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Let p(x) =] p,2* be a power series with p,(k =0,1, --+)
complex numbers and 0 < p, =< oo its radius of convergence,
and assume that P(x)#0 for 0= a, =2 < p,. The power
method of limitation, P, is defined by

lim, s = lim kf} De8:2*/P(x) (x real)
£—0,— k=0

?

(provided the series converges in [«,, 0,) and the limit exists
and is finite). Abel and Borel methods are the best known
power methods. In this article inclusion relations between
two power methods are investigated. Several theorems are
proved, which lead to necessary and sufficient conditions, for
inclasion, that are correct under some fairly moderate
restrictions.

1. Imtroduction. Let P(x) = 3, p.x* be a power series with
ok = 0,1, ---) complex numbers and 0 < p, < = its radius of con-
vergence, and assume that P(z) =0 for 0 < a, <z < 0,. The power
method of limitation, P (see Wlodarski [19] and Birkhole [2]), is
defined by

)

lim, s = lim kZO 08,2 [ P(2x) (x real)
z—pp— k=

(provided the series convergences in [a,, p,) and the limit exists and
is finite).

The power method @ is defined analogously by Q(x) = > ¢,2* and
parameters &, O,.

The best known power methods are the Abel method and the
Borel exponential method. Other power methods which appear in the
literature are A,, L and (B, a, b) (for more details see next section).

We are concerned here with inclusion relations of the form

P Z Q. There are several results in the literature in this direc-
tion. Thus, Borwein proved (see [4], [5] and [8]) that A, < A,
A, & A, provided —1 < ¢t <\, that A, S L, L. £ A, provided » > —1
and that (B, a, 8) S (B, @, b) provided @ > 0, —co < B Zb < + o0,

Other results, obtained by Borwein [4], [8] and Hoischen [12],
are of a more general nature. Both authors investigated inclusion
relations between power methods whose coefficients, {».}, {q.}, are as-
sumed, a priori, to be related by some particular cases of the relation
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G=p| ey, 0<r< e iel0l ) k=matl e,
| ldv@)] < = .

Assuming some more restrictive conditions (like p, = 0 or p, # 0 or
others) Borwein gets sufficient conditions and Hoischen necessary and
sufficient conditions for inclusion.

In this article we are able to discuss the problem in greater

generality. The single essential restriction which still remains
necessary is:

(1.1) S 1k = oo .

kpp#0
The main tools which make this discussion possible are taken from
[21].

It seems that the problem is not simple enough to be solved by
one or two theorems. A broader kind of investigation is needed.
Actually it comes out that the case of power methods with finite
radius of convergence should be separated from the case of infinite
radius of convergence. The discussion of the first case provides
results which are simpler to formulate and are more satisfactory.

The forthcoming results include, in particulr, necessary condi-
tions, for inclusion, some combinations of which turn out to be also
sufficient. So, necessary and sufficient conditions can be formulated,
with (1.1) being the only pre-assumed restriction. Those conditions
seem to be slightly complicated if o, = «; so they are simplified
for some restricted cases, where all the additional restrictions are
sufficiently general to be automatically satisfied if P and @ are both
regular power methods.

Few of the theorems are applied later to the above mentioned
examples of power methods (all of which are regular) yielding some
results of interest. Necessary and sufficient conditions for each of
the inclusions PS 4, A< @, PS B, BS Q (where A, B are the
Abel and Borel methods and P, @ are some other power methods)
are obtained as corollaries.

2. Definitions and statement of results.
2.1. A definition and a convention.

2.1.1. Power methods of limitation. Let P(x) = >, p.x*, with
complex coefficients, p,(k=0,1,---), and radius of convergence
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0 < p, < o, be some power series such that P(x) = 0, for a, < & < 0,
where 0 < a, < o, is some real constant. A sequence of complex
numbers s = {s,} is said to be P-convergent to ¢ if >, p.s,2* is con-
vergent for all x ¢|«,, p,) and

lim T,(s,2) =0,  T(s )= kﬁ psi*/Pla) (@ real) .
. =
T (s, x) is called the P-transform of s and o its P-limit. o is denoted
also by lim,s. By ¢, we denote the field of the method P, i.e. the
set of all complex sequences which are P-convergent to a finite
limit. ¢ denotes the set of complex sequences which are P-limitable
to zero, and m, the set of all complex sequences whose P-transform
exists and is bounded in [a,, p,).

In analogy with P the power method @ is defined by the series
Q(x) = >, q,#* and parameters «,, p,. The Q-transform of a sequence
s and its Q-limit are denoted by T (s, ), lim,s. The field of @ and
the other related sets are denoted by ¢, ¢, m,.

We say that PZ Q (i.e. P is included in Q) if ¢, S ¢, and P, Q
are consistent (i.e. lim,s = lim, s for all se¢,).

In many of the results of this paper, P is required to satisfy
the additional condition
(2.1.1) S, 1k = oo

kpg0

The following are examples of well known power methods:

A-Abel’s method: P(x) =1/1—12), a, =0, p,=1.

B-Borel’s exponential method: P(x) =e¢*, &, =0, 0, = oo.

A,-Abel-type methods: Plx)=(1— =z x> -1, a,=0,p0,=1
(see Jakimovski [1] and Borwein [5]).

L or A_-Logarithmic method: P(x) = log[1/(1 — )], «,>0,
0, = 1 (see Borwein [6]).

(B, a, b)-Borel-type methods: P(x) = iy «*/(ak+b)~a 'a"~ %e"
(x— +o), >0, —c0c <b< 4o, aN+b>0, ,>0, p,= o0 (see
Borwein [8]).

2.1.2. A convention about functions of bounded wvariation.
Every complex valued function whose variation is bounded in some
finite or infinite interval is assumed throughout to be continuous to
the right at all points of this interval, with the possible exception
of the interval’s ends.

