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A mapping 9 of an inverse semigroup S into an inverse
semigroup T is called a v-prehomomorphism if, for each a,b¢
S, (ab)f = afbd and (a )0 = (af)~'. The congruences on an
FE-unitary inverse semigroup P(G, &2, Z’) are determined by
the normal partition of the idempotents, which they induce,
and by v-prehomorphisms of S into the inverse semigroup
of cosets of G.

Inverse semigroups, with v-prehomomorphisms as meor-
phisms, constitute a category containing the category of in-
verse semigroups, and homomeorphisms, as a coreflective sub-
category. The coreflective map 7: S—V(S) is an isomorphism
if the idempetents of S form a chain and the converse holds
if S is E-unitary or a semilattice of groups. Explicit con-
structions are given for all v-prehomomorphisms on S ir case
S is either a semilattice of groups or is bisimple.

0. Introduction. A mapping 6 of an inverse semigroup S into
an inverse semigroup 7T is called a v-prehomomorphism if, for each
a,besS, (ab)d < abbd and (¢ )8 = (af)™'. Thus, if S and T are semi-
lattices, a v-prehomomorphism is just an isotone mapping of S into 7.
N. R. Reilly and the present author have shown that the E-unitary
covers of an inverse semigroup S are determined by v-prehomomor-
phisms with domain S. In the first section of this paper, we show
that the congruences on an E-unitary inverse semigroup S=P(G, 2] %)
are determined by the normal partition of the idempotents, which
they induce, and by v-prehomomorphisms of S into the inverse semi-
group of cosets of G. The remainder of the paper is concerned
with the problem of constructing v-prehomomorphisms on an inverse
semigroup S.

In §2, it is shown that inverse semigroups and v-prehomomor-
phisms constitute a category which contains the category of inverse
semigroups and homomorphisms as a coreflective subcategory. Thus,
for each inverse semigroup S, there is an inverse semigroup V(S)
and a v-prehomomorphism 7: S —V(S) with the property that every
v-prehomomorphism with domain S is the composite of 7 with a
homomorphism with domain V(S). It is shown that 7 is an isomor-
phism if the idempotents of S form a chain and that the converse
holds if S is F-unitary or a semilattice of groups.

Section 3 is concerned with the situation when S is a simple
inverse semigroup. It is shown that, in this case, V(S) is also simple,
but it need not be bisimple even if S is bisimple. Indeed, if S is
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E-unitary, it is shown that V(S) is bisimple if and only if the idem-
potents of S form a chain. Despite the fact that the structure of
V(S), for S bisimple, is not completely determined, an explicit method
of construction can be given for all v-prehomomorphisms with domain
S; this is done.

Section 4 is concerned with the situation when S is a semilattice
of groups and the pattern here is similar to that in §3. It is shown
that V(S) need not be a semilattice of groups; on the other hand,
an explicit method is given for constructing all v-homomorphisms
with domain S.

1. Congruences on F-unitary inverse semigroups. Let G be a
group. Then it was shown in [11] that the set .22°(G) of all cosets
X of G modulo subgroups of G is an inverse semigroup under the
multiplication * where

X+Y = smallest coset containing XY .
(Note that, if X = Ha, Y = Kb, then
XxY =[H V aKa']ab

where, for subgroups U, V of G, U \V V denotes the subgroup generated
by U and V.) It was further shown in [6] that every subdirect
product of an inverse semigroup S by G is determined by a mapping
0 of Sinto 22°(G@), where @ is a v-prehomomorphism in the sense of
the following definition.

DEFINITION 1.1. Let S and 7T be inverse semigroups then a
mapping 0: S— T is a v-prehomomorphism if the following hold

(i) a0 = (ab)™* for each aeS;

(ii) (ab)d < abbO for each a,beS.

We shall consider in detail the problem of constructing the wv-
prehomomorphisms of one inverse semigroup into another later in
this paper. Here we shall show that the congruences on an FE-unitary
inverse semigroup S = P(G, 2, Z7) are also determined by v-prehomo-
morphisms of S into .22 (G).

LEMMA 1.2. Let S = P(G, 2, %) be an E-unitary inverse semi-
group and let p be a congruence on S. For each a = (a, g)eS set
ald, = {k € G: (a, 9)p(b, h) for some (b, r)cS}.

