RINGS WHOSE PROPER CYCLIC MODULES ARE QUASI-INJECTIVE

SURENDER KUMAR JAIN, SURJEET SINGH AND ROBIN GREGORY SYMONDS
RINGS WHOSE PROPER CYCLIC MODULES ARE QUASI-INJECTIVE

S. K. JAIN, SURJEET SINGH, AND R. G. SYMONDS

A ring \(R \) with identity is a right \(\text{PCQI} \)-ring (\(\text{PCI} \)-ring) if every cyclic right \(R \)-module \(C \neq R \) is quasi-injective (injective). Left \(\text{PCQI} \)-rings (\(\text{PCI} \)-rings) are similarly defined. Among others the following results are proved: (1) A right \(\text{PCQI} \)-ring is either prime or semi-perfect. (2) A nonprime nonlocal ring is a right \(\text{PCQI} \)-ring if every cyclic right \(R \)-module is quasi-injective or \(R \cong \begin{pmatrix} D & D \\ 0 & D \end{pmatrix} \), where \(D \) is a division ring. In particular, a nonprime nonlocal right \(\text{PCQI} \)-ring is also a left \(\text{PCQI} \)-ring. (3) A local right \(\text{PCQI} \)-ring with maximal ideal \(M \) is a right valuation ring or \(M^2 = (0) \). (4) A prime local right \(\text{PCQI} \)-ring is a right valuation domain. (5) A right \(\text{PCQI} \)-domain is a right \(\text{Ore} \)-domain. Faith proved (5) for right \(\text{PCI} \)-domains. If \(R \) is commutative then some of the main results of Klatt and Levy on pre-self-injective rings follow as a special case of these results.

Since, in a commutative Dedekind domain \(D \), for each nonzero ideal \(A \), \(D/A \) is a self-injective ring, or equivalently \(D/A \) is a quasi-injective \(D \)-module, every commutative Dedekind domain is a \(\text{PCQI} \)-ring. An example of a \(\text{PCQI} \)-ring which is not a Dedekind domain is given in Levy [14]. Commutative \(\text{PCQI} \)-rings are precisely the pre-self-injective rings characterized by Klatt and Levy [11]. \(\text{PCI} \)-rings have recently been investigated by Faith [4]. Right self-injective right \(\text{PCQI} \)-rings are \(\text{qc} \)-rings which have been studied by Ahsan [1] and Koehler [13].

1. Definitions and preliminaries. Throughout all modules are unitary and right unless specified. An \(R \)-module \(X \) is called injective relative to an \(R \)-module \(M \) if for each short exact sequence \(0 \to N \to M \to M/N \to 0 \) the sequence \(0 \to \text{Hom}_R (M/N, X) \to \text{Hom}_R (M, X) \to \text{Hom}_R (N, X) \to 0 \) is exact. \(X \) is called quasi-injective if \(X \) is injective relative to itself. Any \(R \)-module injective relative to all \(R \)-modules is called injective. Relative projectivity is defined dually.

A ring \(R \) is called a right \(q \)-ring if each of its right ideals is quasi-injective (see Jain, Mohamed, and Singh [9]). For more results, see [7], [8], [13], [15]. Dually, a ring \(R \) is called a right \(q^* \)-ring if each cyclic right \(R \)-module is quasi-projective (see Koehler [12]).

A ring \(R \) is right \(\text{qc} \)-ring if each cyclic right \(R \)-module is quasi-injective (see Ahsan [1]). A well-known result of Osofsky [16] states...
that \(R \) is semisimple artinian iff each cyclic \(R \)-module is injective.
Koehler [13] showed that \(R \) is a right \(q\text{-}c \)-ring iff \(R \) is a finite direct sum of rings each of which is semisimple artinian or a \(r \)-\(o \) duo maximal valuation ring. As a consequence, every \(q\text{-}c \)-ring is both a \(q \)-ring and \(q^* \)-ring.

In this paper the classes of rings initially called \(q \)-rings, \(q^* \)-rings, and \(q\text{-}c \)-rings have been called \(Q \)-rings, \(Q^* \)-rings, and \(QC \)-rings respectively.

Let \(J(R) \) denote the radical of a ring \(R \). \(R \) is called semiperfect if \(R/J(R) \) is semisimple artinian and idempotents modulo \(J(R) \) can be lifted to \(R \). If \(R \) is semiperfect, then there exists a finite maximal family of primitive orthogonal idempotents \(\{e_i\}_{i=1}^{n} \) such that \(R = \bigoplus \sum_{i=1}^{n} e_i R \).

\(R \) is called a local ring if it has a unique maximal right ideal which must be the radical \(J(R) \).

\(R \) is a right valuation ring if the set of all right ideals is linearly ordered. \(R \) is a maximal valuation ring if every family of pairwise solvable congruences of the form \(x \equiv x_a (\text{mod } A_a) \) has a simultaneous solution where \(x_a \in R \) and each \(A_a \) is an ideal in \(R \). \(R \) is called an almost maximal valuation ring if each of its proper homomorphic images is a maximal valuation ring.