2.2. Theory which is restricted only by conditton (2.1.1).
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ReMARk 2.2.1. It should be observed that if P(x) is a poly-
nomial then every sequence is P-convergent. This is, then, a trivial
case. For this reason it is assumed throughout that both P(x) and
Q(x) are not polynomials.

REMARK 2.2.2. If ¢ & m, then the set J ={k|p, =0, q, # 0}
is finite.

2.2.3. DEFINITION OF 7,. We define
Vpg = li—_)lﬁl%c/pk ‘l/k ’
where k is considered, in the limiting process, only if p, # 0.

THEOREM 2.2.4. Let (2.1.1) be satisfied. If ¢ C m, then each
of the following must be satisfied:
(1) 0<r,<eo
(ii) 0475 = Py
(iii) The limit
lki_rg q./(pert,)  (k is considered only if p, == 0)

exists and 1is finite.

COROLLARY 2.2.5. Let (2.1.1) be satisfied. If ¢ & m, then
either 0, < co and p, < o or 0, = 0, = co.

THEOREM 2.2.6. Let (2.1.1) be satisfied and assume that 0, < co.
If ¢ < m, then o function ¢ of bounded variation and constants
0<o0<1, mel{0,1, ---} exist, which satisfy:

2.2.1) q, = p,m;‘,,,(&: () + O(ﬂ")) (h—co, ko= m,m+1, )
(2.2.2) S | Pler,7) || dg(c)| = O(Q(x)) (v — o7, = Teal) .

THEOREM 2.2.7. Let (2.1.1) be satisfied and assume that 0, < oo.
If ¢, S ¢, then the limit 1/Q(0, — 0) must exist and be finite, unless
Q(x) = kP(xr,,), £ # 0 (in which case P and @ are trivially equivalent).
If, further, P < Q (and Q(x) # kP(xr,,)) then the said limit must be
zero.

REMARK 2.2.8. Theorem 2.2.7 cannot be extended to the case
0, = . In fact an example is given in Section 3.1.15 of two
essentially different power methods, P, @, with o, = p, = c which
satisfy P < @, while the limit 1/Q(-+ <o) does not exist.
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THEOREM 2.2.9. Let (2.1.1) be satisfied and assume that p, = oo.
If ¢ S m, then there exist: a function ¢, whose variation is bounded
iwn [g, 1], for every ¢ > 0, constants 0 < R < + oo, u(a, < % < + oo,
Wrpe > ), me{0,1, -} and a matriz (e,,) W= < +c,b=0,1, ---)
such that

(1) go=pure | €09() + Qens/o?,
U= <<+, k=01 -.-).

(i) | 1P@r.)l1ds)] = 0Q@), (- +<, o real.

(i) { 0| = Rlpu|ubry, (w=2< 4o, kb=mm+1,...)
UexkléR, uw=<ax< +,k=01,---).
If, further, ¢, < ¢, and we denote

€ = €y — [Dour" [ P(ur,,)] ﬁ, e, W=w<too, k=01, )

then, in addition,
(iv) The limits
e, = lim e, (x real, k=0,1,--+)
L0

all exist and are finite.
(v) The limit

(1) = lim S P(ar,,0)T(x0)de(c)/Q@) (v real)
exists and is finite, for every function T(t), which is continuous in
the interval [u, + o), vanishes at its left end and has a finite limit
T(+ =0).

If, further, P < @ then, in addition,

(iv) e=0 (k=0,1.--)

)  AT) = T(+ o).

REMARK 2.2.10. It is of interest to note that ¢ is not constant
in [L —4,1] for any ¢ > 0. This is true in Theorem 2.2.6 as well as
in Theorem 2.2.9. In Theorem 2.2.6 ¢ is uniquely determined (up
to an additive constant) in [, 1] and in Theorem 2.2.9 it is uniquely
determined in (0, 1].

THEOREM 2.2.11. Assume that p, < 0. If 0 < r,y < oo, Oy =
0» 1/Q(o, —0) =0 and (2.2.1), (2.2.2) are satisfied, with ¢ of
bounded veriation and some constants 0 < 0 <1, me{0,1,---} then
PcCQ.

COROLLARY 2.2.12. Assume that (2.1.1) is satisfied, p, < « and
1/Q(0, — 0) = 0. If ¢ < m, then PZ Q.
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THEOREM 2.2.13. Assume that 0, = . If 0<7r, <~ and
conditions (i), (iii), (iv), (v) of Theorem 2.2.9 are satisfied, then
¢y, S ¢ If conditions (iv), (v) of Theorem 2.2.9 are satisfied also
then P < Q.

REMARK 2.2.14. In Theorems 2.2.11 and 2.2.13 it need not be
pre-assumed that 7, satisfies Definition 2.2.3. The rest of the
requirements mentioned in the theorems suffice.

2.3. Restricted results. Power methods P with p, =0 (k= 0,
1, --.) were investigated more than others in the past. Therefore
they are of special interest, and an attempt to speciallize some
theorems for them is worthwhile. It happens that the results of
this attempt gave rise to theorems which are applicable to conserva-
tive and regular power methods in general, and therefore we begin
with the characterization of these kinds of methods:

2.3.1. DEFINITION OF P(z). Given P(z) = 3 p,z*, we define
P) =S inla*, (@=v<p,).
Obviously | P(z)| < P(z), a, < & < 0,.

THEOREM 2.3.2. P s conservative if and only if
(1) A constant L > 0 extsts such that

(2.3.1) LP() < |P@)| = Pw) (@, =<0,

and

(ii) The limit 1/P(p, — 0) exists and is finite.
P is regular tf and only tf, in addition

(i) 1/P(p, — 0) = 0 and

(iii) P(zx) s mot o polynomial.

