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PARAMETRIZED SURGERY AND ISOTOPY

W. C. HsiaANG AND R. W. SHARPE

The pseudo-isotopy techniques of Cerf-Hatcher-Wagoner
are combined with surgery theory to give information about
the group of isotopy classes of diffeomorphisms of a smooth
manifold. For example, for the n-torus, n = 6, this group
is determined completely. We also provide a geometric in-
terpretation of the periodicity sequence of [11].

Introduction. Let M be an n-dim (n = 6) smooth manifold
without boundary' and let Diff M be the group of diffeomorphisms
of M. Let Aut M be the H-space of simple homotopy equivalences
of M to itself, i.e., Aut M = {feM”|f is a simple homotopy equi-
valence}. We have the following fibration

(1) (M) — Diff M —s Aut M .

Then, a point in &(M) is represented by a pair (4, ¢,) where ¢ € Diff M
and ¢, is a path in Aut M connecting ¢ to Id € Aut M. Set

(2) M, = M x If{(m, 1) ~ (¢(m), 0)} ,
the mapping torus of ¢. ¢, induces a simple homotopy equivalence
(3) F:(M;, M x1)— (M x S, M x 1).

Following [10], one can construct a space (M x (S', 1)) of simple
homotopy smoothings of M x S' which are standard on M x 1. W.
Browder [1] studies the map

(4) 7. (M) — L (M x (S}, 1))
defined by 7((¢, 4.)) = F. On the other hand, we have the map
(5) 7: (M % (S, 1)) — G[0™""

where SM* = M x S'/M x 1. Let us consider the following diagram
of fibrations

B(M) — Z (M)

Lo

(6) (M) —> &(M) e G/0™*
LM — (M % (S, 1)) 1> Gjo¥r*

! Everything works for PL, topological manifold, and manifold with boundary if the
boundary is only allowed to move by an isotopy. Using a result of K. Igusa, everything
works also for n =5.
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where Z (M), € (M), £(M) are the homotopy fibres of the obvious
maps. It is easy to see that 7,(5(M)) = L, (7. M, w) where w is
the first Stiefel-Whitney class of M [13]. It follows from (6) that
there is a braid®

N N N
LomM, w) n(ZM)) n(S(M)) [EM*, G/0] Law(n.M, w)

NN

(7) m(F(M % (8, 1) n(Z M) wlF (M x (S 1))

o NN

(S&(M)) [3:M*, G/0] L, . (z. M, w) 0

where 3*M* =M x D}M x S* and z(S(M x (S, 1)) is just the
simple homotopy smoothings of M x S* which are standard on M x 1.

In this paper, we shall identify the elements in 7w, (& (M)) as
parametrized surgery problems, and then give an algebraic descrip-
tion of the exact sequence

T(FAYM)) — 7 Z (M) — (T (M) — (M) — 0

(8) | |
L, (.M, w) L, (z.M, w)

which sits in the braid (7). The entire work is a derivative of Cerf
[2] and Hatcher-Wagoner [3], [4]. In particular, the computation of
w(Z(M)) is an application of the obstruction theory of [3]. On the
other hand, (8) can be also viewed as the geometric interpretation
of the periodicity sequence of [11] for the case n even. (Cf. Novikov
[9] and Giffen [5].)

One can get information about 7 (&(M)) via another sequence
in the braid

(9) [2°M7*, G/0] — (& (M)) — 7(S(M)) — [T M ", G/0] .

Since G/0 is an infinite loop space, the above sequence is not hard
to handle. What one would like to do is to derive information about
7 (Diff M)(7 = 0, 1) via the exact sequence

7(Diff M) — 7,(Aut M) —— z,(S(M))

(10)
— 7 (Diff M) — m(Aut M) .

Unfortunately, m,(Aut M) is not easy to compute and the map & may

2 One can easily extend the braid to left, but we shall concentrate on this part of
the braid.
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not behave well as pointed out to us by Hatcher. We shall content
ourselves with some computations of simple examples: M = torus
T, or a closed manifold which is a product of a compact space
with finite fundamental group and a compact K(z,1). The compu-
tation of 7 (Diff T") is actually complete and has also been obtained
by Hatcher. We also give some simple examples to show that
7,(DIf M)R Q ©=0 can be of infinite rank. All these facts show
that the homotopy type of Diff M can be rather bad, even though
M is very simple.

In particular, we give negative answers to two problems posed
in Manifolds—Tokyo 1973:

(A) Problem 3.4 The answer is almost invariably ‘no.” (Cf.
Example 1 of §II.) In other words, most compact K(x, 1)’s have
many homotopic (even pseudo-isotopic) self-homeomorphisms which
are not isotopic.

(B) Problem 3.5 The identity component of the homeomorphism
group of T"(n = 6) is not even of the homotopy type of a finite
complex. (Cf. Theorem 2.5 and the remarks after the statement of
the theorem.)

We are indebted to A. Hatcher for many helpful discussions.

I. Algebraic preliminaries. Let 7 be a group (written multi-
plicatively) and let w: 7 — {£1} be a homomorphism. Let 4 = Z[z]
be the integral group ring of =. We define the symbol ‘—’ by

(11) (Fn(g)g)” = Jw(g)n(g)g™

for elements in 4, and then 4 becomes a ring with involution. Let
E(4) denote the corresponding group of elementary matrices and
define K,(4) by the exact sequence

(12) 1t — KyA) — Si(4) — E(4) — 1

of the universal central extension of E(4) [8]. Let W(x xn) < St(4)
denote the subgroup generated by all elements of the form w,;(u) =
25z (—u )2, (u) where w € 7. Set W(£x)=W(£x)N Ky(4). Define

(18) Whyw) = K(4)/ W+ 7).
The involution ‘—’ induces an automorphism
(14) —: Why(w) — Why() .

Let us first recall some definitions and facts from [11] [12].
Let SU(4) be the split unitary group with ¢ symmetry (¢ = 1)
and let EU(A) = [SU), SU(A)] be the commutator subgroup of
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é\ﬁ(/l). We define KU;(4) by the exact sequence
aYd ~
(15) 1— KUs;(4)— StU(A) — EU(4) — 1

of the universal central extension of E/’\(j(/l). We have two natural
homomorphisms?,

Voo
k: SET(A) — St(A) .

Next, set
St(4y = St(4)/W(+£m) ,
N ~
St U(4Y = St UL/ h(W(£n)) ,
(17) E(r) = (xm)E(4) ,
EU(r) = (xm)EU4),
SU(r) = M(£7)SU) .
Note that (=£7) acts on E(4), E\I/J(/I), gl/f(/l) by conjugation which
we denote by «. Moreover, each of these groups contains [, x].
We have
E@) = {(£7) X B}Ix, 7],
(18) EU(::) = {(£7) X, EU(A)}/[:: ],
SU(7r) = {(&x) x SU(A)}/[ﬂ: 7] .
where, in each case, the inclusion of [z, 7] into the semi-direct
product is the diagonal inclusion. « induces a unique automorphism
o
of St(4) (resp. StU(A)) covering the conjugation by elements of
(+ ) in E(A) (resp. EU(A)). We define

(19) St(r) = {(£x) X St(4)'}/[x, =],
I~ ~
StUx) = {(£7) x . StUAY)/[x, 7] -

Here, the inclusion of [z, 7] into the semi-direct product is the
diagonal inclusion where [z, 7] — St(4)’ is induced by sending [g, %]
to w(9)w,(h)w,,()w,(kg). Similarly, we have the inclusion [z, 7] —
Setiay.

Let us now proceed to define abelian groups* Lj(x, w), which are
Hermitian analogues of Why(x). These groups are periodic of period
4, and the definition depends on the parity of =.

First assume n = 2k + 1. Let /5-'\6’(7:) be the group defined above
with ¢ = (—1).

Let & Dbe the pullback in the diagram

8 h is called the hyperbolic functor and % is called the forgetting functor.
4 Cf. [5].
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P — Si(r)
20) |
SUx) — E(x) .

We can lift o0 to & and denote it by o again <0 = (2 %)) We define

Lz, w) = &/, &], {o}) where (&, ], {6]) denotes the sub-

group of .&° generated by the commutator subgroup of & and o.
Let us now assume n = 2k. Let /S?l?(n) be the group defined

I~ o~
above with ¢ = (—1)*%. We define L:(x, w) = Ker(StU(x) — EU(x)).
THEOREM 1.1. There exists an exact sequence

1) Loz, w) — Why(z)/{e + 66} —— LAz, w)

__P_) Ln+2(7ry w) —0

where ¢ = (—1)",

Proof. Since the definition of L:(x, w) depends on the parity of
n, our proof is divided accordingly into two cases.

Case I. n = 2k. For this case, the above exact sequence is
essentially the last four terms of the ‘periodicity sequence’ in
Theorem 7.1 of [11]. We shall refer to [11] for the definitions of
the homomorphisms and the proof of exactness.

Case II. n =2k + 1. For this case, the above exact sequence
is related to, but different from the first four terms of the same
‘periodicity sequence’. We shall define the homomorphisms and prove
the exactness.

Definition of 6. For an element g€ L, (7, w), it can be lifted
back to an element §e L, (x, w) by our theorem for the even case.
g is representable by an element ze KUJ(4) with 7 = (—1)*. We
define d(q) to be the element in Why(x)/{c — &} represented by k(z)
where k: KU;(4) — K, (4) is the natural homomorphism in (16). It is
easy to see that this definition is independent of the choice of § and
2. Alternatively, we can also define 6 more directly as follows.
Represent ¢ by a simple form Q and view it as a matrix. (See [11]
for the definition of simple form.) Lifting @ to an element Q in
St(z), 3(q) is represented by Q((—1)*Q*)' in Why(r)/{c — ¢}. One
may check that it is well-defined and coincides with the first defini-
tion.
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DEFINITION OF h. Represent cc Why(w)/{c — &} by an element
z€St(z). Then, h(c) is represented by (z, 1) e 2.

DEFINITION OF p. Let o< Li(z, w) be represented by (x, y) € &.

Then p(a) is represented by ye/S\ﬁ(n).

It is clear that & and p are well-defined. It follows from [11]
that Im(S: U(z) — &) = [ &, Z7]. Then, the exactness at Why(x)/{c — &)
and L¥(z, w) follows from that of the ‘periodicity sequence.” That
p is an epimorphism follows from the definition.

Let 7, be a z-module and let w,: 7, — {0, 1} = Z, be a homomorphism
of abelian groups. Let us view Z, as a trivial m-module. Set
I'=Z,@rn, =17, x n, and I'[r] the additive group consisting of finite
formal sums Sa,0, with @, cI” and ¢, e with component-wise addi-
tion. Following [4], we define

(22) Whrz; 'y = I'[x]l/{ac — a*toT™t, B-1}

where a, Bel’ and 7, ¢ € w(a" means the element in I" gotten from
o by the action of r7ex). Again, we have an involution

(23) —: Why(w; I') — Why(z; I')
defined as follows.

(24) (@, a)o = (a, + wya), —w(o)ag Yo~
for ¢, €{0,1} = Z,, ¢, €7, and oecm.

Let us trivially modify Theorem 1.1 to

THEOREM 1.2. There is an exact sequence

L, o, w) — {Why() @ Wh(z; I')}/{c + ec}
(25) rid "
— Lz, w) @ Why(z; I')/{c + &€} — L, 7, w) — 0

where ¢ = (—1)".

II. Statement of results. Let M be a smooth closed n-dim
manifold (n = 6). Then we can define Why(r), Li(x, w), Wh(x; I')
(where I' =Z, @ r,) and the involution ‘—’ of §I by taking 7 =
oM, w: w— {1} the first Stiefel-Whitney class. m, = the m-module
.M and w,: 7, — {0, 1} the second Stiefel-Whitney class.

The main result of the paper is to identify the exact sequence
(8), of the introduction, with that of Theorem 1.2.

