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The paper defines and studies links between the prime
ideals of a noncommutative fully bounded noetherian ring,
and their role as obstructions to localizability: a localization
with properties similar to those of the localization of a
commutative ring at a prime ideal, can be constructed if and
only if the equivalence class determined by the links is finite.
For rings with polynomial identity, the links are described
in more detail via an inductive procedure over the Pi-degree,
and several examples are constructed.

I* Preliminaries* The attempt to localize a noncommutative
noetherian ring at its prime ideals leads to the study of classical
sets of prime ideals (i.e. finite incomparable sets {P19- , Pn} such that
the associated torsion theory has the Ore condition and the Artin
Rees property) and in particular of clans (i.e., minimal classical sets).
It was shown in [16] that a prime ideal belongs to at most one clan,
and that the existence of enough clans (i.e. each prime ideals belongs
to a clan) amounts to localizability at all prime ideals; cf. this paper
for more detail.

The very existence of nontrίvial clans (i.e., clans with more
than one member) is evidence of the presence of links between prime
ideals which constitute obstructions to localizability. The purpose of
this paper is to define and study these links explicitely.

To do so, we restrict attention to FBN-rings (right- and left-
fully bounded noetherian rings), where we have these fundamental
results of [9] on Krull dimension tc available: Every uniform module
is α-smooth for some ordinal a, i.e., all nonzero submodules have the
same Krull dimension a. Every finitely generated α-smooth module
has an (essentially unique) ^-composition series (called basic series
in [9]). The α'-composition factors, also called α-critical modules,
are characterized as the uniform nonsingular iϋ/P-modules, for the
various prime ideals P of the ring R with fc(R/P) — a. Any R — R-
bimodule which is finitely generated on both sides, has the same
Krull dimension on both sides.

The FBN-assumption is natural for other reasons: It makes the
Gabriel correspondence between spec R and the collection of inde-
composable injective modules one-to-one, via E(R/P) = Ep\ i.e.,
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prime ideals "separate modules" [11]. It ensures that any localizable
semiprime ideal is automatically classical (combine [9], 3.6 with [8],
4.4(5)). Recall also that primitive ideals of FBN-rings are maximal
with simple artinian factorrings, and that noetherian Pi-rings (i.e.
noetherian rings with polynomial identity) are FBN.

A useful criterion from [8]: A semiprime ideal S of a right-
noetherian ring R is right-localizable (i.e., the multiplicative set ^(S)
has the right-Ore condition) if and only if ^(S) operates regularly
on the injective hull E(R/S).

Some terminology: module means right-module; but ideal,
noetherian, Ore etc. means left- and right-ideal, -noetherian, -Ore
etc., unless specified otherwise. κ(M) is the Krull dimension [5],
and E(M) is the injective hull, of the module M. J(R) is the
Jacobson radical, and ^(S) is the multiplicative set of modulo S
regular elements, of a ring R. The collection of prime ideals P of an
FBN-ring R with tc(R/P) — a will be called the α-stratum of spec R:
note that distinct prime ideals in the same stratum are incom-
parable ([5], 7.2).

II. FBN-rings.

LEMMA 1. Let R be an FBN-rm#, P and Q prime ideals in
the a-stratum, and R = R/QP. Then ^ ( Q Π P) is Ore in R, and
the corresponding quotient ring A is artinian, with two maximal
ideals PA and QA and J(Af = 0.

Proof (cf. [9], proof of 5.2). Let E ~ E(R/(Q n P)Ξ) which is
α'-smooth, and F = annE (QP) = E(R/Q Π Ph). <έ?(Q_n_P) operates
regularly on F: if 0 Φ xeF and c e ^(Q Π P), let ~xR be the top
factor of an α-composition series of xR; then annβ (xR) = Pr is a
prime ideal with fc(R/P') = a. FQP = 0 implies QP c P' hence Q or
P(zPf hence Q or P = P' since all three lie in the α-stratum; hence
c e ^ ( Q n P) = ^(Q) Π ΐ r ( P ) c ^ r ( P ' ) . Thus c operates regularly on
the non-singular iϋ/P'-module xR, hence xe Φ 0.

