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1. Introduction. A homotopy class x E πq(X) is said
to be projectiυe on X, or projectively carried by X, if it can be
represented by a map that factors through the projective space
pq, as shown in diagram (I), where π is the double covering map.

Sq-JL-^X Sq-L^Sm

(I) π \ / (Π) A / (t^m).

pq pq

When x is a stable homotopy class of spheres, it is of interest
to ask for the values of m such that x be projective on 5 m . Since
Sm is (t - l)-connected for t ^ m, this amounts to the factorisa-
tion problem posed in diagram (II) above, where π is π followed
by the collapsing map from Pq to the truncated projective space
Pq - Pq IPι~\ We give an answer to this problem when x is a
generator of the image of the /-homomorphism.

In recent years the problem of projective classes has been studied in
[3], [8], [10], [13], and [14]. We refer especially to [8], in which the
authors determine, for classes up to the 28-stem, the various spheres that
can carry them projectively. We also refer to [10], where the authors
prove among other things, that every stable homotopy class of spheres is
carried projectively by some sphere.

Let w, υ be classes in stable stems of spheres, and suppose x is
projectively carried by X. For specific u and v, it sometimes turns out
that the composition xu, or a representative x' of the secondary
composition (JC, w, v) (i.e., Toda bracket), will also be carried by X
projectively. In this paper we prove the following typical results.

THEOREM 5.1. Let x E πq{X) be projectiυe on the (m - \)-connected
space X, where q ^ 2m — 4. Then xη is projective on X.

THEOREM 6.2. Let x E ττq(X) be projectiυe on the (m -1)-
connected space X, where q ^ 2m - 10 and q = 3 (mod 4). // the Toda
bracket (JC, 8σ, 2) is defined, then all its representatives are projectiυe on X.

As an application we deduce Mahowald's Theorem D [7, p. 4] on the
vanishing of certain Whitehead products, namely
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THEOREM (Mahowald). Let β generate the image of the J
homomorphism in the s-stέm. Then [tn, β] = 0 on Sn, provided n and s
satisfy 3 ̂  v2{n + s + 2) ̂  φ(s).

Here the numerical functions are defined as follows. v2{m) is the
exponent of 2 in the factorization of m. For any integer number s, φ(s)
denotes the number of integers in the closed interval [l,s] which are
congruent to 0, 1, 2 or 4 modulo 8. By [1], 2φ(s) is precisely the order of
KO(PS) or J(PS).

As a matter of fact, this paper is an outgrowth of our attempt to
understand [7], in particular Theorem D. We thank Mark Mahowald
warmly for many conversations and correspondences concerning his
memoir.

The technical tools used to prove Theorems (5.1) and (6.2) are the
"compression theorems" in §4. These theorems deal with certain
self-maps of truncated projective spaces. They help us pin down some
facts about composition of the ImJ generators, and facilitate the
handling of Toda brackets. Perhaps these theorems have some inde-
pendent interest, and could be read on their own right.

2. Preliminaries, notations and examples. Odd torsion
elements being unimportant for our purpose, τr*(X) in this paper will
always mean the 2-primary component of the homotopy groups of
X. For example, the 1st., 3rd., and 7th. stable homotopy groups of
spheres are, for us, cyclic of order 2, 8, and 16 respectively, with
generators 77, v and σ. A generator β of Im/ has order equal to a
power of 2, as given by the Adams' conjecture ([6], [12]).

We fix some notation for maps between various spaces. The letter
c always denotes a map collapsing a subspace of some truncated
projective space to a point. The double covering map Sq —> Pq is π, and
77 will always denote a map which is π followed by a collapsing map
c. Finally, inclusions between truncated projective spaces are usually
indicated by /, or by an unmarked arrow.

We shall need the preliminary results 2.1-2.6 below, whose details
can be found in [8] or [14].

PROPOSITION 2.1. The class 2ίm is projective on Sm if and only ifm is
odd.

PROPOSITION 2.2. The classes 17, v, and σ are projective on Sm if and
only if

m = 2(mod4) in the case of η
m = 4(mod 8) in the case of v and
m =8(modl6) in the case of σ; respectively.