THEOREM 2.1. Suppose that the first k-invariant of M, ke
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H¥n M; 7,M) vanishes. Then, there is a mnatural isomorphism
of exact sequences:

T FAM)) — 7 (M)
(26) |~ 5|~

Ly, w) — {Why(z) © Whi(z; I)}{e + e} —>

(& (M) T M)

mlz iz

Li(m, w) @ {Wh(w; I}{c + 6} — Liu(w, w)

where € = (—1)".

REMARK. In the argument of the well-definedness of the
w,-component of the invariant in Wh(z M; Z, S n, M) of [4], the
author implicitly assumed that ke H3x,M; 7,M) vanishes. We need
this assumption too. However, it has no effect on the Z,-component.

In §III we describe the local structure of singularities of maps
into a disc of dim < 3. The following sections are devoted to a
proof of Theorem 2.1. Following [2] [3][4], the maps ¢, and ¢, are
defined. Once this is done, [3] applies to show that ¢, is an iso-
morphism, and the result then follows by the five-lemma.

The remainder of this section is devoted to the derivation of
some simple consequences of Theorem 2.1.

ProrosiTiON 2.2. If M s a smooth closed n-dim manifold
(n = 6) satisfying the hypothesis of Theorem 2.1 and wM contains
infinitely many conjugocy classes distinet from their inverse
classes, then

(A) If m(Aut M) R Z, is of finite rank, then w(Diff M) contains
a subgroup isomorphic to a direct sum of infinitely many copies
of Z,. (Note that we do not need to assume ke H%x,M; n,.M) equal
to 0 here.)

B) If m(Aut M)Q Q s of finite rank, and 7.M Q& . Q # 0,
then w(Diff M) contains a free abelian subgroup of infinite rank.

Proof. (A) Since = contains infinitely many conjugacy classes
distinet from their inverse classes, one can see that Wh(w; I')/{c + &€}
has Wh,(x; Z,)/{c + e¢} = @7 Z, as a direct summand. Since [3'M*,
G/0] are finitely generated abelian groups (¢ = 1,2) the braid (7)
implies that w(&(M)) contains @ Z,. Then the assumption of (A)
together with the sequence (10) shows that 7w (Diff M) D> @ Z..

(B) Here the assumption yields a homomorphism Wh(z; ")/
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{e + et} — Wh(z; 7, ®., Q)/{c + e} = B @, such that the image con-
tains a basis. The proof then proceeds as in (A).
The following gives some control over w,(Aut M).

LEMMA 2.8. If M = M, X M, is a compact manifold where M,
1s a compact K(w, 1) and M, is compact space with finite funda-
mental group, then w,(Aut (M)) is generated by a torsion-free sub-
group of finite rank (possibly infinitely generated) and a finitely
generated subgroup.

Proof. By obstruction theory, we know that z,(Aut M,) ~ Centre
7z and thus it is a torsion-free subgroup of finite rank, i.e., a sub-
group of @!Q for some 0 <! < . Let f:S*'x M, x M,— M, x M,
represent an element of x,(Aut M). Since 7 is torsion-free, the
induced map =, (M,) — = (M,) is trivial, so f(t, z, v) = (h(z, ¥), 9(¢, 2, ¥)).
Composing with an element of w,(Aut M,) (i.e., the inverse of &), we
can assume that f(¢, 2, ¥) = (=, g(¢, %, ¥)) where ¢ is a unit in the
monoid [(S', 1) X M,, (M;"s, id)]. Since S' X M,, M, are finite CW-
complexes and x, M, is finite, it follows from the standard obstruc-
tion theory that the group of units is finitely generated.

ExampLE 1. Let M be a smooth closed K(z, 1) such that = has
infinitely many conjugacy classes distinet from their inverse classes
(e.g., M = T", a compact solvmanifold, X/I" where X is a noncompact
symmetric space and I” a torsion-free uniform lattice, a 3-dim
manifold with sufficiently large fundamental group ete.). Let N be
a smooth closed manifold with finite fundamental group. If dim
(M x N)=6, then the hypothesis (A) is verified so that
w(Diff(M x N)) contains a subgroup isomorphic to @ Z,.

EXAMPLE 2. Let M and N be as above. Then M x N x S?
verifies the hypothesis (B) if dim M x Nx S*=6 and the first k-invariant
of N vanishes. Thus 7z,(Diff(M X N x S%) contains a subgroup of
infinite rank. In particular, 7 (Diff(T" x S*) (n = 4) has infinite
rank.

Now we prepare to consider some higher homotopy groups. Let
Diff(W, 0) be the group of diffeomorphisms of the manifold with
boundary oW which are the identity on the boundary.

Following an idea of Siebenmann’s, we have the following lemma,
which was also observed by A. Hatcher, and Burgelea-Lashof-
Rothenberg.

LEMMA 2.4. There is a map . DIift(M x I*, d)— 2*Diff(M x T*)
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which has a left inverse, up to homotopy, so that w(Diff(M x I*,d))
is a direct summand of m (Diff(M x T*)).

Proof. We construct the map ¢: Diff(M x I, ) — 2 Diff(M x S'),
and one can check that the construction can be iterated to verify
the claim. We shall regard 6¢[0, 1] as the element of Diff(M x S
which spins the second factor by ¢*?. Then (g)(#) = [, ] (the
commutator). We construct a left inverse by completing the diagram

Diff(M x I, 3) —> 2 Diff(M x S?)

AN /
a\ /2
Z x QDiff(M x R) .

(27

Here a(g) = (0, [4, ¢]) where ¢ e Diff(M x R) agrees with ¢ on M x I,
and is invariant under conjugation by integral translation, and
M) = (n, ¢, — tn) where ¢,: M x R x I— M x R is a lift of g, such
that @, = Id and @, = covering translation by n.

We have two fibrations:

Diff(M x I, 8) — & (M x I, M x Rrel M x 0)

(28) XY, (M, M x R)
Diff(M x Rrel M x 0) — Diff (M x R) 225 co(M, M % R)
where & denotes the space of embeddings.

Now & (M x I, M x Rrel M x 0) and Diff(M x Rrel M x 0) are
contractible, so Diff(M x I,0) ~ 2 & (M, M X R) ~ Q(Dif M x R) is a
homotopy equivalence. Since this composite is «, and the diagram
above commutes, we are done.

ExamPLE 3. 7, (Diff(T"* x S?)) has infinite rank for0 < ¢ < n — 3,
for it contains 7z (Diff(S* x T"* ¢ x I%, 9) as a direct summand, and
since the rel 0 version of our theory is the same as the closed case,
this later group has infinite rank for 0 <7 < n — 3.

ExampLE 4. 7w, (Diff T™).

The map Diff T* — Aut T has a left inverse, soc we get the
split exact sequence

(29) 1 — 7,(&(T™)) —> 7(Diff T*) — GL(n, Z) — 1

To compute 7,(&(T™)) we pass to the braid (7). Since Why(Z") =0
and L, (Z", w) maps to this summand of 7(<Z(T")), we see the map
is zero. Moreover, L, (Z", w)— 7w, (S(T" x (S, 1)) is onto by [7],
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[13], so that =, (S~ (T" x (S, 1)) — n,(<F(T")) is zero. Thus, we have
the short exact sequence

(30) 1—>z(Z(T") — w(&(T")) — a(F(T" x (S, 1)) — 1.

We can regard 7 (<7 (M x (S, 1))) as the smoothings of the standard
topological M x (St 1); so it is the kernel of 7 (Diff T*) — 7, (Homeo T™),
this provides a splitting for the sequence (30) and we get:

THEOREM 2.5. If n =6,
(A) w(Diff T")~ (Why(Z"; Zo)/{c + ¢} D (A (T™ X (S, 1))} X ,GL(n, Z)
B) = (Diff T*)(¢ < n) contains @7 Z..

REMARKS. (1) (B) follows from Lemma 2.4 since Wh(Z"; Z,) ~
D Z,.

(2) 7 (AT % (8", 1)))=H(T"x (8", 1); Z.)D{D. H'(T" x (S, 1); "))}
where I'; = 7,(PD/0) as computed in [7] [13].

(3) The action a of GL(n,Z) is the obvious one.

(4) Note that 7, (Diff T*) contains many Z, coming from different
sources.

(5) Our theory works in the PL and topological categories, in
which case #((T" x (S' 1))) is replaced by the corresponding
groups, i.e., H¥T" x (S, 1); Z,) and 0 respectively.

I1I. Geometry of singularities. In this section, we shall discuss
the singularities of maps

(31) fr (Wt oW ) — (I?, 01°) (s =3).

Much of the material is well-known [2] [3] [14], so we limit our-
selves to statement of results. We follow [3] closely for the geo-
metric description of the singularities. Throughout we assume that
o (Wrte oWty — (I°, 6I°) is free of singularities near oW"™. We
shall call a local coordinate system (z,, ---, 2,_,) for I° admissible if
2, = @w,, -+, w,_,) With op,/0w, > 0 where w,: I° — I is the standard
projection to the t¢th factor. We shall consider the z, direction as
vertical and the idea is to think of z, ---, 2,_, as parametrizing the
slices f~'(I X (2,, *--, %,—,)) and the functions f|slice.

In each case (s =1, 2, 3), f is homotopic (reld) by a homotopy
as small as we please, to a smooth map whose singularities with
respect to some properly chosen coordinate system =« -.-,2,_,
Yy ** %5 Yuyo O W™ and an admissible coordinate system on I°, have
only a few possible forms. We shall list them and describe their
geometry.
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Let f: W***— I* be a map. We define the graphic of f to be
U..s* [critical values of f]. We define a gradient-like vector field
& of f on Wr** (with respect to an admissible coordinate system of
I’) as follows:

(1) &(z.f) = 0 vanishing only on singularities of f,

(2) &z.0)=0 (i>0),

(3) Near each singular point of f there exist coordinates

Doy * oy Loy Yoy ***, Yus: a8 above, with respect to which &
is the gradient field of z.f |slice .

Gradient-like vector fields always exist and can be chosen so that,
for the most part, the trajectories of their critical points are in
general position. Let p be a critical point in a slice and let ¢, be
the one parameter group of diffeomorphisms of the slice generated
by the gradient-like vector field £. Define the stable and wunstable
set of p, written as W(p) and W *(p) respectively, by the equations,

(32) W(p) = (o] lim p,(z) = }
(33) W) = (o] lim pi2) = p) .

Let us now list the generic singularities for f: W***— I*(n = 6, s < 3).

QA) fiwtr—1I
The singularities of Morse type: Given by the formula

(34) = — Y= — Uit Yt Y
with origin identified as the isolated singular point p. The graphic is

0

Ficure 1

In a neighborhood of p, W(p) = D* and W*(p) = D***"% This is the
usual case of attaching a handle of index N\ (to the level surface
f%e) for ¢ < 0). Or equivalently, we may say that we attach a
dual (n + 1 — A\)-handle (to the level surface f~*(c¢) for ¢ > 0).

(B) f: W***—I% There are three types of singularities.
(1) A line of Mhandles with graphic
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&)

%

oo
FIGURE 2
and formula
(35) o= —Yi— o0 =Y+ Y+ e F YL
2= .

For a vertical line z, = const., it is a Morse type of singularity on
the corresponding slice. Therefore, in the neighborhood of the
singular set, the stable and unstable sets are l-parameter families
of M-handles and (n + 1 — \)-handles respectively.

(2) A birth-death cusp giving rise to a complementary pair of
lines of handles of index N\ and M + 1 with graphic

% %o

?

