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A ring R with identity is a right PCQI-ring (PCl-ring)
if every cyclic right R-module C 2 R is quasi-injective (in-
jective). Left PCQI-rings (PCI-rings) are similarly defined.
Among others the following results are proved: (1) A right
PCQI-ring is either prime or semi-perfect. (2) A nonprime
nonlocal ring is a right PCQI-ring iff every cyclic right R-
module is quasi-injective or R = <6) g), where D is a divi-
sion ring. In particular, a nonprime nonlocal right PCQI-
ring is also a left PCQI-ring. (3) A local right PCQI-ring
with maximal ideal M is a right valuation ring or M2 = (0).
(4) A prime local right PCQI-ring is a right valuation
domain. (5) A right PCQI-domain is a right Ore-domain.
Faith proved (5) for right PCI-domains. If R is commuta-
tive then some of the main results of Klatt and Levy on
pre-self-injective rings follow as a special case of these
results.

Since, in a commutative Dedekind domain D, for each nonzero
ideal A4, D/A is a self-injective ring, or equivalently D/A is a quasi-
injective D-module, every commutative Dedekind domain is a PCQI-
ring. An example of a PCQI-ring which is not a Dedekind domain
is given in Levy [14]. Commutative PCQI-rings are precisely the
pre-self-injective rings characterized by Klatt and Levy [11]. PCI-
rings have recently been investigated by Faith [4]. Right self-
injective right PCQI-rings are gqc-rings which have been studied
by Ahsan [1] and Koehler [13].

1. Definitions and preliminaries. Throughout all modules are
unitary and right unless specified. An R-module X is called injective
relative to an R~-module M if for each short exact sequence 0 — N —
M— M/N—0 the sequence 0-—Hom,(M/N, X)— Homg (M, X)—
Hom, (N, X)— 0 is exact. X is called quasi-injective if X is injec-
tive relative to itself. Any R-module injective relative to all R-
modules is called injective. Relative projectivity is defined dually.

A ring R is called a right g¢-ring if each of its right ideals is
quasi-injective (see Jain, Mohamed, and Singh [9]). For more results,
see [7], [8], [13], [15]. Dually, a ring R is called a right g¢*-ring
if each cyclic right R-module is quasi-projective (see Koehler [12]).

A ring R is right qc-ring if each eyclic right R-module is quasi-
injective (see Ahsan [1]). A well-known result of Osofsky [16] states
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that R is semisimple artinian iff each cyclic R-module is injective.
Koehler [13] showed that R is a right ge-ring iff R is a finite direct
sum of rings each of which is semisimple artinian or a rank ¢ duo
maximal valuation ring. As a consequence, every gc-ring is both
a g-ring and ¢*-ring.

In this paper the classes of rings initially called ¢-rings, ¢*-rings,
and gc-rings have been called Q-rings, @*-rings, and QC-rings re-
spectively.

Let J(R) denote the radical of a ring R. R is called semiperfect
if R/J(R) is semisimple artinian and idempotents modulo J(R) can be
lifted to R. If R is semiperfect, then there exists a finite maximal
family of primitive orthogonal idempotents {e;},<;<, such that
R = @ Z;{L:l e, R.

R is called a local ring if it has a unique maximal right ideal
which must be the radical J(R).

R is a right valuation ring if the set of all right ideals is linearly
ordered. R is a maximal valuation ring if every family of pairwise
solvable congruences of the form z = z,(mod A,) has a simultaneous
solution where z,€ R and each A, is an ideal in B. R is called an
almost maximal valuation ring if each of its proper homomorphic
images is a maximal valuation ring.

A ring is right duo if every right ideal is two-sided. A ring R
has rank O if every prime ideal is a maximal ideal. By duo rings
or valuation rings, we shall mean both right and left.

3. General results.

SUBLEMMA 1. Let I be a right ideal in a ring R such that B/I=R.
Then R = I @ J, where J is a right ideal, and thus I = eR, e = ¢’ R.

Proof. R/I = R implies R/I is projective, and hence I is a direct
summand of E.