By the criterion cited in the preliminaries, ^{Q Π P) is an Ore-
set. The quotient ring A is noetherian, semilocal with maximal
ideals PA and QA and J(A) = (Q Π P)A, hence J(A)2 = 0 since
(Q Π P)2 c QP; hence A is artinian.

REMARK. The kernel of R —> A, i.e. the torsion radical of R
for the (Q Π P)-torsion theory, is ann^(F) = ann^ ann^ (QP) =
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ann^ (QP)/QP, since F is an injective cogenerator for A.

PROPOSITION 2. In the situation of Lemma 1, the following are
equivalent:

(1) there is a short exact sequence Q—>X—+Y—>Z'-+Q of R-
modules such that Y is uniform, X and Z are critical, and
annR(X) = P, annR(Z) = Q;

(2) Exti (A/QA, A/PA) Φ 0;
( 3 ) Tor? (A/QA, A/PA) Φ 0;
(4) (Q Π P)Ia QP implies IaP, for every ideal I of R .

DEFINITION. If the conditions of Proposition 2 hold, we say that
a (right-) link exists from P to Q, and write P~*Q.

REMARK. Since (3) is left-right-symmetric (as IA — AI for every
ideal I of R), these conditions are also equivalent to their left-right-
analogues with (the roles of P and Q interchanged, i.e., to the
existence of a left-link from Q to P.

Proof. If 0~+X —>Y—>Z—»0 is given as in (1), then up to
isomorphism I c YaEP since X is a uniform nonsingular R/P-moάule
and since Y is uniform; similarly Z c EQ. Under localization,
0^X(x)A-> Γ(x) A->Z(g) A-^0 stays exact, X®A and Z®A
are simple A-modules of type A/PA and A/QA respectively, and
the sequence is nonsplit since Y (x) A stays uniform. Hence
Exti (A/QA, A/PA) Φ 0, i.e., (2).

Conversely if (2) holds, then there is a nonsplit exact sequence
0-+ X—+ Y—>Z—>0 of A-modules, where X and Z are simple with
annihilators PA and QA respectively. Nonsplitting forces Y to be
uniform as A-module, hence X, Y, and Z are uniform as i2-modules;
and the annihilators of X and Z in R are just P and Q, since these
prime ideals are closed in the (Q Π P)-torsion theory. Moreover X
and Z are (Q Π P)-torsionf ree hence nonsingular R/P- respectively
.β/Q-modules, hence critical; and we have recovered the situation (1).

The equivalence of (2) and (3) follows from the homological
duality isomorphism ([1], 120), using that homA/PA( — , A/PA) is a
duality between finitely generated right- and left-modules over the
simple artinian ring A/PA, carrying the right-module A/PA into the
left-module A/PA.

One easily computes Tori (A/QA, A/PA) = (QA Π PA)/QPA =
(Q Π P)A, hence Tori1 (A/QA, A/PA) = 0 if and only if there is
c e <έ?(Q Π P) with (Q n P)c = 0 in R = i2/QP. But this is equivalent
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to the existence of an ideal IqtP with ( Q n P ) I c Q P (take
I = RcR + P and use the Lemma in [7]), establishing the equivalence
of (3) and (4).

REMARKS. (1) One can deduce that the existence of a self-link
from P to P is equivalent to P Ξ2 P(Z)> the symbolic square of P [13].
Analogously the existence of a link from P to Q may be interpreted
to mean that Q Π P is strictly larger than an appropriately defined
symbolic product.

( 2) If P and Q are maximal ideals (i.e., in the O-stratum), then
A = RJQP (since the latter is already artinian), and a link P~>Q
exists if and only if Q f] P 5 QP.

( 3 ) The [links between finitely many prime ideals Pί9 , Pn

(in the same stratum of spec R) can be visualized in an artinian
ring: the proofs of Lemma 1 and Proposition 2 go through for
R = R/S2 where S — P1 Π ΠP», and its artinian quotient ring A
with maximal ideals PtA and J(Af = 0. Hence a link Pt —> P3 exists
in R if and only if P3A Π P*A =2 P.P^A.