1 /
(20/2)*=(71/3)° (20/2)*= —(24/3)°
FIGURE 3
and formula
(36) 2y = 0.Y, — (i y?) —Y;— e — y%‘.+1 + y%.'Tz + yi+3 R ?/i+1 ’
2, =1 .
Let us examine the case of z) =2y, — ¥y — -+ — Y5 + -+ + Y2,

corresponding to the graphic on the left of Figure 3 more carefully.
The other one is similar. When x, < 0, there is no critical point on
the corresponding slice. When 2, > 0, we have two non-degenerate
critical points of index A and N + 1 respectively. At z, =0, it is
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Whitney’s folding singularity [14] with the cusp as the graphic.
Let us describe the stable and unstable sets near the folding singu-
larity. At z, = 0, W(0) and W *(0) are half discs of dim (A + 1) and
(n — N + 1) respectively. When we move slightly to the right (i.e.,
0 < x, <€), the unstable set of the lower critical point (which is the
dual (» — ) + 1)-handle) meets the stable set of the upper critical
point (which is a (A + 1)-handle) transversely at a single point in a
level surface between the critical points, e.g., f7%(0, z,).

(3) A surgery birth-death point with vertical tangent giving
rise to a dual pair of lines of handles of index A and n + 1 — X\
with graphic

.
\_

2=z n=—2
Figure 4
and formula
2y = Xy
(37) 2 2 2 2 2
= — Y — s — YT Y T Yoy .

This is actually isomorphic to (1) —a line of A-handles if we turn
%y, 2, around. z,f has one critical point of Morse type with index

given in the box. We can give the explicit gradient-like vector
field by

(38) ¢ = (y% R o y%u-u s Yy o, £ XY, F T Yoy * F xlywH) .

Let us describe the geometry of this case with some care. We
examine the case corresponding to the graphic on the left. The
other case is similar. For the slice corresponding to z, < 0, there
is no critical point. For a slice corresponding to 0 < z, < ¢, the
unstable set of the lower critical point forms a dual (n + 1 — \)-
handle while the stable set of the higher critical point forms an
(n + 1 — \)-handle. They meet on their boundaries at the level
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surface (0, z,) to form an (n + 1L — \)-sphere. In other words,
the ascending trajectories issueing from the lower critical point and
the descending trajection issueing from the higher critical point
coincide and form a sphere of dim (» + 1 — )\). When we move the
slice to the left, the size of the sphere diminishes and the pair of
critical points is eventually eliminated. The slice corresponding to
0 <2 <e is gotten from the slice corresponding to 2z, <0 by a
surgery on a sphere of dim » — 1.

Of course, when we come to a slice corresponding to z, > ¢, we
can perturb the gradient-like vector field & slightly such that the
unstable set of the lower ecritical point and the stable set of the
higher critical point meet in general position. But we can not make
them in general position near the slice corresponding to z, = 0.
This is what we call a surgery birth-death point.

(C) f: W**—I*, There are seven types of generic singularities.
(1) A sheet of x-handles with graphic

FIGURE 5
and formula
Zo= —Yi— o0 =Y+ Y+ o+ Y
(39) 2, =,
2y = Xy

This is just the 2-dim correspondent of a line of \-handles.
(2) A line of cusps giving rise to a complementary pair of
sheets of handles of index X\ and ) + 1 with graphic
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&)

FIGURE 6

and formula

o=xy —(£y)—vi— - — Y+ Ve + - + Yo
(40) ) = &,

Ry = X3

For z,=a, f|W(a) = (2, 2, @) is previously described as birth-
death cusp. The geometry is unchanged, when we change the plane
z, = const.

(3) A line of surgery birth-death points giving rise to a pair
of sheets of handles of index N\ and n + 1 — A with graphic

n1-X\
\ N
"Q\ n4+1—=X\
:I, %
FI1GURre 7
and formula
2y =
(41) zlz,-txf—yf~---—y§+y§+l+---+y3,+1

2y = X,
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This is the corresponding case for surgery birth-death points as that
for cusps in (2).
(4) A curve of cusps tangent to the (z, 2.) — plane with graphic

FIGURE 8

and formula

=Y EY - Y — e — Y Y o YL
(42) R = X
R, =X, + 2} .

For 2, = a, f| W(a) = fY(z, a, 2,) is previously described as the birth-
death cusp. For 2z, =5 >0 In the case of the left hand upper
corner, f|W(b) = f" (2, 2, b) consists of one birth cusp and one
death cusp of index X\ and A 4+ 1; when z,— 0, these two cusps
cancel each other and become one line of handles of index X and
another line of handles of index N + 1 for z, = b < 0. For the left
hand lower corner case, cusps and lines of handles all cancel out
when 2z, moves from > 0 to < 0. The other two cases are similar.

(5) A surgery birth-death tangent to the (2, z.) — plane giving
rise to a dual pair of sheets of handles of index » and n +1 —
with graphic
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51

-2
“
n-+1-N

@:i%iﬁ

FI1GURE 9
and the formula
2 = X
(43) 2 =T

H=txiEx;—yl— - ~y3+’y3+1+ cee Y.

Let us describe the geometry for the cases of the left column. The
cases corresponding to the right column are similar but in reverse.
First, we consider the case of the left upper corner. For z, =5 >0,
FIW(b) = f'(z,, 2, b) consists of one surgery birth and one surgery
death. As we pointed out before, the trajectories come down from
the critical point of index » + 1 — A\ and the trajectories go up
from the critical point of index M form a sphere of dim n + 1 — )
if we are near the surgery birth-death point. This sphere gradually
shrinks its size until it altogether vanishes when it passes the
surgery birth-death point. At the present situation, we have two
such spheres and they move toward each other and eventually be-
come identified instead of moving toward some surgery birth-death
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points. This is true at least for ¢ > b > 0. In fact, these spheres
which correspond to different values of 2, together with the two
surgery birth-death points form a sphere of dim n + 2 —\. The
size of the sphere diminishes as b — 0 and vanishes for b < 0. The
function z,f is of Morse type and it has one critical point of index .

Next, we consider the left lower corner case. For z,=15b > 0,
FIW(®) = f(zy 2, b) has one surgery death point and one surgery
birth point. These two points come close to cancel themselves out.
Therefore, when b < 0, the spheres which are supposedly vanished
after passing the surgery birth-death points just move on and no
longer vanish since the surgery birth and death points have already
cancelled themselves out. The function z,f has one critical point
of Morse type. The index of this critical point is N + 1.

(6) A swallow’s tail giving rise to two lines of cusps with

FicuUre 10

graphic and formula

=Y Y Y — Y — o — Y T Yt Y
(44) 2 =0
Ry = Uy &



PARAMETRIZED SURGERY AND ISOTOPY 419

Let us describe the geometry for the case of the right upper corner.
The other cases are similar. For z,=0b > 0, f|W(b) = f~'(z,, 2, b)
consists of one birth cusp and one death cusp. We consider the
slice corresponds to 2, = const. and describe the change when z,
moves from the left to the right. At the far left, it has only one
nondegenerate critical point (of Morse type) of index L. After we
pass the birth cusp, we obtain a pair of nondegenerate critical
points of index » and » + 1. The descending (A + 1)-handle (i.e. the
stable set) of the newly created critical point of the higher index
first meets the dual ascending (n + 1 — A)-handle (i.e., the unstable
set) of the newly created critical point of lower index at a single
point transversely in a level surface between them, then it comes
down to meet the dual ascending (% + 1 — A)-handle of the old critical
point of index A again at a single point transversely in a lower level
surface (above the old critical point). When we move to the right,
the role of the two critical points of lower index are interchanges.
Finally, it becomes a critical point of index A again when we move
to the far right. All of this happens in a disc in W(b) = F~(z,, 2, b).
When b — 0, the size of the dise supporting this phenomenon diminishes
and eventually vanishes. After we pass b = 0, W(b) just has a line
of A-handles for 5 > 0.
(7) The resolution of cusps with graphic

Ziz _(izg)i 2022
FIGURE 11
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and formula

2 =Y
(45) z1:x1'y1iyf"y§"‘"'—y§.+1+y§+z+"'+yi+1
2, = X .

This is the corresponding case for surgery birth-death points as that
for cusps in (6). Again, we shall describe the left upper corner
case only. For z,=b>0, f|W(b) = f (2, %, b) has one surgery birth
and one surgery death. The spheres made of trajectories are of
dim(n + 1 — A\) and \ respectively. They meet at the middle line
of critical points. The spheres of trajectories above the middle line
of critical points together with the surgery death form a disc of
dim M + 1. Similarly, the spheres of trajectories under the middle
line of critical points form a disc of dim % + 2 — x. These two discs
have the middle line of critical points in common and live in a dise.
When b — 0, the size of the discs diminishes and eventually vanishes
as we pass b =0. For b <0, we just have a line of MN-handles.
Note that if we follow by projection on the (z, z,)-plane, we get
the map W»**— I* of birth death cusp.

1V. Cobordism representation of 7,(<Z(M)) and w(Z(M)). In
this section, we shall give cobordism representations of 7(Z(M))
and 7,(Z(M)). Let us first describe 7, (& (M)).

Consider an object a = (W(a), 1)

M
i/ \k

(46) (W, oW, M) L= M x (D'**, aD**, 1)

\p /Po
NS
(Di+2, aDH—z’ 1)

satisfying the following conditions:

(1) 1 is the base point of dD**? and the upper triangle is com-
mutative with 7 a diffeomorphism and % the standard identification
of M with M x 1,

(2) f is a normal map [13],

(8) the lower triangle is commutative with p, the projection
onto the second factor, and M —— oW —25 3D is a smooth fibra-
tion.

Two such objects «,, @, are cobordant if we have a normal
cobordism
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MxI
/ AN
/ixid Nixid
7 N\
(47) (U; V, M x I) ———— M x (D"**, D+, 1) x T
AN /
\p / pexid
v

N
(Di+2’ aDHz, 1) < I

satisfying the following conditions:

(1) The upper triangle is commutative with U a normal cobordism
between W(a,) and W(a,) and V an s-cobordism between oW(a,) and
IW(a),

(2) the lower triangle is also commutative such that M —»V —
oD*** x I is a smooth fibration,

(3) F|W(a)s =1,2) induces the object a,(¢ = 1, 2).

We can introduce an operation «, # @, between two objects by taking
a suitable connected sum along the boundaries. It is tedious but
not difficult to see that the resulting cobordism group is nothing but
(& (M)). If we require the map f of the object @ to be a simple
homotopy equivalence and the map of the cobordism F' also to be a
simple homotopy equivalence, we have a new cobordism group which
is nothing but 7 (<#(M)). From here on, we shall always interpret
(& (M)), 7(F(M)) to be the cobordism groups as just described.
It is easy to derive a long exact sequence

— Lo o(m M, w) — n(Z (M) — n (& (M))

(48)
— Ly o, M, w)

from these cobordism groups. (48) is just another description of (8).

THEOREM 4.1. Let a: W***— M™ x (D?, oD% 1) be an object re-
presenting an element of (&€ (M)) with n + 1 =2k or 2k + 1 = 6.
Then, « is cobordant to an object (which is again denoted by «)
such that

(1) p: W—I® has only the singularities of (B) of §IIL where
I* is a product structure of D2,

(2) the lines of handles are of index k and (k + 1) only,

(8) the vertical tangents (with respect to the product structure
D* = I?) corresponding to surgery birth-death points have lines of
k-handles coming out of the top.

THEOREM 4.2. Let F: U— M x (I% 6I% 1) X I be a cobordism of
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two objects satisfying the conclusion of Theorem 4.1 with n + 1 = 2k
or 2k +1=15. Then, we may make F satisfying the following
conditions:

(1) P:U—I® has only the singularities of (C) of §III,

(2) all the sheets of handles are of index k and (k + 1) only,

(3) all the vertical tangents with respect to the product struc-
ture (I%, 0I%, 1) x I have sheets of k handles coming out of the top.

We need a lemma for the proofs of the above theorems.

LEMMA 4.83. If f: W — M X I (with n = 6) is a normal cob-
ordism relative to the boundaries, then f is cobordant to o map
(also denoted by f) such that p,-f: W— I is a Morse function with
singularities in the middle dimension only, where py: M x I—1I is
the projection onto the second factor.

