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INTEGRALS OF CONTINUOUS FUNCTIONS

MARK FINKELSTEIN AND ROBERT WHITLEY

Semicontinuous and related functions are characterized
as integrals of continuous functions in several variables.
For example: a new result of classical type is that the non-
negative lower semicontinuous functions on the real line
are exactly those functions f which can be written as

fls) = Sw his, Bt ,

with - nonnegative and continuous on R X R and h(s, ) in-
tegrable. There is a similar representation for functions
of Baire class 0 or 1 but the integral involved is the (con-
ditional) improper Riemann integral. Generalization leads
to a concept of conditional integrals in a more general
setting.

We will consider a locally compact but not compact metric space
S. All functions on S will be real valued, not extended real valued.

Recall that [1, 2, 5, 6]: a function f is lower semicontinuous iff
fa, «<) is open for each a, and a function f is lL.s.c. iff there is
a monotone increasing sequence of continuous functions converging
pointwise to f.

THEOREM 1. A nonnegative function f on S is lower semicon-
tinuous iff there is a nonnegative function h, continuous on S X R,
with h(s, -) integrable for each s, and

(1) £6) =" nis, o)da .
Proof. Suppose that (1) holds as described. The function
£45) = 1, )i

is continuous. The sequence {f,} converges monotonically to f which
is therefore l.s.c.

Conversely, suppose that f is l.s.c. and let {f,}, with f, =0, be
a sequence of continuous functions increasing pointwise to f. By
truncating each function f, at -n (redefine f, to be » when f,(s) > =
and redefine f, to be —n when f,(s) < — n) we have |f,| = n. There
is obviously a sequence ofmcontinuous functions %, on R satisfying

0<h, <1/@n + 1)2* and S ho(x)de = 1. Consider
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(2) W5, @) = 35 (Furids) = Fule)hal®) -

This nonnegative function is continuous on S X R because of the
uniform convergence of the series. Integrate both sides of (2) and
apply the monotone convergence theorem to obtain equation (1).

Theorem 1 directly gives a representation for an arbitrary lower
semicontinuous function f; just choose g continuous with g < f, then

f(s) = g(s) + Sh(s, z)dx. Conversely any f which can be so written

is lower semicontinuous.
There is an historical context into which Theorem 1 fits nicely:
From Theorem 1 the problem which Young [4, pg. 151] solved
of defining a new type of integral for f and f is exactly equivalent

to defining X S h(x, y)dydx for a nonnegative continuous bounded

function kA on [a,d] X R. This is an interesting relation between
iterating (improper) integrals and extending the class of functions
over which a single integral is defined.

A function f belongs to the Baire class zero if it is continuous,
to Baire class one if it is discontinuous but is the pointwise limit
of a sequence {f,} of continuous functions [1, 3, 6], Hausdorft, [3,
§ 41], has discussed a special subclass of Baire class =<1, those func-
tions of “type d”, which are exactly those having the property that
they can be written as the series

F@) = 3 fan@) = 1)

with the series being absolutely convergent. In this case the series
S (fas®) — fu(2))*, (¢f = max (a, 0)), converges monotonically to a
function g which is therefore lower semicontinuous, and the series
S (furix) — fu(®)), (e~ = — min (a, 0)), likewise converges to a l.s.c.
function A. Thus f= g — h is the difference of two l.s.c. functions
and, conversely, any function which can be so written as the dif-
ference of two l.s.c. functions is of type d.

Using these elementary facts and Theorem 1, any function f of

type d can be represented as the integral Sh(s, x)dx, h a continuous
function on S x R with k(s, -) integrable. Conversely, any f which
can be so written as an integral can be written as Sh(s, ) dx —
Sh(s, z)"dx and so is of type d. Note that if f is of type d then

the series (2) can be integrated term by term by the dominated
convergence theorem.
We now want to represent the functions of Baire class one in
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the form (1), but in order to get the entire class, and not just those
of type d, the integral involved must be a conditionally convergent
integral.

THEOREM 2. A function [ belongs to Baire class 0 or 1 iff there
s & Sfunction h, continuous on S X R, with h(s, -) improperly
Riemann integrable on R, and

(3) f(s) = S:h(s, 2)dz .

Proof. If f can be represented by (3), then f(s)=1lim Sn h(s, x)dx
and f belongs to either Baire class 0 or Baire class 1. b

Conversely, suppose that f belongs to Baire class 0 or 1; f(s) =
lim f,(s), the pointwise limit of a sequence of continuous functions.
We can take f, = 0.

As in Theorem 1, by truncating the functions f, we may suppose
that [f,| < n. At this point in the proof we need to use more
finesse than in Theorem 1 in choosing the functions {#,}. Let h,(x) =0
for |z| = (2n + 1)2", h,(0) = 1/2n + 1)2°, and h, linear otherwise.
The important properties that these continuous functions have are:
0 <k, < 1/(2n + 1)2, S h(x) = 1, and for any a < 0 < b, S h(z)de
converges monotonically to zero as n tends to infinity.