A ring is right duo if every right ideal is two-sided. A ring \(R \) has rank 0 if every prime ideal is a maximal ideal. By duo rings or valuation rings, we shall mean both right and left.

3. General results.

Sublemma 1. Let \(I \) be a right ideal in a ring \(R \) such that \(R/I \cong R \). Then \(R = I \oplus J \), where \(J \) is a right ideal, and thus \(I = eR \), \(e = e^2 \in R \).

Proof. \(R/I \cong R \) implies \(R/I \) is projective, and hence \(I \) is a direct summand of \(R \).

Proposition 2. Let \(R \) be a right \(PCQI \)-ring. If \(I \) is a right ideal of \(R \) such that \(R/I \cong R \), then \(I \) is contained in every nonzero two-sided ideal of \(R \).

Proof. Let \(S \) be a nonzero two-sided ideal of \(R \). Then \(R/S \) is a \(q\text{-}c \)-ring, hence is semiperfect. Let \(f: R/I \rightarrow R \) be an isomorphism. Since \(1 + I \) generates \(R/I \), \(R = xR \), where \(x = f(1 + I) \). Then \(I = \text{ann } x = \{ r \in R | xr = 0 \} \). So there exists \(y \in R \) such that \(xy = 1 \). Since \(R/S \) is semiperfect, \((x + S)(y + S) = 1 + S = (y + S)(x + S) \). Then \(1 - yx \in S \). Let \(a \in I \), i.e., \(xa = 0 \). Then \((1 - yx)a = a - yxa = a \), hence \(a \in S \). So \(I \subseteq S \).
PROPOSITION 3. Let R be a right PCQI-ring. Then either R is a prime ring or R is semiperfect with nil radical.

Proof. Suppose R is not prime, and $P \neq 0$ is a prime ideal. Then R/P is a qc-ring, and hence a q-ring. So R/P is simple artinian [9]. Thus P is maximal, hence primitive. So the Jacobson radical is nil.

Since R is not prime, there exist nonzero ideals A, B such that $AB = 0$. Since R is a right PCQI-ring, R/A and R/B are semiperfect, hence each of them has finitely many prime ideals. Since every prime ideal of R contains A or B, it follows that R has finitely many prime ideals as well. Thus $R/J(R)$ is semisimple artinian, and since $J(R)$ is nil, R is semiperfect.

4. Nonlocal semiperfect PCQI-rings. By Proposition 3, all nonprime right PCQI-rings are semiperfect, so the results of this section hold for the class of nonprime nonlocal right PCQI-rings. The case of local right PCQI-rings is discussed in the next section.

LEMMA 4. Let R be a semiperfect ring. Then R/A is a proper cyclic right R-module, for all nonzero right ideals A.

Proof. There exists a positive integer n such that R is a direct sum of n indecomposable right R-modules, and R cannot be expressed as a direct sum of more than n right R-modules. Now, if $R/A \cong R$, then, by Lemma 1, $R = A \oplus B$ and $B \cong R$. So $A = (0)$, proving the lemma.

Let R be a nonlocal semiperfect ring, and let $\{e_1, \ldots, e_n\}$ be a maximal set of primitive orthogonal idempotents in R. Then $R = \bigoplus_{i=1}^{n} e_iR$ and $n \geq 2$. Throughout this section, e_i's will denote primitive idempotents. We shall often use a well-known fact that if $A \oplus B$ is a quasi-injective module then any monomorphism $A \rightarrow B$ splits.

LEMMA 5. Let R be a semiperfect nonlocal right PCQI-ring. If $\sigma \in \Hom_R(e_iR, e_jR)$ such that $\sigma \neq 0$, where $i \neq j$, then $\ker \sigma = (0)$.

Proof. Suppose $\ker \sigma \neq (0)$, where $0 \neq \sigma \in \Hom_R(e_iR, e_jR)$, $i \neq j$. Then $R/\ker \sigma \cong \bigoplus_{i=1}^{n} e_iR \times \Im \sigma$, and $R/\ker \sigma$ is quasi-injective. Since $\Im \sigma \subseteq e_jR$, the inclusion map $i: \Im \sigma \rightarrow \bigoplus_{k=1}^{n} e_kR$ is a monomorphism. Since $R/\ker \sigma$ is quasi-injective, the inclusion map splits. So $\Im \sigma$ is a direct summand of e_jR, hence $\Im \sigma = e_jR$. Since e_jR is projective, $\sigma: e_iR \rightarrow e_jR$ splits. Thus $\ker \sigma = (0)$.
LEMMA 6. Let R be a semiperfect nonlocal right PCQI-ring with decomposition $\bigoplus_{i=1}^n e_i R$, where $n > 2$. Then $\text{Hom}_R(e_i R, e_j R) \neq 0$ iff $e_i R \cong e_j R$, i.e., $e_i Re_i \neq 0$ iff $e_j R \cong e_j R$.