Proof. Perform surgery to make f highly connected. It fol-
lows from Morse theory that p,-f is homotopic to a Morse function
with singularities of index k and & + 1 only for # + 1 = 2k or 2k + 1.
Since p, is a fibration, this homotopy lifts to one of f. If v + 1 =
2k + 1, we are done. If n + 1= 2k, it follows from the standard
trick to eliminate the (k + 1)-handles.

Proof of Theorem 4.1. Write D* as I* and perform surgery on
fi Wt — M x I* to make it highly connected. By Lemma 4.3, we
can perform a homotopy of z,f to give a Morse function with only
middle dimension handles. Using the fact that p: M x I*—[* is a
fibration, we can lift the homotopy to one of f and assume that
2./ is a Morse function with only middle dimensional handles. By
a small homotopy of f (not affecting our condition on z,f), we may
assume that p: W— I* has only the singularities of (B) of §III. If
n + 1 = 2k, using the fact that z,f is a Morse function with only
middle dimensional handles, we get the following kinds of vertical
tangents:

2 £ 2y o

I k-1 L—1 s I b

L Je+1 k1 I ke k

FIGURE 12

If »+1=2k+ 1, we get the following kinds of vertical tangents:
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2y &)

FIGURE 13

Thus, we obtain the condition regarding vertical tangents in the

theorem. Following the argument of [3], we eliminate all lines of

handles of dim =%, £+ 1. This completes the proof of Theorem 4.1.
We need two more lemmas for the proof of Theorem 4.2.

LEMMA 4.4, If f: W— M X (I%, 0I%) is as described in Theorem
4.1, then the number of cusps is even.

Proof. The number of the cusps together with the number of
vertical tangents is even. We need only to show that the number
of vertical tangents is even. If (n + 2) is even, the number of
vertical tangents is equal to the rank of K(W)( = (n + 2)/2) where
K,/ ) denotes the kernel of f, [13]. So, we have proved the case
(n + 2) being even. If (n + 2) is odd, then each slice is even
dimensional and the rank of K(slice) (I = (n + 1)/2) changes by two
as we pass a vertical tangent. Sinee this rank begins and ends
with zero, there are even number of vertical tangents.

LEMMA 4.5. We may assume that there is no cusp in Theorem 4.1,

Proof. First assume = + 1 = 2k + 1. We may introduce circles
of singularities

~0

k1

FIGURE 14
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at will, and then use swallow’s tails to introduce a pair of cusps in
the form

%0

k k+1

Ficure 15

where k, k¥ + 1 in the box are the indices of the critical points of
zp. Using these cusps, we can eliminate all the cusps by ‘inde-
pendence of birth’ [2] [3]. None of these affects the other conditions
of Theorem 4.1. Now assume n-+1=2k. In [3], Hatcher-Wagoner
give a method for trading a line of (k+1) handles for a line of
(k — 1) handles by introducing a graphic of the form

FIGURE 16

Ficure 17

and then cancelling the (k + 1) handles with the newly created &
handles. We can do the same thing by introducing a circle of
singularities we can eliminate all the (k + 1) handles without intro-
ducing (k — 1) handles. So, it eliminates all cusps.
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Proof of Theorem 4.2. Perform surgery on F to make it highly
connected. Make a homotopy of F' so that (2, z,)F satisfies the
hypothesis of Lemma 4.5 jand perform another small homotopy if
necessary such that P-F has the singularities of (C) of §III and
(2., 2,)F' has no cusp.

Now, assume =»n + 1 =2k. The vertical tangents are of the
form

k k

J3

Ji—1
k41
k+1
k-1
k+1 +1
Ficure 18

The vertical tangents for the last four form circles and we can
change them to the first four by swallow’s tails singularities. For
example, we have the following change

I k-1
k-1 k+1
FiGURE 19

Thus, we have a sheet of index k critical points coming out of the
top for the vertical tangents.

Next, we consider the case #n + 1= 2k + 1. The vertical tan-
gents are of the form
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I e k k
' k+1
]. +1 ’ -
o L+1

E+1

k41

FIGURE 20.

So, again we have a sheet of index % critical points coming out of
the top for the vertical tangents. Applying the argument of [3],
we can eliminate all sheets of the handles of index # %k, &k + 1. This
completes the proof of Theorem 4.2.

Let us now recall the cobordism representations of 7=,(<Z(M)).
We consider an object 8 = (W(B), f)

VAN
i/ Nk
P N
(49) (W, oW, M) —— M x (D, 6D**, 1)
AN /
\p /p
NS
(Di+2’ (’)\D’i+2, 1)

similar to that for w(Z(M)), but we require further that f is a
simple homotopy equivalence. Similarly, we require the cobordism
between two objects

Mx I
/N
S ixid \ixid
7 N
(50) (U, V, M x I)— M X (D**?,6D*"*, 1) X I

AN /
\p / poxid
NS

(Di+2, oD+, 1) % I
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to satisfy the extra condition that F' is again a simple homotopy
equivalence. It is easy to see that the cobordism group is nothing
but 7(<#(M)). Consider an object B representing an element of
w(Z(M)). Using the fact that f is a simple homotopy equiva-
lence and f-j = k is the standard inclusion, we can give a product
structure M x I* to W such that j: M— oW is identified with
M x (0, 0) and 5 is represented by a pseudo-isotopy problem of [3].
In fact, p» becomes the projection of the l-parameter family of
Morse function of [3] and the graphic has no vertical tangent.
Using this particular pseudoisotopy representation, we have an
element

(51) a€ WhynM)P Wh(x.M; I')

as the obstruction to isotopy to the identity. Following [3], if we
give another pseudo-isotopy representation for the object B, we
change ¢ to a + g + (=1 g for ge WhizM)P Wh(xM;T). In
fact, if 8 is changed to a cobordant object 5’, the obstructions run
through the coset of a in

(52) {(Why(m, M) © Why(z.M; I')}/{c + (—1)"c} .

So, we have the following theorem.

THEOREM 4.6. There s a natural tsomorphism

(83) oy (' (M) — (Why(z M) D Why(w.M; I')}/{c + (—1)"c} .

V. Proof of Theorem 2.1 for n even. Let us fix a cobordism
representation «

(54) (W, 5W, M) —L— M x (I%, o2, 1)

/
Ny pS
NS
(I%, oI% 1)

of an element [a]en (& (M)) where I* is a specific identification of
I* with D® Assume that a satisfies the conclusion of Theorem 4.1,
We set

(85) W =p7({t} x I) = (M x {t} x I)

and call it the t-slice of W. If {t} x I contains no cusp or vertical
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tangent, then it is an (n + 1)-dim manifold and the induced map
(56) JoW,— M x {t} x I

is a highly connected normal map. There exist 0 < ¢ <, <--- <
t, <1 such that cusps, vertical tangents, handle additions and
regular homotopies only occur at these moments and once for each
time. A t-slice for ¢ #1¢, ---,¢t, is called a regular slice. Choose
a gradient-like vector field & (§III) on W such that for ¢ slightly
away from t (i =1, ---, ) the descending manifolds of the critical
points are in general position in

(57) O_-W,=p7({t} x 0) = (M x {t} x 0).

Let us examine how the descending manifolds in d_W, look. At a
t-slice slightly to the right of a surgery birth point, the descending
manifold of index % from this surgery birth point is a framed
(k — 1)-sphere embedded in 0_W,. We call it the k-bottom of this
surgery birth. The descending manifold of index (% + 1) slightly
to the right of a surgery birth comes down via the descending
trajectories and is punctured where it meets the ascending trajec-
tories of critical points of index k. So we have an embedded
framed punctured k-sphere in _W,. The k-caps of the critical points
which puncture our k-sphere plug the holes such that it represents
an immersed framed k-sphere in 6_W,. Again, it bounds an immers-
ed framed (k + 1)-disc, unique up to regular homotopy. We fix one
and call it the (k 4+ 1)-bottom of the surgery birth.

Similarly, we can define the k-bottom, k-cap, (k + 1)-bottom,
and (k + 1)-cap of a wusual birth point, i.e., cusp pointing to the
left. The k-cap can simply be gotten from the (k& + 1)-bottom by
pushing it out slightly, and the (k + 1)-cap is just the trace of
pushing out. From the independence of birth [3] we may assume
the k-cap and (k + 1)-cap are honestly embedded k-disc and (k + 1)-
disc, respectively.

When t moves to the right the various k-caps and (k + 1)-caps
move toward their death points in a definite fashion which we shall
describe shortly. We shall record the geometric movements of k-
caps and (k + 1)-caps algebraically, and eventually we shall have a
complete invariant for [a] e m(Z(M)).

Let us fix an orientation for W at the base point. Order all
the critical points of index %k right after their birth, and order the
correspoding ecritical points of index (k + 1) accordingly. Choose
paths from the critical points to the base point compatibly over
their life time: Fix a path from a critical point of index %k right
after its birth and fix the path from the corresponding critical point
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of index (k + 1) by going around the (surgery or usual) birth point.
Then, the path from a critical point in a ¢-slice is gotten by follow-
ing the critical line back to the initial critical point followed by the
path from this eritical point. Fix the orientations of the descending
manifolds compatibly by means of the paths. We also orient the
tangent space of each critical point in a slice such that the rightward
normal to the slice P the orientation of the tangent space of the slice
is the orientation at the base point transported along the above path.
We also orient the ascending manifold of the critical point such
that its orientation @ the orientation of the descending manifold
is the orientation of the tangent space of the critical point. Finally,
we observe that each critical submanifold meets each level surface
generically in a (k — 1) or k¥ dimensional submanifold, which we
orient according to: upward normal € the orientation of the inter-
section is the orientation of the critical submanifold.

Now, we embark on a program to describe how the critical
submanifolds fit together in a t-slice W, by k-caps, (k + 1)-caps and
their changes. We consider in turn the case of a regular slice and
seven varieties of singular slices.

(A) A regular slice. Let W, be a regular slice. Inductively, we
assume that k-caps and (k + 1)-caps are given for this slice. Let us
describe how the critical submanifolds fit together in terms of them.
The phenomena persist until we meet the next slice W, (i =1, -+, 7).
In the next few paragraphs, we shall describe the changes when we
pass these singular slices. The ecritical submanifolds fit together in
two fundamental ways on a regular slice. We refer to these as a
(k 4+ 1)-handle being attached along a k-handle or across a k-handle.

k-cap plugs the (k+1)-
bottom of a (k4 1)-cap
—— a (k+1)-handle being
attached a k-handle.

k-cap cuts across the
(k 4+ 1)-bottom of a (k +1)-
cap — a (k + 1)-handle
being attached across a
k-handle.

» (k+1)-cap

FicUure 21
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The critical submanifolds fit together transversely along a common
part P. In the first case, P is a union of an interval and two k&
discs. We shall mostly be concerned with this intersection in a
level surface between the critical levels involved, where P now is
equal to a single point intersection between two framed k-spheres
in a 2k-dim manifold. In the second case, P is equal to a single
point intersection between a framed k-disc and a (possibly punctured)
k-sphere in a 2k-dim manifold. Call such intersections persistent
since they persist to nearby slices. Each handle may be involved
in both kinds of intersection many times and we count each time
separately. Let e, be the framed descending manifold of the <th
critical point of index %k together with the corresponding framed
immersed k-disc D* = the ¢th k-cap in o_W,. Moving along the
ascending trajectories slightly, we may separate the intersections
of the k-caps and we have an embedded framed k-sphere for e,.
Let g, be the framed descending manifold of the 4th ecritical point
of index (& + 1) together with the corresponding framed (k + 1)-disc
D' = the ith (k + 1)-cap in 0_W,. (e}, gf in Figure 21 denote the
ascending manifolds.)