The structure of any artinian ring A with J(A)2 = 0, is given
by a finite family of primary (hence local up to Morita equivalence)
artinian rings (Aif M%) with M\ — 0 and of bimodules Xi3 (ί Φ j) over
the simple artinian rings At/Mt and Aj/Mjf with zero-multiplication
XijXjic = 0 [14]. In such a representation a link Pi-^PS exists if
and only if Xyί Φ 0. Since for suitable At the JΓO- can be chosen
zero or nonzero at will ([15], Lemma 1), any finite directed graph
can be realized as the graph of links between the prime ideals of
an artinian ring.

Note on the other hand that for a bounded HNP-ring, the occuring
graphs are very restricted: they are directed circuits, corresponding
to the cycles of [3].

LEMMA 3. The following are equivalent for prime ideals P, Q
in the a-stratum of an FBN-ring R:

(1) there is a nonzero homomorphism φ: EP —• EQ;
( 2) there exists eeEP with ann^ (eR) c Q;
(3) Q is the annihilator of an a-composition factor of EP.

Proof. If 0 Φ φ: EP-+ EQ is given, then there is e e EP with
Φ(e) Φ 0 and annΛ (φ(e)B) = Q. Then φ(e) ann (eR) = 0 hence
ann (eR) c Q.
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If e e EP with ann (eR) c Q is given, consider an α-composition
series 0 = Bo £ £ Bn = eR; then the ann^ (BJBt^) = Pt are prime
ideals of R with ιc(B/Pt) = a. Then βi? P% Pι = 0 hence
PΛ Pyd ann (ei2) c Q hence Pi c Q for some ί.

If finally Q is the annihilator of the α'-composition factor AjB
of EP, then A/B is a uniform nonsingular R/Q-module hence embedds
into EQ9 and the natural map A —• A/B extends to a nonzero homo-
morphism EP—*EQ.

PROPOSITION 4. Let P, Q be distinct prime ideals in the a-stratum
of an FBN-rmg R. Then a finite chain of links P~± Pι~± > Q
exists if and only if there is a finite chain of nonzero homo-
morphisms EP —> ΈP> —> —> EQ.

Proof. If P~»Q is given, one has 0—> X-+ Y~> Z —• 0 with
XczYczEp and ZcEQ as observed in the proof of Proposition 2,
and Y" —> ^ extends to a nonzero homomorphism EP —> EQ.

Conversely, associate with every Qr in the α'-stratum, for which
a nonzero homomorphism ΈP-+ΈQ> exists, an ^-composition series of
shortest length for a finitely generated submodule of EP, for which
Q' is the annihilator of a factor (necessarily the top factor); this is
possible by Lemma 3. We proceed by induction over this shortest
length.

Thus let 0 = Bo £ £= Bn_2 5 Bn_x £ Bn be a ^-composition
series of shortest length in EP with ann (BJBn_^) = Q. The inclusion
Bn_JBn^2 c BJBn_2 is essential, since otherwise

BnJBn_2 0 £/£%_2 c BJBn_2

hence B/Bn_2 Φ 0 embedds into BJBn_1 hence is critical with annihila-
tor Q, producing an ^-composition series 0 = Bo £ £Ξ 5%_2 £ 5 of
shorter length for Q, a contradiction. Thus

E(BJBn_2) = E(BnJBn_2) = Eq.

where Q' = ann (Bn_JBn_2) has an α'-composition series

0 = BQ £ £ 5%_2 £ J5W_!

of shorter length hence a finite chain P~~> Pt ... ~* Q' by induction.
Moreover a link Q' ~~> Q exists from the exact sequence

0 > BnJBn_2 > BJBn_2 > BJB^ > 0
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and Proposition 2 (4), and we are done.

REMARK. The proceeding proof motivates the notation P —> —> Q,
if /c(R/P) = iί(RjQ) and if a nonzero homomorphism EP —• ϋ7ρ exists.
Note that all the intermediate primes in both chains of Proposition
4 belong automatically to the ^-stratum.

By Proposition 4, P —> Q and P —»—•» Q generate the same
equivalence relation on spec R. By the remark following Proposition
2, the very same equivalence relation arises from left-links. The
equivalence class of P in this equivalence relation will be written
class (P).