COMPOSITION PROPERTIES OF PROJECTIVE HOMOTOPY CLASSES 49

For example, if m ^ 4(mod8), then v: 5m + 3-> 5 m cannot be factored

as 5 m + 3 Λ p m + 3 Λ 5 m , otherwise the induced cofibre map

g/. pm+4_^Sm U β ^ + 4 will contradict the action of the Steenrod squares.

PROPOSITION 2.3. For m ̂  k + 2, ί/te projective homotopy classes in
πk+m(Sm) form a subgroup 7r^m(Sm).

For the next proposition let Mk+ι denote any suitable multiple of
2φ(k+ι\ and write n = Mk+ι - k - m - 2. Let i: Sn -» Pn be the inclusion
of 5 n into the bottom cell of Pn = Px/Pn'\ With the same hypothesis as
in (2.3) one has

PROPOSITION 2.4. The stable class x belongs to πp

k

r?m(Sm) if and only
if the following composition is homotopically trivial:

Sk+n-^ Sn-^ Pn.

This proposition is proved in [8], in a straight-forward manner,
essentially by taking the 5-dual of diagram (II), with t = m. From now
on, we shall refer to the triviality of i*(x) by simply saying that x
"vanishes in P n " .

PROPOSITION 2.5. The suspension homomorphism induces an
isomorphism τrp

kTm(Sm)= π%?m+M{Sm+M) for any multiple M of 2φ(k+ι\

As a special example of projective homotopy classes consider the
stable 8-stem 7 r f = Z 2 0 Z 2 , with generators v and ση. The two
elements v and v + ησ make up the full Toda bracket (^2,2, η). (See
[15].) Moreover we have (c.f. [8]):

PROPOSITION 2.6. All elements in πt are projective on Sm for m =3
(mod 4).

3. Some projective properties of the ImJ
generators . Let β be the generator of Im / in the s-stem, s = 0, 1, 3 or
7 (mod8), and let a: Ss+ι^> BO represent the corresponding generator
of π s +i(BO). If a is thought of as an m-plane bundle over Ss+\ then the
Thorn space (Ss+ι)a is obtained from Sm by attaching an (m + s + l)-cell
using β [9].

More generally let μ be an m-plane bundle over X. The inclusion
of the base point *C-*X gives rise to a Puppe sequence [11]

( # ) sm — -̂> Xμ - ^ Xμ -^-» S m + 1
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We call Xμ the reduced Thorn space and θμ the attaching map of
μ. With respect to cofibrations, Thorn spaces have the following simple
properties.

PROPOSITION 3.1. Let A —> B -> X be a cofibration sequence. Let
h

η = g*(μ), e = f*(η) be the pullbacks of μ. Then Λ e - ^ β 7 / - > X μ ,

A e -> β η —» X μ are cofibration sequences.

Here /ι denotes the composite B17 -> X μ — -̂» Xμ, and all other maps

are naturally induced.

COROLLARY 3.2. The cofibre of BΊη-*Xμ is ΣA e.

Proof Because the cofibre of Bv ->Xμ is ΣA e, by (3.1).

Note also that e is trivial, so Σ A e is just a suspension of A.

Next suppose that X is the (reduced) suspension of a compact space
Y. Let b denote a base point. Let μ be given by the characteristic
map χμ: Y—» O(m). We can use χμ to trivialise μ over X — b. Since
X - ft ~ (Y - ft) x (0,1), the one-point compactification of μ | X - b can
be identified with Σm+1Y. But on the other hand, this one-point
compactification is clearly Xμ. Thus we have

PROPOSITION 3.3. Suppose that X = Σ Y is compact and that the
m-plane bundle μ on X is given by the characteristic map
χμ: Y —> O(m). Then there is a homeomorphism ωμ : Σ

m + 1 Y ~
Xμ. Furthermore, the attaching map θμ corresponds to the image of χμ

under the composite homomorphism

COROLLARY 3.4. Suppose X = Σ Y so that the (isomorphism classes
of) m-plane bundles μ over X form a group identifiable with
[Y,O(m)]. Then θrμ = rθμ for any integer r.

This corollary can be represented by the commutative diagram
below.

2 m + 1 γ = χμ — ^ Sm + 1

id r
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For more detailed discussion of reduced Thorn spaces see [4] and
[17, p. 230].