Let U be the boundary connected sum of the normal dise
bundles of the e,’s, connected along the paths to the base point.
The framings and the orientations determine classes [¢;], [f:] € K.(0U)
with [¢][f;] = d.;; and [g;]€ Kl W, U) [13]. Following [12], we
obtain an element AeS”VU(nlW), where

e a=([771 )
represents the Wall surgery invariant for the normal map obtained
by the restriction to this slice; we shall call it the slice tnvariant.
Note that for e¢;,, g, not in this slice, we fill out v by 0 at the 4th
column and a by 9d,; at the ith column. (Of course, A represents
the 0 obstruction since the surgery problem is visibly trivial.)

The slice invariant can be obtained by measuring the intersec-
tions as follows. If P is a persistent intersection, let ¢, = +1 be

the sign of the intersection at P in a level surface, and let goe 7, M
be the class of the path from e; to g, via P.

;= > erfp summing over P where
P
(59) g; attached along c,,
iy = ZP €rdp summing over P where

g; attached across e,.

Moreover, there are certain intersections between D}*'(the jth
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(k + 1)-cap) and oD%+ (the <th (k + 1)-bottom) consisting of circles
and intervals which will be counted. We only use the nontrivially
covered circles and the intervals joining e, C 0D%*' to e, C 0D (for
any p, q). Such a component @ determines &, = =1 by comparing the
orientations of

(60) (@D @ (z(D§7)/(Q))

and 7(6_W,) at @ using the path from g, to the base point. Also
geem W is determined by the path from oD* to D%* via Q. Then,

(61) @i = el summing over @ of the above.
Q

For simplicity, we supress the reference to the form [a] = [a,;] for
the discussion. See [12] for more details. If ¢e€ (¢, t..), then the
slice invariant is independent of ¢, and we denote it by A4,. Alter-
ing the order, orientation, and base point path of the critical points
we replace e; by eJc;(syy)) for e, ==*1, s;oenx,W or g; by
9:(&;:(s;5)). Thus, we replace A by H(z)*A or AH(z) where 7 is a
generalized permutation matrix = (&;;8.;) and H is the homomor-
phism® defined in [13].

In addition to the slice invariant A, which is independent of
te(t, t,,,), there is another invariant, the slab invariant Z° which
is gotten by looking at the whole slab [t, t,..] at once. Z? will be
written as

q q

& v )=l

yij)
with the entries 27, y%e(Z, x mM)[zx,W] of [4]. Its definition
depends heavily on certain choices to be made in the singular slices
t, and t,,,. At each singular slice, there are various persistent
intersections P which come from the left and go to the right. Each
persistent intersection is equipped with a loop (from g} to g; or
from e, to g; via P). At a level surface, each component of the
persistent intersection over the slab [¢,, ¢,..] has two framings either
gotten from the normal bundle ¥(g;) of g; and the tangent bundle
7(g9F) of g¥, or gotten from the normal bundle v(g;) of ¢g; and the
tangent bundle z(¢;) of ¢,. At a singular slice, we choose: (1) defor-
mations of the loops to canonical loops, (2) deformations of the
framings to equal framings (up to the sign of the last vector).
Following [4], we can associate to each component of a persistent
intersection P over [t,, ¢,..] an element

(63) (up, €pVp)gr € (Zy X T, W)[m, W]

> h( ) is the lifting of H( ) to the Steinberg group. Some times we identify them
if no confusion aries.
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where ¢5, gp are as before, u,<c Z, comes from the comparison of
the framings (Z, = 7(GL(R))), and v, e w,(W) comes from the com-
parison of the two ways of deforming the loop P to the canonical
loop (one via gF and the other one via g;, or one via e, and the
other one via ¢;). Then,

2y = ZP',(uP, ErVp)0p summing over P where g;

is attached along e,
(64) ¢ _ i
Yi; = ZP‘»(MP’ €pVp)qp summing over P where g;

cuts across e,.

Of course, the slab invariant depends on the choices made at the
singular slices. We shall discuss the change in the next few para-
graphs where we describe the nature of each singular slice.

(B) Geometric cancellations 1.

t<t, t=t, t>t,

FIGURE 22

On the singular slice ¢, of the above deformation, there is an
instantaneous intersection I between ¢; and gf(gotten by the defor-
mation of the gradientlike vector field &) between the ascending and
descending k-spheres in a level surface between the critical points.
This results in the appearance of two persistent intersections P.
for t > t, where ¢g; is attached along e¢,, Let g,em, W be the path
from e, to g; via I. Then, P, receive invariants

gPi:glv

65
(65) sPizil.

so that ¢p g, + €»_gr_ = 0. Thus, the slice invariant is unchanged
by this kind of singularity. Both P. begin life as I, so the choice
of the deformation of the loops and the framings of P. are equal.
The only slab invariant which can be altered by varying the choices
is x4 in Z?% In fact, varying our choices by (u,v)eZ, x 7,W
changes z?; by

(66) (%, €p,0)9p, + (%, €p_v)9p_ = (2u, v — v)g; = 0.

Hence, Z?* + Z* is independent of the choices made at ¢,.
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(C) Geometric cancellation II.

t=t, >t

t<¢t,

FIGURE 23

On the singular slice ¢, of the above deformation, there is an instan-
taneous intersection I between ¢; and g; corresponding to a regular
homotopy of the ith k-cap D% and the jth (k¥ + 1)-bottom in o_W,.
This results in the appearance of two persistent intersections P,, P_.
Let g,en,W Dbe the path from e, to g; via I. Then, P. receive
invariants

gPi :gly

67
(67) ept:il,

so that the slice invariant does not change. Again, both P, begin
life as I so we choose the deformation of the loop and the framings
to be equal. Exactly as before, the sum Z°* + Z? is independent
of any choice made at ¢,.

(D) Handle addition 1 (k/k).

t<t, t=t,

FIGURE 24

On the singular slice ¢,, there is an instantaneous intersection I
between g} and e;(in fact, gF D gF and e¢;De;). If P is a persistent
intersection, corresponding to a (k + 1)-handle g, attached along
e;(respectively across ¢;), then it splits into two after passing the
singular slice, with one copy for the original intersection, and the
other for the new one where g, is attached along e,(respectively
across ¢;). Let g,en,W come from the path from e; to gF via I,
¢ = =1 compare the orientations of g and g Cg¥. Thus, we
have new terms describing how g, is attached along e¢; and across
e;, which are ¢,9,a;, and —¢,5,7;,. Thus, the effect on the slice
invariant is multiplying from the left by H(E) where
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(68) E =1+ E (91

is the elementary matrix with ¢,9, in the (7, 7)th spot.

Following [4], we make the loops at the new intersections
homotopic to the product of the loop at I with the loops at the old
intersections, and we can give framings of the new intersections
such that the slab invariants Z°* and Z* over [¢,., t,] and [t, ¢,..]
are defined. Let us now consider the matrix

(69) ALZ0 + AT Z0

where A, ,, A, are the slice invariants of (¢,_., ¢,), (f, t...) respec-
tively. (69) is a matrix with entries in (Z, X 7,W)[z,W] and its
trace

(70) Tr (AL + A7 Z%)

is defined and can be viewed as an element of Wh,(mr,W; I') [4]. Let
us check what is the effect on (70) if we renormalize at I, it follows
from [4] that we may assume that Z,., is unchanged but Z° is
replaced by

a
() 2+ (Bl 20 )
a B .
where A, = (7 5), (w, v) € Z, x m,W. Thus (70) is changed to
@
(72) Tr (42,2 + (A;1Z‘1 + A;'H (E;;(u, 1;)<s,gl)(7 )) .

It is not difficult to check that (70) is equal to (72) in Wh(z, W; ).

(E) Handle addition II (k + 1)/(k + 1)).

et

t<t, t=t,

FIGURE 25

On the singular slice, there is an instantaneous intersection I be-
tween e¢f and g;. Let g,en,W come from the path from e} to g;
via I and ¢; = & 1 compare the orientations of e} and e} Cef. The
effect on the slice invariant is multiplying from the right by
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H(I + E;j(¢;9;)). Similar to the previous case, we may assume that
the change of A4, ,Z97' + A;'Z? by renormalization at I is in A4;'Z°
only. It replaces Z7 by

(73) Z + (a(u’ v)E")

v(u, v)E,

where E, = E;;(e;9;) and (u, v)€ Z, X r,W. It is easy to check that
Tr(A;5LZ + A*Z%) € Why(z,W; I') is again invariant.

(F) Regular homotopy. In 0_W,, we have the following situa-
tion during a regular homotopy:

D% < P
J P
- >0 - ,< ’L e ,<\PR
AN 1) \P. P I

t<t, t=t, t>t,
FIGURE 26

On the singular slice #,, there is an instantaneous intersection I,
which evolves two new intersection P,. Move them across the edges
of D¥s to the g,’s. This yields a collection of new intersections
P, --. corresponding to ‘‘g, is attached across e, or ¢;’. Let
gr €, W come from the path from e, to ¢; via I ¢, = =1 according
to P, stays on e, or e;. The invariants for P, are g, = g, and
¢p, = €. We end up with new terms describing how g, is attach-
ed across ¢; and e¢; which are ¢,g9;a,; and (—1)**'¢;g,,, respectively,
and the effect on the slice invariant is multiplying from the left by

I 07 [D]
4 G D+ (~1yD* I] [+] )

where D is the matrix with e;9;, in the (4, j)th spot, and zero
elsewhere.

The loop at P, is homotopic to the composite of the loop at P_
and the loop between D? and g,. We have an obvious framing at
P, gotten from P_ (and hence from I). Similarly, we have the
loops and framings for the points P, ---. Renormalizing at I,
we only change the component Y? of Z? to Y?*+ ((u,v)D +
(—1*"[(w, v)D]* where (u,v)eZ, x 7;W. One can check that
Tr (A2 Z + A;'Z%) in Wh(z(W); I')/{c + ¢} remains invariant.
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(@) Birth-death. The following pictures are sketches for a
usual birth point. (Death point is similar.)

FI1GURE 27

On the singular slice, there is an instantaneous intersection I between
e; and ef. Moments later, we have a new intersection with g; being
attached along e,. It follows from [3] that the effect on the slice
invariant is multiplying from the left by H(E) where F is a
generalized permutation matrix. Moreover, Tr (4;1,Z27' + A;'Z9) is
unchanged under renormalization of I. Death point is similar.

(H) Surgery on a k-sphere. The following pictures are sketches
of a surgery birth. (Surgery death is similar.)

FIGURE 28

For convenience of notation, we assume that indices involved are
all 1 so that the invariant before surgery is

10'00

|

One can easily reduce the general case to this case. On the singular
slice, there is an instantaneous intersection I between ¢* and g,.