Proof. Let $\sigma \in \text{Hom}_R(e_i R, e_j R)$ such that $\sigma \neq 0$. By Lemma 5, $\ker \sigma = 0$. Since $n > 2$, $e_i R \oplus e_j R \cong R/\bigoplus_{k \neq i, j} e_k R$ is quasi-injective. Then σ splits, and $0 \neq \text{Im} \sigma$ is a direct summand of $e_j R$. So $\text{Im} \sigma = e_j R$, and σ is an isomorphism. The converse is trivial.

PROPOSITION 7. Let R be a semiperfect nonlocal right PCQI-ring with decomposition $R = \bigoplus_{i=1}^n e_i R$, where $n > 2$. Then R is a qc-ring.

Proof. For each i, $e_i R \cong R/\bigoplus_{k \neq i} e_k R$. So $e_i R$ is quasi-injective, for each i. Let A_i be the sum of all those $e_i R$ which are isomorphic to each other. Then $R = \bigoplus A_i$. We claim that A_i is a two-sided ideal of R, for each i. Clearly A_i is a right ideal. Consider $e_i R$ such that $e_i R \not\subset A_i$. Define $f: e_i R \to e_j R$, where $e_i R \subset A_i$, by $f(e_i r) = e_j xe_i r$, for $x \in R$. Then $f \in \text{Hom}_R(e_i R, e_j R)$. Since $e_i R$ and $e_j R$ are not isomorphic, $f = 0$ by Lemma 6. So, for $e_i R \not\subset A_i$, $e_i R A_i = 0$. So $RA_i \subset A_i$. Since A_i is a finite direct sum of isomorphic quasi-injective right ideals, A_i is quasi-injective, hence a qc-ring. Thus, by Koehler [13], R is a qc-ring.

PROPOSITION 8. Let R be a semiperfect right PCQI-ring such that $R = e_i R \oplus e_2 R$. If $e_i R \cong e_2 R$, then R is a qc-ring.

Proof. Now $e_i R \cong e_2 R$ and $R/e_2 R \cong R/e_i R$, hence $e_i R$ and $e_2 R$ are quasi-injective. Since $e_i R \cong e_2 R$, $R = e_i R \oplus e_2 R$ is quasi-injective, hence right self-injective. So R is a qc-ring.

PROPOSITION 9. Let R be a semiperfect right PCQI-ring such that $R = e_i R \oplus e_2 R$. If $e_i Re_2 = 0$ and $e_2 Re_i = 0$, then R is a qc-ring.

Proof. If $e_i Re_2 = 0$ and $e_2 Re_i = 0$, then $e_i R$ and $e_2 R$ are two-sided ideals of R. Thus $e_i R \cong R/e_2 R$ and $e_2 R \cong R/e_i R$ are qc-rings. Then $R = e_i R \oplus e_2 R$ is a qc-ring.

PROPOSITION 10. Let R be a semiperfect right PCQI-ring such that $R = e_i R \oplus e_2 R$. If $e_i Re_2 \neq 0$ and $e_2 Re_i \neq 0$, then R is a qc-ring.

Proof. $e_i Re_2 \neq 0$ and $e_2 Re_i \neq 0$ imply that there exist nonzero homomorphisms, hence monomorphisms by Lemma 5, from $e_i R$ to $e_2 R$ and from $e_2 R$ to $e_i R$. Thus, by Bumby [2], $e_i R \cong e_2 R$, and Proposition 8 yields the result.
Proposition 11. Let \(R = e_1 R \oplus e_2 R \) be a semiperfect right \(PCQI \)-ring where \(e_1 R \neq e_2 R \) and exactly one of \(e_1 Re_2 \) or \(e_2 Re_1 \) is zero. Then \(R \) is nonprime with nil radical.

Proof. It follows from that the fact that if \(e_1 Re_2 \neq 0 \), then \(e_1 Re_2 \) is a nilpotent ideal.

Theorem 12. Let \(R \) be a nonlocal right \(PCQI \)-ring. Then \(R \) is semiperfect iff \(R \) is nonprime or simple artinian.

Proof. Necessity follows by Proposition 3, and sufficiency follows from Proposition 7-11 and Koehler's characterization of \(qc \)-rings [13] (cf. definitions and preliminaries).

Theorem 13. Let \(R \) be a semiperfect nonlocal ring. Then \(R \) is a right \(PCQI \)-ring iff either (i) \(R = \bigoplus_{i=1}^n R_i \), where \(R_i \) is semisimple artinian or a rank 0 duo maximal valuation ring or (ii) \(R = \left(\begin{array}{cc} D & D \\ 0 & D \end{array} \right) \), where \(D \) is a division ring.