PROPOSITION 2. Let R be a right PCQI-ring. If I is a right
ideal of R such that R/I = R, then I is contained in every nonzero
two-sided ideal of R.

Proof. Let S be a nonzero two-sided ideal of B. Then R/S is
a gc-ring, hence is semiperfect. Let f: R/I— R be an isomorphism.
Since 1+ I generates R/I, R = xR, where z = f(1+ I). Then
I=annx = {reR|xzr = 0}. So there exists y € R such that 2y = 1.
Since R/S is semiperfect, (x + S)(y +S) =1+ S = (y + S)x + S).
Then1—yxeS. Letacl, ie., xa =0. Then (1 —-yx)a =a—yra = a,
hence a€S. So IC S.
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PROPOSITION 3. Let R be a right PCQI-ring. Then either R is
a prime ring or R is semiperfect with nil radical.

Proof. Suppose R is not prime, and P # 0 is a prime ideal.
Then R/P is a qc-ring, and hence a g¢-ring. So R/P is simple
artinian [9]. Thus P is maximal, hence primitive. So the Jacobson
radical is nil.

Since R is not prime, there exist nonzero ideals A, B such that
AB = 0. Since R is a right PCQI-ring, R/A and R/B are semiperfect,
hence each of them has finitely many prime ideals. Since every
prime ideal of R contains A or B, it follows that R has finitely
many prime ideals as well. Thus R/J(R) is semisimple artinian, and
since J(R) is nil, R is semiperfect.

4. Nonlocal semiperfect PCQI-rings. By Proposition 3, all
nonprime right PCQI-rings are semiperfect, so the results of this
section hold for the class of nonprime nonlocal right PCQI-rings.
The case of local right PCQI-rings is discussed in the next section.

LEMMA 4. Let R be a semiperfect ring. Then RJA is a proper
cyclic right R-module, for all nonzero right ideals A.

Proof. There exists a positive integer n such that R is a direct
sum of » indecomposable right R-modules, and R cannot be express-
ed as a direct sum of more than n right R-modules. Now, if
R/A = R, then, by Lemma 1, R=A@ B and B=R. So A = (0),
proving the lemma.

Let R be a nonlocal semiperfect ring, and let {e}, ;<. be a
maximal set of primitive orthogonal idempotents in R. Then
R=&>" ¢R and n = 2. Throughout this section, ¢,’s will denote
primitive idempotents. We shall often use a well-known fact that
if A Bis a quasi-injective module then any monomorphism A — B
splits.

LEMMA 5. Let R be a semiperfect monlocal right PCQI-ring.
If 0 cHom, (¢,R, ¢;R) such that o + 0, where © + j, then ker o = (0).

Proof. Suppose ker g + (0), where 0+ 0 <€ Hom, (¢,R, ¢;R), 1+ .
Then R/ker o= Z,, = e, RxIm o, and R/ker ¢ is quasi-injective. Since
Im o C ¢;R, the 1ncluS1on map i:Imo—P Zk - ¢, is a monomorphism.
Since R/ker ¢ is quasi-injective, the mclusmn map splits. So Imo

is a direct summand of e;R, hence Im o = ¢;R. Since ¢;R is projec-
tive, 0:¢,R — ¢;R splits. Thus ker ¢ = (0).
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LEMMA 6. Let R be a semiperfect monlocal right PCQI-ring
with decomposition @ >r., e;R, where n >2. Then Homy(e,R, ¢;R)+ 0
if e,R = ¢;R,i.e., e;Re, + 0 iff ¢,R = ¢;R.

Proof. Let o€ Homg(e¢,R, ¢;R) such that ¢ = 0. By Lemma 5,
kerog = 0. Since n > 2, ¢,RPe;R = R/D Z,k ' ¢, R is quasi-injective.
k1,

Then o splits, and 0 = Im ¢ is a direct summand of ¢;R. Solmo =¢;R,
and o is an isomorphism. The converse is trivial.