Then 0 = 6, is a v-prehomomorphism of S into 5°(G). Further
0 < 6 where ao = g for each a = (a, 9g) and where § < 0 means af =
ac for each acS.



v-PREHOMOMORPHISMS ON INVERSE SEMIGROUPS 217

Proof. We use the fact [2] that X & G is a coset if and only
if X = XX"'X; note that X £ XXX holds for any X< G. Thus,
suppose that &, h,, h, € ad with, say, (a, 9)0(b;, h;), © =1,2,8. Then

(@, 9) = (a, 9)(a, g)"(a, 9)0(b,, h.)(bs, hs)"*(bs, s) = (u, h,h ™ hy)

for some w € 2. Hence h,h;'h,caf. It follows that ad € 22(G). Thus
h€a™'0 implies h*ea™*d. It follows, using the fact that a = (a™)7,
that (af)'=a™'d. Next, suppose k, € ad, k, € b6 with ap(e,, k), bp(c,, k),
say. Then abo(c, Ak.c,, k.k,) consequently k.k, € abd. Hence adbo= (ab)d
and so, since (ab)d is a coset, afd+bo = (ab)d; that is, (ab)d < afdbl. It
follows that # is a v-prehomomorphism of S into .27 (G).

Finally, if a = (a, g) then g € af so that afd < {g9} = ao; thus 6 < a.

Suppose now that 7 is a normal partition on the idempotents of S.
Then Reilly and Scheiblich [10] have shown that z* defined by (a, b) €
7* if and only if o leanb™eb for all ¢ = ¢ € S is the largest congruence
on S which induces the normal partition #. The prehomomorphism
£, corresponding to z* is given by (a, 9)k. = {h € G: for some be 7
such that h™'be %, bra and gh~ifr f for all f < b}.

Note that, if 27 = 2/, then

(a, 9)k. = {heG: gh™'frf for all f < a}
while, if 7 = 4 is the identity partition,
(a, Q). = {heG:gh™*f = f for all f < a}.

If p is a congruence on S, we shall denote by 7, the normal
partition, on the idempotents, induced by p.

LemMMA 1.3. Let p be a congruence on S = P(G, 2, Z7) and let
a=(a,9),b=(0,h)eS. Then, if T = 7w, 0 =0,

(i) k=6

(ii) anmb tmplies (a, 1)0 = (b, 1)6;

(ili) (a,b)ep if and only if andb and ad = bo.

Proof. (i) Suppose xecaf; thus (a, g)o(y,x) for some yeZ.
Then, since 0o S *, (a, 9)7*(y, x); thus x € ak.. It follows that af & ax.;
that is ax. < af. Hence k. < 6.

(ii) If amb then (a, 1)p(b, 1) since m is the normal partition
induced by p. Thus, by definition (a, 1)8 = (b, 1)4.

(iii) Suppose (a, b)€ o then, since p induces x, axb and, from
the definition of 4, ad = b4. Conversely, suppose azxb and af = bé.
Then % € ad so that (a, g)o(c, h) for some c€ Z7Nhz’. We now have
the following string of equivalences
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(a, 9) = (a, 1)a, 9)p(b, 1)(a, g) since aznb and o induces 7
o(b, 1)(¢, k)
= (C, 1)(b’ h)
0(b, 1)(b, k) = (b, h)
since (a, g)o(c, k) implies (a, 1)p(c, 1) and amdb implies (@, 1)o(b, 1).
Hence (a, 9)p(b, k).
Lemma 1.8 shows that o is determined by the normal partition 7,
and the v-prehomomorphism 4,. We now turn to the converse situation

where we start with a normal partition and a v-prehomomorphism.

We require the following lemma which will be of crucial importance
later in the paper.

LEMMA 1.4. Let 0 be a v-prehomomorphism of an inverse semi-
group S into an inverse semigroup T, and let ¢, bc S. Ifa'e =bb™*
or a”'a Z bb™* then adbd = (ab)b.

Proof. Suppose ¢'a = bb~'. Then

abbd = ad(bb™'b)0 = ab{a'abb 'b)§ since o 'a = bb~*
= af(a"'ab)d
= ab(a)0(ab)d since ¢ is a v-prehomomorphism
= af(ab) (ab)d since (ad)™ = (a™*)d
= (ab)s .

But by hypothesis, (ab)d = adbd.

The other case is similar.

COROLLARY 1.5. Let G be a group and S an inverse semigroup

and suppose that 6 is ¢ v-prehomomorphism of S into % (@). Then,
Sfor each a €S, af is a coset modulo (aa™)f.

Proof. By Lemma 1.4, (ee ™) = af(a™}0 = ab(ab)™. But af is
a coset modulo af{af) . Hence the result.

LEMMA 1.6, Let @ be a normal partition on the set Z7 of idem-
potents of P(G, 2, Z7) = S and let 6: S— 27 (G) be o v-prehomonior-
phism such that

(i) k. =0=Z0

(ii) anb implies (a, 1) = (b, 1)0 for a,be 2.
Then o defined by

(a, 9)p(®, ) if and only +f andb and (a, g)6 = (b, h)0
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18 a congruence on S which induces w. Further 0 = 6,.