Proof. Let \(R \) be a right \(PCQI \)-ring. By Propositions 7-10, \(R \) is a \(qc \)-ring unless \(R = e_1 R \oplus e_2 R \), where \(e_1 R \) and \(e_2 R \) are not isomorphic and exactly one of \(e_1 Re_2 \) or \(e_2 Re_1 \) is zero, say \(e_1 Re_2 \neq 0 \) and \(e_2 Re_1 = 0 \). If \(R \) is a \(QC \)-ring, we get (i) by Koehler [13]. Otherwise, we have \(R \cong \left(\begin{array}{cc} e_1 Re_1 & e_2 Re_2 \\ 0 & e_1 Re_2 \end{array} \right) \). We claim that \(e_1 Re_2 \) and \(e_2 Re_1 \) are isomorphic division rings and \(M = e_1 Re_2 \) is a \((D, D) \)-bimodule such that \(\dim M = 1 = \dim M_D \), where \(D \cong e_1 Re_1 \cong e_2 Re_2 \). Clearly \(e_1 Re_2 \) is nilpotent ideal and since it is nonzero, \(R \) is not prime. So, by Proposition 3, the radical \(N \) of \(R \) is a nil ideal. Thus \(e_1 Ne_2 = 0 \). Let \(e_2xe_1 \in e_2 Ne_2 \). Define \(\sigma: e_2 R \rightarrow e_2 R \) by \(\sigma(e_2y) = e_2xe_1y \). Then \(\sigma \in \text{Hom}_R(e_2 R, e_2 R) \), and since \(e_2xe_1 \) is nilpotent, \(\sigma \) is not a monomorphism. So \(\ker \sigma = (0) \). Since \(\text{Hom}_R(e_2 R, e_2 R) \neq 0 \), there exists an embedding \(\gamma: e_2 R \rightarrow e_2 R \). Now \(\gamma \sigma: e_2 R \rightarrow e_2 R \), and since \(\ker \sigma = (0) \), \(\ker \gamma \sigma = (0) \). By Lemma 5, \(\gamma \sigma = 0 \). Since \(\gamma \) is a monomorphism, we have \(\sigma = 0 \). Thus \(e_2xe_1 = 0 \), and \(e_2Ne_2 = 0 \). So \(e_2Re_2 \) is a division ring. Further \(e_2 Re_2 = e_2 R \) since \(e_2 Re_1 = 0 \). Thus \(e_2 N = 0 \), and \(e_2 R \) is a minimal right ideal. Now \(e_1 R \) is uniform because it is quasi-injective and indecomposable. Since \(0 \neq e_1 Re_2 R \) is the sum of the images of all \(R \)-homomorphisms of \(e_1 R \) into \(e_1 R \), the fact that \(e_1 R \) is minimal and \(e_1 R \) is uniform yields that \(e_1 Re_2 R \) itself is the unique minimal right subideal of \(e_1 R \), is isomorphic to \(e_1 R \), and is contained in every nonzero right subideal of \(e_1 R \). We claim that \(e_1 Ne_1 = 0 \). Let \(0 \neq e_1 xe_1 \in e_1 Ne_1 \). Since \(N \) is nil, \(e_1 xe_1 \) is nilpotent. Then \(\sigma: e_1 R \rightarrow e_1 R \) defined by \(\sigma(e_1 y) = e_1 xe_1 y \) is an endo-
morphism of e,R with ker $\sigma \neq (0)$. Let $A = \ker \sigma$. Then $e,R \subseteq A$, and we have $e,xe,R \neq (0)$. On the other hand, $e,R \subseteq e,xe,R$ yields that $e,xe,R \neq (0)$. This is a contradiction. Hence $e,Ne_i = (0)$, and e,R is a division ring. Now using the fact that Hom$_{e,R}(e,R,e,R)$ is a division ring and that e,R is quasi-injective, it follows that every member of Hom$_{e,R}(e,R)$ admits a unique extension to an endomorphism of e,R. Further, every endomorphism of e,R maps e,R into itself since e,R is the unique minimal subideal of e,R. Thus Hom$_{e,R}(e,R) \cong$ Hom$_{e,R}(e,R)$. Since $e,R \cong e,R$, we obtain $e,R \cong e,R$.

Now $e,N = e,N e_i$ because $e,N e_i = (0)$. Since $e,R \subseteq e,N$, we get σ is an R-endomorphism, so it can be extended to an endomorphism $e,N \subseteq e,N e_i$. Thus $M = e,R e_i$ is a one-dimensional right vector space over $D = e,R e_i$. We show that M is also a one-dimensional left $e,R e_i$-space. Let $X = \left(e,R e_i, M \right) \cong R/A$, where $A = \left(0, 0 \right)$. Then X is quasi-injective. Let $0 \neq x \in M$, and let $y \in M$. Consider $\sigma'(0 M) \to (0 M)$ defined by $\sigma'(0 xc) = (0 yc)$, for $c \in D$. Then σ is an R-endomorphism, so it can be extended to an endomorphism γ of X. Let $\gamma(0 c) = (a, b)$. Then we have $\gamma(0 y) = \sigma'(0 x) = \gamma(0 x) = (0 ax, 0)$. Thus $y = ax$, so $M = e,R e_i$. So M is a one-dimensional left vector space over $e,R e_i$. Thus, for each $d \in e,R e_i$, there exists a unique $d' \in e,R e_i$ such that $dx = xd'$. Define $\theta: e,R e_i \to e,R e_i$ by $\theta(d) = d'$. Then θ is an isomorphism, and we may identify d and d'. Then $\gamma(0 D) \to (0 D)$ defined by $\gamma(0 D) = (a, b)$. Then $\gamma(D,D) \to (D,M)$ is an isomorphism.