THEOREM 5. A prime ideal P of an FBN-ring R belongs to a
clan if and only if class (P) is finite; then clan (P) = class (P).

Proof. Assume class (P) to be finite, and put S = Π class (P).
If S is not right-localizable, there exists c e ^(S) and 0 Φ e e EQ for
some Q e class (P) with βc = 0, by Jategaonkar's criterion. If the
top factor eR of an ^-composition series of eR is annihilated by Q',
then Q' e class (Q) = class (P) by Lemma 3, hence c e ^(S) c 9f(Q')>
hence c operates regularly on the nonsingular jK/Q'-module eϋ?; a
contradiction to ec = 0. Thus and by left-right-symmetry, S is
localizable hence classical, hence a union of clans ([16], Theorem 4);
in particular P belongs to a clan.

Assume conversely that P belongs to a clan; put S = Π clan (P)
and select P' e clan (P) with maximal κ(R/P') = a. If P' ~> ~> Q then
by Lemma 3 there is eeEP> with ann (&#) c Q; by [8], 4.4(5) there
is % with eS* = 0. Thus Sn c ann (eR) c Q hence there is P"eclan(P)
with P" c Q . Consequently

ιc(BIP") ^ A:(J8/Q) = /c(i2/P') = α

and by maximality of a, /c(R/P") = α hence Q = P" e clan (P). This
shows class (P') c clan (P); hence class (P') is finite and therefore by
the preceeding consideration classical; therefore class (P') = clan (P).

COROLLARY 6. Every clan of an FBN-rm# is contained in a
stratum.

If R is a f actorring of R, then a link P —> Q in JB gives rise
to a link P—> ζ) in ϋJ, but not necessarily vice versa: we write
J^class(P)~>5-class(Q) if there exist P' e .B-class(P) and Q' e β-class(Q)
with P' -> Q'.
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THEOREM 7. Let R be an FBN-riw# with prime radical N, let
R = B/N, and let P, Q, be distinct prime ideals in the a-stratum
of spec R. Then β-class (P) ~~* E-class (Q), if and only if JB-class (P) =
β-class (Q) or there exist P" e .β-class (P) and Q" e jβ-class (Q) such
that rt-ann* (N/Q"N) c P".

Proof. By Proposition 2 (4), the links in R and R/N2 are the
same; hence assume without loss of generality N2 = 0.

1. R = R/N is again an FBN-ring, and the indecomposable
injective ^-module corresponding to the prime ideal P is UP =
ann^p (N). The exact sequence 0 —> N—• ϋ? —> JB ̂ ^ 0 yields under the
functor hom^( —, ίJp) the exact sequence 0 —> UP~+ EP-+ HP—+0
where HP = homβ (iV, Jίp) = hom^ (iV, C7P), using N2 = 0. The injec-
tive hull of HP as β-module is the direct sum of αΓsmooth indecom-
posable injective UQi, since R is FBN; as HP Π UQ. Φ 0 by essentiality
and as HP is a factor of the ^-smooth module EP9 at ^ a.

A given link P~»Q yields a nonzero homomorphism φ: EP —• Sρ
by Proposition 4. ^ has either nonzero restriction UP —> UQf in which
case P~>~*Q in β, i.e., jB-class (P) = R class (Q); or zero restriction
to Up, in which case it induces a nonzero homomorphism φ: HP —• ί7ρ.
Then ^ extends to the jB-injective hull φ UQi of ί ίP, and some
component ^t: C/Q. —• ί7Q of this extension is nonzero. For such ί,
CLX ^ fc(R/Q) = α hence ^ = α, hence Q< —> —> Q or Q€ e β-class (Q).

By essentiality there exists 0 Φ β eHP(λ UQ. with βQt = 0; this
means β(QiN) = 0 hence induces 0 Φ β: N/QιN~+ UP. Consequently
the right-^B-module N/QiN is not P-torsion, hence the ideal
rt-ann (N/QiN) is contained in P. This proves one direction of the
theorem.

