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This paper is concerned with the problem of determining
which standard restricted wreath products of two groups A and
G are residually central. Complete characterizations are ob-
tained in the case where G is orderable and in the case where A
and G are locally nilpotent.

The contents of this paper formed a part of the author’s doctoral
dissertation submitted to Michigan State University in 1975. 1 wish to
thank Professor Richard E. Phillips for his guidance and advice. I also
wish to thank the referee for his suggestions for simplifying the proofs of
Lemma 1, Theorem 2, and Lemma 3.

A group G is said to be residually central if for all 1# x € G,
x & [x,G]. Other definitions may be found in [10] and
[11]. Residually central groups were first studied by Durbin in [3] and
[4]. Further information may be found in papers by Ayoub [1], Slotter-
beck [12], and Stanley [13] and [14].

The wreath product of two groups A and G is the semi-direct
product W = A | B, where A is the direct sum I1{A, | g € G} of copies of
A. If « €A, then a can be written as o =", a5, meaning that
a(g)=a, 1=i=m, and a(g)=1if g&{g:, - ", 8.). If g EG, then
at =1l a%. The subgroup A is called the base group of W. Note
that if a € A, the element a' in A can be identified with a. Note also
that if B<G, then (A/B)wrG is a homomorphic image of A wrG in the
obvious way; the kernel of the homomorphism is B =II{B,|g €
G}. Throughout this paper W will denote the wreath product A wrG
and A its base group.

Lemma 1. If g, -, 8. € G, then NI-,[g, G]=[{g1," ", &), G].

Proof. Since each [g,Gl=[(g, " g)G], M. [gG]l=
[{g1," -, &), G]. Let K =1I.,[g, G], a normal subgroup of G. If Z/K
is the center of G/K, then each g, € Z. Hence (g,,***, g.)= Z, and so
[(gb Y gn)a G] =K

THEOREM 1. Suppose that W = A wrG is residually central. If G
is infinite, then A is a Z-group.

Proof. Leta,---,a,€ A, K=(a,- ", a,). Byatheorem of Hic-
kin and Phillips [7], it suffices to show that KZ [K, A]. Letg, -, g. be
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distinct elements of G, and set @ =II*,a*€ A. Since W is residually
central, a&[a, W]=[a,A]=1I",[a,A]* as a direct sum. Let
b €la,A], 1=i=m. Then b*€E[a,Al* =[a, W]<IW,; thus b,°=
(b#)E' €[, W]. Hence M [a,A]l=[K A]=[a, W]<IW, and so
N {[K,AfF|lg€ G}=[a,W]. f K=[K A],thena €E[K A],1=i=
m, and a =L, a* €L, [K, A]* = [a, W], a contradiction.

LeEmmA 2. Let A and G be residually central groups. Then W =
AwrG is residually central if and only if for all 1Za €A, af
[a, Glle, A}C.

Proof. The necessity of the condition follows from the definition of
residual centrality.

Let w € W. Since W is a semi-direct product A ]G, w can be
expressed uniquely in the form ag, where « EA and g € G. Now
[ag, W]=[a, W][g,AG]= A[g, G]. If g#1, then g &g, G], since G
is residually central. Thus ag &[ag, W]. If g=1, then [a, W]|=
[a, G][a, A]°. Hence if a & [a, G][a, A]°, then W is residually cen-
tral.

A group G is ordered if it possesses a total order = which is
preserved under right and left multiplication. Further information may
be found in [8]. Orderable groups must be torsion-free. Examples of
orderable groups are free groups [8, p. 17] and torsion-free locally
nilpotent groups [8, p. 16].

THEOREM 2. If G is a residually central orderable group, and A is a
Z-group, then W = AwrG is residually central.