PROPOSITION 7. Let R be a semiperfect monlocal right PCQI-
ring with decomposition R = P D\, e R, where n > 2. Then R 18
a ge-ring.

Proof. For each i, ¢, R = R/P Zk 1e,CR So ¢, R is quasi-injec-

tive, for each 2. Let A, be the sum of all those ¢,R which are
isomorphic to each other. Then R = >, A,. We claim that A,
is a two-sided ideal of R, for each 4. Clearly A4, is a right ideal.
Consider ¢;R such that ¢;R £ A,. Define f: ¢,R —¢,;R, where ¢,R S A,,
by fle,r) = e;we,r, for xe R. Then feHom,(¢,R,¢;R). Since ¢.R
and ¢;R are not isomorphic, f = 0 by Lemma 6. So, for ¢;R & A,,
¢;RA;, = 0. So RA,CA,. Since A4, is a finite direct sum of isomorphic
quasi-injective right ideals, A, is quasi-injective, hence a gqc-ring.
Thus, by Koehler [13], R is a gc-ring.

PROPOSITION 8. Let R be a semiperfect right PCQI-ring such
that R = e R P e,R. If e,R = ¢,R, then R is a qc-ring.

Proof. Now e¢R = e¢,R and Rje,R = R/e,R, hence ¢, and ¢ R
are quasi-injective. Since ¢,R = ¢,R, R = ¢,R D¢, R is quasi-injective,
hence right self-injective. So R is a qc¢-ring.

PROPOSITION 9. Let R be a semiperfect right PCQI-ring such
that R = e R @ ¢,R. If eRe, =0 and e,Re, = 0, then R is a qc-ring.

Proof. If ¢,Re, = 0 and e¢,Re, = 0, then ¢, R and e¢,R are two-
sided ideals of R. Thus ¢, R = R/e,R and ¢,R = R/e,R are qc-rings.
Then R = ¢, R P e¢,R is a ge-ring.

PROPOSITION 10. Let R be a semiperfect right PCQI-ring swch
that R = e R@e,R. If e Re, + 0 and e,Re, = 0, then R is a qc-ring.

Proof. e,Re, #0 and e¢,Re, = 0 imply that there exist nonzero
homomorphisms, hence monomorphisms by Lemma 5, from ¢ R to
¢,R and from e,R to ¢,R. Thus, by Bumby [2], ¢,R = ¢,R, and
Proposition 8 yields the result.
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ProrosiTION 11. Let R=¢,RPe,R be a semiperfect right
PCQI-ring where e,R % ¢,R and exactly one of e, Re, or e,Re, is zero.
Then R is monprime with nil radical.

Proof. It follows from that the fact that if ¢ Re, # 0, then ¢ Re,
is a nilpotent ideal.

THEOREM 12. Let R be a nonlocal right PCQI-ring. Then R is
semiperfect iff R is nonprime or simple artinian.

Proof. Necessity follows by Proposition 38, and sufficiency follows
from Proposition 7-11 and Koehler’s characterization of qc-rings [13]
(cf. definitions and preliminaries).

THEOREM 13. Let R be a semiperfect monlocal ring. Then R
18 a right PCQI-ring iff either (i) R = @ 3,2, R,, where R, is semi-
simple artinian or a rank o duo maximal valuation ring or (ii)
R = (é) g), where D 1s a division ring.

Proof. Let R be a right PCQI-ring. By Propositions 7-10, R
is a gqc-ring unless R =¢,R@ ¢,R, where ¢R and ¢,R are not
isomorphic and exactly one of e,Re, or e¢,Re, is zero, say eRe, 0
and e,Re, =0. If R is a QC-ring, we get (i) by Koehler [13].

