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Let {M,} be an increasing sequence of sub o-lattices of
a c-algebra %7, and let M be the s-lattice generated by U, M;.
Let LO be an associated Orlicz space of ¥-measurable funec-
tions, where @ does not necessarily satisfy the 4,-condition.
Given hec LO, let f; be the Radon-Nikodym derivative of &
given M,. Necessary and sufficient conditions are given on
h to insure that {f;} converges in L® to f, where f is the
Radon-Nikodym derivative of # given J. The situation
where f is valued in a Banach space with basis is also
examined.

1. Introduction. If A and g are countably additive set func-
tions defined on a c-lattice of sets, then the Radon-Nikodym deriva-
tive of X\ with respect to ¢ has been defined by Johansen [4]. We
may consider this derivative as a conditional expectation of a funec-
tion with respect to the o-lattice in the case where A\ is absolutely
continuous with respect to . Hence we may define martingales in
this setting. The relation between martingales and Orlicz spaces has
been studied by Darst and DeBoth [3] in the case where the Orlicz
function @ satisfied the 4,-condition. In this paper we drop the 4,-
condition and give necessary and sufficient conditions for all
martingales to converge to the appropriate function. We also
consider the extension of this theory to Banach space valued set
functions.

2. Notation. Let M be a sub o-lattice of a c-algebra .o of
subsets of a nonempty set 2, and let A and g be countably additive,
real valued set functions defined on . Then f is a derivative of
A with respect to ¢ on M if f is an extended real-valued function
defined on 2 such that

(1) fis M-measurable ([f > a] belongs to M for every real a)

(2) MANLF<B) =bANLSf <b]) for all AeM, beR.

(3) MB°NIf>al)zaB NLf > al) for all Be M, acR.

Now suppose g is a finite, nonnegative measure on .&7 and
heLX(Q, & ). Let M(E) = Sth,u for Ec.o% Then \ is a bounded

signed measure on .7 If f is the Radon-Nijkodym derivative of X\
with respect to ¢ on M, then we use the notation f = E(h, M). This
notation is used since f is the conditional expectation of ~ given M
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in the case h e L2, %7 ). (See [1].)

The theory of Orlicz spaces may be found in detail in [5]. We
will describe here only the facts we need.

Let @(x) be an even, real-valued function defined on R such that

@(0) = 0. Recall @ satisfies the 4,-condition in case there is a constant
K > 0 such that @(2x) =< KO(x) for all xc R. If

¥(y) = max,z [2]y] — O(@)] ,

then + is called the complementary function to @.
Let (2, .o7 ¢) be a finite measure space. We denote by L’ =
L'(2, o7 1) the space of (equivalence classes of) .%*measurable,

real-valued functions f on 2 such that SQ O(f/N)dp < - for some

N>0. L"is a Banach space under either of the following equivalent
norms:

171l = int {N: Sg@<£>dp =1

A= sup {|{ fode: | w(@ar =1}

2

Using Jensen’s inequality, it is easy to see that L” c L'. Hence
if heL", then f = E(h, M) is defined.

3. Martingale convergence theorems.

ProrosiTION 1. IfheL’, and f = E(h, M), then fecL”; in fact,
A= iRl

Proof. The argument used in [3, Thm. 1] can be trivially ex-
tended to show that SQ@( FINYdp = Sp@(h/N)dy. Hence if N = [|&]],
we have | 0(f/N)dp = 1, implying 17| N = |A].

Suppose that {M,}r., is an increasing sequence of o-lattices of
subsets of 2, and M is the o-lattice generated by Ui, M,. Denote
by .4 the o-algebra generated by M,. Let heL” and h, be the
7-measurable function such that S'hdy :S hpdp for all Ee. o,
Let f, = E(hy, M,). We call {f,, Mk}}?’i a mart?ngale.

It was shown in [3, Thm. 2] that if @ satisfied the 4,-condition,
then {f,} converges to f = E(h, M) in the space L?. We now drop
the 4,-condition.