By studying Thorn spaces over spheres and projective spaces, one
can deduce certain projective properties of the generator β E
ImJ. Specifically, consider the bundle mξ over Ps+\ (5=0,1,3 or 7
(mod 8)), where ξ = Hopf line bundle. We shall be interested in the
case when mξ is not trivial over P5+\ but is trivial over some skeleton Ptλ

with t >\{s + 1). We also need to suppose tψ^O (mod4). Under these
circumstances Ps

(

+ι is a suspension space ΣY, KO(Ps

t

+1) is finite cyclic,
and there is an m-plane bundle μ over Ps

t

+ι which induces mξ, under the
collapsing map. Given m and s, the existence of a skeleton Ptl

satisfying all the above requirements can be guaranteed by the numerical
condition φ[l(s + 1)] ̂  v2(m)^ φ(s), where v2 and φ are as explained in
the introduction (see [1, Thm. 7.4]).

THEOREM 3.5. The generator β of ImJ in the s-stem is projective on
Sm whenever φ[2(s -f 1)] ̂  v2(m)^ φ(s).

Proof First recall [2, Prop. (4.3)] that the Thorn space of mξ over
P s + 1 is P2+s+ι. Using the cofibration sequence

(pt-\\mξ ^ (ps + ί\mξ . /ps+ί\μ
\ / V^ / V t )

\\\ \\\

*• m ' m

of Proposition (3.1), we see that (Ps

(

+λ)μ is the truncated projective space

Pmt5t+\ and that h is just a collapsing map between truncated projective

spaces. Furthermore, since h factors as (Ps+ι)mξ —>(Ps

(

+ί)μ A(Pj + 1 )^

and since ΘJμ — * (see ( # )), we conclude that the composition θμc in

c ~ θ
/ Π s + l\mξ Γ>m+s + l ^ Γ>m+s-fl /Γ>s+l\μ *i Om + 1
V^ / *m * * m + t \* t ) * ^

is trivial.

Choose the integer r so that the m -plane bundle rμ represents an
element of order 2 in KO(Ps

t

+ι). As is well-known, rμ is then the
pullback c*(α) of an m -plane bundle a on S s + 1 representing a generator
of KO(SS+1). Recalling Corollary (3.4), we can now write down the
following commutative diagram.

pm+s + l °. pm + s + l _ (ps+ί\μ g * Om + 1
1 m * Σ m + ί V-* t ) τ &
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The space P™+s+1 maps into each of the three spaces on the left
column by a collapsing map c. Since θμc is trivial, we deduce by
commutativity that θrμc is trivial, and hence the composition

p ™ + s + 1 Λ s m 4 s 4 1 Λ s m + 1 is trivial. Hence β coextends in the cofibration
sequence

F m f ί + l . C w + V

m — ^

i.e. we have a commutative diagram

C m + s + l

\

/

Desuspending this diagram, we see that β is carried by Sm projectively,
as was to be proved.

REMARK. This theorem is not final. Rather it is a preparation for
the much more comprehensive Theorem (7.1) below.

4. Compression theorems for truncated projective
spaces . Let P\ be a truncated projective space in which t is assumed
odd and larger than 1/2, so that P\ is a suspension space Σ Y If /
happens to be even, then (the class of) the identity map l^y has finite
order in the track group [Σ Y , S y ] . This order is a power of 2, and has
been determined by H. Toda [16]. Furthermore, a map that equals a
smaller power of 2 times l Σ y can always be homotoped to a new map
which "compresses" Σ Y to a lower skeleton. In this section we present
several theorems in this direction. These theorems lead to an im-
mediate proof of some standard facts about generators of π*(O) and
Im/. See (4.3), (4.8) and (4.9).