Otherwise, we have R = (81§el 61R62>. We claim that e Re, and
¢, Re,

e,Fe, are isomorphic division rings and M = ¢ Re, is a (D, D)-bimodule
such that dim, M = 1 = dim M,, where D = ¢ Re, = ¢,Re,. Clearly
e Re, is nilpotent ideal and since it is nonzero, R is not prime.
So, by Proposition 3, the radical N of R is a nil ideal. Thus
e,Ne, is nil. We claim that e,Ne, = 0. Let e,xe,c¢,Ne,. Define
o:e,R—e,R by o(e;y) = e;xe,y. Then o€ Homg, (e,R, ¢,R), and since
e,xe, is nilpotent, ¢ is not a monomorphism. So ker ¢ # (0). Since
Hom, (¢,R, ¢,R) # 0, there exists an embedding 7:¢,R—e¢,R. Now
no. e,k — e R, and since kero =+ (0), keryo ++ (0). By Lemma 5,
no = 0. Since 7 is a monomorphism, we have ¢ = 0. Thus ¢,xe, = 0,
and e,Ne, = 0. So e,Re, is a division ring. Further ¢,Re, = ¢,R since
e,Re, = (0). Thus ¢,N =0, and ¢,R is a minimal right ideal. Now
¢, X is uniform because it is quasi-injective and indecomposable. Since
0 # e,Re,R is the sum of the images of all R-homomorphisms of ¢,R
into ¢, R, the fact that ¢,R is minimal and ¢, R is uniform yields that
e, Re,R itself is the unique minimal right subideal of ¢,R, is isomorphic
to e,R, and is contained in every nonzero right subideal of ¢, B. We
claim that e, Ne, = 0. Let 0 +# exe, € ¢, Ne,. Since N is nil, exe, is
nilpotent. Then ¢: ¢ R — ¢,R defined by o(er) = ewe,r is an endo-
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morphism of e, B with ker ¢ = (0). Let A = kero. Then ¢Re,RC A,
and we have eweRe, = (0). On the other hand, ¢,Re,R C exeR
yields that e,xe,Re, = (0). This is a contradiction. Hence ¢,Ne, = (0),
and e,Re, is a division ring. Now using the fact that Hom, (¢,R, ¢,R)
is a division ring and that e,R is quasi-injective, it follows that every
member of Hom (¢,Re,R, ¢, Re,R) admits a unique extension to an
endomorphism of ¢ R. Further, every endomorphism of ¢ R maps
e, Re,R into itself since e,Re.R is the unique minimal subideal of ¢, R.
Thus Hom (¢, Re,R, ¢, Re,R) = Hom (¢,R, ¢,R). Since ¢Re,R = ¢,R, we
obtain ¢ Re, = ¢,Re,.

Now ¢,N = ¢,Ne, because ¢,Ne, = (0). Since ¢,Re,R < ¢, N, we get
e.N = e Re, = ¢,Re,R. Thus M = ¢,Re, is a one-dimensional right
vector space over D = ¢,Re,., We show that M is also a one-dimen-

sional left ¢,Re-space. Let X = (elff@l 1014) = RJA, where A = (8 1‘;)
Then X is quasi-injective. Let 0= xe M, and let ye M. Consider

(8 %’—’) (8 1(‘)4) defined by 0(8 o:)c) — (8 '%C>, for ¢eD. Then ¢

is an R-endomorphism, so it can be extended to an endomorphism »

of X. Let 77( > = (g 8) Then we have <8 %) = 0(8 g) = 77<0 O)

(8 agc) Thus y = ax, so M = e¢,Re;x. So M is a one-dimensional left

vector space over ¢, Re,. Thus, for each d € ¢, Re,, there exists a unique
d' ce,Re, such that dx = ad’. Define 6:¢,Re, —e,Re, by 0(d) =d'.
Then ¢ is an isomorphism, and we may identify ¢ and d. Then

n: ({)) g> (D M) defined by 77< ) = <g 2)3:) is an isomorphism.

Conversely, if R satisfies (i), then, by Koehler [13], R is a QC-
ring, hence a PCQI-ring. If R satisfies (ii), then straightforward
computation shows that R is a right PCQI-ring.

Since every right QC-ring is a left QC-ring and (5 g) is also
a left PCQI-ring, we get the following corollary.

COROLLARY. A nonlocal semiperfect right PCQI-ring is also a
left PCQI-ring.