REMARK 2.3.3. It should be observed that (iii) of Theorem 2.3.2
is automatically satisfied if p, < e and that (i) = (ii)’ in case p, =
(unless P(x) = const.).

THEOREM 2.3.4. Let P be conservative and satisfy (2.1.1). If
e & m, then the limit

lim Q(zx)/P(xr,,) (x real)

20—

q

exists and is finite. If, further, P is regular and o0, = o then in
addition
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Foo 0< T <y (x real)

lim | Q(x)/P(xr)| =
WMI (x)/P(ar) | 0, r<r< to

THEOREM 2.3.5. Let (2.1.1) be satisfied and assume that p, < oo
and that the limit 1/P(o, — 0) exists and is finite. If 0 < 7, < oo,
OdTpa = Pps the limit 1/Q(0, — 0) exists and is finite and (2.2.1), (2.2.2)
are satisfied, with some ¢ of bounded variation, 0 <6 <1 and some
me{0,1, ---} then ¢, < c,.

2.3.6. DEFINITION OF ¢, ¢, U. We denotee=1(1,1,1, ---) and
e =(0,---,0,1,0, --+), where the single 1 is at the Ith place.
Also U={gU{e"|l=0,1, ---}.

Conditions under which U forms a fundamental set in ¢, are to
be found in [21] (see also Wlodarski [19] and Birkholc [2], [3]). In
particular U is foundamental in the fields of the Abel and Borel
methods (see Zeller [20] and Ryll-Nardzewski {15]).

THEOREM 2.3.7. Assume that 0, = o and that either U 1is
Jundamental in ¢, or Q(ex)/Q(x) —0 (x— +oo, x real) for every
sufficiently small ¢ > 0. If 0 < 7, < o and conditions (i), (ii), (iii)
of Theorem 2.2.9 are satisfied then P < Q.

REMARK 2.3.8. Theorem 2.3.7 is applicable to the case that @ is
regular for in this case Q(cx)/@Q(x) — 0 for every 0 <e < 1.

COROLLARY 2.3.9. Let (2.1.1) be satisfied and assume that 0, =
and that either U is fundamental in ¢, or Q(cx) /Q(x) —0 (x — + oo,
x real) for every sufficiently small ¢ > 0. If ¢ & m, then P < Q.

The following theorem provides an easy means of producing
examples of inclusions between non-regular power methods, with

0p = ©°.

THEOREM 2.3.10. Assume that p, = « and that the limit P(+ o)
exists and is finite. If

(2.3.2) @ =t | s (e =0,1, ),

where 0 < r < « and ¢ s of bounded variation, then 0, = oo and
the limit Q(+ o) exists and is finite. If, further, Q(+ ) = 0 then
¢, S ¢,. If, in addition, P(0)¢(0+) — #(0)] = 0 then P < Q.

2.4. Examples. In this section we present some results of
applying the general theorems of the previous sections to particular
power methods.
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2.4.1. A simple test of inclusion. Let us investigate among
the particular power methods defined at the end of §2.1.1, which
pairs may satisfy an inclusion relation. An easy preliminary check
can be performed by application of Theorem 2.2.4 and its Corollaries
2.2.5 and 2.3.4.

Thus, calculation of 7,, for the relevant pairs of methods im-
mediately excludes, by (i) of Theorem 2.2.4, the possibility of inclusion
between A, or L and (B, @, b). It also proves the impossibility of
inclusion between (B, a, b) and (B, a, B8) in case a # a@. (In fact no
direct calculation of ,, is needed. One can use Corollary 2.2.5 and
Theorem 2.3.4 instead.)

No further conclusions can be drawn by (i) of Theorem 2.2.4.
However (iii) of this theorem or, its corollary, the first part of
Theorem 2.3.4, provides a finer test and its application shows that
LZA. LA, if x>p>—1 and that (B, a,b) £ (B, a, B) if a >0,
—o0o < B < b < Foo, Soafter a complete check with Theorem 2.2.4
it seems that the only possible inclusions are 4, S A, S L (A= ¢ >
—1) and (B,e,B8) S (B,a,b) (a>0, —c0c <B=b< +0c). Those
inclusions are, in fact, known to be wvalid and were proved by D.
Borwein (see [4] and [8]) using methods which could be interpreted
as applications of Theorems 2.2.11 and 2.3.7.

The results of the previous sections make it possible to solve
completely certain inclusion problems. As examples we formulate
necessary and sufficient conditions for the inclusions A & Q, PZ A,
BC Q, P B where A, B are Abel and Borel methods and P, @
are any power methods (not restricted in any sense).

In the following c,, ¢}, m, denote, respectively, the field of the
Abel method and the appropriate sets which are related to Borel
method.

COROLLARY 2.4.2. In order that ¢, & ¢, it 1s mnecessary and
sufficient that the following s satisfied: 0, < co, the limit
1/Q(0, — 0) extists and is finite and

q,0% = S Tdg(c) + 0" (k— o)
where
J#@i< =, o<o<t, | lofe, —e01ds)] = 0@Q@)
(x — p7, « real).

The same, with the additional condition 1/Q(p, — 0) = 0, is necessary
and sufficient for A S Q.
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COROLLARY 2.4.3. In order that c, S c, it is mecessary and

suffictent that the following 1is satisfied: p, < o, p, # 0, for all
sufficiently large k, and

Ypi0t) = | #ds(e) + 00" (k=)
where
|las@ <=, 0<o<1, | |P@o)lds)] = Ol - =),
(x—1—, x real).

The same 1is necessary and sufficient for P < A.