(75)

a 0 8
0 10
v 0 ¢

oS o ©
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Let g;en,W come from the path from g to ¢, via I, and let
e; = =1 come from the comparison of the orientations of ¢, and
e¥. In 0_W, we have the following corresponding picture of
Figure 28:

FIGURE 29

Let b, (respectively c¢,) measure how g, is attached along (respec-
tively across) e, q > 1) and let b and ¢ be the corresponding column
vectors. Then g,(¢ > 1) is attached along (respectively across) with
intersection number — &;g,(b*Y + (—1)*c*@) (respectively 0). Here
we are using the fact that the algebraic intersection number of
oD and oD!"' is zero. Then, the effect on the slice invariant is

to left multiply by

0 0 [E OJ

0 0 c 0
1 —b* | [0 OJ
0 1 J 00
where ¢ is the intersection number between D!*' and 9D**'. Changes

for new intersection points replace Z¢ by its sum with a matrix
of the form

0 0
0 1

€9 0 1 0

0 0 b 1

(—1)¢9,0 |0 0 (—1)t*ie*
0 0j0 1 ¢ 0

(76)  0.(b, ¢) =

o)

i 0 — (U, vz)(szgl)(b*7+(—1)k0*a)' o (g, ’Ul)(ezgl) ]
X (%Y +(—1)¢*Y)
(ui, v7)b, 0 0
(77) L (u, v1)b, 0 0 J
0 0 0 7
(u', v)e,
(uy', vi')e, 0 0 ]

where (u;, v,), (w}, v}), W/, v{) e Z,xw,W. It is clear that Tr (4,227 +
A;'Z9) is invariant under renormalization of I.
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(I) The invariants 0 € L(x, W), W) and e Whz(W); ). In
the preceding paragraphs, we have defined the slice invariant A,_,
(in (¢,_, t)) which changes to 4, as we pass the singular slice t,.
In each case, A, = E,A,_ F, where E,, F, are ‘elementary unitary

matrices’ which can be lifted to E,, ﬁqe% (., W). Let A, = id.
A, is a generalized permutation matrix which is lifted to A,¢

StU(z,W). But
(78) A =E, ...BAF ... F,

is another lifting of A,. So, we have a unique element f¢

Lz (W); W) by comparing A, and A,. Note that changing the
order, orientation of the k-handles or altering the path from the
base point to a k-handle are merely multiplying from the left by
h(F) where E is a generalized permutation matrix, conjugates E‘i
by (E), but F, is unchanged. Similarly for (k + 1)-handles. Thus,
¢ is unaltered and is an invariant for our representation a at the
beginning of this section.
The slab invariants Z¢ can be combined to form

r - X
(79) Z:qZZIAq ARS v
Let us set
(80) C=Tr ZeWh(x,W; /{c + €}.

The analysis of preceding sections implies that { is independent of
all choices used to define Z?. Altering order, orientation and paths
to the base points of (k& + 1)-handles are multiplying from the right
of A, by h(E) where E is a generalized permutation matrix. Simi-
larly for k-handles. So, { is another invariant of our representa-
tion «.

J) The mvariance of 6 and L. The construction of 4 and (
depends on

(1) The choice of a cobordism representation of ac & (M),
which determines the graphic together with the singular phenomena
of vertical tangent and cusps:

(k lc> <k#1 kl>
k41 k1 i k

FiGURE 30
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(2) The choice of a gradient-like vector field &.

(8) The choices of k-, (k + 1)-caps.

The above choices can be accomplished through a sequence of
changes of the following sorts:

(1a) >< — =<
(1b) <>
(1e) )( —

(1d) O

(2a) Introduction or cancellation of handle additions in a regular
range.
(2b) Handle exchange.
(8a) Imtroduction or cancellation of regular homotopies in a regular
range.
(4a) Permutations of order of any of the above phenomena.
Let us show that 6 and { are independent of the above changes
in reverse order, provided that dim > 15.

Permutation of order. Since the geometry of different cases
of permutation of order is similar, let us consider only two cases.
Let us first consider permutation of a regular homotopy and a
k-handle addition. Let E =1+ E,(p) (pem, W) be the elementary
matrix corresponding to adding e, to ¢;. Let [D] (with D = E,.(q),
gen, W) be the form of a regular homotopy between e, and e,.
Let us assume that the regular homotopy begins on the left. If
1, § # k, h, then these phenomena are quite independent so that E and
[D] remain unchanged by the permutation, so do ¢ and {. The inter-
esting case happens when h = 4. Although E remains unchanged by
the passing, [D] becomes [E**DFE]. This corresponds to the identity

(81) WEN(D)) = WIE*DED(E)

in §t\f](7z:1W) [11] [12], and so ¢ is unchanged. Now consider {. Fix
all deformations at ¢, » == ¢ + 1. Since none of the persistent inter-
sections in (¢,, t,.,) are restricted by compatibility in the choice of
deformation at ¢,,,, we choose the deformation so that Tr A;*X?=0.
By ‘translating’ these choice of deformations to the situation after
permutation, we have Tr A;'X? =0 after permutation too, and {
invariant.
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Permutation of a regular homotopy and a surgery. Let
(b, ¢; &) be the invariants of a surgery involving g, and e,-(Cf. (H)
of this section.) Let [D] be the form of a regular homotopy involv-
ing ¢, and e, as above, which passes the surgery from right to left.
Since ¢, and ¢, exist in a slice before e, has appeared after the
vermutation, %k, &~ > 1. We have the following picture to illustrate
the situation in o_W:

—
-
’

’
/
|
[
’
i ’
H /
i

1

surgery regular homotopy

=)

regular homotopy surgery

FIGURE 31

Delaying the surgery which induces g,, until after regular homotopy,
will not change [D] of the regular homotopy, but will alter the
data of surgery to (b, ¢+ Pb;&) where P =D — (—1)*D*. This
corresponds to the identity

(82) U[DNG.u(b, ¢; §) = 6.(b, ¢ + Pb; U[DI)

~
in StU@x, W) [11]. So, 6 is invariant under this permutation. The
analysis of the invariance of { is analogous to that of the previous
case.

Introduction or cancellation of phenomena in a regular range.
Consider the following list of phenomena

TABLE 1
o~
Type Effect Identity in StU(z, W)

k-handle addition p times e¢; added to e; then 1=h(E-YWE)

removed
(k+1)-handle addition p times g; added to g; then 1=h{E)R(E-Y)

removed
regular homotopy regular homotopy of the 1=i([— D)D)

form [D] between ¢; and

e;, done and undone
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Let us indicate the proof for the first case. Here are the pic-
tures in o_W.

e | | ——
i | | [
1 |
€ I
il { |
I L J
before the moment of after
introduction
FicUre 32

Geometrically, the effect is to introduce two /k-handle additions,
with the same invariant, but opposite sign, corresponding to the

o~
identity of StU(x,W) in Table 1. As for {, we may make the de-
formations symmetric so that Z¢ = 0. So, { is unchanged.

Handle exchange. Let us assume the handle exchange (cf. [3])
takes place between ¢, and g, with invariant nemx, W. The slice

invariant in [t, t,..] just before the handle exchange is then of the
form

Oa*
b ¢
33 A =——
(83) =l
LS g

In 0_W the pictures, going once around the handie exchange in a
two parameter family, look like:

2

/ L —
=\ I/l handle addition -
/ X — .
/ ’ (ey—e; +e:b)) ~———r 7
104 - Tl B
C
no change regular homotopy

(these low dim
pictures not

withstanding)
1
- 3
/,/ —-"Y/ -\-—J——\,
-7 V. k+1/k+1 handle addition . L /,/
N S (gx>g+— ga) =T -
7 //
— Y

FIiGURE 33
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The corresponding identity in ;/S\i/f(nlW)/i’\ﬁ(ﬂlW) is

0 0 |0 0 1 —xa|0 0
[N 1 |0 0 0 1|0 0
(84) — — A =A4.
an 4+ (—1Dfdh (—1FfN|1 —bn 0 0i1 0
F2y 0 |0 1 0 Olxa 1

(See [11] for the definition of ﬁ(mW) and the identity.) Since this

7~
identity lifts to StU(x,W), a handle exchange does not alter the
invariant . A similar analysis shows that { is not altered either.

Birth, death and surgery. Consider the following list of phe-
nomena:

TABLE 2
Type Identity in StU(z: W)
> < ~ it Ai=A4,, then BrAFA; ' =FE-A,F-A;~
7/ provided that the left hand side is in KUy(4)

< —

if (6-1A, ) =é"1A,, then
) ( -— = BA,FAT'=E676-1A, JF-A.™"
provided that the left hand side is in KUy(4).

O — Gi=1

(Note: 7 is a transposition, o==0(b, ¢; &) Cf. (H) of this section.)

We shall only treat the second last case. (The first two cases are
essentially treated in [3].)
Let us now consider the effect of

FIGURE 34

Suppose that the dying handles are first in the ordering and the
rest second. Let 7 be the transposition interchanging 1 and 2, and
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let ¢ = 0,(b, ¢; §) corresponding to the surgery death. (Cf. (H) of
the present section.) Then, ¢°(=0¢#”) corresponds to the birth,
A, =0"'A,, A, = 0"A, and

(85) 0 =Eé6A, FA;

before the change. Note that A, is like the identity in the places
affected by 7 so that A; = A,. After the change, we have

¢ = EA, FrA:
= E66A, FrA:
(86) = (Bo-A:FA;Y
= (B6761 A, FA;y
=6 =0.

Thus, ¢ is unchanged.

As for {, the symmetry of this situation and Tr(ff;)“l(Z")T =
Tr A;'Z* make { unchanged.

So, we see that 8 and { are well-defined for dim = 15.

(K) For 6 Zdim M < 14, we prove the well-definedness as fol-
lows. Fix a simply-connected closed manifold V*'* of index and
Euler characteristic 1. If we have a cobordism representation «

M
i/ \k
/ N\
(88) (W, 6W, M) — M x (I*, I 1)
\p 7
\ I/po
(I*, oI*, 1)
of an element [a] e n (& (M)) with M as the fibre, we can form the

product of the cobordism with ¥** to define a representation of an
element [a]) of 7 (Z(M x V%)),

(89) ¥: 7 S (M) — w(E (M X V™)

is a homomorphism for dim M = 6. Let us define a([e]) = 6(«x+([a])
and {([a]) = (v ([a]) if 6 < dim M < 15. Using the product formula
of [3] and [13],6 and { are well-defined and agree with the one
parameter family definitions for dim M = 6.

LeMMA 5.1. The diagram (26) commutes for n even.

Proof. This is clear except perhaps for the first square. The
homomorphism o: 7,.5(M) — 7,2 (M) can be described as follows.
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Let F: Wt — M x D* x I be a normal map which is a diffeo-
morphism over M x (D* x 0U S* x I). Every class in 7,(Z(M)) is
represented by such a map, and the image under ¢ is represented
by the restriction over M x D* x 1. We shall construct a map ¥
in such a way as to realize the class of AeSU(x M)z, M = 7, W) so
that the image under ¢ is 0[A] € Whyw.M)/{c + €}. Recall Wall’s
construction of [A]: Begin with Id: M™ X D* x I— M" x D* X I. Then
add I (5 + 1)-handles M x D* x 1 to trivially embedded S* x D**¥’g,
The new end of the cobordism is an even dimensional surgery pro-
blem with a canonical subkernel. Use A to get a new subkernel,
and add ! more (k¥ + 1)-handlef to kill it. The resulting cobordism
realizes [A] € L, «(w. M, w).

We shall do exactly the same thing, taking care to keep track
of the singularities at each stage. Each of the ! surgeries introduces
a circle of singularities (Of.,.. If we do not put these in general
position, we can see the canonical basis of the new cycles consists
of: the descending manifolds of index % + 1 critical points, and the
ascending manifolds of the index % critical points. However, we
can place these cycles more symmetrically by the use of three
swallow’s tails to get:

O~ G= 3|

FIGURE 35
At this point, the odd dimensional invariant is

0—I\ (0 I\ (I I
(%) A D)z(ﬂ Z>h(0 I)am(z, OB

where the factors are positioned as in the following picture [11] [12]:

| Uy
{(e*) 1(e) o hilh

FIGURE 36

The canonical cycles now appear as descending index (4 + 1) mani-
folds together with the trace of the k-handles over which they open



PARAMETRIZED SURGERY AND ISOTOPY 445

up, as in the following picture:

IR
-

FicUure 37

Henceforth we draw the picture as

Many symmetrized circles, all super-
imposed on one another, and all cycles
appearing symmetrically.

FiGURE 38

Now, we introduce the identity

@ L))

into the picture as follows

FI1GURE 39

Then, the new ingredients are moved by the commutation relations
~
[11], according to the arrows in the diagram. Because A ¢ SU(x.M),
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and the particular form of the odd dimensional invariant, therejis

no change in any of the pieces of the invariant at the end of the
commutation. On the left, we get

< = = O
3(4) )

A E)R(A)

(A" R(E)R(A(eMYh(e)
FI1GURE 40

Near the surgery, we get

RATY

@@i

Figure 41

by repeated applications of the commutation identities. The graphic
has returned to its original state, except for an addition of J[A].
Finally, we note that the effect on all of this on the canonical basis
is to replace it by Ae,, Ae, --- ete. Thus in killing the new graphic
in the standard way, we realize a surgery obstruction [A].