As in Theorem 1, define h(s, ¥) = Sioe, (frii(8) — fu(s))h.(2), a con-
tinuous function on S x R. For a¢ < 0 < b, apply the bounded con-
vergence theorem to obtain

(4) S:h(s, r)de = g (Fusa(8) — fn(S))Sihn(x)dx .

Let ¢ >0 be given. As 3 (f...(8) — f.(s)) = f(s), there is an N
(which may depend on s) Witbh | S fuii(8) — fu(8)| = ¢ for k= N.

Let a, = fois) — fuls), b, = S ho(@)dz, and Ay, = 31 a; To es-
timate > ¥’ a,b, use Abel’s fc;lrmula for summation by parts [6, II,
§24]: XN aub, = Ayibyipen — 2N Au(byiy — b,).  Since {b,} con-
verges to zero monotonically, {%%i{’ @b, = SUDiay | Aplby = 6. Let
a—— = and b—co. Then Sahn(w)dx—d and thus S (fo..(s) —
fn(s))g h(2)dx — 37 f..(8) — f.(s) which is within € of f(s). It fol-
lows that

lim Sbh(s, ©)de = f(s) .

a—r—c0

THEOREM 3. A function f on S is of Baire class n or less iff
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there is a function g continuous on S X Rx-+-+x R =8 x R* with

(5) f(S) = SR' : .SRg(S, Tyy Loy ==y mn)dxl' ° 'dxn .

Proof. It will suffice to consider the case n = 2.

If f can be written as (5), then f(s) = limmmgm S 9(s, x,, x,)dx.dx
—m JR
and f is a pointwise limit of functions in Baire class <1.
Conversely, suppose that f belongs to Baire class <2, f(s) =
lim f,(s), a pointwise limit of functions f, in Baire class <1. As in

Theorem 2, with f, = 0,

1) = | 5 (f1ui®) = FusDhw)y -

The integrand is a uniformly convergent sequence of functions in
Baire class 1 or 0 and so is itself in Baire class 1 or 0. Consequently
the integrand can be written as

S g(s, y, z)dz
B

with g continuous on S X R x R. This is by applying Theorem 2
to the integrand defined on S x R, with S of the theorem replaced
by S x R. Hence f has the form (5).

The integral which occurs in (5) is the iterated improper Riemann
integral; it is not, in general, absolutely convergent.

In [6, II, §111] the notion of, say, a ul function is defined: such
a function is the monotone non-increasing limit of a sequence of l.s.c.
functions (which are, of course, themselves the monotone nondecreas-
ing limit of sequences of continuous functions). Using the monotone
convergence theorem twice, as in Theorem 1, any such f can be
written in the form of (5) with the integral a Lebesgue integral.
Similarly the other classes, lu, ulu, etc. can be so represented by
iterated Lebesgue integrals.

What properties of Lebesgue measure and of the real line support
these theorems? That is, for a measure space (7, ), when can we

find 2 continuous on S x T and represent f(s) by S h(s, t)dp in place
oo T
of S h(s, x)dx? We are not asking for minimal hypotheses, although

that is an interesting problem, but for reasonably general sufficient
conditions.

For Theorem 1 the answer is straightforward.

THEOREM 4. Let T be a locally compact meiric space which 1is
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o-compact but not compact, and let p be a regular measure on T
with (T) infinite. A nommegative function f on S s lower semi-
continuous iff there is a mnonmegative function h, continuous on
S X T, with h(s, -) integrable for each s, and

(6) £ = | nts, D) .

Proof. Suppose that (6) holds as described. The compact space

T is the union 7= U K, of a increasing sequence of compact sets
K,. Then

£ue) = | ls, Dt

is continuous. The sequence {f,} converges monotonically to f which
is therefore l.s.c.

By the regularity of g there is an open neighborhood U, of K,
with #(U,) < (K,) + 1 < o. By the normality of T there is a con-
tinuous function g, 0 < ¢ <1, with ¢(K,) =1 and ¢g(U:) =0. For
¢ = Sng#, ST(g/c)dﬁ — 1, and 0 < g(¢)/c < 1/p(K,) — O with n. Thus
there are nonnegative continuous functions on T of integral 1 but
taking on values as small as desired. Consequently there is a
sequence {k,} of continuous functions on T satisfying 0= h, <

1/(2n + 1)2" and S h,dp =1. Proceed as in Theorem 1 to complete
T
the proof.

The analog of Theorem 2, and thus Theorem 3, is more in-
teresting.

The first requirement is a satisfactory definition of a conditionally
convergent integral. The type of integral obtained will be governed
by the choice of a collection {K,} of compact sets.

DEFINITION. Let T be a noncompact topological space, ¢ a regu-
lar measure on T, and {K,} a given collection of compact sets with
the limit lim K, = T, the limit taken with the direction of set in-
clusion. For a continuous function g the (conditional {K,}-integral)

of g is defined as the generalized limit, if it exists, 1imS gdy taken
KCK
over the sets {K,} directed by set inclusion.

ExAMPLE 1. The real line with Lebesgue measure.

(@) {K.}={a,b]}. The integral is the conditional improper
Riemann integral.

(b) {K.} = {[—c,c], ¢ > 0}. The integral is the conditional Cauchy
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Principal Value.
(¢) {K, all compact sets. The integral is the (unconditional)
Lebesgue integral.