COROLLARY 2.4.4. In order that ¢ & m, it is mecessary and
sufficient that

0 < 7y = HE]Q}J‘CHWC < oo
.

and that

0= (i) || 09(e) + Qeden/s, (WS @< oo, k=0,1, -0
where

|, 188@)| < =, (=<t

[, e 1d9(0) | = 0QM@) , (@— +os, o real)
leq| = Rriublk! (W< +o, k=m,m+1,---)
le| =R, (ws=2< 4+, k=0,1,--)
e, <u< +oo, 0=ER< +0, me{0,1,--:}.
The same 1s necessary and sufficient for B < Q.

COROLLARY 2.4.5. In order that ¢ & m, it is mnecessary and
sufficient that the following 1is satisfied: p, # 0 for all sufficiently
large k,

0 <7y = li_mlp,,lcli_”k < oo
and
1
k! = ppriy S / Thde(T) + e%efat, W2 < +o0,k=0,1,--+)

where



260 A. ZIV

|, 148 < o
e | S Rlp|ubrty,, W< +oo,k=m,m+1,--+)
lex| SR, wW=a< +oo,k=0,1,---)
|| P@ra)|1d9) | = 0() (@~ +2, o real)
0<u< 4+, 0=ER< 4+, me{0,1, - -}.
The same is necessary and sufficient for P < B.
3. Proofs.

3.1. Proofs of the results in §2.2.

3.1.1. Proof of Remark 2.2.2. Define

0 , ked

= y O, < a< 04, k=01, --
Ygay), keg 15050

Sk

Obviously secy. However, > g,s,a* would not converge if J is
infinite. Hence s¢m,, in such a case, which means that ¢ & m,
cannot hold.

In the forthcoming proofs we use several results, which are
cited below. The first is a generalization, due to R. Trautner [16]
of a well known theorem of J. G. Mikusinski [14]:

TRAUTNER’S THEOREM 3.1.2 (R. Trautner [16]). Let
mo=\ea@, [la@i<=  @&=01 )
be Housdorff moments. If

t, = O(r*) (i— 0,0 <7 <1,k ] o, k; natural numbers)
then either y = const. wn [r, 1] or >, 1/k; < oo.

An immediate corollary of Trautner’s theorem is:

LEmMA 3.1.8. Let (2.1.1) be satisfied and assume that g is
Sfunction of bounded variation in [«,, 0,), which is constant in [v', p,),
for some v < p,. If

PPN S Riprt, @, <r <o,
r (k:m’m+1’...)
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then g = const. in [r, 0,).
The rest of the cited results are taken from A. Ziv [21]:

LEemmA 3.1.4 (A. Ziv [21]). Let (2.1.1) be satisfied and let
nef{0,1,--:}, e>0, A, Zr<p, S, S, -:S,_. be given. Assume
that T(x) is any function, continuous in [r, p,), having a finite
limit T(p, — 0) and satisfying

T(r) = 5 p.Ser*/P(r)

and let 0(x) > 0 be continuous in [r, 0,). There exists a sequence
s € ¢, which satisfies

(3‘1.1) Sj = Sj (j bl Oy 1, ctty, n — 1) ; kz:‘n] pk8k|7'k < g

I Tp(sr ZU) - T(QC)] < 6(96) (’}" =z < lop) ’ limps = 1.1(102) - 0) .

THEOREM 3.1.5 (A. Ziv [21]). Let (2.1.1) be satisfied. If > B;s;
converges for all sccl” then

(8.1.2) [Bl=R|pilr*, <0, k=mm+1,---,me{0,1,---}.

3.1.6. Matrix methods of limitation (see Lazic¢ [13] and Ziv [21]).
Let W={w,}(xel,k=0,1,---) be an infinite matrix of complex
numbers with I a subset of some topological space. Let x,¢1I be
a point of accumulation of I, which has a denumerable basis of
neighborhoods. A sequence s = {s,} of complex numbers is said to
be W-ocnvergent to o if its W-transform,

Tw(si x) = kZ(‘) kask ’

exists for all xel and lim,.,, T.(s, ) = 0 (x€I). We denote by m,
the set of all sequences whose W-transforms exist and are bounded
in 1.

THEOREM 3.1.7 (A. Ziv [21]). Let (2.1.1) be satisfied. If
¢ & m, then the matric W may be decomposed in the form
W = C + D, where the matrices C = (¢,;), D =(d,) (xel,k=0,1,.--)
satisfy

(1) ou= 0| (/PO | 1do.)| SR < =, @, < 1. < p,
(@el k=01, -..). ’
(ii) ldu| =R|pp|r*, a,<r<p,, (@elLk=m,m+1,---,

mef{0,1,--:}); |d,yy| ER< o (xeLk=0,1, ---).
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T, ¢, are independent of k and R, r, m are independent of both k
and x.

3.1.8. Proof of (i) and (i) of Theorem 2.2.4. If ¢’ & m, then
3 q:8.0* converges for all secl”. Therefore it follows, from Theorem
3.1.5, that

(3.1.3) xr,, < p, for all xzela, o)
which implies that
(3.1.4) Tog < 5 Pf'pr = O -

Considering only values of k such that p, = 0 we get
0575 = (lm | p, [)(lim | ./, [*) Z Tim |q, " ;

so by Remark 2.2.2

(3.1.5) Tpol 0p = 1/0g «

Now we divide the discussion into two cases. First the case p, < co:
In this case (8.1.5) implies—since 7, < oo-that o, < « and that
7, > 0. This by (3.1.4) and (3.1.5) completes the proof.

Next assume that p, = . Had we shown that »,,>0 we
would get from (3.1.3) that o, = ~ which completes the proof. So
let us try to reach a contradiction while assuming that »,, = 0.