For the commutativity of (26) it remains only to observe that
the Why(z; I')/{c + €¢} invariant of elements of Im(d) is zero. This
is because the invariant factors through n (& (M)).

Theorem 2.1 now follows for n even by the 5-lemma.

VI. Proof of Theorem 2.1 for n odd. Similar to the n even
case, we have a cobordism representation « of an element [@] € 7(Z"(M)),
and normal maps

(92) fa W, —s M x {t} x I

if {t} x I contains no cusp or vertical tangent. We assume that the
surgery birth and death always have the following graphics:

k k

FIGURE 42
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On the other hand, the usual birth and death have the following
graphics:

k+1

FicUre 43

At a t-slice slightly to the right (respectively left) of a surgery
birth (respectively death), the bottom of the descending critical
manifolds of two critical points of index %4 meet 0W, in two framed
embedded (k¥ — 1)-spheres. We call them the k-bottoms of the surgery
birth (respectively death). They bound immersed framed k-discs in
0_W, which will be called the k-caps of the surgery birth (respectively
death). The intersections of various k-caps measure the linkings of
k-bottoms, and hence the intersections of the cycles in the homology
kernel of the normal map f,: W,— M x {t} x I. In fact, we may
assume that one of the pair of k-caps begins (respectively ends) its
life as an embedded framed disc which intersects the other k-cap
only and the intersection is an interval.

intersections

Figure 4

Similarly, at a t-slice slightly to the right (respectively left) of a
usual birth (respectively death) point, the critical manifold of the
critical point of index (k¥ + 1) meets 0_W, in a k-disc whose boundary
is the intersection of the descending manifold of index & with o_W,,
which is a framed (& — 1)-sphere. They are (k -+ 1)-bottom and
k-bottom of the critical points respectively. Pushing the (k& + 1)-
bottom off itself slightly, we can fill the k-bottom by an embedded
framed k-disc as the k-cap of the critical point. At the beginning
(respectively ending) of their lives, this cap is disjoint from the
other caps.
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l+1

Ficure 45

When ¢ moves on, we meet handle additions, surgery birth-death,
the usual birth-death and regular homotopies of the caps at isolated
moments. There exist 0 < ¢, < -+ < t, < 1 such that cusps, vertical
tangents, handle additions and regular homotopies only occur at
these times, once for each time. We have regular t¢-slices for
t+#t,--,t. Let us now fix a base point = € W together with an
orientation of W at =, a path Y(a) from = to each arc @ of (k + 1)-
handles together with an orientation of the core disc. Insisting that
the intersection number at a level surface in a slice slightly to the
right of a birth point to be +1, 7(a) induces a path to the correspond-
ing arc of k-handles by going around the birth points. Order these
pairs of handles at the birth point. Breaking up the arcs of k-handles
at the surgery birth-death points, we have arcs of Zk-handles.
Similarly, we join a path 7(a) from = to each surgery birth point,
together with an orientation of the core of the upper arc of k-handles.
Insisting the linking number of the k-bottom of the upper handle
(whose k-cap is an embedded framed disc) with that of the lower
handle at a slice slightly to the right of the surgery point to be
41, we have an analogous path to the corresponding lower arc of
k-handles. Order these pairs of k-handles at the surgery birth points.
Let D, DF; -« «; DE, D! be the pairs of (k¥ + 1)-handles and k-handles
created by usual birth and let D!, D, ---; Df o, Df, be the
pairs of k-handles created by surgery birth with the above ordering
such that DFf.,,, and Df.,(1 =1, ---, 1) are upper and lower handles
respectively. Let us now divide the coordinate ¢ into subintervals
0<t, <+ <t,<1. For t+t(i=1,---7), D" and D! form
geometric bases g, +++, g, €, <+, €, €opry ** 7, 64y Of the kernel chain
complex of the normal map f,: W,— M x {¢} X I. We shall compute
the slice invariant of the parametrized surgery problem W, and its
change (when we pass ¢ = ¢,) in terms of these bases. The analysis
is partly similar to that of [3] and partly similar to § V. We shall
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not always give so much detail as there.

(A) A regular slice. Let W(t, <t<t,+1,2=1,---,7) be a
regular slice. We shall describe how the critical manifolds and caps
fit together. Let g; be the descending manifolds of the jth (k + 1)-
handle. It may meet the critical points of index %k several times and
we have a (k + 1)-handle D™ attached along k-handles e, ¢;, etec.
Note that we have no (k + 1)-handle attached across another k-handle.

9; A (k+1)-handle is attached
along a k-handle

(k+1)—cap DE* ~*—J-cap DV

FiGURE 46

e’ is the dual handle corresponding to ¢;, and ¢ is the dual handle
of ¢;. The critical manifolds fit together transversely along a common
part P which is a union of an interval, a k-disc and another (k¥ — 1)-
disc. We shall mostly be concerned with this intersection at a level
surface (between the two critical points involved), where P is a
single point intersection between a framed k-sphere and a framed
(k — 1)-sphere in a (2k — 1)-dim manifold. Next, we observe that
we have intersections and self-intersections of the k-caps of the
critical points of index %. They are intervals or circles (generally
nontrivially covered).

A k-handle is attached across
another k-handle. P denotes the
intersections.

Ficure 47

Note that k-handles are always attached across each other. When
we follow the trajectories issueing from the k-caps upward and
them in general position until we come to a level surface slightly
above the bottom and then we follow the trajectories issueing from
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the k-bottoms only and go up to the critical points, we have k-cycles
of the kernel of the normal map f, represented by immersed framed
spheres e, --+, ¢,,,,. The intersections of the k-caps become the
intersections and the self-intersections of the ¢’s. On the other hand,
the (k + 1)-caps together with the descending manifolds of the critical
points of index (k + 1) form punctured (k¥ + 1)-spheres g, ---, g..
Clearly, we have {g,, ---, g,} as a basis of the (k¥ + 1)-chains of the
homology kernel of f,., Now, we are ready to define the slice in-
variant for a regular slice.
It is a based chain complex

b7}
(93) 20— Cppy— C,
with {g,, ---, 9.}, {€,, - -, €,,21} as Dbases for C,,, and C, respectively
such that

(i) C, has the intersection form X\ and the self-intersection
form ¢t given by

summing over P where P are

e, €;) = € . .
(e:, &) %“ rdr the intersections of ¢; and ;.

summing over P where P

;) = 3 . .
te) g‘ #9» are self-intersections of e,.

summing over P where P
are intersections correspond-
ing to g; being attached
along e,.

(iii) C,/o(C,,,) is based and the induced form (G, \, £t) is a special
Hermitian form representing the surgery problem

(ii) 09; = ; Ep0rl;

foW,— M x {t} x I.

Such a based chain complex is called a radical special Hermitian
Jorm. (Actually, (G, N, p) is visibly representing the 0 obstruction
for surgery.) We take the above radical special Hermitian form as
our slice invariant. For te (¢, ¢,,,), the slice invariant &, is inde-
pendent of ¢. Altering the order, orientation and the path from
the base point to the arc of critical points, the radical special Her-
mitian form changes like the usual special Hermitian form of [13].

For each component Cof (k + 1)/k intersection or each component
of intersection of k-caps in o_W, we have a loop Mx) for x€C pro-
ceding from * to the (4 + 1)-handle or the first k-cap via the path
as defined in §V, passing through the intersection to the %-handle or
the second k-cap and then coming back to * via the path as defined
in § V. Mx) determines an element ¢ ez, W. Following [3], we define
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representatives g(o) for o em, W and X(z) for x€C. As we remarked
before, the intersection of k-caps becomes points for a fixed slice,
if we follow the trajectories up slightly and put them in general
position. Therefore, we may view the component Cin W,(t, <t <{t,.)
as an interval or a circle. If it is a circle, it follows from [4] that
we have a map X(C): S — (QW),.

Following the analysis of §V and [3], we define a loop A(x) and
its contraction for = being an (k + 1)/(k + 1) intersection, k/k inter-
section, birth-death, surgery birth-death or regular homotopy point.
They occur at the singular slice for ¢t =¢{¢ =1, ---, ). Using the
contractions of the loops at the singular slices, we have X(C): S* —(2W),
for C an arc of intersections. Giving the standard framing to the
intersections near a singular slice, we make X\(C) a map to framed
cobordism. Define A, = (a},) with a}, = Ya(C)o(C) where C runs
through all the components of (k + 1)/k intersections of the mth
(k¥ + 1)-handle with the Zth k-handle in the interval (¢, ¢;,,) and a(C)
is the element of Q/"((2W),) constructed as above. A;isan(s + 2l)xs
matrix. Next, we define B, = (b},) with bi, = >, 8(C)o(C) where
C runs through all the components of intersections of the mth k-cap
with the Ahth k-cap in the interval (¢, t;,,) and B(C) is defined as
a(C). B, is an (s + 21) x (s + 2l) matrix. B, may be viewed as the
matrix of the bilinear form with coefficients in framed cobordism
recording the mutual intersection data. In the next few paragraphs,
we shall define elementary matrices F',, GJ(a = 1, ---, ¥ — 1) in E(4, s)
and F(4, s + 2r) respectively. They record the change of the slice invar-
iant as we pass the singular slices. (G.G,_, -+ G) " and F.F,_, --- F,
act on A, from the left and the right as linear transformations.
Similarly (G, --- G,) acts on B, as a Hermitian form. We have

a;, = Tr[(G; - - - G) AL - - - F)]

94 v
( ) 181 = ngx b;+zj—1: s+2i[(Gi °tc Gl)*Bi(G’L s Gx)] .

We define the slab invariant for [¢;, t;..] to be the class

(95) @, + B, € Why(x; I')/{c — ¢} .

(B) Geometric cancellations. Similar to §V, we have the fol-
lowing geometric cancellations: homotopy of the gradient like vector
field to introduce a pair of (k + 1)/k intersections, regular homotopy
of the k-caps to introduce a pair of mutual intersections or a pair
of self intersections. Using the same argument of §V, the slice
invariant and the slab invariant remain unchanged for geometric
cancellations.



452 W. C. HSIANG AND R. W. SHARPE

(C) Handle addition 1 (k/k).

* *
g; 9; %
I

FIGURE 48

On the singular slice ¢,, there is an instantaneous intersection I be-
tween g¥ and ¢;. If P is a persistent intersection corresponding to
a (k + 1)-handle g, attached along e;, or corresponding to a k-handle
¢, attached across e,, then it splits into two after passing the slice,
with one copy for the original intersection, and the other for the
new intersection. Let g,en, W be defined by a path from = to ¢,
via I and ¢¥ and then back to =. Let ¢, = + 1 be defined as in §V
by comparing the orientation of ¢gF and g¥. The effect is of multi-
plying the basis of C, from the left by the matrix.

(96) E =1+ Eife:97)

with €;9; at the (4, 7)th spot, and the boundary map matrix is left
multiplied by

97) E7 =1— E (9, .

Let F,=1I,G, = E-' = I — E,(¢,9,) in E(4, s + 21), and let F,, G, be
the canonical liftings of F', and G, in St(4, s), St(4, s + 2l) respectively.