Conversely, if R satisfies (i), then, by Koehler [13], R is a QC-ring, hence a PCQI-ring. If R satisfies (ii), then straightforward computation shows that R is a right PCQI-ring.

Since every right QC-ring is a left QC-ring and $\left(D, D \right)$ is also a left PCQI-ring, we get the following corollary.

Corollary. A nonlocal semiperfect right PCQI-ring is also a left PCQI-ring.

5. **Local PCQI-rings.** Theorem 13 and Theorems 14, 15, and 16 which follow generalize Klatt and Levy's [11] theorems for commutative pre-self-injective rings which are not domains. Throughout this section M will denote the unique maximal right ideal of a local ring R. M is then the Jacobson radical of R, and R/M is a division ring.

Theorem 14. Let R be a local right PCQI-ring with maximal ideal M. Then either R is a right valuation ring or $M^2 = (0)$ and M/R has composition length 2.
Proof. First note that for all nonzero right ideals \(A \), \(R/A \) is indecomposable quasi-injective and hence uniform. Now we show that all nonzero right ideals are either minimal or essential. Let \(A, B \) be nonzero right ideals such that \(A \cap B = (0) \). We claim that \(A \) is minimal. Let \(C \) be a nonzero right ideal properly contained in \(A \). Then \(R/C \) is quasi-injective and not uniform since \(A/C \cap (B + C)/C = 0 \). This is a contradiction, so \(A \) is minimal. Similarly, \(B \) is minimal. In particular, it follows that any maximal independent family of minimal right ideals can contain at most two members.

If \(\text{Soc} R = (0) \), then all nonzero right ideals are essential. Let \(A, B \) be two nonzero right ideals. If neither \(A \leq B \) nor \(B \leq A \), then \(R/A \cap B \) is quasi-injective but not uniform since \(A/(A \cap B) \cap (B/(A \cap B)) = (0) \). As before, this is a contradiction. So either \(A \subseteq B \) or \(B \subseteq A \).

If \(\text{Soc} R \) consists of a unique minimal right ideal then it is clear that \(R \) is a right valuation ring.

Finally, suppose \(\text{Soc} R = A \oplus B \), where \(A, B \) are minimal right ideals. Then \(R \) cannot be prime. Let \(x \in M \), and consider \(xR \). If \(xR \) is not minimal, then \(xR \) is quasi-injective and decomposable. Then \(xR = A \oplus B \). In any case, for all \(x \in M \), \(x \in \text{Soc} R \). This implies that \(M^2 = (0) \), and the composition length of \(M \) is 2, completing the proof.

The next two theorems give the structure of non-prime local right \(PCQI \)-rings. Prime local \(PCQI \)-rings are discussed in the next section.

Theorem 15. For a nonprime right valuation ring \(R \), the following are equivalent:

(i) \(R \) is a right \(PCQI \)-ring.

(ii) \(R \) is a right duo almost maximal valuation ring of rank 0 such that any left ideal containing a nonzero right ideal is two-sided.

Proof. (i) \(\Rightarrow \) (ii). Since \(R \) is not prime, \(M \) is nil by Proposition 3. So, if \(xR \) is a nontrivial principal right ideal of \(R \), \(xR \) is quasi-injective. Since \(xR \) is essential in \(R \), the injective hull of \(xR \) is the same as that of \(R \). Hence, by Johnson and Wong [10], \(RxR \subseteq xR \). So \(xR \) is a two-sided ideal of \(R \). Thus \(R \) is a right duo ring. Since each proper homomorphic image of a \(PCQI \)-ring is a \(QC \)-ring, the proof of (i) \(\Rightarrow \) (ii) as well as that of (ii) \(\Rightarrow \) (i) is completed by a theorem of Koehler [13].

Theorem 16. For a local ring \(R \) with \(M^2 = (0) \) and the composition length of \(M_R \) equal to 2, the following are equivalent:
R is a right PCQI-ring.

(ii) For each nonzero right ideal A in R and for each $m \in A$, the congruence $x m_i \equiv m (\text{mod } A)$ has a solution, $x = \alpha$, such that $\alpha A \subseteq A$.

Proof. Under the hypothesis the only nonzero right ideals A of R different from M and R are minimal right ideals, and M/A is a simple right R-module.