2. Assume conversley rt-ann (N/QN)a P. Then the right-module
N/QN cannot be P-torsion: otherwise and since it is finitely generated
as left-module, rt-ann (N/QN) would be P-dense hence ς£P. Con-
sequently there exists 0 Φ β: N/QN-+ UP; and we may choose βB
uniform; notice βQ = 0. Then for any 0 =£ 7 e βB we have B =
ann (ΎR) D Q; and since a = κ(R/Q) ̂  ιc(B/B) ̂  lt-ιc(N/BN), which
equals by [9], 2.2 τt-/c(N/BN) ^ /c(N/ker 7), which equals a since
N/ker 7 embedds into the α:-smooth module UP, one gets α = fc(R/B)
hence £ = Q by [5], 7.5 and 7.2. This shows that βB is a uniform
prime hence α -criterical module ([9], 2.5).

Pick eeEP which maps to β e HP under the sur jection EP-+ HP1
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and take an ^-composition series of eR Π UP, all whose factors have
annihilators in β-class (P) by Lemma 3, applied to the β-module UP.
As βR = eR/(eR Π UP) is α-critical with annihilator Q, one has an
α-composition series of eR whose top factor has annihilator Q while
all other factors have annihilators in β-class (P).

Now take among all ^-composition series of finitely generated
submodules of EP with these properties, one of shortest length, say
0 = Bo £Ξ . . . s= Bn. As in the proof of Proposition 4,

0 > BnJBn__2 > BJB^2 > BJB^ > 0

yields a link β-class (P) 3 ann (BnJBn_2) ~»ann (BJBn_λ) = Q hence
β-class (P) —> β-class (Q), as desired.

3. It remains to deduce the same conclusion from the assump-
tion β-class (P) = β-class (Q). But then β-class (P) has at least the
two members P and Q, and then a link P' ~»P" between suitable P',
P" e β-class (P) obviously exists.

REMARKS. (1) Note that the criterion of Theorem 7 really
involves only β/ΛΓ-modules: rt-ann^ (N/Q"N) c P.

( 2 ) If rt-ann* (N/QN) a P and κ(B/P) = /c(β/Q), then

^ yc(β/lt-ann (N/QN)) = lt-ιc(N/QN) = τt-ιc(N/QN)

= Λ:(β/rt-ann (N/QN)) ^ /c(β/P)

by [9], 2.1 and 2.2; hence equality holds throughout. The first
equality implies ζ> = lt-ann (N/QN)9 and the second one that P is a
minimal prime ideal over rt-ann (N/QN).

Hence for given Q, such prime ideals P exist if and only if
lt-ann (N/QN) = ζ>, ann in this case there are only finitely many of
them (since a noetherian ring has only finitely many minimal prime
ideals). This means that any Q is directly linked in R to only finitely
many β-classes; consequently if |β-class (P)\ ^ fc$ for some infinite
cardinal fc$ and all P, then also | β-class (P)| ^ y$.

Ill* Noetherian Pi-rings* Let β be a noetherian Pi-ring, i.e., a
noetherian ring with a polynomial identity with integer coefficients
which is proper on every nonzero factorring [18]. For a prime ideal
Q of β, Pi-degree (Q) = n if R/Q satisfies S2n but not S2._2. PI-
degree (β) = max {Pi-degree (Q): Q e spec β} is a well defined natural
number, for any Pi-ring β.

If β is a semiprime Pi-ring and if Q is a prime ideal of R with
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Pi-degree (Q) = Pi-degree (R) = n9 then Q doesn't contain all evalu-
ations of the Formanek polynomial [4] for n x ^-matrices, hence the
commutative localization Bπ at the prime ideal Π = Qf] centre (R) of
the centre inverts all elements of i f (P) ([2], [21], [18]); thus such Q
is classical, i.e. {Q} is a clan.

Define Nn = f\ {Q e spec R: Pi-degree (Q) <j %}, a semiprime ideal
of the noetherian Pi-ring R. For any factorring R/I with IczNn

which has only prime ideals of Pi-degree ^ w, in particular for
Rj{Nl + Nn+1), the i2/I-classes are described by Theorem 7 via the
5/JV»-bimodules NJ(QNn + JV»+1) and NJ(NnQ + 2VΛ+ι) as certain
mergers of iϋ/Λ^-classes. On the other hand i2/.Nn+1-class (P) = {P}
if Pi-degree (P) = n + 1 by the preceding paragraph, and R/Nn+1-
class (Q) = Λ/(iV2 + iSΓn+1)-class (Q) if Pi-degree (Q) ̂  w, since any link
Q —> Q' between prime ideals of R/Nn+1 of Pi-degree ^ % shows
already in B/(Q'Q + JVn+1) hence a fortiori in R/(m + 2VΛ+1); cf.
Proposition 2.