LEMMA 2. If E,denotesthe norm closure of the bounded functions
in L°, then ge B, if and only if SQ O(g/NYdp < o for all N> 0.
E,= L if and only if @ satisfies the Ad,-condition.
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Proof. See [5].

THEOREM 3. Let he L%, .o tt). Then the following statements
are equivalent:

(a) hekE,

(b) Ewvery martingale {f., M} converges to f = E(h, M) in L°
HOTM.

(¢) Every martingale {f,, M,} converges to f = E(h, M) weakly
in L°.

Proof. 1. (a) implies (b). If ¢ is any function and M is a
positive integer, let

g(x) if [g@)| =M
0 if Jgx)| > M.

Darst and DeBoth, in [3, Thm. 2|, established

(4) O(fymdp <\  0(ymdp for any a0 and for
all &= 1. *

Hence

(5) fuspsall = 11hYus>all-  But since each f, is a Radon-
Nikodym derivative of 4, we have

(6) pdlfel >a) = NSl > al) = IM(2). Hence p([| S| > al)—0
as g — oo uniformly in k. Since ke E; & has an absolutely continu-
ous norm, hence

(7) hYXusp>all— 0 as @ — oo uniformly in k. Referring back
to (5), we conclude

(8) WS —Full = fidosysinll 0 as M — co uniformly in #£.
Now let M > 0 be temporarily fiexd. Let ¢ >0, 6 > 0, and consider

g"(2) = {

S[!f};ba

S_,, @@M%ﬁ)d# = (D(%W)H([]f‘" — fI] > 8]) + 2(3)Q) .

Brunk and Johansen, [2, Thm. 2.8], have established that f, — f a.e.
Hence we may choose ¢ so small and then %, so large that

M i
SQ q)(f_ek.)d,a <1 for k=k.
This implies ||/ — fi'|l = ¢ for k = k,, so

(9) |If*—fI||—0ask—oo. Finally, sincegg@( fINYdp< Sg@(h/N)d;z
for all N > 0, Lemma 2 guarantees that /¢ E, whenver h € E,. Hence
by [5, Lemma 10.1],

@0) ||f—/"||—0 as M— . Consequently, given ¢ >0, we
use (10) and (8) to choose M large enough so that ||f — /™| < ¢/3
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and ||f¥ — f.l| < ¢/8 for all k. Then using (9), we let &, be so large
that |/ — f¥]| <e/8 for k=k. Then |If—fill=I|f—S"Il+
N0 — frl] + | ff — fill < e for k = k,, which establishes I.

II. (b) implies (c) trivially.

III. (c) implies (a). We will show that if & ¢ E,, then there is
a martingale {f,, M,} such that {f,} does not converge weakly to
f = E(h, M).
Let E,=[|h|<Fk], and let M,={B:B=ANE, Ac.}U{E}.
Then M, is a o-lattice, and M = U=, M, = .o~ It is clear that
fv = E(h,, M) = h*. Hence f,c K, for all k. Now since M = .
it follows that f = h, which is not in E,. By the Hahn-Banach
theorem there is a continuous linear functional L on L° such that
L(f) =1 but L(g) =0 for all ge E,. Hence the sequence {f;} does
not converge weakly to f. Theorem 3 is established.

There is a type of convergence under which the the martingale
{fw M} will always converge to f. We say that {u,} L, converges

Ey-weakly to w if S u,vdp— \ uvdy for every v e Ey, where + is
Q2 2

the complimentary function to @®. The following result may be
found in [5, Thm. 14.6]:

THEOREM 4. Suppose the sequence {u,} < L® converges in measure
to uw, and there is a constant M > 0 such that ||u,|| < M for all n.
Then we L” and {w,} converges Ey-weakly to w.

COROLLARY 5. If hel’, f=Emh,M), and {f, M} is a
martingale, then the sequence {f.} converges Ey-weakly to f.

Proof. We have already seen that ||f,.|| < ||k|| for all k. Also,
fi—f a.e., hence also in measure. The result follows from Theorem
4.

4. A martingale convergence theorem for vector valued
measures. In this section we define the Radon-Nikodym derivative
of a bounded countably additive set function valued in a Banach
space X with a Schauder basis with respect to a nonnegative measure
given a o-lattice. Then we prove a martingale convergence theorem.