(i) \Rightarrow (2) Let A be a nontrivial right ideal in R, and let $m, m_1, m_2 \in R$ such that $m, m_1, m_2 \in A$. Then $\bar{m}_1 R = M/A = \bar{m}_2 R$, and the mapping $\sigma: M/A \to M/A$ which sends $\bar{m}_1 r$ to $\bar{m}_2 r$ is a well-defined R-homomorphism. Since R/A is quasi-injective, σ can be lifted to $\sigma^* \in \text{Hom}_R (R/A, R/A)$. Let $\sigma(\bar{1}) = \bar{\alpha}$. Then $\bar{\alpha} m_i = \bar{m}_2$. Hence $x m_i \equiv m_2 (\text{mod } A)$ has a solution $x = \alpha$. Clearly $\alpha A \subseteq A$.

(ii) \Rightarrow (i) We only need to prove that if A is a nontrivial right ideal of R and $\sigma: M/A \to R/A$, is a nonzero R-homomorphism, then σ can be extended to an R-homomorphism $\sigma^*: R/A \to R/A$. Let $m \in M$, where $m \in A$. Then $M/A = \overline{m} R$. Also, $\sigma(M/A) = M/A$. Let $\sigma(\overline{m}) = \overline{m} r$. Since $M^* = (0)$, $r \not\in M$. So r is invertible, and $m r \not\in A$. Let $\alpha \in R$ be chosen such that $\alpha m = m r (\text{mod } A)$, and $\alpha A \subseteq A$. Then $\sigma^*(\overline{r}) = \overline{\alpha} R$ is well-defined, and it extends σ, completing the proof.

The example which follows shows that a local right PCQI-ring is not necessarily a left PCQI-ring.

Example. Let F be a field which has a monomorphism $\rho: F \to F$ such that $[F: \rho(F)] > 2$. Take x to be an indeterminate over F. Make $V = x F$ into a right vector space over F in a natural way. Let $R = \{(\alpha, x \beta) \mid \alpha, \beta \in F\}$. Define

$$(\alpha_1, x \beta_1) + (\alpha_2, x \beta_2) = (\alpha_1 + \alpha_2, x \beta_1 + x \beta_2)$$

and

$$(\alpha_1, x \beta_1)(\alpha_2, x \beta_2) = (\alpha_1 \alpha_2, x (\rho(\alpha_1) \beta_2 + \beta_1 \alpha_2)).$$

Then R is a local ring with identity with the maximal ideal $M = \{(0, x \alpha) \mid \alpha \in F\}$.

In fact, M is also a minimal right ideal and $M^2 = (0)$. Thus R is a right PCQI-ring. Further, if $\{\alpha_i\}_{i \in I}$ is a basis of F as a vector space over $\rho(F)$ then straightforward computations yield that $M = \bigoplus \sum R(0, x \alpha_i)$ as a direct sum of irreducible left R-modules $R(0, x \alpha_i)$. Since $\text{card } I > 2$, it follows by Theorem 14 that R is not a left PCQI-ring.
6. Prime local PCQI-rings.

Theorem 17. Let R be a prime local right PCQI-ring. Then R is a right valuation domain, hence right semihereditary.

Proof. By Theorem 14, R is a right valuation ring. Let A denote the intersection of all nonzero two-sided ideals of R. The proof that R is a domain falls into three cases.

(i) $A = (0)$.

Let $x, y \in R$ such that $xy = 0$. Suppose $y \neq 0$. Then yR is a nonzero right ideal of R. Since R is right valuation and $A = (0)$, yR must contain a nonzero two-sided ideal of R. Further, each proper homomorphic image of R is a local QC-ring, hence a duo ring [13]. This implies that yR is two-sided. Hence $x = 0$, and R is an integral domain.

(ii) $A \neq (0)$ and $A \neq M$.

Under these hypotheses, A cannot be a prime ideal. So there exist $x, y \in R$ such that $xRy \subseteq A$, $x \notin A$ and $y \notin A$. Since R is right valuation, $A \subseteq xR$ and $A \subseteq yR$. So both xR and yR are two-sided ideals. For definiteness, let $xR \subseteq yR$. Then $(xR)^2 \subseteq (xR)(yR) \subseteq AR = A$ gives that $(xR)^2 = A$ by the minimality of A. Also $A = A^2$, hence $(xR)^2 = (xR)^4$. It follows that $x^2R = x'R$. Then $x^2 = x'r$, for some $r \in R$, and $x^2(1 - x^2r) = 0$. So $x^2 = 0$. Thus $A = (0)$, and this case cannot occur.

(iii) $A = M$.

Let $S \subseteq R$, and let $r(S)$ denote the right annihilator of S in R. Let $Z(R) = \{x \in R | r(x)$ is an essential right ideal}. Then $Z(R)$ is an ideal in R called the right singular ideal.

Since R is a right valuation ring, R is immediately a domain if $Z(R) = (0)$.