The method @ is a matrix method (see §3.1.6) with w,, =
0,2"/Q(x), (xelay, +),k=0,1,---). The assumption r,, = 0 means
that

lim |w,,/p,]"* = 0 (k is considered only if p, == 0).

f—oo

Hence from Theorem 3.1.7 we get

|2 | 1#PONGO)| = PO, (b )

which implies, by Lemma 3.1.3, that ., need not exceed . Esti-
mating w,, by Theorem 3.1.7, we get, therefore,

(3.1.6) |2 /Q(x)| < M|p,lr*, r<p,,
@, fx< o, b=mm+1,---)

where, M and = are independent of both x and k. Let 1€{0,1, ---}
be larger than both m and k and such that g, = 0 (see Remark 2.2.1).
We get

25 /Q(x)| = |g@" %7 @t /Qx) | < g% |7 M | p,| ' — 0, (# — + o)
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which leads to the following absurdity:
1= lim ki 0.2 /Q(x) = zsfj lim q,2"/Q(x) = 0 .
z—+c0 k=0 =0 g—+o00

The summation-limitation exchange is permitted because the series
is majorized by >\ M|p,| r* (see (3.1.6)).

REMARK 38.1.9. In view of (i), (ii) of Theorem 2.2.4, it is clear
that the variable 2 of @Q(x) may, in cases of inclusion, be scaled to
yield r,, =1, o, = p, = p. We may also increase either «, or «a, to
get a, = @, = a. It enables us to simplify later proofs by assuming
those “normalizing conditions”.

THE FUNDAMENTAL LEMMA 3.1.10. Let (2.1.1) be satisfied and
assume that r,, =1, p,=p0,=p, a,=a,=«a. If ¢ & m, then
there exist a function Y(t), a matrix e, and constants R < oo,
a<u<p, me{0,1,- .-} such that:

(3.1.7) | @<=, @ss<p

(3.1.8) ¢ =n S Tdy(e) + Q@)en/st, W=z <0, k=01,

1
ul

(3.1.9) | Q(x) | S;,EIP(M)HOZX(T)' <R, w=z<p)
(3.1.10) {‘ezHéR{m&u’“, Ww=e<p, b=mm+1 )
les | = R, w=ae<po, k=0,1,--).

Proof. Using Theorem 3.1.7 we see that
(3.1.11) G2 Q) = ¢ +dy (@=2x<p, k=0,1,--+)

where ¢, d.. satisfy (i), (ii) of that theorem.
Define u = r (hence a < u < p). Since 7, =1 we have from
(8.1.11), for all r =u < < p, ¢ > 0 and for k— oo,

¢ = 2. | [F/PONg.(0) = 0.01Q@) — du = pOIA + 2] .

Hence, defining g, = const. in [r,, p), we get, from Lemma 3.1.8,
that g, = const. in [x, p), so

e =, | [/PONG), (wS2<p, k=01 ).

And if we define
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1(5) = —Q@) || [/POMgt), (@rsct<Lusa<p)
we get from (3.1.11)

3.1.12) ¢, = P, S Ty (o) + Q@)dafrt, w=a<p, k=01, ---).

af
Let u <2<y <p. From (3.1.12) we get
0= | A0 + Qudaly" .

Comparing this with (3.1.12) and using (ii) of Theorem 3.1.7 we get
for k—

p | ) — 1] = O ), (w=w<y<p).

From Trautner’s theorem (see 3.1.2), and because y,(1) = %, (1) =0,
we deduce that y,(c) = x.(c) Wwhenever u=zx=<=y<p and
u/x =7 < 1. This enables us to, uniquely, define a function ¥(z) in

(u/0, 1] by:
x(@) = %), velu/z, 1], w=2<)p).
(8.1.7) follows now immediately from the definition of ¥,. Obviously
Q@) 1PE)1d2@) = 1Q@)I™ || [Pl ldz.6)|
= [ldg.00 = E.

So (3.1.9) is satisfied.
¢.; is defined now by (3.1.8). From (3.1.11) and (3.1.8) we get

0.24/Q() — pIQ@I™ || (@0)d(o)]

‘ezk| =

Ao+ 22 | [¢/P@10.(0)]| < |l + |pel 'R sup | PO,
which implies (8.1.10), by (ii) of Theorem 3.1.7.

3.1.11. Proof of (iii) of Theorem 2.2.4. By Remark 3.1.9 we
may restrict the discussion to the case 7,, = 1. In this case (iii)
follows immediately from Lemma 3.1.10. In fact we get lim,_ .q./v, =

x(1) — x(1 —0).

3.1.12. Proof of Theorem 2.2.6. We insert in Lemma 3.1.10
u <y < p, in place of x and define
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x(@), wy<t=1

#0) = const., 0=7=wuly.

Then (2.2.1), with @ = u/y, follows immediately from (8.1.8) and
3.1.10). (2.2.2) follows from (3.1.9).

LeMma 3.1.13.
(a) If in Lemma 3.1.10 we add the assumption ¢, = ¢,, then
the limit

YT) = lim [Q()]™* Sll P(et)T(o)dy(c) , (& real)
O — Ul
must exist and be finite for every function T(t) which is continuous
wn [w, p), vanishes at its left end and has o finite limit T(o — 0).
(b) If in addition P < Q then Y(T) = T(o — 0) for every such

a function.

Proof. Substituting » = % in Lemma 8.1.4 we infer the existence

of a sequence of sequences s c¢,(l =1, 2, ---) which satisfy lim, s =
T(o — 0) and
M) — o) — ., — o) — - ()] ok
(3.1.13) {so st s . =0, kgf) | sl | u® < 1/1
ITP(S<Z),%)—T(£U)|<1/Z, (u§x<[o7l:1,2"")'
By (3.1.8)

T (s?, x) = [Q(x)]* S;x P(xz)T(s©, 27)dy(7) -+ ;g €Sy .

