]-[N], dim (N) > 0 and

(ii) Bocksteins of products d([P, F]-[Q]), where P and @ are
Z/2-manifolds and dim (@) > 0.

Next, we consider the relation between 2,.(X) and 2.(X, Z/2").
There is a commutative diagram

0 — kernel (h,) ——— 2, (X)—— H (X, Z) —> 0

027 P Py
0 — kernel (k,(2") — 2,.(X, Z/2") — H (X, Z/2") — 0
(A.9) 8 b b
0 — kernel (k,_)—— 2, (X)— H, (X, Z)— 0
.27 -2r .o

0 — kernel (h’n—l) — ‘Q’/L-—I(X) I H«nfl(X; Z) —0

The columns are exact and the rows are exact modulo groups of odd
order,

LEMMA A.10. kernel (h(27): 2,(X, Z/2") — H (X, Z/2")) is gen-
erated by

(i) products [M, f1-[N], [M, fle 2.(X, Z/2"), [N] e 2.(pt), and
dim (N) > 0.
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(ii)  Z/2-products «([ I, f1- N1, [ M, Fle 2.(X, Z/2),[N]e 2.(pt, Z/2),
dim (N) > 0, and i = 2 Q(X, Z/2) — 2.(X, Z/2").

(iii) Z/2"-reductions of Bocksteins of products, ,ozrﬁ([ﬁ, F1-1QD,
[P, Fle R.X, Z/2), [Q] € 2.(pt, Z/2), and dim (§) > 0.

Proof. From Diagram A.9, we see that kernel (%,(27)) is generated
by p.(kernel (k,)), together with a set of elements {x,} such that
o{x,} = kernel (h,_,) N kernel (2"). By Lemma A.8, p,(kernel(%,)) is
generated by o.([M, f]-[N]) = (0x[M, f])-[N], dim (M) + dim (N) =
n, and dim (N) > 0, together with 0,-0([P, F]-[Q]), dim (P) + dim (§) =
n + 1, and dim(Q) > 0. These elements are of types (i) and (iii)
respectively in A.10. Also, corresponding to the elements of the form
3([P, F']-[Q) e kernel (k,_,), where P and @ are Z/2-manifolds, we
include the elements ([P, F']-[Q]) in the set {x,} < kernel (%,(2")). These
elements are of type (ii) in A.10.

Finally, suppose [M, f]-[N]ekernel (h,_,) N (H (X, Z) R 2.(pt)),
and 2'[M, f]-[N] = 0. We consider two cases: first, 2[N] = 0 € 2.(pt)
and, secondly, 2'[M, fl=0ec H (X, Z)C R.,(X). 1t is easy to see
these two cases suffice since 2.(pt) is a free group plus 2-torsion.
In the first case, choose N a Z/2-manifold with 6N = N. Then
[M, f1-IN1=8(IM, f]-[N]), hence we can add the elements i([M, f]-[N])
of type (ii) in A.10 to the set {x,}. In the second case, let [M, f]=
8[ I, 7], where If is a Z/2"-manifold. Then [M, f]-[N] = o(i, f1-[N]),
hence we can add the elements [M, f]-[N] of type (i) in A.10 to the
set {x;}. This completes the proof, since now our set {x,} has the
required property o{x,} = kernel (%,_,) N kernel (27).

PRrOPOSITION A.11. Graded Z/2"-cohomology classes z, € H*(X,
Z|2") correspond bijectively with homomorphisms ¢.: 2.(X, Z/27) —
Z[2" which satisfy

(1) ¢:(IM, NI = ¢.([M, f1)-index (N) C Z/2", where [M, f]e
2.(X, Z|2') and [N] e 2.(pt),

(ii) ¢.G(M, F1-[N]) = ¢* ([, f1)-index (N)e Z/2 < Z/27, where
[, fle 2.(X, Z/2), [N]e 2%(pt, Z/2), and

(iti) _ ¢x (020 ([P, F]-[QD) = 6. (0-0(P, F)))-index (Q) € Z/2 C Z/2",
where [P, Fle 2.(X, Z/2) and [Q] € 2.(pt, Z/2). The defining equa-
tion 1s

810, FD) = (LM - £, 200 ), M1)€ 22 .

Proof. This follows easily from Lemma A.10, the discussion in
the first paragraph of Case Z/2", and properties of the class Le
H*(BSO, Z ).
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REMARK A.12. If r = 1, Proposition A.11 s simply Proposition
A.3, siajce '02L~: V*e H*(BSO, Z/2), and since, for Z/2-manifolds,
index (N) = X(N) e Z/2.

ReEMARK A.13. Given ¢,: 2.(X, Z/2") — Z/27, consider the homo-
morphisms for s = 1,

340401 (X, Z)2°) — 2,(X) — QX Z/2") — Z/2" .

If s<7r image (¢.,040)C Z/2°C Z]2". If s=r, we compose @,0,-0
with the inclusion Z/2"c Z/2*. It is easy to see that this gives a
commutative diagram

2,(X)RQ—Q

(A.14) l l
0.(X, Z/2) -2 72

where Z/2oo =lim Z/Zs and by = lim (?5*:0275 [ .(‘*(X,Z/Zs))' If Put Q*(X; Z/zr)_"

Z 2" satisfies the hypothesis of Al (hence gives classes z, € H(X, Z/2),
%=0), then it is not hard to prove that the diagram A.14 above satisfies
the hypothesis of A.6. The point is, the product formulae A.11(j)
and (iii) imply the product formula A.6(ii). Thus diagram A.14 gives
torsion Z/2-classes %, € H""(X, Z»). It is clear that %,,, = B8z,
where B is the Bockstein for the coefficient sequence

0 —— Zoy s Zoyy—> 22— 0.

REMARK A.15. In the cases Z/2, Q, and Z, above, all the theorems
stated remain true if smooth bordism is replaced by PL-bordism. (In
Case Z, one uses the result of [15] that L € H*(BSO, Z,) extends
to a canonical class L e H*(BSPL, Z).) The case Z/2" is somewhat
more complicated, since 2%5%(pt) contains torsion of order 2°, all s = 1.
Thus kernel (h34(27): 254X, Z/2") — H (X, Z/27)) is complicated. How-
ever, one can show the following analog of Lemma A.10.

LEMMA A.10(PL). kernel (h5"(27)) C QL4 X, Z/27) is-generated by

(1) images of products «([M, f1-[N), where [ M, f]e 254X, Z/2°),
[N]e QL (pt, Z/2°), and dim (N) >0, s =r, and i: Z/2° — Z|2" the
inclusion.

(i) Z/2"-reductions of Bocksteins of products, p,o(P, F1-[Q]),
where [P, F]e 224X, Z/2°), [Q] € 25(pt, Z/2°), and dim (Q) > 0, and
s,

As a corollary, one obtains the following analog of Proposition
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A.11.

ProrosiTiON A.11(PL). Graded Z/2-cohomology classes z,¢€
H*(X, Z|2") correspond bijectively with homomorphisms

ot QLNX, Z)27) — Z]2",

which satisfy

(1) ¢.G([M, f1-IND) = 6.(ilM, f])-index (N) e Z/2° C Z|2", where
[M, fle 24X, Z/|2°), [N] € 2%%(pt, Z/2°), s < r.

(i) ¢« (0r0([P, F]-[Q)) = ¢+ (00[P, F)-index (Q) € Z/2° C Z[2,
where [P, Fle QY4(X, Z/2°), Q € Q5%(pt, Z]2°), s < r.

The defining equation is

510, 1D = (o LD £*(S 20 ), (M1)€ 22
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