ExampLE 2. The plane with Lebesgue measure.
{K.} = {la, b] x [¢, d]}. The integral is the improper double
Riemann integral.

ExampLE 3. Let T be the interval (a, b), and let & be a mono-
tone increasing real valued function on T with a(a*) = 0 and a(b”) =
+ co. Take dp = da. With {K,} = {[¢, d]: ab< ¢ < d < b} the integral

is the improper Riemann-Stieltjes integral | gda.

ExampLE 4. Let T be the positive integers, ¢ counting measure,
and K, =1{1,2, ---, n}., Then the {K,}-integral is the series ggd;ﬂ =
Y 9(3); in general a conditionally, not absolutely, converging series.

Any finite products of these examples will furnish additional
examples.

The second requirement for a satisfactory generalization of
Theorem 2 is the existence of functions on T which behave essentially
like the functions {%,} in the proof of Theorem 2. Theorem 5 will
show that it is sufficient to have the following condition satisfied:

(*) Let T and g be given with #(T) = o, and let {K,} be the
collection of compact sets which are specified in order to define the
conditional integral. The condition needed is that there be a sequence
of compact sets {C,} increasing to T with p(K, N C,)/x(C,) converging
monotonically (to zero) for each sufficiently large K, (K. = K,,)-

For the examples above:

(l.a) {C}={—n,n]:n=12 .-}, K, any interval containing
Zero.

(1.b) As in (1.a).

(1.c) Theorem 5 shows that there is no collection {C,} satisfying
(*); for if there were, then, as is discussed following Theorem 1,
every Baire class 1 function would be a function of Hausdorff’s
type d.

2. {C={[-nn]x[-nn:n=12 ---}, K, any rectangle
containing the origin. This is a general result. If each member of
a finite product satisfies (*), then the product does also.

3. {Cil={lea+1/n,b—1/n]:n=1,2, ---}, K, any interval con-
taining zero.

4, C,=K,.

In general, if {K,} is a countable monotone family of compact
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sets, then C, = K, will satisfy (*). Thus, by applying Theorem 5,
one can represent each Baire class 0 or 1 function as in (7). Such
a representation would not, in general, be possible using the Lebesgue
intesgral, as we discussed following Theorem 1.

There is a subtlety here: The smaller the family {K,}, the larger
the class of continuous functions which are {K,}-integrable. One
useful property of the improper Riemann integral is that the as-
sociated family {K,} is large, and so while it integrates more con-
tinuous functions than the Lebesgue integral, still the functions
which it integrates are not too badly behaved. Exactly how conflicting
demands influence the “appropriate” choice of the family {K, is a
deep matter, and our understanding of it shallow. We believe that
when it is better understood, representation theorems in general
settings, like Theorem 5, will be broadly used.

THEOREM 5. Let T be a locally compact metric space which is
g-compact but mot compact, and let p be a regular measure on T
with (T) infintte. Further suppose that there is a sequence {C,}
of compact sets imcreasing monotonically to T with the property (*).

Then o function f on S belongs to Baire class 0 or 1 iff there
18 @ continuous function h on S X T, with h(s, -) conditionally in-
tegrable (in the sense of the above definition) with

() £s) = | 1o, Dt -

Proof. If f can be represented in the form (7), then f,(s) =

S h(s, t)dp(t) is a sequence of continuous functions converging to f.
Gﬂ
The function f is therefore in Baire class 0 or 1.

Conversely, suppose that f belongs to Baire class 0 or 1 and is
thus the pointwise limit f(s) = lim f,(s) of a sequence of continuous
functions on S. As before, we may suppose that |f,| < » and f, = 0.
Set ¢, = 1/(C.))%,. Given 0 > 0, by Lusin’s theorem there is a
continuous function w, = 0 of compact support with |g, — w,| <
2/1(C,), and S lw, — g,]du < 4. Let a, = Swndﬂ. Thenl —-—d6=a, <

T
1 + 6. By passing to a subsequence {&,} of {w,/a,} and the corre-
sponding subsequence of the {g,}, which we will also call {g,}, the
following can be satisfied: &, continuous,

0<h, <1/@n+ 1)2", SThndy =1,
and

|,/ = g.ldg < 1(2n + D2°.
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Define A(s, t) = X, (fu1:(s) — fu(8))h.(2), continuous on S x T. Let
K be a set in {K,} large enough that the condition (*) on the (sub)-
sequence {C,} is satisfied. Let 4,f(s) = f...(8) — fu(s). Given ¢ >0,
choose N so that |>ir_, 4,f(s)| =< ¢ for k= N. Then

(8) | s, tiap®) = 3 4.56)| ot
+ 3 456)| (0.(0) ~ 0,040 + 3 4,56 o.030) -

As in the proof of Theorem 2, the last term of (8) is bounded by e.
The second term is bounded by X%, | 4./ (s)]gl 9. — h,| £1/2¥. Letting
K increase towards 7, through members of {K,}, SKhn(t)dy(t)——»L
for 1I=n=<N, in the first term of (8). Hence lim SK (s, t)dp(t)=1(s).
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