We denote lim, s = Ty(s”, o — 0) = B, (the limit exists since s¥ e
¢, S ¢;). From (3.1.9) and (3.1.10) we have, then,

Im Q@1 | Peo)T@odne) - g,
< im | Q@) S | P@o)| U (@) -+ T 3 eaust?
<R/l + };i Rps?|u* < 2R/l .

From this it is easily deduced that {8,} is a Cauchy sequence-hence
convergent. Denoting its limit by B8 we have

m Q) | PeoT@adne) - 8 < 2R/ + 18, — 8]

which yields, with | — o, Y(T) = 8.
This completes the proof of part (a). Part (b) is proved in a
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very similar way. Only this time, since s¥ e€e¢,, P S Q, we have
B =lim,s® =lim,s" =T(0 —0); so Y(T)=p=T(—0).

3.1.14. Proof of Theorem 2.2.7. By Remark 3.1.9 we may
consider the case 7,,=1, o, =0, = p, & = &, =« only. Assume,
first, that ¢, ¢, and that the limit 1/Q(p, — 0) does not exist. We
have to show that Q(z) = £P(x):

Let u <, < ¢ < p and let A(t) be some continuous function in
[u, p), which vanishes in [u, ¢,] and in [¢,, ©). Denote T(¢) = h(t)/P(t).
From Lemma 3.1.13 (a) we infer the existence and finiteness of the
limit

(D) = lim (@@ | POTO(]) = lim Q@1 (" w0 .
Denoting
Xx(t) - X(t/x) ’ (to sSt=sw, it <o < p)
we get
(3.1.14) D) = lim [Q@)] S WE)dy.() .

The functions y,(t) (¢, < 2 < p) have uniformly bounded variation in
[t,, t.]. This is because denoting up/t, =y we have w < y < p and
t 21 1 1
ool =" g = ja@i= | jael<e,
0 =iy tolw wly
(t=2<p).
Therefore the following limit exists (see Widder [17] Theorem 16.4
Ch. I):
ty ty . t
tim [0z = | sodllim 7.00 = | oo .

Since 1/Q(x) does not converge to a finite limit, as © — p~, we infer
from the existence and finiteness of Y(T) (see (3.1.14)) that

S: Rty (t/0) = 0 .

The argument which led to this result is correct for every function
h(t), which is continuous in [¢,, t,] and vanishes at both its ends.
Hence %(t/0) = const. for ¢ (¢, t,). Since ¢, and ¢, may be taken as
close as one wishes to % and p, respectively, we actually have
%(7) = const. for z € (u/p,1). Hence, by (3.1.8)
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g, = £p, + Q@e/a*, £ =y1) — (1 —0)
w=w<pk=01,-)

which proves that Q(x)e,,/x* is independent of . We may therefore
write

qk:prk+q1’cr (k:();l’"')
(3.1.15) where by (3.1.10),
o' Q)| = Rlpe|u*, w=sa<p,k=mm+1,---).

From this it follows immediately that & = 0 (otherwise we would
have r,, < 1).
We complete the proof by showing that ¢, =0 (k=0,1, --+):
Let 7€{0,1, ---} and choose » = u,

prip(r), ®=7r
T(x) = {linear , r=x=7r; r<rn<p
0 , m=r<p

in Lemma 3.1.4. We infer the existence of a sequence of sequences,
sPece (1=1,2,.+), such that

s =0,(j #1,5 <max{i,m}), sP=1

3.1.16 o
( ) k;llpks,i"luk <Ul, [TV, 2) <o@))l (rn=x<p).

From (3.1.15) we have

T(s", 7) = EP@/QDIT,(", ) + €2/Q@) + 3 aisi’a*/Q(a)

so, for r, <2 < p we get from (3.1.15) and (3.1.16)

|2 /Q(x) — To(s™, x)| = |£[P(@)/Q()]ITH(s, )| + ki aisi? | 2%/ Q)]
= [£P(2)/Q@) [ 0(x)/l + RE[L .

Choosing properly d(x) > 0 (e.g. o(x) = |Q(x)/P(x)|) we may then get,

|t /Qx) — TsV, a)| < MJl, M<e, (nsa<pl=12--).

Since s®eel C ¢, the limits B, = lim,.,_ T(s¥,2) ({ =1,2,---) all
exist and we get

lim [q'2%/Q(z) — B8] = ML (1=1,2 ).

This implies that B, is a Cauchy sequence, thus having a limit A.
Obviously
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gg—x,g |¢ix*/Q(x) — B < M/l + |8, — B ,

so letting ! tend to o we infer the existence of the limit
lim,_,_ ¢ix’/Q(x) = B, which is impossible, since 1/Q(0 — 0) does not
exist, unless q; = 0. This completes the proof for the case ¢, < c,.

The proof for the case P < @ is similar. We just have to use
Lemma 3.1.13 (b) instead of (a) to infer that ¥(T) = 0, and then
remember that s¥ee¢® S ¢, so B, =0 =1,2, --:), which means
that 8 = 0 and therefore ¢; = 0, unless 1/Q(0 — 0) = 0.

3.1.15. Proof of Remark 2.2.8. First let us show the existence
of two entire functions P(x) = 3, .2, Q(x) = >, ¢,«* which satisfy

(a) Q@) = (| Pot) o = Sio patille + 1), 0 <& < +0)
(b) Pl)=1, 0 =2 < +o0)
(¢c) The limit 1/Q(+ ) does not exist.