Proof. The relation p is clearly an equivalence on S. Suppose
that (a, g)o(b, k) and let (¢, k)eS. Then (a, 9)0 = (b, h)§ implies
(a, 9)k. = (b, h)k,. since £, < 0 and then, since azxb, Lemma 1.3 implies
(a, g)x*(b, h). Hence (a, 9)(c, k)x*(, h)(c, k). It follows from this that
(@ A ge, )m*(d A he, 1) so that (& A ge)n(b A he).

Next (a, 9)0 = (b, h)0 implies [ = (a, 9)d(c, k)6 < (a A ge, gk)b N
(b A he, hk)6 since 6 is a wv-prehomomorphism. By Corollary 1.5,
(a A gc, gk)d is a coset modulo (a A ge, 1)6 and (b A he, hk)§ is a coset
modulo (b A hu, 1)d. Hence, to prove (a A ge, gk)d = (b A he, hk)d it
suffices to prove that (a A ge, 1)6 = (b A he, 1). But, since

(a A ge)n(b A he) ,

this is immediate from condition (ii) in the statement of the lemma.
It follows that o is right compatible. A similar argument shows
that it is left compatible; thus p is a2 congruence on S.

Now (a,1)o(b,1) if and only if ezxb and (a,1)d = (b, 1)d. By
condition (ii), awb implies (a, 1)0 = (b, 1)4. Hence (a, 1)o(b, 1) if and
only if ezb; that is, p induces =.

Finally, suppose that ke(a, g)f,. Then (b, k)po(a, g) for some
be 2 so that (b, h)0 = (a, g)§. But 6 < ¢ implies h (b, k)d. Hence
(a, 9)6, = (@, 9)8. On the other hand, if % e(a, g)d, then, since .=
0, he(a, g)k. so that (b, h)r*(a, g) for some be 2. This implies
(b, )z*(a, 1) so that bra and, consequently, (b, 1)d = (a,1)d. But,
since 0 < g, h (b, h)9; thus he(b, 1) N (a, g)d. Since, by Corollary
1.5, each of these is a coset modulo (b, 1) = (a, 1)4, it follows that
(b, k)0 = (a, g)8. Hence, since axbd, (b, h)p(a, g) so that ke(a, g)b,.
We have thus shown that (a, 9)8 < (a, g)d,; therefore (a, 9)8, = (a, g)f.

In order to simplify the statement of the next result, we introduce
some notation. Suppose that S is an inverse semigroup and G is a
group. Then 7(S) denotes the lattice of normal partitions on the
idempotents of S while Pre (S, G) denotes the partially ordered set
of v-prehomomorphisms of Sinto G. If S = P(G, 2, 2/) is E-unitary
then we shall denote by <Z(S) the subset, under the cartesian ordering,
of 7(S) x Pre (S, G) consisting of all pairs (z, ) such that

(i) k. 260=Z ¢

(ii) anb implies (a, 1) = (b, 1)6.
under the ordering (z, ) < (o, +) if and only if 7 < p, 6 = .

THEOREM 1.7. Let S = P(G, 2Z; 27) be an E-unitary semigroup.
Then the mapping ¢ defined by

06 = (1,, 0,)
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18 an 1somorphism of the lattice of congruence on S onto <Z(S).
Proof. This follows easily from Lemmas 1.2, 1.3, 1.6.

COROLLARY 1.8. Let w be a normal partition on P(G, Z;, 7).
Then the lattice of congruences on S with mormal partition @ is
antiisomorphic to the set of v-prehomomorphisms 6 of S into Z(G)
which satisfy

(i) e.=60=0;

(ii) f anb then (a, 1)8 = (b, 1)6, for a,be .

2. The category of v-prehomomorphisms. In this section, we
show that inverse semigroups, with v-prehomomorphisms as mor-
phisms, form a category having the category of inverse semigroups
and homomorphisms as a coreflective subcategory.

LEMMA 2.1. Let S and T be inverse semigroups and let 6: S —
T be o v-prehomomorphism of S into T. Then

(i) 0 maps idempotents of S to idempotents of T;

(ii) 6 is isotone; that is, a < b implies af < b, for a,beS.

Proof. (i) Let ¢®* =e¢€S; then
el = 0 < efled < efefed = el(e™)0ed = ef(ed) ‘el = el .

Hence e = efed.
(ii) Suppose a < b; thus a = ¢b for some ¢ = ec S. Then af =
(eb)d < ¢6bf < bf since, by (i), ¢0 is an idempotent of T.

COROLLARY 2.2. Inverse semigroups, with v-prehomomorphisms
as morphisms, constitute o category.

Proof. We need only show that the composite of wv-prehomo-
morphisms is again a v-prehomomorphism. Thus, let 4: S— T and
¢: T—U be v-prehomomorphisms and let a,b€S. Then (ab)d < adbf
whence, since ¢ is isotone, (ab)f¢ =< (afbb)¢ < afpbbs. TFurther (o ")0p =
(a0)¢ = (abgp)™*. Hence 8¢ is a v-prehomomorphism.