Proof. Let a =II",a%€ A, where 82€G,a€EA and a,#1, 1=
i =m. By Lemma 2 it is enough to assume that & € [@, G][a, A]° and
reach a contradiction. Let L =[{a), ", a.),A]. Since A is a Z-
group, some a, & L, by [7]. If L= H{Lg |g € G}, then a € L, but
aL € {(A/L), where {,(H) denotes the nth center of a group H. Let
=A/L, and W,= A, wrG, a homomorphic image of W. Then
a E [@, W] implies that aL € [aL, W;]. Because aL € ¢, (A ), a charac-
teristic subgroup of A, [aL, W,] = {,(A,). Let A,={,(A)); then W, =
A, wrG is not residually central, and so we may assume that the base
group A is abelian. We may also assume that A = (a;," ", a,).
With these assumptions, there is a prime p and subgroup B of index
p in A. Since some a, € B, « € B€, so that we may factor out B and
assume that A is cyclic of prime order p. Denoting the field of p
elements by Z, we note that A is a free Z,G-module of rank 1. Let
=(1—-g|g € G) denote the augmentation ideal of Z,G. If g € G,
then [e, g] may be written in (additive) module notation as — a + ag =
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—a(l—g); thus the assumption that « € [a, G| means, in module
notation, that « € aA. Hence there exists 6 €A such that a =
a@d. Then a(1-8)=0,and a#0,1—-867#0. Butsince G is orderable,
Z,G can have no zero divisors [10, 26.2 and 26.4], a contradiction.

This shows that if G is a residually central, orderable group, then
A wrG is residually central if and only if A isa Z-group. For example,
free groups are orderable and are residually nilpotent; thus the wreath
product of two free groups is residually central.

LEMMA 3. Suppose that W = AwrG is residually central, and G
has an element g of prime order p. Then every element of A and of G of
finite order has p-power order.

Proof. Suppose a € A has prime order g# p. As elements of A,
a# a*. However, in a residually central group, elements of relatively
prime, finite orders commute [10, Theorem 6.14], and so a = a*, which is
impossible.

Suppose h € G has prime order q# p. Then g and h commute,
and (g, h) is cyclic of order pq. Let 1#a€ A and A,=(a). Then
W, = A, wr(g, h) is residually central with an abelian base group. Let
a =[a,g h]. Modulo [a,g] we have

1=[a,g h']=[a,g h]" ="
Since h and g commute, and A, is abelian,
a =la, g h]=[a g]'[a h] [a gh]=a h] [a g] [a hg]
=la, h,g].
As before, modulo [a, G],
1=[a,h,g")=[a,h g =a"

Thus a € [a, G], @’ € [a, G] for the distinct primes p and g, so that
a € [a, G, implying that W is not residually central, a contradiction.

THEOREM 3. Suppose A and G are locally nilpotent. Then W =
AwrG is residually central if and only if either

(1) G is torsion-free, or

(2) For some prime p, all elements of G and of A of finite order have
p-power order.

Proof. The necessity of (1) or (2) follows from Lemma 3.
If (1) holds, then G is orderable [8, p. 16], and Theorem 2 applies.
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Suppose (2) holds.  Since residual centrality is a local property [3], it
suffices to show that every finitely generated subgroup (w,, - - -, w,) of W
is contained in a residually central subgroup. Each w, = ag, where
g €G and «, € A, and each o, =1I".,a%. Hence

<le"'7 w,,,)é(a,,,g.,,g,!léiém, iéjgni)

= (a;) wr (g, 8)-

Thus we may assume that both A and G are finitely generated and hence
nilpotent.

Let a =1Il;_,af. By Lemma 2, it suffices to assume that 1 # a €
[a, G][a, A]° and reach a contradiction. Since A is nilpotent, there is
an integer r such that each a, € {,(A) and some a, & {,.,(A). Then

le, A1° =[(a, -+, @), A]° =[{(A), A]° = (£(A))°.

W,=(A/{,-.(A))wrG is a homomorphic image of W in the obvious
way. If a denotes the image of « in W, then a€
la,Glla, A/t (A)]=[a,G]in W, since @ € [a, G][a,A]°in W.Let A=
{(A)-(A). Thus A, wrG is a subgroup of W, containing
a. [a, G]= A, since A, is a characteristic subgroup of A/{,_,(A). By
[2, Corollary 2.11], every element of A, of finite order has p-power
order. By [5, Theorem 2.1}, A; and G are residually finite p-
groups. Because a € [@, G], A,wrG is not residually central and
therefore not residually nilpotent. Hartley [6], however, has shown that
A, wrG is residually nilpotent, a contradiction.

CoroLLARY. If A is abelian and G is locally nilpotent, then
W = AwrG is residually central if and only if W is locally a residually
nilpotent group.

Proof. The sufficiency of the condition is clear. Theorem 3 and
Theorems B1 and B2 of [6] combine to prove the necessity.
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