5. Local PCQI-rings. Theorem 13 and Theorems 14, 15, and 16
which follow generalize Klatt and Levy’s [11] theorems for commuta-
tive pre-self-injective rings which are not domains. Throughout this
section M will denote the unique maximal right ideal of a local ring
R. M is then the Jacobson radical of R, and R/M is a division ring.

THEOREM 14. Let R be a local right PCQI-ring with maximal
ideal M. Then either R is a right valuation ring or M* = (0) and
M, has composition length 2.
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Proof. First note that for all nonzero right ideals A, R/A is
indecomposable quasi-injective and hence uniform. Now we show
that all nonzero right ideals are either minimal or essential. Let
A, B be nonzero right ideals such that 4 N B = (0). We claim that
A is minimal. Let C be a nonzero right ideal properly contained in
A. Then R/C is quasi-injective and not uniform since A/CN
(B 4+ C)/C = 0. This is a contradiction, so A is minimal. Similarly,
B is minimal. In particular, it follows that any maximal independent
family of minimal right ideals can contain at most two members.

If Soc R, = (0), then all nonzero right ideals are essential. Let
A, B be two nonzero right ideals. If neither A & B nor B & A, then
R/ANB is quasi-injective but not uniform since 4/(4ANB)NB/(ANB)
=(0). As before, this is a contradiction. So either A< B or
BC A.

If Soc R, consists of a unique minimal right ideal then it is clear
that R is a right valuation ring.

Finally, suppose Soc R, = AP B, where A, B are minimal right
ideals. Then R cannot be prime. Let x¢ M, and consider zR. If
2R is not minimal, then xR is quasi-injective and decomposable.
Then xR =A@ B. In any case, for all xe M, xzcSoc R;,. This
implies that M* = (0), and the composition length of M is 2, completing
the proof.

The next two theorems give the structure of non-prime local
right PCQI-rings. Prime local PCQI-rings are discussed in the next
section.

THEOREM 15. For o monprime right valuation ring R, the
Jollowing are equivalent:

(i) R is a right PCQI-ring.

(ii) R s a right duo almost maximal valuation ring of rank
0 such that any left ideal containing a monzero right ideal is two-
sided.

Proof. (i) = (ii). Since R is not prime, M is nil by Proposition
3. So, if zR is a nontrivial principal right ideal of R, zR is quasi-
injective. Since zR is essential in R, the injective hull of zR is the
same as that of R. Hence, by Johnson and Wong [10], RzR < zR.
So zR is a two-sided ideal of B. Thus R is a right duo ring. Since
each proper homomorphic image of a PCQI-ring is a QC-ring, the
proof of (i)= (ii) as well as that of (ii)= (i) is completed by a
theorem of Koehler [13].

THEOREM 16. For a local ring R with M* = (0) and the composi-
tion length of M, equal to 2, the following are equivalent:
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(i) R 18 a right PCQI-ring.

(ii) For each monzero right ideal A in R and for each
m,, m, ¢ A, the congruence xm, = mymod A) has a solution, x = «,
such that €A C A.

Proof. Under the hypothesis the only nonzero right ideals A of
R different from M and R are minimal right ideals, and M/A is a
simple right R-module.

(i)=(2) Let A be a nontrivial right ideal in R, and let
m,, m,€ R such that m, m,¢ A. Then m,R = M/A = m,R, and the
mapping o: M/A— M/A which sends #,» to m,r is a well-defined
R-homomorphism. Since R/A is quasi-injective, ¢ can be lifted to
o* ¢ Hom, (R/A, R/A). Let o¢*(1)=a&. Then am,= m, Hence
xm, = my(mod A) has a solution 2 = a. Clearly ad C A.

(ii) = (i) We only need to prove that if A is a nontrivial right
ideal of R and o: M/A— R/A, is a nonzero R-homomorphism, then ¢
can be extended to an R-homomorphism ¢*: R/A— R/A. Let me M,
where m ¢ A. Then M/A = mR.  Also, o(M/A)= M/A. Let
o(m) = mr. Since M*= (0), r¢ M. So r is invertible, and mr ¢ A.
Let a € R be chosen such that am = mr(mod A), and aA £ A. Then
o*(T) = @R is well-defined, and it extends o, completing the proof.