It is a straightforward matter to show that, as a subcategory
of the category of inverse semigroups and v-prehomomorphisms, the
category of inverse semigroups and homomorphisms is closed under
limits and has solution sets. Hence, by the adjoint functor theorem,
it is a coreflective subcategory. This may be shown directly since
the inequality in the definition of a v-prehomomorphism can be written
as an equality. Thus 6: S— T is a v-prehomomorphism if and only
if, for each a,bc S
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(i) (ab)d = (ab)d(ab)d'abbo
(ii) (a8 = (ab)™.

THEOREM 2.3. Let S an inverse semigroun. Then there is an
inverse semigroup V(S) and a v-prehomomorphism n: S — V(S) with
the following property. given any v-prehomomorphism 6:S— T
there is a unique homomorphism p:V(S)— T such that 6 = .

Proof. Let o be the congruence on the free inverse semigroup
FI(S) on S, generated by the relations

ab = ab.(ab)'.a.b
a=a.0'.a

for all a,be S, where juxtaposition denotes the product in S and
denotes that in FI(S); let V(S) = FI(S)/o. Then the mapping 7: S—
V(S) defined by a7 = ap” is, by the definition of p, a v-prehomomor-
phism. Further, because of the universal property of FI(S), any v-
prehomomorphism 6: S — T factors uniquely through a homomorphism
J:V(S)—T as 6 = .

The following proposition gives some properties of V(S) for an
arbitrary inverse semigroup.

PROPOSITION 2.4. Let S be an inverse semigroup. Then
(i) 7:S—V(S) 1s one-to-one and S is a homomorphic retract
of V(S); of 0:V(S)— S is the retraction then, for each we V(S)

wdn = min {u € V(S): wd = ub}

i.e. for each se S, wo = s implies w = s9;

(ii) V(S)/oc ~ S/oc where o denotes the mintmum grouwp con-
gruence;

(iii) vs S has an identity 1, then 17 is the identity of V(S);
of S has a zero 0, then 07 is the zero of V(S).

Proof. (i) The identity mapping 1s: S— S is a homomorphism.
Hence it factors through 7: 1, = 79 for some homomorphism 6. This
means that 7 is one-to-one and ¢ is onto.

Now let w = s,8,p---s,7 € V(S). Then wfd = s;s,--+s, but
8+ 8N=(s -+ 8,)7. Hence

won = min {u € V(S): wd = ub} .

(ii) Let G and H be respectively the maximal group homomorphic
images of S and V(S), with a, 8 the corresponding canonical homo-
morphisms, and consider the diagram
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VS) — H
d
S— @

a

Since « is a v-prehomomorphism of S into a group, there is a unique
homomorphism +: H— G such that a@ = 78+4. On the other hand,
any v-prehomomorphism of S into a group is actually a homomorphism.
Hence there is a unique homomorphism y: G — H such that 78 = «y.
Thus

al, = a = ayy whence, since « is onto, ¥y =1,
and
DBy = 7B = nBly whence y =1, .

It follows that y and + are inverse isomorphisms so that G ~ H.

(iii) Each element of V(S) has the form s --:s,7 with s, «--,
s, €S. Hence, to prove that 17 is the identity of V{(S), it suffices to
show that 1nsy = sp = syl for each s€S. Now, 17'1 =1 = ss™ and
117t =1 = s7's s0, by Lemma 1.4, snl1y = (s1)n = sy = (1s)y = 19sy.

The case when S has a zero is treated similarly.

It follows from Theorem 2.3 that the problem of describing the
v-prehomomorphisms with domain S is the same as that of describing
homomorphisms with domain V(S). In particular each v-prehomomor-
phism is a homomorphism if and only if 7 is a homomorphism, thus
an isomorphism, of S into V(S). Since V(S) is generated, as an
inverse semigroup, by S this occurs if and only if 7 is an isomorphism
of S onto V(S).

PROPOSITION 2.5. Let S be an inverse semigroup whose idempot-
ents form a chain. Then 7: S—V(S) is an isomorphism.

Proof. Let a, beS; then either a7'a = bb™* or bb™* = a¢'a. Hence
by Lemma 1.4, (ab)y = anbn. Thus 7 is a homomorphism and therefore
an isomorphism.

COROLLARY 2.6. Let S be an w-bisimple inverse semigroup.
Then 7: S—V(S) is an isomorphism. Thus every v-prehomomorphism
with domain S is a homomorphism.

The next result and its corollaries give partial converses to
Proposition 2.5.
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THEOREM 2.7. Let S be an E-unitry inverse semigroun. Then
7: S—V(S) is an isomorphism if and only if the idempotents of S
form a chain.