The loops at the new intersections are homotopic to the product
of the loop at I with the loops at the old intersections, and the
framings at the new intersections are gotten from the old ones.
Thus, the deformations of the old intersections together with that
at I give us a complete set of deformations. Inductively, we have
F,.--,F; @G, ---,G, and the slab invariant defined for [¢,, {,,,] using
the above normalization of loops and the framing. The effect on
&, + a, of renormalizing at I was essentially discussed in [4].
View M,_, = G,_, --- G, and M, = G, M,_, as elements of GL(4, s + 2[)
where G, = I + E,;(¢;9;). Changing by the amount a € " leads to a
discrepancy of «,_, + @, equal to

98)  Tr(M Bylaeg)M,(£)) = Tr(@OM:2: Bolasig)M,)

where I is the (s X s)-matrix with 1 along the diagonal. Let us now
consider the effect on B,_, + B, of the above renormalization. Write
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—S —

1
S 0

!

(99) H=

S ©
(=2

(=2

0
U

with s zeros on the diagonal and ! blocks of <(7)] (1)) (n=(—=L%. It

represents the standard radical special Hermitian form. B, , + B,
is changed by

(100) HM . E (g )M,_, + 7(H M;" E,{aeg)M,_)* .

So, B,-, + B, is changed by an amount
l
(101) JZ:.l byizi1y s+2f[H Mq_—llEij(aslgI)Mq—l + 7](H M;—ll (@erg)M,_,)*]

The total change of a,_, + a, + B,_, + B, in Wh(x; I')/{c — ¢} is
equal to

(102) Tr(M, 2 E;i(er9)M, ) mod{c — ¢}

which is zero. So, the slab invariant is unchanged under a renor-
malization at I.

(D) Handle addition II ((k + 1)/(k + 1)). This is essentially
discussed in [3]. Similar to (C), we have an instantaneous inter-
section I at the singular slice for ¢ = ¢, and g;em, W, e; = = 1. The
effect is multiplying the basis of C,,, from the left by the inverse
of the elementary matrix

(103) E=1— E;f{9:)

with ¢€;9; at the (¢, 7)th spot. This right multiplies the boundary
matrix by E-. We put F,=FE and G,= 1. Let F,G, be the
canonical liftings of F,, G, in St(4, s), St(4, s + 2l) respectively.

The effect on the slab invariant is as follows. The changes of
A,_,, A, are given in [4]. So, a,(i #q—1, q), a,_, + &, are unchanged
under renormalization. B¢ =1, ---, q¢) are unchanged under a re-
normalization at the (¥ + 1)/(k + 1) intersection.

(E) Regular homotopy. These introduce new intersection points
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in pairs among the k-caps. The algebraic sum of these intersection
is zero, so there is no effect on the radical special Hermitian form
and we set F, =1, (?,, = J. Also, changing normalizations has no
effect on «, B. ’

(F) Birth-death. This is treated in [3]. Let us consider the
birth case only. At the singular slice ¢ = ¢,, we add a pair of basis
elements, one for C,,, and another for C, with \, ¢ stablized in the
obvious way. So, it is a stablization for the radical special Hermitian
form. We again set F, = I, G, =1 1t follows from [4] that the
slab invariant is unchanged under renormalization.

(G) Swurgery birth-death. This is actually similar to the usual
birth-death. At the surgery birth slice ¢ = t,, we create a pair of
basis elements for C, but C,., is unchanged. The first basis element
intersects the second one geometrically exactly once but has no other
intersections. However, the second one may have other mutual
intersections and self-intersections. The effect is first stablizing C,
by adjoining a dual pair of basis element and then replacing e, ,;,,
by its sum with a linear combination of ¢,(t < s + 21). This has the
effect of multiplying the stabilized basis on the left by an elementary
matrix G,, which has a canonical lifting G, e St(4, s + 2(I + 1)).

By a similar argument of [4], the slab invariant is unchanged
when we renormalize a surgery birth-death slice.

(H) The invariants 6 and . In the preceding paragraphs, we
have defined the slice invariant of a representative a of an element
[l e w(Z(M)) as the radical special Hermitian form =, , in the
(t,—y, t). It changes to =, by the formula

(104) = GE L F

where the action of G, and F';' are interpreted as changes of basis
in dimensions % and k¥ + 1 as we pass through the singular slice
t = t,. Furthermore, F,, G, are elementary matrices with specific
liftings F,, G, in St(r). Let us examine the image A of the product

(105) G, - GF ... F

in E(r). Recall that &, is identified with the standard radical
special Hermitian form

d
(106) 0—C,p,—C,—0

with {g,, =+ <, g5}, {€, ***) €ay €asry ***y Cosairs €ora} a8 the bases for C,,
and C, respectively such that dg, = e,(t = 1, +-+, 8), and {e,,;, ***, 6.1}
form the standard basis for the special hyperbolic form (kernel [13])
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of C,/oC,,,. There exists a generalized permutation matrix W such
that B = WA is of the form

«— 8§ —>
1
(107) s I *
! -
0 U

such that Ue éTf(TL’lM). Thus WG, --- GF;' ... F-'e  and so
determines a class 6 € Lj;, (w, w) of the element [a]ew(&Z(M)). Next

we define the invariant { of [a] ez (& (M)) to be

7—1

(108) (@ + B) € Why(w; I')f{c — ¢}

=1

where @, 8, are the slab invariants defined for [¢;, ¢,,,]J(z = 1, -+, r — 1).

We claim that 6 and { are well-defined. First, we observe that
it follows from [3] that changing of the vector field, the regular
homotopies of k-caps, and permutations of basis elements, ete. es-
Sent/z_i\a/lly change the element in .27 by a specific lifting of an element
of EU(n)— E(x). These changes do not affect the graphic and the
invariants 4 and (.

We also have to check the changes listed in §V(J). Following
the arguments of [3] and §V, they do not affect # and {. Let us
only remark about the change of the graphic

) — =

FI1GURE 49

as a sample. In this case, the argument is similar to the change
of the graphic

> < ~_
RN
Figure 50

as given in [3]. Let us consider the change
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\V
A

FANAY -«

N
2

FIGURE 51

~

Let £, ---, F’H, G, -, G,., be the elements in the Steinberg
group constructed from the left most graphic up to t = a. Let

(109)

, 9
F st 0 — Ot —— O~ —— 0

be the radical special Hermitian form for ¢ = @ — 0(6 small). We
may assume that they are the same both the left most and the
right most graphics. We see that M\e,, ¢,) = eg(g e (W), e = £1),
Me,) = 0 and ¢, has no intersections with other ¢’s. After a suitable
permutation of the basis elements and left multiplying by

= 8§ =
1

(110) f Lo
0 | 4

where A€ 1/’\(?(/1, 1) (ef. [11], [12]), we may assume that p(e;) = 0 and
¢, has no intersections with other ¢’s. Therefore, we may view the
changes of the radical special Hermitian forms as follows. When
it passes t = a@ — (1/2)0, €°,_, is changed to %, by left multiplying
a generalized permutation matrix together with an element of the
form (110). Denote its lifting in St(x, s + 20) by G, and set ', = I
Then, we move across t = a + (1/2)0 and %, is changed to &,
with G,,, = éq‘l and F,,, = I

Let us now describe the radical special Hermitian forms for the
right most graphic. We may set &,(7 < ¢) equal to those for the
left most graphic. We can get Z°,., as follows. (a) Relabel e, as
¢,+.(4 0odd) where s + %, s + w + 1 have not occurred as indices yet.
Relabel ¢, as e,.,... (b) Let the base path for e, , be the old base
path for e¢,. It induces a new base path for e,.,.,. Note that
the difference between the old base path for ¢, and the new
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one for e,,,., is ¢g7*. (c) Orient e,,, and e, .., properly such that

Mesiuy €erur) = + 1. These normalizations define F,,H, Gqul for the

r1ght most graphic. Set B, =F, G, =G, for i <q. So, we have

F . F,,H, G, ces, G;+1 and we can follow a similar argument as

the blrth—death relation of [3] to show that @ is unchanged under

this change of the graphic. It is clear that { is also unchanged.
So, we have a homomorphism

(111) ¢ =6 D L n(E(M)) — Liiri(xw, w) @ Whi(z; I')/{c — ¢} .

We remark that all of the changes we have considered explicitly
have no effect on the classes a, 8 in Wh(rn,;Z, P 7,)/{c — ¢}. We
wish to indicate here how a ‘bad eye’ can be converted to a circle,
by the following sequence of changes:

e O O
Lt — o

FIGURE 52

(I) The homomorphism o: n(H(M))— (& (M))(n + 1 =2k + 2).
Let us consider an element [a] e x,(5(M)) represented by a normal
map F:W"®—M x D*x I which is a diffeomorphism over
Mx(D*x0US"x I) and a simple homotopy equivalence on the
boundary. We shall construct the image of [a] under & by the
restriction over M x D?* x 1. Recall the construction of a re-
presentative a of [a]exn(H(M)) = Ly 7w, w) [13]. Begin with
Id: M x D* x I— M x D* x I. Suppose that a is represented by a
special Hermitian form with {e, ---, ¢;} as the basis. Choose [ dis-
joint dises D#** CInt(M X D* x 1) and let f° S*™ x D¥"2c D¥'® be
the standard embedding, so by composition we have [ disjoint
embeddings f%: S*" x D2 cCInt(M x D* x 1). We now deform the
J? by regular homotopies 7, to new disjoint embeddings f; such that
the intersections of the traces of the regular homotopies realizing
the given form. Attaching ! (k + 2)-handles on f.,, we have the
realization of the given element of L, (7, w). Using the results of
§V, [11] and [12], we can lift a to g’t\ﬁ(n) representing an element
of Lj\.,(w, w) such that it projects back to [a]e L,. (7, w). The
geometric meaning is as follows. We can choose a product structure
D? =1 x I, and a cobordism representation
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MxI
i/ \k
VAN
(112) (W;0W, M X I) —> (MXIXIXIL;0(MxIxI), MxI)
\p /
\ I/1-"0
(I*, 0I% 1)
of 7(& (M x I rel M x 0I)) where p, is the projection of the last
two factors of I. The projection p is factored through

w1,
Nl
IZ

where I® is the original D* x I and P is the standard projection. We
may identify »p'(I X 0),p (0 X I) as M X I X I X0, MXIx0xI
and p as the standard projections on them. Since p has no critical
points over 6I?, we may assume that ¢ has no critical points over
IXIXxO0UIXxO0XxIUIXIx1l and its graphic has no vertical
tangent over I x 1 x I.

Let us now consider a regular slice over I x ¢t ©I2. We have
a commutative diagram

Wt—ﬂ—>I><I><t

D

114 o
(114) p\

N
Ixt

Following §V, we have an odd dimensional surgery problem

(115) W, M IxIxt

represented by an element A,eéT](n). Actually, it follows from
[13] and §V that A, tells how to attach handles on M X I X 0 X t =
P70 x t) to get W, Following the construction, we have an
s-cobordism W, = p;*(1 x t) over M x 0 x 1 x ¢t. It is practically
visible that W,, has only k—, (k¥ + 1)-handles and (k¥ + 2)-handles on
Mx0x1xt and the s-cobordism is represented by the same
matrix A, € E(r) when we use these handles as basis. As we pass

a singular slice over I X ¢,, A,eé\ﬁ(n) is changed by an element in
N
StU(z) and the s-cobordism is changed by its image in St(z). This
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change can be achieved by handle additions on the s-cobordism.

o~
Now, we may make ¢ generic and 7-q representing the same St U(x)
data. Moreover, we may require that the graphic of

(119) W, -2 Ix1xI

has no vertical tangent and represents a pseudo-isotopy with its
data given by the image of A, in St(z). This pseudo-isotopy repre-
sentation clearly represents d([a]) e m(Z(M)). It is not difficult to
see that d([a]) is well-defined and its image is always in Why(7,(M))/
{¢c — ¢}. It follows from §I and the above construction that the
geometric and the algebraic definition of ¢ coincide. Since we have
shown that the diagram (26) is commutative, by the 5-lemma ¢, is
an isomorphism and (26) is an isomorphism of exact sequences. This
completes the proof of Theorem 2.1 for the case n odd.
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