Summarizing: in passing from .K/iV̂  to B/(Ni + iVw+1) (or to
JS if Pi-degree (R) ~ w) certain 2ϋ/iV%-classes merge to form the
R/(N% + Nn+1)-classes (or i2-classes) according to Theorem 7; in passing
from RI{Nl + Nn+1) to R/Nn+1 certain new singleton i2/^n+1-classes
appear but no mergers occur.

Climbing in this way from the commutative ring RjN^ in finitely
many steps to the noetherian Pi-ring R, provides a description of
its classes. Combining this with Remark (2) after Theorem 7 yields:

COROLLARY 8. For every noetherian ~Pl-ring, the classes are at
most countable.

Unfortunately the step from countable to finite classes, i.e., clans,
is still difficult; we have only a rather trivial positive result and a
couple of counterexamples:

PROPOSITION 9. If an FEN-ring satisfies INC with respect to
its centre, then it has enough clans. In particular this applies to
any noetherian ring which is integral over its centre, and to every
prime noetherian Pi-ring of Krull dimension one.

Proof. For an FBN-ring with centre C, the intersection Q Π C
is the same for all Qe class (P): if aeQπC and P—>ζ>, then by
Proposition 2 (4) for the ideal I = aB, (Q Π P)I = a(Q n P ) c Q P
hence aeaRczP. Therefore if R satisfies INC (i.e., if prime ideals
of R over the same ideal of C are incomparable [10]), then all
Q 6 class (P) are minimal over (P Π C)R hence finite in number; so
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Theorem 5 yields the result.
If R is noetherian and integral over C, it is automatically fully

bounded [20] and has INC [6]. If R is a prime noetherian Pi-ring
of Krull dimension one, all nonzero prime ideals are maximal and
have nonzero intersection with C [17], hence INC holds again.

REMARKS. (1) Every FBN-ring of Krull dimension zero has
enough clans, in fact is artinian. We do not know whether every
prime FBN-ring of Krull dimension one has enough clans; apart
from our result for noetherian Pi-rings this is true for HNP-rings
(cf. [16]), by a proof in the spirit of our approach [12].

(2) Our argument also shows the following: for any prime
ideal 77 of the centre C of any FBN-ring R, the prime ideals P of
R with maximal κ(R/P) among those containing 77, belong to clans.
Note that such P exist for every 77.

COUNTEREXAMPLE 1. A noetherian Fl-ring of Krull dimension
one with infinite classes.

The example. Put R = A x Aσ, the split extension of a com-
mutative noetherian domain A by the bimodule Aσ, with the right-
A-module structure modified by an automorphism σ of A.

Aσ is an ideal of R of square zero, hence R satisfies S\ and has
prime radical N = Aσ. There is a one-to-one correspondence between
the prime ideals P of A and of R; we do not distinguish between
them notationally. One has ιc(B) = tc(A); and N/PN= AJPAσ = (A/P)σ,
hence lt-ann (N/PN) = P and rt-ann (N/PN) = σ-ι(P); therefore by
Theorem 7, class (P) = [σn(P)\ n e Z}.

It is easy to find instances where fc(A) = 1 and class (P) is
infinite; e.g. let A = K[x] for a field K of characteristic zero,
σ(x) — x + 1 and P = (x) (this example is mentioned in [16]).

Variations. A = K[x, y]<x,y) and σ(x) = x + y, σ(y) = y produces
a local noetherian Pi-ring R of Krull dimension two, with infinite
classes in the middle stratum of spec R. The case of a proper
endomorphism σ can also be discussed.

COUNTEREXAMPLE 2. A prime noetherian Pl-ring of Krull
dimension two vjith infinite classes.