Proof. Suppose S = P(G, %, %) where .2° is a down directed
partially ordered set having 27 as an ideal and subsemilattice and
where G acts on 2 in such a way that .27 = G-2/; this is possible
by [4], Theorem 2.6. Let 2~ denote the set of finitely generated
up ideals of 222 Then G acts on 27 by ¢9-4 = {ga:ac A} and 2
is a semilattice under U. Hence we may form the semidirect product
P(G, # #) of # by G.

For each (a, g) € S define

(a, 9)p = (A, 9) where A={xeZF:x=a}.
Then, for (a, ), (b, k) €S with (a, 9)¢ = (4, 9), (b, k) = (B, h),
(a, 9)p(b, k)¢ = (A U gB, gh)

while [(a, g)(b, h)]¢ = (C, gh) where C = {x e Z:x=a > gb} = AUgB.
The partial order on P(G, Z, 7°) is defined by (U, w) < (V, v) if and
only if u=vand VS U. Hence [(a, 9)(b, 2)]s < (a, 9)é(b, h)s. Further,
it is easy to see that (a, g)7'¢ = [(a, g)p]"*. Thus ¢ is a v-prehomo-
morphism of S into P(G, 2 ).

Suppose now that 7: S—V(S) is an isomorphism, then ¢ also is
a homomorphism. Let e, f € 27 and set (¢, 1)¢ = (U, 1), (f, L)g =(V, 1).
Then, from the definition of ¢, (¢, 1)¢(f, 1)¢ = (UUV, 1). On the
other hand, since ¢ is a homomorphism, (e, D)g(f, 1)p = (¢ A f, 1)g.
Hence UUV ={xc2:x=e¢A f}. ThisimplieseA feUoreA feV;
that is eAf=¢ or e AN f =f Thus either f=¢ or ex=f. It
follows that the idempotents of S form a chain.

The converse is immediate from Proposition 2.5.

COROLLARY 2.8. Let S be a semilottice. Then V(S) is o semi-
lattice; further 7: S —V(S) is an isomorphism if and only if S is
a chain.

Proof. The fact that V(S) is a semilattice is immediate from
Lemma 2.1, since V(S) is generated by S». The other assertion is
immediate from Theorem 2.7.

PrOPOSITION 2.9. Let S be an inverse semigroup and suppose
that S admits an idempotent separating homomorphism onto an
E-unitary inverse semigroup. Then 7: S—V(S) is an isomorphism



224 D. B. MCALISTER
if and only if the semilattice of idempotents of S is a chain.

Proof. Let 6: S— P be an idempotent separating homomorphism
of S onto an FE-unitary inverse semigroup P and suppose that 7 S—
V(S) is an isomorphism. Then 67, = nsy for some homomorphism
V(S) —V(P). Thus, for idempotents & =ef, f = f0 in P, (&f)y, =
e0pf0p. As in the proof of Theorem 2.6, this implies & = for f = &.
Hence the idempotents of P, thus of S, form a chain.

COROLLARY 2.10. Let S be a semilattice of groups them 73:S—
V(S) s an isomorphism if and only if the idempotents of S form
a chain.

Let E Dbe a semilattice and let ac T,([8]) with domain a =
{reE:x <e}; if fis in the domain of & and ga = g for all g < f,
we shall say that f is a nontrivial fixpoint of a. If @ has no
nontrivial fixpoints we shall say that « is fixpoint free. We shall
say that K is locally rigid if each non idempotent of T is fixpoint
free. It is easy to see that T, is FE-unitary if and only if E is
locally rigid.

COROLLARY 2.11. Let S be an inverse semigroup whose semi-
lattice of idempotents is locally rigid. Then 7:S—V(S) is an
isomorphism if and only if the idempotents form o chain.

It remains an open question whether %: S —V(S) an isomorphism
implies that the idempotents of S form a chain. In the next two
sections, we consider situations when S has special structure. Here
more definitive results may be given.

3. Simple and bisimple inverse semigroups.

ProprosiTIiON 3.1. Let S be a simple inverse semigroun. Then
V(S) is a simple inverse semigroup.

Proof. Let w = s, ---579¢€V(S); then we V(S)snV(S) for
1<4=<+. On the other hand, w = (s, -+- s,)7 so that (s,---s, )€
V(S)wV(S). But, since S is simple, s, = u,(s, ---s,)v, for some
u;, v; €SY, so that s < wn(s, -+ s.)nv,) so that sme V(S)wV(SH,
1=+=r. It follows that w_#s%,1 =% =r. This shows

(i) every element of V(S) is _#-equivalent to some s7,se€S

(ii) is s,teS then sp_#(st)y_~Zt7).