THEOREM 4.1. Let t be odd and t > 1/2 so that P\ is a suspension
space ΣY. Then there exists a map

such that, on passing to quotients, φ induces η: Sι -^>Sι~\

Proof. In case / is even, the fundamental lemma of Toda [16,
Lemma 2.1] says precisely that 2 l Σ y can be homotoped to a map φ with
the desired properties.
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In case / is odd, 2 l Σ y is of degree two and hence cannot be
"compressed into a lower skeleton". However, it is not difficult to see
that the composition

p i 2'1*\ p i ' > p i \

can be homotoped to a map φ: P\-±P\~ι. (Consider the first-stage
modified Postnikov resolution of the inclusion map P\~λ—>Pι

t

+ι)\ For

any such φ, the composite map Pι

t'
ι^Pι

t —•P,'"1-^ Sι~ι is necessarily
trivial by virtue of cohomological degree. Hence φ can be chosen to
satisfy φ{Pι

t

x)CPι

t\
To show that the quotient map φ: Sι —> Sι~ι is nontrivial, take φ

cellular, and induce a map φ': Pί_2—» PιΓ-\ by collapsing the (/ - 3)-
skeleta to a point. Then we have a commutative diagram

c

i
S> ^ ^ S'-.

If / = 1 or 5 (mod8), the nontriviality of cφ' can be detected by the
functor KO or KO~4, so that φ{ — η in these cases. (Computation of the
jKΌ-groups offers no difficulty here. See [1].) As for the remaining
cases / = 3, 7 (mod 8), it turns out that our present theorem holds even in
a stronger form, which can be found in theorem (4.6) below. This
concludes the proof.

COROLLARY 4.2. For t odd and t > 1/2, there is a commutative
diagram

ς /-l v

 > C/-2

π Iπ

Proof. We have Puppe sequences Sι~ι^> P\~λ^> P j Λ 5' and

Sι~2-^ P;~2-^> Pί" 1 -U Sι'λ respectively. The map φ sends the middle
terms of the first sequence into those of the second. The induced map
5 / " 1 ->S'" 2 between the first terms must be 17, by Theorem (4.1).

COROLLARY 4.3. If p, denotes the generator of Im / in the 8/-1 stem,
then the next two generators of Im / are ρ}η and ρ7τ/2, in the 8/ and 8/ + 1
stem respectively.
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Proof. It is easy to check that, when / = l^or 2 (mod8), the
existence of φ in Theorem (4.1) implies that η*: KO(Sιι)-+KO(Sι)
sends generator to generator. But the generator of KO(Slί) is just that
of πι~{{BO) or π^2(O). Thus our corollary is really an assertion about
the homotopy generators of the infinite orthogonal group.

THEOREM 4.4. Assume t is odd, 1 = 0, 2, 4 (mod 8), / - 8 > ί >
1/2. Then in the truncated projective space P\ = Σ Y, the map 16 l Σ y can
be homotoped to a map φ satisfying

Furthermore, for any such φ, the quotient map φ # : P',-i-» Sι~s is an
extension of 8σ: S'"1-* Sι~\

This theorem can be represented diagrammatically by

(Hi)

where the columns are cofibration sequences.

Proof Make 16- l Σ y : Pj-» P\ cellular and collapse to a point the
(/ - 8)-skeleton in its domain and range. The resulting map is 16 times
the identity map of P\-Ί, which is trivial by Toda [16, Thm. 2.7]. From

the cofibration sequence Pι

t~
8-^Pι

t -> P\-Ί, we see that 16 l Σ y c a n be
homotoped to a "compression map" φ : P ί - > P [ ~ 8 . The following
lemma guarantees that φ can be chosen to satisfy φ(Pί~2)CPί~9as well.

LEMMA 4.5. The composite P ! " 2 Λ F ; Λ ? ; - 8 4 S H is homotopi-

cally trivial.

Assuming this lemma for the moment, we can now form the
commutative diagram (III). If φΦi were trivial in that diagram, so would
be cφi: P\'x —> S'"8, which allows φ to induce a map φh as shown below.
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pi φ . pl-8

In K or KO theory, φ * is mono with cokernel Z1 6, whereas c* has image
Z2. This would force φV- K(Sιs)-> K(Sι) to be a nontrivial map
Z-+Z which is impossible because the finite group πs

8 cannot operate
nontrivially (by composition) on the torsion free groups π*{BU). On
the other hand, φ*i E πι-ι(Sι~*) has order dividing 2, because it extends
to Pί_j = Sι~] U2e

ι. Therefore φ # / equals 8σ, the only element of order
2 in the stable 7-stem. This completes the proof.

We now return to prove Lemma (4.5).

