CORRECTION TO: “BIFURCATION OF OPERATOR EQUATIONS WITH UNBOUNDED LINEARIZED PART”

DAVID WESTREICH
ERRATA

Corrections to

ON GROUPS WITH A SINGLE INVOLUTION

J. MALZAN

Volume 57 (1975), 481-489

My recent paper “On Groups with a Single Involution” in the last volume of this journal makes, in the proof of Theorem II, the erroneous claim that A_7 has no nonsplit extension of degree 2. In fact, the Schur multiplier for this group is cyclic of order 6 and so A_7 admits a unique nonsplit extension (call it G) of degree 2. In the context of that proof what is required is that G shall have no absolutely irreducible representation which is both real and faithful. Seeing that this is so is a matter of direct computation which, while lengthy, is straightforward (involving inducing from the nonsplit extension of degree 2 of A_5 and A_6) and reveals that all the absolutely irreducible, faithful representations of G are of the second kind, except for a complex conjugate pair which is of the third kind. Theorem II, consequently, stands.

Correction to

COMPACTLY COGENERATED LCA GROUPS

D. L. ARMACOST

Volume 65 (1976), 1-12

Added in proof. The group Q has been inadvertently omitted from the list of groups appearing in Theorem 6.1. It arises because the compact open subgroup 0 in the proof could be trivial, in which case G is discrete. This change should also be noted in the abstract.

Correction to

BIFURCATION OF OPERATOR EQUATIONS WITH UNBOUNDED LINEARIZED PART

D. WESTREICH

Volume 57 (1975), 611-618

p. 611, line 22: insert “the” between “where” and “characteristic”.

555
p. 612, line 5: replace “\(\alpha(T) = p < \infty \) and \(\delta(T) < \infty\)” by
\[\alpha(T) = q < \infty \text{ and } \delta(T) = p < \infty \].

p. 612, line 6: replace “\(\alpha(T) = \delta(T)\),” by
\[\alpha(T) \leq \delta(T), \quad R_q(T) \cap N_q(T) = \{0\}, \].

p. 612, line 2 from bottom: replace “\(\alpha\)” by “\(\delta\).

p. 613, line 13: insert after “\(R_q(T)\)” “Moreover as \(N_q(T) = N_p(T)\) and \(R_q(T) \supseteq R_p(T)\), where \(q = (T),\) we have \(\alpha(T) = p\).”
Patricia Andresen and Marvin David Marcus, *Weyl’s inequality and quadratic forms on the Grassmannian* .. 277

George Bachman and Alan Sultan, *Regular lattice measures: mappings and spaces* ... 291

David Geoffrey Cantor, *On certain algebraic integers and approximation by rational functions with integral coefficients* 323

James Richard Choike, *On the value distribution of functions meromorphic in the unit disk with a spiral asymptotic value* 339

David Earl Dobbs, *Divided rings and going-down* 353

Mark Finkelstein and Robert James Whitley, *Integrals of continuous functions* .. 365

Ronald Owen Fulp and Joe Alton Marlin, *Integrals of foliations on manifolds with a generalized symplectic structure* 373

Cheong Seng Hoo, *Principal and induced fibrations* 389

Wu-Chung Hsiang and Richard W. Sharpe, *Parametrized surgery and isotopy* ... 401

Surender Kumar Jain, Surjeet Singh and Robin Gregory Symonds, *Rings whose proper cyclic modules are quasi-injective* 461

Pushpa Juneja, *On extreme points of the joint numerical range of commuting normal operators* .. 473

Athanassios G. Kartsatos, *Nth order oscillations with middle terms of order N − 2* .. 477

John Keith Luedeman, *The generalized translational hull of a semigroup* .. 489

Louis Jackson Ratliff, Jr., *The altitude formula and DVR’s* 509

Ralph Gordon Stanton, C. Sudler and Hugh C. Williams, *An upper bound for the period of the simple continued fraction for* \(\sqrt{D} \) 525

David Westreich, *Global analysis and periodic solutions of second order systems of nonlinear differential equations* 537

David Lee Armacost, *Correction to: “Compactly cogenerated LCA groups”* ... 555

Jerry Malzan, *Corrections to: “On groups with a single involution”* ... 555

David Westreich, *Correction to: “Bifurcation of operator equations with unbounded linearized part”* ... 555