Hence V(S) is simple.
The result of Proposition 3.1 does not hold if simple is replaced
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by O-simple. For example, we have

ExAMPLE 3.2. Let S = M, be the Brandt semigroup of 2 x 2
matrix units with non zero elements:a, a™*, ¢ = aa™, f = a*a. Then,
by Lemma 1.4, an™ = (a7')y, e = (aa™")n = an(an)™, f1 = (a7'a)) =
(an)~'an. Hence V(S) has exactly one nonzero generator a7 and so
is a homomorphic image of F? where F, denotes the free inverse
semigroup on one generator, a.

On the other hand, the mapping 6:S — F? defined by af = a,
a0 =at el =aat, fO0 =a'a, 00 =0, is easily seen to be a v-pre-
homomorphism of Sinto F%. Hence =7+ for a unique homomorphism
¥:V(S) — Fi. It follows that » is an isomorphism so that V(S) ~ F1,
which is not 0-simple.

In a similar way, the result of Proposition 3.1 does not hold if
simple is replaced by bisimple. Indeed we have the following pro-
position.

PROPOSITION 3.3. Let S be an E-unitary bisimple inverse semi-
group. Then the following statements are equivalent:

(1) 7:S—V(S) is an isomorphism;

(2) V(S) is bistmple;

(3) the idempotents of S are totally ordered.

Proof. (1)= (2) is clear.

(2)=1(3) Suppose that S = P(G, #, ) and, as in Theorem
2.7, consider the v-prehomomorphism ¢ of S into P(G, 25 .2°). Then,
by hypothesis, the inverse subsemigroup 7T of P(G, 2, .#°) generated
by Sp is bisimple.

Let ¢, fez with U= {xec2Z:2=¢}, V={xe2:2= f}. Then
(UUV,1)=epfp so that (UUV, 1) is &r-equivalent to ep in T, thus
in P(G, &2, 22°). The form of Green’s relations on P(G, 2, %), [2],
then implies that U U V has a least element z. This must be either
e or f so that ¢ = f or f =e¢. Hence the idempotents of S form a
chain and (3) holds.

(3)= (1) is immediate from Proposition 2.5.

Despite the fact that, when S is bisimple, V(S) need not be
bisimple and its structure is not completely determined, one can give
a direct method for constructing all v-prehomomorphisms with domain
S. Before doing this we need to introduce some terminology.

A partial semigroup is a pair (R, P), where R is a set and P
is a nonempty subset of R, together with a map P X R — R, written
as multiplication, such that, for a, bc P, ce R, ab € P and a(bc) = (ab)c.
If (R, P) and (U, Q) are partial semigroups a morphism ¢: (R, P) —
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(U, Q) is a mapping ¢: R —U such that Py & Q and (ab)g = agbs for
acP,beR.

ProOPOSITION 3.4. Let S be a bisimple inverse semigroup and
let ¢ be an idempotent of S; set B ={xeS:ax™* = e}, P= RN eSe.
Suppose that T is an inverse semigroup and let f be an idempotent
of Ty set U={xecT:2x' = fland @ =UN fTf. If ¢ is a morphism
(R, P)— (U, Q) then 6. S— T defined by

s6 = (ap) bp if s=a '

is a v-prehomomorphism of S into T such that ef = f.
Conversely, each such is constructed in this way.

Proof. We show first that 6 is well defined. Suppose that a™'b =
¢”'d. Then, [9], ¢c= ga, d = gb for some g € P such that gg™' =g 'g=e.
Thus

co~'dg = (ggag) 'gsbs
= (ag) g 'gsbg
= (ag)"(g7'gb)p = (ag) 'bg

since g7'g = ¢ is a left identity for R.

Next, let a™'b, c”'d € S and choose %, v& P such that b = ve and
Pb N Pc = Pub; this is possible since S is bisimple, see [9]. Then
abe7'd = (wa)'vd. Thus

(a™'bc™'d)g = (ua)g~(vd)p
= (ag)"(ug)(vg)ds
= (ag)"(ug)(vg)cs(cg)'d¢ since cpFZd¢
= (ag) (ug) (ub)g(cd) ‘d¢ since ub = vc
= (ag) " (wg) (ug)bg(cs)'dg
< [(ag) 'bgll(cp)'dg] since (ugp)‘usp is idempotent ,

while, by definition s = (sf)™ for each s<S. Hence 4 is a v-
prehomomorphism of S into 7, and, since ¢, f are the unique
idempotents in R, U, ef = f.

Conversely, let 6: S— T be a wv-prehomomorphism such that
¢d = f. Then for a c R, ¢ = (aa")§ = abad~" so that af e U. Further,
if be P then b = be implies b™'b = b~ 'be < ¢ so that, by Lemma 1.4,
(ba)d = bbas; in particular bd=>b6f so that bd € Q. Hence the restriction
¢ of 6 to R is a morphism of (R, P) into (U, Q).