In order to prove this, notice that the funection

fx) = S“’[(l — e )tldt = w/1-11 — 2%/2+2) + 29/3:3] — -
0
is entire and satisfies f(+ ) = + . Hence the function Q(x) =3 +
sin [4f(x)] (where 0 < # <1 is a constant to be specified later) is also
entire and clearly satisfies (¢). The relation (a), then, defines P(x)
to be:

P(x) = [2Q(x)]" = 38 + sin [0f(x)] + 6(1 — e*) cos [0f(®)] ,

which is obviously an entire function that satisfies (b). Inserting
the power series expansion of f(x) into the expansion of the sin, in
order to obtain the expansion of @(x), we see that each of the
coefficients ¢, is a polynomial in § which is not the null polynomial.
One may choose 6 to differ from all of the roots of these polynomials
and get ¢, =0 (k=0,1, ---). It follows, then, from (a), that (2.1.1)
is satisfied also.
Now, from (a) it follows that

(s, z) — U:P(t)Tp(s, t)dt} / H:P(t)dtJ L (0<a< 4.

Hence, by (b), P < Q. This is so although (c) is satisfied.

It should be noticed that, by (a) and Theorem 2.2.4 (iii), @ £ P
so0 P and @ are essentially different power methods.

Examples of pairs of power methods, P< @ for which
1/Q(+ ) # 0, can be easily constructed by Theorem 2.3.10.
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Lemma 3.1.16.
(a) If in Lemma 8.1.10 we add the assumption c, & ¢, and
denote

(3.1.17) ¢ = 0 — (DU P@)] D00, (WS2<0,k=0,1,-")

then the limits

(3.1.18) e, = lim e, (¢ real, k=0,1, --+)

ToL—
all exist and are finite. (b) If, in addition, P < Q then for all
ke{0,1,---} e, =0.

Proof. First, we notice that by (3.1.10) and (3.1.17)

(3.1.19) {'e;k' SRIplu, w=e<pk=mm+1,.-)
¢l = R , wWe<p,k=01,---).

Next, we see from (3.1.8) that

Q@) = | P@adr@) + Q@) 3, e

s0,
g € =1 — [Q)]™ S;/ P(x7)dy(z) .

Substituting this into (3.1.17) and using (3.1.8) we get for every
sE€c,:

T s, ©) = Tys, u) + [Q@)] " S P(at)[T,(s, @)
(3.1.20) v
— Ts, W) + 3 ehese -

Let now 2€{0, 1, ---} and choose in Lemma 3.1.4 r = % and T(z) =
p.ut/Pu). From Lemma 3.1.4 we infer the existence of a sequence
of sequences sV ec¢, (I =1,2, --.), that satisfy

s =0 (J#1,7<max{i,m}), sP=1, Si [ st [ub < 1/ .
k=21+1

Since sPec, S ¢, we infer, from (3.1.20) with the aid of Lemma
3.1.13(a), the existence and finiteness of the limits

oo

B, = lim 3 e;si’ ¢=12--).

=07 k=0

By (3.1.19)
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s — 2, eS| = | =2, eusi’| = R'JL.
k=0 k=i+41

Therefore

lim [¢l, — B = R'JL .
T—0—

From this it follows that B, is a Cauchy sequence. Denoting its
limit by 8 we get then,
'1@5_1(3; —BI= R/l +|B -8,
which yields, with I — <, that actually e = 8.
Thus (a) is proved. The proof of (b) is similar. We just have

to notice that in case P S @ we get from (3.1.20) and from Lemma
3.1.13(b) that 8, =0 (1 =1,2,---). Hence ¢, =8=0.

3.1.17. Proof of Theorem 2.2.9. This is an immediate conse-
quence of Lemmas 3.1.10, 3.1.13, and 3.1.16.

3.1.18. Proof of Remark 2.2.10. The fact that ¢ is not constant
in [1—4,1] follows immediately from the definition of r,, (see
§2.2.3). The uniqueness of ¢ in certain intervals follows from
Trautner’s theorem (see § 3.1.2).

3.1.19. Proof of Theorem 2.2.11. It is sufficient to consider the

case 1, =1, p,=p,=p, a,=a, =«a and to show that c¢» & ¢!.
By (2.2.1) we may write

0 = pk(gifkdgp'(z') + ak> +aq,, 10, <Ro (h=0,1,--)
where ¢; = 0 for k¥ = m. Hence for every secl
Ti(s, 2) = [Q@I™ || Par)Ty(s, 2)dg(z) + Q@)™ 3, Oupisia
+ [Q@)]™ :‘g dst® = o,(x) + 0x) + oix) .

It easily follows that o, (x)—0, o (x)—0, oi(x)—0 (x— po—) for
every sec; so Tys, ) — 0, which completes the proof.

3.1.20. Proof of Theorem 2.2.13. It is sufficient to consider the
case 0y = 0, = o0, Ty = 1, @, = a, = a. The proof is based on (3.1.19)
and (3.1.20), which are deduced here as in section 3.1.16.

It should be observed that (3.1.19) implies:
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lim > ens, = 3, (lim el)s, = 3 ersy «
z—too k=0 k=0 z—+o k=0

3.1.21. Proof of Remark 2.2.14. Follows immediately from the
proofs of Theorems 2.2.11 and 2.2.13.

3.2. Proofs of the results in Section 2.3.

3.2.1. Proof of Theorem 2.38.2. This follows in a straightfor-
ward way from Theorem IIT of Wiodarski [19].

LEMMA 3.2.2, If Pis a regular power method with 0, = o then
P(ex)/P(x) — 0 (x — + oo, x real) for every 0 <e < 1.