So assume that $Z(R) \neq (0)$. Then $Z(R) = M$, and each element in M is a right zero divisor. So $x \in M$ implies that xR is proper cyclic, hence quasi-injective. Also xR is an essential right ideal in R. By Johnson and Wong [10], $RxR \subseteq xR$. Hence xR is two-sided. So R is a prime right duo ring, and it follows that R is a domain.

7. **PCQI-domains.** In this section we discuss right PCQI-rings which are integral domains and prove that these are right Öre-domains. This generalizes the result of Faith [4]. Our proof, in this case, though it runs on the same lines as that of Faith, does not use Faith’s result.

Proposition 18. Let R be a right PCQI-domain, and let I be a nonessential right ideal of R. Then R/I is an injective right R-
module containing a copy of R.

Proof. Since I is nonessential, there exists a nonzero right ideal J in R such that $I \cap J = 0$. Let $a \in J$ such that $a \neq 0$. Then $aR \cap I \subseteq J \cap I = 0$. Consider $r(a + I) = \{x \in R | ax \in I\}$. Clearly $r(a + I) = 0$. So R/I contains a copy of R. Since R/I is also quasi-injective, this implies that R/I is injective by [17].

For a right R-module A, let \hat{A} denote the injective hull of A.

PROPOSITION 19. Let R be a right PCQI-domain which is not a right Ore-domain. Then R is finitely presented.

Proof. Let $a \in R$ such that $a \neq 0$ and aR is not essential. Then R/aR is injective. Since R/aR contains a copy of R and is injective, R/aR contains a copy of \hat{R}. Then $R/aR = Y/aR \oplus X/aR$, where $X/aR \cong \hat{R}$. Now Y/aR is cyclic. So $Y = aR + bR$, for some $b \in R$, and the short exact sequence $0 \rightarrow Y \rightarrow R \rightarrow R/Y \cong X/aR \cong \hat{R} \rightarrow 0$ shows that \hat{R} is finitely presented.

THEOREM 20. A right PCQI-domain R is a right Ore-domain.

Proof. Let R be a right PCQI-domain. Suppose R is not a right Ore-domain. Then, as in Proposition 19, there exists $a \in R$ such that $R/aR = Y/aR \oplus X/aR$, where $X/aR \cong \hat{R} \cong R/Y$ and $Y = aR + bR$. We also get that $R = X + Y$, where $X \cap Y = aR$. This yields an exact sequence $0 \rightarrow aR \rightarrow X \times Y \rightarrow R \rightarrow 0$ which splits. So $X \times Y \cong aR \times R \cong R \times R$. This implies that $Y = aR + bR$ is a finitely generated projective right ideal. Since $\hat{R} \cong R/Y$, $0 \rightarrow Y \rightarrow R \rightarrow \hat{R} \rightarrow 0$ is exact. Then $Y \otimes_R \hat{R} \rightarrow R \otimes_R \hat{R} \rightarrow \hat{R} \otimes_R \hat{R} \rightarrow 0$ is exact. Also, a finitely generated projective R-module is essentially finitely related. So, by Cateforis ([3], Proposition 1.7), $(aR + bR) \otimes_R \hat{R}$ is projective as an \hat{R}-module. Then $Y \otimes_R \hat{R}$ is a direct summand of a free \hat{R}-module. Now $Z(\hat{R}) = 0$, hence $Z(Y \otimes_R \hat{R}) = 0$ because $Y \otimes_R \hat{R}$ is a direct summand of a free \hat{R}-module. Now consider $Y \otimes_R \hat{R} \rightarrow R \otimes_R \hat{R} \rightarrow \hat{R} \otimes_R \hat{R} \rightarrow 0$. Again, by Cateforis ([3], Lemma 1.8), $\ker i = Z(Y \otimes_R \hat{R}) = 0$. So $0 \rightarrow Y \otimes_R \hat{R} \rightarrow R \otimes_R \hat{R} \rightarrow \hat{R} \otimes_R \hat{R} \rightarrow 0$ is exact. Since $R \otimes_R \hat{R} \cong \hat{R}$, let $f : R \otimes_R \hat{R} \rightarrow \hat{R}$ be the canonical isomorphism. Then $f \circ i : Y \otimes_R \hat{R} \rightarrow \hat{R}$ is a monomorphism, and $Y \otimes_R \hat{R} \cong Y\hat{R}$. Since Y is finitely generated, $Y\hat{R}$ is a finitely generated right ideal of \hat{R}. So $Y\hat{R} = e\hat{R}$, where $e^2 = e$. Thus we have the following exact sequence: $0 \rightarrow e\hat{R} \rightarrow \hat{R} \otimes_R \hat{R} \rightarrow 0$, and $\hat{R} \otimes_R \hat{R} \cong \hat{R}/e\hat{R} = (1 - e)\hat{R}$. Hence $\hat{R} \otimes_R \hat{R}$ is isomorphic to a direct summand of \hat{R}. Since $Z(\hat{R}) = 0$, $Z(\hat{R} \otimes_R \hat{R}) = 0$. Since $\hat{R} = xR$, for some $x \in \hat{R}$, the
kernel of the canonical map \(f: \hat{R} \otimes_R B \to \hat{R} \) defined by \(f(a \otimes b) = ab \) is contained in \(Z(\hat{R} \otimes_R \hat{R}) \) and hence must be zero. Since \(f \) is surjective, \(f \) is an isomorphism. By Silver ([18], Proposition 1.1), there exists an epimorphism in the category of rings from \(R \) to \(\hat{R} \).