Finally, if s = a™'b € S then, since (¢™) '™ = aa™ = bb™*, Lemma
1.4 shows that sf = af7'00 = ap'bg.

The result in Proposition 3.4 can easily be adapted to deal with
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the case of a 0-bisimple inverse semigroup.

Proposition 3.4 can be used to give necessary and sufficient
conditions for V(S) to be bisimple whenever S is a bisimple monoid.
However these conditions can not be regarded as giving a completely
satisfactory answer to the problem.

PROPOSITION 8.5. Let S = S* be a bisimple inverse monoid with
right unit subsemigroup R. Then V(S) is bisimple tf and only if
S is the wunique inverse monid having right unit subsemigroup R
and generated as an inverse semigroup, by R. In this case 1: S—
V(S) is an tsomorphism.

Proof. Suppose that S is the unique inverse semigroup generated
by R and having right unit subsemigroup RB. We shall show that
V(S) has right unit subsemigroup R». Then 7:S—V(S) is an iso-
morphism and V(S) is bisimple.

Let xnpyn be a right unit in V(S). Then anynyy'zn™ = 17 so
that @n™an = e~ (anynyn~an ey = e~ wnyynt < y7nyn'. Hence,
by Lemma 1.4, xnyn = (xy)y so that, since (xy)n(xy)y™ = 2y(zy)™
and 7 is one-to-one, xnyn € Rn). Now suppose that w=s82-:-s,7, n =2
is a right unit of V(S). Then s,7s,) is a right unit so that s,7s,) =
(s:52)1. Repetition then gives w = (s;s, --- 8,)7 and, as above s, +-- s, €
R. Hence, since each member of R% is a right unit, we have shown
that V(S) has right unit subsemigroup R7.

Since S is generated by R and V(S) is generated by S7, V(S)
is, by Proposition 3.1, a simple inverse semigroup generated by R7.
Hence V(S) ~ S is bisimple and then, every element of V(S) is of
the form @77'07 with a, b€ R7. Hence 7 is onto so that, since 1, =
70 for some homomorphism #:V(S)— S, » is an isomorphism.

Conversely, suppose V(S) is bisimple and let U(R) be the free
inverse semigroup with right unit subsemigroup R, and generated
by R. Then [4], U(R) is simple and, by Proposition 3.4, the mapping
é: a7'b — (av) by is a v-prehomomorphism; here v is the embedding
R —U(R). Hence ¢ = 76 for some homomorphism 6 of V(S) into U(R).
Since U(R) is generated by Ry, # is onto. Hence U(R) is bisimple
with right unit subsemigroup isomorphic to R and so S ~U(R) is
the only inverse semigroup with right unit subsemigroup R and
generated by R.

4. Semilattices of groups. This section follows the pattern of
§3. In the first part we show that, if S is a semilattice of groups
then V(S) need not be a semilattice of groups. In the second part,
we give a method for constructing all v-prehomomorphisms of a
semilattice of groups into an inverse semigroup T
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DEFINITION 4.1. Let S be a semilattice of groups. Then the
trunk of S is the set

{a € S: for each ¢ = ¢c S either aa™* = ¢ or aa™' = ¢}.

Note that the trunk of S is an inverse subsemigroup of S. If
the idempotents of S form a tree then the trunk is an ideal of S.

PROPOSITION 4.2. Let S be a semilattice of groups whose idem-
potents form a tree. Then V(S) is a semilattice of groups if and
only if every nontrivial subgroup of S is contained in the trunk.

Proof. Suppose that each nontrivial subgroup of S is contained
in the trunk. Let a€S and suppose that a is not idempotent; thus
o belongs to the trunk of S. Then, by Lemma 1.4, anby = (ab)y for
each beS. It follows that each element of V(S) has one of the
forms a7, where ¢ is a nonidempotent in the trunk of S, or ene, -+« ¢,9
where ¢, ¢, ---, e, are idempotents.

Since 7 is one-to-one, it follows that the non-idempotents of V(S)
are the elements a7 where ¢ is a nonidempotent in the trunk of S.
We show that each such a7 commutes with all the idempotents of
V(S). Let ene.n -+ e,n be an idempotent of V(S). Then

eney ---enan = e -+ (e,a)) by Lemma 1.4
= ¢7 -+ e,_N(ae,)) since idempotents in
are central

- (el7] e 6,‘*177)0,7]6,.77

which repeating the argument is equal to an(ey --- ¢,7).

Hence each nonidempotent of V(S) belongs to a subgroup; that
is, V(S) is a semilattice of groups.