Case (i). / = 0 (mod 8).
Let ix and i2 denote the inclusions P\~2 —> P\~ι and P\~*-^>Pι~2

respectively. Also, denote sixteen times the identity map of P\~2 simply
by 16. In spite of the fact that this is the restriction of 16 lΣ y, it is not
necessarily true that 16 ~ i2φi0 as self-maps of Pι

t~
2. However, by taking

all maps and homotopies cellular, as one can clearly do, one certainly has
fV16— iιi2φi(). With this in mind, examine the following commutative
diagram:

F /-2 '" r>l φ ^ p/-8 '2 ^ p/-2 h ^ p/-l . p/
t >jpt >JtJ

ί > J K , >Ft >Jft

Here, the space P\-l is "co-reducible" in the sense that P ί - i ^ Sι 8 v P\ZX

Ί

[2, Thm. 6.2], and r is a retraction map. Just like the compression of
16 lvy into φ, the map 16 of P\~2 admits a compression into PJ~10, so that
for dimensional reason any map from P\~2 to S'~8 factoring homotopically
through 16 must be trivial. In particular, cφiQ= rciλi2φiQ~ (rciλ)Ί6 is
trivial.

Case (ii). 1 = 2 (mod 8).
The 5-dual of the map cφi0 can be taken as a map h : 5 N ~ / + 8

V-/ + 2,

where AT + 1 = a high power of 2 [2, Thm. 3.3]. But 7ΓΛ,-/+8(PJ5:;+2) is the
same as τr/v_/+8 of the Stiefel manifold VN-t+lJ-t-x, which is zero by the
computations of [5]. Hence cφiQ is trivial in this case.

Case (iii). / s 4 (mod 8).

In this case we factor i0 into a composition P\~2—> Pι

t~
]-> Pι

t. The

S-dual of cφi{) can then be written as the following composite
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CN-/+8_J^\ pN-t °Φ. pN-t Dl\ pN-t Dl\ pN-t
»> * * N-l+8 * * N-l *-» N-/ + 1 * * N-l+2-

Applying τrN_/+8 and again using [5] as in Case (ii), we get homomor-
phisms

z -* z2->zs-^ zl6(BZ4^ z8.

It follows from algebraic considerations that the above composite must
be trivial. Hence cφi0 — 0.

By studying 2 l Σ y instead of 16 l Σ y in X Y = P{, one can obtain the
following analogous result. Compare [16, Lemma 2.2].

THEOREM 4.6. Λs^wme t is odd, 1=0 (mod4) and l-2>t>
1/2. Then in the truncated projectiυe space P\= X Y, ί/ie map 2 l Σ y can
6e homotoped to a map φ satisfying

Furthermore, for any such φ, the quotient map φ # : P\-\-^ Sι~2 is an
extension of η: Sι~ι—> Sι~2.

Coupling this theorem with (4.1), and using 4 l Σ y = (2 l Σ y ) ( 2 l Σ y ) ,
8 l Σ y = (2 l Σ y ) (4 l Σ y ) , it is easy to deduce

COROLLARY 4.7. Let P\ = Σ Y be as in Theorem (4.6). Then
(i) 4ΊΣYcan be homotoped to a map φ satisfying φ(Pι

hP
ι

t~
2)C

(Pί~3,Pί~4). The quotient map φ#: P\-λ-* Sι~3 of any such φ is an
extension of η2: S^-^S1'3;

(ii) 8 l Σ y c α n be homotoped to a map φ satisfying φ(Pι

(,P
ι

t~
2)C

( P ί 4 , Pι

t'
5). The quotient map </>#: P\-ι—> Sι~4 of any such φ is an

extension of η3 = Av: Sι~x-*Sι~\

As application of the above compression theorems we prove

PROPOSITION 4.8. If p} denotes the generator of Im J in the 8/-1 stem,
then py + 1G(py,8σ,2).

Proof Let p7 generate πS](BO). Set / = 8; + 8 and choose t odd
in (1/2,1 - 8). Expand the two bottom squares of (III) to the following
commutative diagram
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Notice that the mapping cone for 2 and π are precisely P'. j and Pi, and
that / exists because any map from S/~1 = 58 / + 7 to BO must be
trivial. Indeed / is none other than a representative of the Toda bracket
(p/,8σ,2)Cπ8;+8(J3O) = Z. Remembering that φ* in iίO-theory is a
monomorphism with cokernel Z1 6, it is routine to verify via commutativ-
ity that / must represent an odd element. Taking indeterminacy into
account, this establishes ρ/+1 E (p;, 8σ, 2) and p ;+1 E (p;, 8σ, 2} simultane-
ously.