The example which follows shows that a local right PCQI-ring
is not necessarily a left PCQI-ring.

EXAMPLE. Let F' be a field which has a monomorphism o: F — F'
such that [F: p(F)] > 2. Take x to be an indeterminate over F.
Make V = «F into a right vector space over F' in a natural way.
Let B = {(a, »08)|«, € F}. Define

(), 2B,) + (o, 2B,) = (@, + a,, B, + xB,)
and
(@, 2B, ©8;) = (., w(0(@)B: + B,))
Then R is a local ring with identity with the maximal ideal
M = {0, za)|x € F} .

In fact, M is also a minimal right ideal and M* = (0). Thus R is a
right PCQI-ring. Further, if {a.),.; is a basis of F as a vector
space over o(F) then straightforward computations yield that
M=@ > RO, za,) as a direct sum of irreducible left R-modules
R(0, zex,). Since card I > 2, it follows by Theorem 14 that R is not
a left PCQI-ring.
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6. Prime local PCQI-rings.

THEOREM 17. Let R be a prime local right PCQI-ring. Then
R is a right valuation domain, hence right semihereditary.

Proof. By Theorem 14, R is a right valuation ring. Let A
denote the intersection of all nonzero two-sided ideals of R. The
proof that R is a domain falls into three cases.

(i) A= (0).

Let 2, y€ R such that xy = 0. Suppose y = 0. Then yR is a
nonzero right ideal of R. Since R is right valuation and A = (0),
yR must contain a nonzero two-sided ideal of R. Further, each
proper homomorphic image of R is a local QC-ring, hence a duo ring
[13]. This implies that yR is two-sided. Hence x = 0, and R is an
integral domain.

(ii) A+ (0) and A # M.

Under these hypotheses, A cannot be a prime ideal. So there
exist ¢, y € R such that xRy S A, x¢ A and y¢ A. Since R is right
valuation, A S 2R and A S yR. So both xR and yR are two-sided
ideals. For definiteness, let tRSyR. Then (xR)}’S(xR)(yR)SAR=A
gives that (zR)! = A by the minimality of A. Also A = A% hence
(xR)Y = (zR)*. It follows that 2*R = x*R. Then 2* = x'r, for some
reR, and 2°(L — 2*) = 0. So 2> =0. Thus A = (0), and this case
cannot occur.

(iii) A = M.

Let SCR, and let 7(S) denote the right annihilator of S in R.
Let Z(R) = {x € R|r(x) is an essential right ideal}. Then Z(R) is an
ideal in R called the right singular ideal.

Since R is a right valuation ring, R is immediately a domain if
Z(R) = (0).

So assume that Z(R) # (0). Then Z(R) = M, and each element
in M is a right zero divisor. So xze€ M implies that xR is proper
cyclic, hence quasi-injective. Also xR is an essential right ideal in
R. By Johnson and Wong [10], RzR < xR. Hence xR is two-sided.
So R is a prime right duo ring, and it follows that R is a domain.

7. PCQI-domains. In this section we discuss right PCQI-rings
which are integral domains and prove that these are right Ore-
domains. This generalizes the result of Faith [4]. Our proof, in
this case, though it runs on the same lines as that of Faith, does
not use Faith’s result.

PROPOSITION 18. Let R be a right PCQI-domain, and let I be a
nonessential right ideal of R. Then R|I is an injective right R-
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module containing a copy of R.

Proof. Since I is nonessential, there exists a nonzero right ideal
J in R such that INJ =0. Let aeJ such that ¢ 0. Then
eRNISJNI=0. Consider 7(a + I) = {x € R|ax € I}. Clearly
(@ + I) = 0. So R/I contains a copy of R. Since R/I is also quasi-
injective, this implies that R/I is injective by [17].