Let \(M \) be a right \(\hat{R} \)-module which is quasi-injective as a right \(\hat{R} \)-module. We claim that \(M \) is quasi-injective as a right \(\hat{R} \)-module. Let \(0 \to A_{\hat{R}} \to M_{\hat{R}} \to B_{\hat{R}} \to 0 \) be exact. Consider \(0 \to \text{Hom}_{\hat{R}}(B_{\hat{R}}, M_{\hat{R}}) \to \text{Hom}_{\hat{R}}(B_{\hat{R}}, B_{\hat{R}}) \to \text{Hom}_{\hat{R}}(A_{\hat{R}}, M_{\hat{R}}) \). By Silver ([18], Corollary 1.3), \(\text{Hom}_{\hat{R}}(N, N') \cong \text{Hom}_{\hat{R}}(N, N') \), where \(N, N' \) are right \(\hat{R} \)-modules. Also \(0 \to \text{Hom}_{\hat{R}}(B, M) \to \text{Hom}_{\hat{R}}(M, M) \to \text{Hom}_{\hat{R}}(A, M) \to 0 \) is exact since \(M_{\hat{R}} \) is quasi-injective. Thus \(0 \to \text{Hom}_{\hat{R}}(B, M) \to \text{Hom}_{\hat{R}}(M, M) \to \text{Hom}_{\hat{R}}(A, M) \to 0 \) is exact. So \(M_{\hat{R}} \) is quasi-injective. Let \(K \) be a cyclic right \(\hat{R} \)-module. Then \(K \) is a cyclic right \(R \)-module. Since \(R \) is a right \(PCQI \)-domain, \(K_{\hat{R}} \) is quasi-injective. Thus \(K_{\hat{R}} \) is quasi-injective. Since \(\hat{R} \) is right self-injective, \(\hat{R} \) is a \(QC \)-ring. So \(\hat{R} \) is semiperfect and simple, hence simple artinian. Thus \(\hat{R} \) is a division ring. This proves that \(R \) is a right \(\hat{O}r \)-domain.

We conclude by a remark that we have not studied arbitrary prime right \(PCQI \)-rings. This case remains open. Indeed, a characterization of right \(PCQI \)-domains has not yet been obtained.

References

2. R. Bumby, *Modules which are isomorphic to submodules of each other*, Archiv. der Math., 16 (1965), 184-185.

Received November 19, 1976.

Ohio University, Athens, Ohio

Present address: Surjeet Singh, Guru Nanak Dev University, Amritsar, India.

Present address: Robin Symonds, Indiana University at Kokomo, Kokomo, Indiana 46901.
Pacific Journal of Mathematics
Vol. 67, No. 2 February, 1976

Patricia Andresen and Marvin David Marcus, Weyl’s inequality and quadratic forms on the Grassmannian ... 277
George Bachman and Alan Sultan, Regular lattice measures: mappings and spaces ... 291
David Geoffrey Cantor, On certain algebraic integers and approximation by rational functions with integral coefficients 323
James Richard Choike, On the value distribution of functions meromorphic in the unit disk with a spiral asymptotic value 339
David Earl Dobbs, Divided rings and going-down 353
Mark Finkelstein and Robert James Whitley, Integrals of continuous functions ... 365
Ronald Owen Fulp and Joe Alton Marlin, Integrals of foliations on manifolds with a generalized symplectic structure 373
Cheong Seng Hoo, Principal and induced fibrations 389
Wu-Chung Hsiang and Richard W. Sharpe, Parametrized surgery and isotopy .. 401
Surender Kumar Jain, Surjeet Singh and Robin Gregory Symonds, Rings whose proper cyclic modules are quasi-injective ... 461
Pushpa Juneja, On extreme points of the joint numerical range of commuting normal operators .. 473
Athanassios G. Kartsatos, Nth order oscillations with middle terms of order $N - 2$... 477
John Keith Luedeman, The generalized translational hull of a semigroup ... 489
Louis Jackson Ratliff, Jr., The altitude formula and DVR’s 509
Ralph Gordon Stanton, C. Sudler and Hugh C. Williams, An upper bound for the period of the simple continued fraction for \sqrt{D} 525
David Westreich, Global analysis and periodic solutions of second order systems of nonlinear differential equations .. 537
David Lee Armacost, Correction to: “Compactly cogenerated LCA groups” ... 555
Jerry Malzan, Corrections to: “On groups with a single involution” 555
David Westreich, Correction to: “Bifurcation of operator equations with unbounded linearized part” ... 555