A general construction. Let C be a commutative noetherian
domain, with two noetherian subrings A and B, both containing the
nonzero semiprime principal ideal I = cC of C; consider the non-
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commutative ring R — \τ ί)- R is prime, noetherian, and satisfies
all identities of 2 x 2-matrices over Z. Its Krull dimension equals
the maximum of the Krull dimensions of A and B. The centre is
A Π B, embedded diagonally; it is not necessarily noetherian. The
Formanek centre, i.e. the collection of all evaluations of central
polynomials with zero constant term for M2(Z), equals P (use the
central polynomial [x, yf = — det ([x, y])).

A prime ideal of R of Pi-degree two doesn't contain the
Formanek centre, hence doesn't contain I. By [18], 4.16(c) these
prime ideals are in one-to-one correspondence with the prime ideals
of the centre Af) B not containing I; they constitute singleton
clans.

The prime ideals of R of Pi-degree one contain the Formanek

( P I\
j Ώ) and

& = ίΫ A) for arbitrary prime ideals P and Q containing I, of A
and B respectively. The intersection of all these prime ideals is
N = JVi = M2(I); to apply Theorem 7 one computes

(I/I I/I \ _ IA I

i/Qi)' l t " a n n {N/^N) ~{i BΠ QCt

and rt-ann (N/&N) = (fnQC Bn QC)> u s i n ^ a t t h ί s P o ί n t T = cC

and cancelling c. By Theorem 7 and the remarks following it, a
link into & exists if and only if BΓ\QC = Q, and in this case there
is precisely a self-link & —> & and at least one, at most finitely many
links ^ ~> <g?, namely for the ^ = fj β) with P =) A Π QC and
Λ:(A/P) = κ(B/Q).

By symmetry (transposition is an antiautomorphism of R) & —> <g?
implies & —> ^ and vice versa. One may therefore, ignoring
direction and self-links and passing to factors modulo I, represent
all links by a bipartite locally finite graph between spec A and spec B,
where the existence of an edge is given by fc(A/P) = fc(B/Q) and

A Π QC (or equivalents Q 3 5 π"PC).

example (appears in [19] in a different context). Let
k = Q(l/"6"), if - QCl/lΓ, τ/T) = jfc(α) where α - ^ T - τ/"2", and let
α* = — a be the nontrivial automorphism of K/k. Let C = K[x, y],
A = k[x + VΊΓ, 3/, l/T^z], B - k[x + l / T , 7/, l/T?/] and I = 3/C.
Then I? has Krull dimension two as desired; the two nonmaximal
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PI-degree-one prime ideals (j j) and ( j o) form a clan; but the

maximal Pi-degree-one ideals determine infinite classes.

Indeed consider the class determined by the prime ideal of R
which in turn is determined by the irreducible polynomial q of
B — k[x + i/ 2 ], with roots ρlf , <os in the algebraic closure of k.
For t = x + V 3 , q(t — a)q(t + a) e A Π QC since it is invariant
under the automorphism *; conversely if f(t) generates the A-ideal
A Π QC, then f(t) = g(ί - a)g(t) for some # e C hence /(*) = /(*)* =
g(t + a)g*(t) hence f(tf = g(t-a)q(t+ά)q(t)g*(t) with gg*eΆ; therefore
the roots of f(t) are precisely ^ ± a.

Consequently the prime ideals & and & in the class in question,
correspond to the minimal polynomials of all the pi + na for even
respectively odd integers n; since these are infinite in number, the
class contains infinitely many prime ideals of both types.

Variations. With the choice of C, A, B and I made above,

(γ/1 lijλ and (If l,τΛ have also infinite classes and Krull\1/1 nil J \ υ nil /
dimension one (as does counterexample 1), and they satisfy all
identities of 2 x 2-matrices over Z.

For the choice (cf. [19]) C = F[x], A = Fλ + xF[x]y B = F2 + xF[x],
I = xF[x] for finite-dimensional field extensions F/Fi9 one has
/c(B) = fc(A) = κ(B) = 1; hence R has enough clans by Proposition 9.
Fj(F1 Π F2) may be chosen finite-dimensional, algebraic or transcen-
dental; then R is finitely generated as module, integral or non-
integral over its centre {Fγ Π F2) + #JF[£], respectively.
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