Similarly, one can use Theorem (4.6) to prove

PROPOSITION 4.9. After p;τ/2, the next generator ξ} of ImJ in the
8/+ 3 stem lies in the Toda bracket (ptf2, η, 2).

5. Composition properties (i) — primary com-
position.

THEOREM 5.1. Let x E πq{X) be projective on the (m - 1 ) -
connected space X, where q ̂  2m — 4. Then xη is projective on X.

Proof. Let t be the largest odd number ^ m. According to
Corollary (4.2), there is a map φ to make the following diagram
commutative.

q+ι

This establishes (5.1).

6. Composition properties (ii) — Toda brackets. We
begin with some remarks on Toda brackets. In a commutative diagram
such as
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A f > B 8 C h > D
( iv) i* i iβ i ( S ^ ί M

Λ ' f' R g< r^i W Y) \g J — * ~ n 8 '

where two identity maps are involved, there need not be any naturality
property relating (h,g,f) to (/ι',g',f), namely τ*{h\g\f) and (h,g,f)
could be disjoint subsets in [ΣΛ, D], Nevertheless, the situation can be
salvaged by some additional hypothesis, such as assuming that the
induced map τ+ between the mapping cones (€1 and %> has certain nice
properties.

LEMMA 6.1. Suppose it is possible to expand (IV) to the following
bigger commutative diagram

A —U B —U % —*-> C -^-> D

T

where /, /' a re inclusions and g, g ' a re m a p s 5wc/ι ί/iaί g/ = g, g'ir —
g'. Then there is a representative ω: ΣA'—>D of (h',g',ff) such that
ω-XτE{h,g,f).

The proof is routine and we omit it.

THEOREM 6.2. Let x E πq(X) be projective on the (m -1)-
connected space X, where q ^ 2m - 10 and q = 3 (mod 4). // the Toda
bracket (x, 8cr, 2) /s defined, then all its representatives are projective on X.

Proof Let t be the largest odd number ^ m and let h': Pq

t —> X be
the map showing x to be projective on X. In Theorem (4.4) we set
I = q +9 and super-impose on top of diagram (III) a sub-diagram of the
type (IVy, as shown below.

Sq+1 ^ Sq+1 U 2 eq+H —
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In this big diagram the square on the extreme left is the desuspen-
sion of

I π II (q + 8 being odd)

with Γ T Γ simply abbreviated as r. The cofibre of Σ~*c is precisely Pq

t

+\

as can be checked from the Puppe sequence [11] of Sq*Ί——»Pq

t

 +Ί. Just
as Pq

t

+9 can be obtained from the subspace Pq

t

+8 by attaching a cell via TΓ,
Pq+9 can also be obtained from the subspace PγΊ by attaching two cells
via r+. Thus the vertical sequence starting with Sq+7U2e

q+8 is a Puppe
sequence, while the vertical sequence starting with Sq is also one by
construction. This induces the dotted arrow φ, which can be thought of
as a desuspension of <£#.

One principal assertion of Theorem (4.4) is that φ#i = 8σ. By
desuspension, φi = 8σ. Lemma (6.1) can now be applied to conclude
that (x, 8(τ, 2) has a representative /: Sq+*-*X factoring through
Pq+S. Any other representative will differ from / by sums of elements of
the form 2y or x0, where y E πq+s(X), θ E πq+s(Sq) are arbitrary. Since
q Ξ=3 (mod 4), 2y must be projective on X by Proposition (2.1), and so
must be xθ, by Proposition (2.6). Consequently, all representatives of
(JC, 8σ, 2) are projective on X, as was to be proved.

The following two theorems are proved in a similar fashion, using 4.6
and (4.7) (ii), respectively.

THEOREM 6.3. Let x E πq(X) be projective on the (m - lyconnected
space X, where q^2m-4 and q=l (mod4). // the Toda bracket
(x, η, 2) is defined, then all its representatives are projective on X.