For a right R-module A4, let A denote the injective hull of A.

PROPOSITION 19. Let R be a right PCQI-domain which is not a
right Ore-domain. Then R is finitely presented.

Proof. Let a ¢ R such that ¢ = 0 and aR is not essential. Then
R/aR is injective. Since R/aR contains a copy of R and is injective,
R/aR contains a copy of R. Then R/aR = Y/aR @ X/aR, where
X/aR = R. Now Y/aR is cyclic. So Y = aR + bR, for some be R,
and the short exact sequence 0—~Y—>R—R/Y = X/aR = R—0 shows
that R is finitely presented.

THEOREM 20. A right PCQI-domain R is a right Ore-domain.

Pwoof Let R be a right PCQI-domain. Suppose R is not a
right Ore-domain. Then, as in Proposition 19, there exists a € R such
that R/aR =Y/aR @ X/aR, where X/aR = R=R/Y and Y =aR+bR.
We also get that R = X + Y, where XN Y = aR. This yields an
exact sequence 0 —aR— X X Y — R-—0 which splits. So X X Y =
aR X R=R x R. This implies that Y =aR + bR is a finitely
generated projective right ideal. Since B = R/Y,0—-Y—R —R—0
is exact. Then Y®R—>R®.E—R®,Rk—0 is exact. Also, a
finitely generated projective R-module is essentially ﬁmtely related.
So, by _Cateforis ([3], Proposition 1.7), (aR + bR) @, R is prOJectlve
as an R-module. Then Y®:R is a dlrect summand of a free E-
module. Now Z(R3) = 0, hence Z(Y ®:R) =0 because Y ®. R is

a diregt sgmmand of a free R-module. Now consider Y®R}§ iR
R@:R—R®,R—0. Again, by Cateforis ([3], Lemma L1.8),
keri=Z(Y®zR)=0. 80 0—Y@:R>R@:R—E@,R—0 is
exact. Since R@zR =R, let /: R®, R — R be the canonical 1so-
morphism. Then fi: Y®.BE— R is a monomorphism, and Y®,R = YR.
Smcg Y is finitely generated, YR is a finitely generated right ideal
of R. So YR = ¢R, where ¢ =¢. Thus we have the following
exact sequence: 0—eR—R— R ®: R—0, and R ®R: R= ﬁ/eﬁ =
(1 — ¢)R. Hence R®;. R is isomorphic to a direct summand of E.
Since Z(K,) = 0, Z(R®,R) = 0. Since R = 2R, for some zecR, the
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kernel of the canonical map f: B ®, R — R defined by fla ® b) = ab
is contained in Z(R ®; R) and hence must be zero. Since f is surjec-
tive, f is an isomorphism. By Silver ([18], Proposition 1.1), there
exists an epimorphism in the category of rings from R to R.

Let M be a right R-module which is quasi-injective as a right
R-module. We claim that M is quasi-injective as a right R-module.
Let 0— A3y — My — B; — 0 be exact. Consider 0 — Homjy (Bj, Mz) —
Homjy (M3, M3) — Homj (Ap, M3). By Silver ([18], Corollary 1.3),
Homj (N, N*) = Hom, (N, N*), where N, N* are right R-modules. Also
0 — Hom, (B, M)— Homj (M, M) — Homj (4, M)— 0 is exact since
M, is quasi-injective. Thus 0— Homj (B, M)— Homjy (M, M) —
Hom, (4, M)— 0 is exact. So M} is quasi-injective. Let K be a
cyclic right R-module. Then K is a cyclic right R-module. Since R
is a right PCQI-domain, K, is quasi-injective. Thus Kj; is qufzsi-
injective. Since R is right self-injective, B is a QC-ring. So R is
semiperfect and simple, hence simple artinian. Thus R is a division
ring. This proves that R is a right Ore-domain.

We conclude by a remark that we have not studied arbitrary
prime right PCQI-rings. This case remains open. Indeed, a charact-
erization of right PCQI-domains has not yet been obtained.
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