Let X be a Banach space with a Schauder basis {2, of unit
vectors. Recall that there exists a constant K > 0 such that

(1) |32, eellx < K| 32, cieillz for all n, and all 337, ce, e X,

Suppose (2, .97 ) is a finite measure space and M is a sub o-
lattice of .oz If x»: M— X is countably additive, we may write
A= D%, N6, Where each ) M — R is countably additive.
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DEFINITION 6. Let f;(x) be the Radon-Nikodym derivative of \,
with respect to ¢ on M. Then we call f(x) = 3.2, fi(x)e; the Radon-
Nikodym derivative of A = 3\, \e;, with respect to & on M.

Suppose h: 2-— X is given by h(z) = X2, h(x)e;, where each
hy:2-—R, and suppose further that SQHh(%)Hz{d# < oo, Then
ME) = S h(x)dy defines an X-valued set function on . Hence A may
also be ]i)vritten ME) = D2 M(E)e;,. 1t is routine to verify that
M(E) = SE hx)dp for each . In view of this, we make the following

DErFINITION 7. If h(z) = 3.2, hx)e, is integrable, and f(x) =
o, E(h;, M)e,, then we call f(x) the Radon-Nikodym derivative of
h on M. We denote f = E(h, M).

Denote by L?(%2, X) the space of functions f defined on 2 such
that [|f(®)||z is in L%°(2, .57 t), and E,(2, X) the space of functions
S such that || f(#) [z is in Ey(2, .4 #£). Then a sequence {f,} converges
to f in L'(2, X) if ||f, — f|lz converges to 0 in L2, .57 p).

THEOREM 8. If h(x) = 37, h(x)e, ts in L°%2, X), and
2 || < oo, then f = E(h, M) is in L%R2, X).

Proof. Recall that ||E(g, M)|| £ ]||lg|l for any ge L%R2, &7 p).
Let + be the complimentary function to @, and let ¢ be a nonnegative

S7~measurable function on £2 such that Soqp(g)dp,g 1. Let C=32, 1Al
Then | 17@) lso@dp={ |52 f@e ro@dn=| (S 17.0) Doto)dp=

o Soifi(x)!g(w)d/vﬂ =il =232 (A =232 k] = 2C.
Hence ||f(z)|lz € L2, % 1), so fe L2, X).
Let {M,})i-, be an increasing sequence of sub o-lattices of .5
and let M be the o-lattice generated by Uy, M,. If f* = E(h, M),
then {f*, M,} is called a martingale.

THEOREM 9. Suppose heEy) (2, X) and 32, ||h] < oo, If
{fe, M} is a martingale, and f = E(h, M) = X, fie., then ff—fas
k— o in L' (2, X).

Proof. Since, by (11), |h(x)| = 2K || k(z)||z for each i, we have

o205 otz

for all N > 0. Referring to Lemma 2, this implies %, < E, for each 3.
Hence also f, ¢ E, for each 4.
Let ¢>0. Since, by hypothesis, 2o lh]] < oo, we have
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2 fill < = also. Let p be a positive integer such that
2o S]] < €/8. Since ff—f; in L'(2, 57 p) for each ¢, (Thm. 3),
we can find a positive integer @ such that for ¢ = Q, |||f? — f:]|| < ¢/2p,
1= 1, cee, D
Let g be a nonnegative, .%~measurable function such that

S,} “lf(g)dﬂ < 1. Then for q= Q’
‘S{)Hf‘l(x) — f(@) ||z g(x)d
= |, I3 (1) — f(@Dedllzg@dse

<

S 171(@) — fi@) Do)y

I
Mﬁml

> |, 1) — fi@) g@)de
+ 3 | fiw) — @) gty

1=p+1

TR R (AR IEAD

-
I

A

=& .

IA

Z el =

-

<< +2 3 (0 + 150D
: £ .8
20 2 2

Hence [[[[|f* — fllzlll <e for ¢ = @, and the proof is complete.
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