THEOREM 6.4. Letx E πq(X) be projective on the (m - lyconnected
space X, where q ^ 2 m - 6 and q=3 (mod 4). // the Toda bracket
(x, 4i/,2) is defined, then all its representatives are projective on X.

7. Application to Whitehead products [tn, β] , β £Ξ
I m J . In his memoir [7, §1] Mahowald studied the Whitehead product
[tn, θ] for θ E ττ,(Sn), q < In - 2, by using the fact that for all k g 1,

where /: Sn —>Pn

n

+k~ι is the inclusion, Σ n - 1 is the suspension homomor-
phism from πq(Pn

n

+k~ι) to πq+n-λ&
n~λPn

n

+k~% and P M is the "generalised
Whitehead homomorphism" in the EHP sequence
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discussed by Toda in [15, Chapter XI]. Clearly, i*(0) = O implies
[ιn,θ] = 0.

Thus to deduce vanishing theorems for [tn, β] where β is a generator
of Im/, it suffices to show β vanishes in Pn (which implies β vanishes in
Pn

n

+k~ι for k sufficiently large). But this is equivalent, by Proposition
(2.4), to β being projective on a certain sphere. We already have a
result of this nature in §3. This result can now be significantly extended,
using the composition theorems of §5 and §6.

Recall that β can be one of the elements ρn ρ;η, p;η
2 or ξp in stem

8/ - 1, 8/, 8/ + 1 or 8/ + 3 respectively. We now prove

THEOREM 7.1. The generator β of I m / in the stable s-stem is
projective on Sm, provided 3 ^ v2(m)^k φ(s). (The stability condition
s ^ m — 2 is implicitly assumed.)

This should be contrasted with Theorem (3.5), which requires the
much stronger condition φ[2(s + 1)] = v2(m)^ φ(s).

Proof. We show that for any m with v2(m)^ 3, all I m / generators
in the s-stem satisfying φ(s)^ v2(m) are projective on Sm, as long as
s^km—2. First suppose that ^ ( w ) has the form 4/—
1(= φ(8y — 1)). By Theorem (3.5), py is projective on Sm. By two
applications of Theorem (5.1), ρ}η and p}r)2 are projective on Sm. Since
ξj E (pjΎ]2, 77,2) and p/+1 E (pp 8σ, 2), ξ} and p]+ι must also be projective on
Sm

y by Theorems (6.3) and (6.2) respectively. Repeating the argument
with py+1, we deduce successively that all subsequent Im/ generators are
carried by Sm projectively (as long as they are carried by it stably).

If v2{m)τ^ 4/ — 1 we have to rely a bit more on Theorem (3.5). For
example, if 3 ^ v2{m) = 4/ - 4( = φ(βj - 8)), then we can first use
Theorem (3.5) to assert that Pj~λη, ft-iη2, £-1 and p] are projective on
Sm. The same is then true for all the subsequent generators, by the
above argument. The cases v2(m) = 4/ - 3 or 4/ - 2 are handled simi-
larly.

The following table should help to illustrate Theorem (7.1).

3

4

5

6

7

8

Generators

σ = p, p,τ/

P.-r?

projectively

P ^ 2 ft

p t η
2 ^

p . η 2 ^

S i

carried by

p 2 P2Ή

p 2 p 2 η

p 2 p 2 η

p 2 p ? η

p 2 P2V

P2V

Sm (m

P2V2

P2V2

P2V2

P2V2

P2V2

large)

6 Pi •

6 Pi '

£2 Pi •

6 P i ' -

& Pi '
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It is now a routine matter to translate (7.1) into Mahowald's theorem
[7, p. 4, Theorem D].

THEOREM 7.2. The generator β of ϊmJ in the s-stem vanishes in Pn,
and hence [tn, β] = 0 on 5n, provided n and s satisfy 3 g v2(n + s + 2) ^

REMARK. These vanishing results correspond to the cases marked
by an "JC" in Mahowald's table of summary [7, p. 4]. They are the
hardest cases to settle. The other vanishing results for [ιn, β] in that
table can also be established, rather effortlessly, by our approach.

REMARK (added in proof). In connection with Theorem (7.1), it
can be shown without much difficulty that β cannot be projective on Sm

if v2(m)>φ(s).
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