Proof. If 0 <e <1 then ¢*—0 (k~— ). Hence the regularity
of P yields

lim P(ew)/P(e) = lim S puetet/P(x) = lim, {e") = 0 .
£->-+o00 z—-oo k=0

3.2.3. Proof of Theorem 2.3.4. Assume first that P is conserva-
tive. We define s; = 0 if jeJ (see Remark 2.2.2), s; = ¢;/(p,;ri,) if
p; # 0 and s; = lim q,/(p,r%,) if p; =0, j¢J. From Theorem 2.2.4
(iii) we see that the sequence s = {s,} is well defined and convergent.
Now,

Q@)/Par,,) = [Plar,)I™ 3 ¢t = [Per,)l™ 3 psi(ar,)*
+ [Par, ™ 3 gt = Tyls, wr,0) + 0(a) -

By Theorem 2.3.2 lim, ., _ o(x) exists, and from Theorem 2.2.4, and
since P is conservative, lim, ., _ T'(s, #7,,) also exists. This establishes
the existence of lim Q(x)/P(xr,,).

Now assume that p, = o and P is regular. We may write

Q(x)/ P(rz) = [Q(x)/P(ry)] - [P(r,)/ P(rix)]

and this, by Lemma 3.2.2, tends to zero in case 7 > 7,,.
If 0 < r <7, we may choose 7, €(7/7,, 1) and have, by Theorems
2.2.9 and 2.3.2, for x— + o,

0 = Q@) | | Pry) 145 2 L1Q(@) ™ || Plar,ie) ds(e)
= L Par,e)/Q@)| | 1ds(e)] .

From Remark 2.2.10 S 1 dg()| # 0; 80 P(@r,,7)/Q) = O(L) (& — + o).
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From Lemma 3.2.2 we have then,
P(rx)/Q(x) = [P(27,,7)/Q@)]- [P(r%)/ P(21570)] 0 (2 — +o0)
which completes the proof.

LEMMA 3.2.4. Let E be an FK space and let {f,} be a sequence
of continuous linear functionals on E. If lim,.. f.(s) exists for all
terms s of some fundamental set in K and if the sequence {f,(s)} is
bounded for every se K then the limit f(s) = lim,... f.(s) exists for
every sc K and is a continuous linear functional in E.

Proof. For a proof of a more general theorem, see Dunford &
Schwartz [9] II 1.18.

3.2.5. Proof of Theorem 2.3.5 It is known that ¢, is an FK
space (see [2] and [21]), and it was proved in [21] that under the
conditions of Theorem 2.3.5 U (see §2.3.6) is fundamental in e¢,.
From Lemma 8.2.4, it is sufficient then to show that ¢, & m, and
that lim, s exists for every se U. But the existence of these limits
follows from the existence of 1/Q(0, — 0). The inclusion ¢, € m,
follows from (2.2.2) and from the boundedness of 1/Q(x), after expres-
sing Tys, 2) in terms of T,(s, x), via (2.2.1), as it was done at the
beginning of §3.1.19.

3.2.6. Proof of Theorem 2.3.7. If U is fundamental in ¢,, then
the proof is based on Lemma 8.2.4 in the same way as Theorem 2.3.5
(see §3.2.5). This is possible because (i), (ii), (iii) imply ¢, & m,, as
is easily seen from the identity

Ty(s, ) = [Q@I™ | P@ry@)Ty(s, orad)ds(@) + 3 ease

which follows from (i). Also, the boundedness of
T (e, 3) = ¢ Q) (@ = @ < +00)

implies, when taking I = 1, such that ¢,., # 0 (see Remark 2.2.1),
that 27/Q(x) — 0 (x — + o) for all j. Solim,e? =0forj=0,1,---
(in a similar way lim,e¢¥ = 0).

Thus U < ¢, and Lemma 3.2.4 yields ¢, & ¢,. The consistency
of P and @ follows now because the continuous linear functionals
lim,, lim, coincide on the fundamental set U, hence all over c¢,.

Consider now the case that Q(¢x)/Q(x) — 0 and assume, for the
sake of simplicity, that »,, = 1. We define ¢, (v) by

(i) a.= .| ds() + Qe
w=E=v=0<+eo,b=0,1,---).
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From (ii) we infer the existence of an M, independent of both v and
z, such that

(i) 1@ | 1Pelds@I =M wsv=e< ).

Comparing (i) and (i)* and assuming v/x = u/y we get
Q@)e.(v)/x* = QY)en/y* — |e(v)] = | Qur/v)/Qx) | (v/w)*|e,ul ,
which implies, by (iii), for every sufficiently large v,

|ezk(v)I§Mv!pk{vk (’Uéw<+00,k:m,m+l,"')

(iii)*
le.(v)| = M, W=<a< +oo,k=0,1, )
where M, is independent of z. Also, for sufficiently large v

(iv)* lim e, (v) =0 (® real, k=0,1, ---) .
2—v40o
Now, from (i)* we have
T, 3) = Q@I | P@D)Ty(s, 22)d5(0) + 3 ea0)s,
= 0.1(/09 x) + 0'2(1), x) .
From (ii)* we have

sup |o,(v, )| < Msup | Ty(s, ¥)|
2 X y=v

for all X = v, and from (iii)*, (iv)*, for every sufficiently large v
we have

lim |oy(v,2)| =0.
z->+o0

Hence for each v sufficiently large,

lim | Ty(s, )| < Msup | Tys, ¥)| .
x40 y2v

Thus, if secf, it follows immediately that lim,s = 0. Therefore,
¢y’ € ¢ which implies P < Q.

3.2.17. Proof of Remark 2.3.8. This follows immediately from
Lemma 3.2.2.

3.2.8. Proof of Theorem 2.3.10. The proof is immediate if we
use the identities
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Q@) = | Plerods(o)
Ty(s, 2) = [QE)I™ || Parc)Ty(s, arc)ds(c),  (sec,),

which follow from (2.3.2). Actually we infer that

Q(+ ) = P0)[¢(0+) — ¢(0)] + [6(1) — ¢(0+)]P(+ <o)
lim, s = [Q(+ )] "P(0)[$(0+) — (0)]s,
+ [Q(+ ) [(1) — $(0+)]P(+ o) lim, 5
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