Conversely, suppose that H is a nontrivial maximal subgroup,
with identity e, not contained in the trunk of S. Then there is a
maximal subgroup K, with identity f, such that e 2 f, f 2 ¢. Let
T=HUKUI{0} and turn T into a semilattice of groups with linking
homomorphisms H — {0}, K — {0}. Then the mapping §: S — T defined
by

ae if aa'Z=e
af = <{af if aa'=f
{0  otherwise
is a homomorphism of S onto 7. Let H inv K denote the coproduct

of H and K in the category of inverse semigroups and define ¢: T'—
(Hinv K)° by h¢ = h, for he H, k¢ = k for k€ K and 0¢ = 0, where
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we regard & and k& as being contained in H inv K. Then ¢ is a v-
prehomomorphism of T into (H inv K)° so that « = 6¢ is a v-prehomo-
morphism of S into (H inv K)°. But, [6], Hinv K is not a semi-
lattice of groups. Hence V(S) is not a semilattice of groups.

REMARK 4.3. One can show that V(T') ~ (H inv K)".

Proposition 4.2 is false without the assumption that the idem-
potents of S form a tree.

ExAMPLE 4.4. Let H be a nontrivial group with identity ¢ and
let {f} be a one-element group. Construct the semilattice of groups
with linking maps given by the diagram

H =H
in/” "\
7
H:H2 {f}
NS
{0}

where the unmarked maps are the obvious ones. Denote the resulting
semigroup by S. Then, by Lemma 1.4, each element of V(S) is in
S7 or is a product of terms from H,p U {f7}. Let h,c H, then

/

hfn = (e:h)nfn  where h, = h, in H,
= e,Nh,fN  since kit = e,
= e(h.f)n  since hi'h, = f
= enfy
= fh) .

It follows that V(S) = Sy U {e,nfn} ~ S° so that V(S) is a semilattice
of groups. However H, does not belong to the trunk of S.

We now turn to the problem of describing the wv-prehomomor-
phisms on a semilattice of groups S. In order to do this we need
to construct a family of semilattices of groups based on a semilattice
E.

Let F be a semilattice and let 4: E— T be an isotone mapping
of E into the idempotents of an inverse semigroup 7. For each
eclE, set K, ={hecH,: h(f0) = (f0)h for each f <e¢ in E}. It is
clear that K, is a subgroup of H,. Suppose that ¢ = f and define
Be, s by

hé..; = h(f6) for each heK,.
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LEmMmA 4.5. FEach ¢,5, ¢ = f is a homomorphism of K, into K;.
Further g, is the identity on K, while, iof e = f = g, then 4., =
P, 7P .90

Proof. This is straightforward.

It follows, from Lemma 4.5, that we can construct an inverse
semigroup which is the semilattice of groups {K,:¢<c E} with linking
homomorphisms ¢, ¢ = f. We shall denote this semigroup by
SL(E, 6, T).

PROPOSITION 4.6. Let S be a semilattice of groups with semilattice
of idempotents E. Let 0 be an isolone mapping of E into the
iwdempotents of an inverse semigroup T. Suppose that ¢ is an
idempotent separating homomorphism of S into SI(E, 0, T). Then
+r defined by

Oy = ag
regarded as an element of T is a v-prehomomorphism of S into T
such that ey = ef for each ¢ =ecS.

Conversely, each such v-prehomomorphism has this form for o
unique idempotent separating homomorphism ¢: S — SL(E, 6, T).

Proof. It is clear that + is a mapping of S into 7 such that
e = e for each ¢ =e¢c S and that (a™)¥ = (ay)™" for each acS.
Suppose that a e H,, be H; then abec H,; implies

(a’b)qlvf = (a’b)¢ = (J,¢b¢ = a’¢¢e,efb¢¢f,ef
arjr(e.f)0byr(ef)0
< avbyr since (ef)d is idempotent .

Il

Hence 4 is a v-prehomomorphism.
Conversely, let +» be a v-prehomomorphism of S into T such that
ey = ef for each ¢® = ¢c S. Suppose that h € H, and let f <e¢. Then

ko f0 = hrfop = (R = (fR)Y = Sohy = fOhy
by Lemma 1.4 since hh™ = h'h = f. Hence ke K,. Further, by
Lemma 1.4, hfrhyy = (b)Y for hy, h,€ H,. Thus ¢ defined by

h¢ = hyr regarded as a member of SL(E, 6, T)

is an idempotent separating mapping of S into SL(E, 6, T) which
is a homomorphism on each subgroup of S. Now let he H, ke H;.
Then
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kol = hg@e,orkdds,er
— hp(e )0k (ef)0
= hop(e fWlop(e f)
= (hef ) (ke )y by Lemma 1.4
= (hef kef)y = (hk)y Dby Lemma 1.4 .

Hence ¢ is 2 homomorphism and
hyr = h¢ considered as a member of T'.

Finally, the uniqueness of ¢ is immediate.
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