Pacific Journal of Mathematics

RESIDUALLY CENTRAL WREATH PRODUCTS

ROGER DALE KONYNDYK

Vol. 68, No. 1 March 1977

RESIDUALLY CENTRAL WREATH PRODUCTS

ROGER D. KONYNDYK

This paper is concerned with the problem of determining which standard restricted wreath products of two groups A and G are residually central. Complete characterizations are obtained in the case where G is orderable and in the case where A and G are locally nilpotent.

The contents of this paper formed a part of the author's doctoral dissertation submitted to Michigan State University in 1975. I wish to thank Professor Richard E. Phillips for his guidance and advice. I also wish to thank the referee for his suggestions for simplifying the proofs of Lemma 1, Theorem 2, and Lemma 3.

A group G is said to be residually central if for all $1 \neq x \in G$, $x \notin [x, G]$. Other definitions may be found in [10] and [11]. Residually central groups were first studied by Durbin in [3] and [4]. Further information may be found in papers by Ayoub [1], Slotter-beck [12], and Stanley [13] and [14].

The wreath product of two groups A and G is the semi-direct product $W = \bar{A} \, B$, where \bar{A} is the direct sum $\Pi\{A_g \mid g \in G\}$ of copies of A. If $\alpha \in \bar{A}$, then α can be written as $\alpha = \prod_{i=1}^m a_i^{g_i}$, meaning that $\alpha(g_i) = a_i, \ 1 \leq i \leq m$, and $\alpha(g) = 1$ if $g \notin \{g_1, \dots, g_m\}$. If $g \in G$, then $\alpha^g = \prod_{i=1}^m a_i^{g_ig_i}$. The subgroup \bar{A} is called the base group of W. Note that if $a \in A$, the element a^1 in \bar{A} can be identified with a. Note also that if $B \triangleleft G$, then (A/B)wrG is a homomorphic image of AwrG in the obvious way; the kernel of the homomorphism is $\bar{B} = \Pi\{B_g \mid g \in G\}$. Throughout this paper W will denote the wreath product AwrG and \bar{A} its base group.

LEMMA 1. If
$$g_1, \dots, g_n \in G$$
, then $\prod_{i=1}^n [g_i, G] = [\langle g_1, \dots, g_n \rangle, G]$.

Proof. Since each $[g_n, G] \leq [\langle g_1, \dots, g_n \rangle, G]$, $\prod_{i=1}^n [g_i, G] \leq [\langle g_1, \dots, g_n \rangle, G]$. Let $K = \prod_{i=1}^n [g_i, G]$, a normal subgroup of G. If Z/K is the center of G/K, then each $g_i \in Z$. Hence $\langle g_1, \dots, g_n \rangle \leq Z$, and so $[\langle g_1, \dots, g_n \rangle, G] \leq K$.

THEOREM 1. Suppose that W = A wr G is residually central. If G is infinite, then A is a Z-group.

Proof. Let $a_1, \dots, a_m \in A$, $K = \langle a_1, \dots, a_m \rangle$. By a theorem of Hickin and Phillips [7], it suffices to show that $K \not \equiv [K, A]$. Let g_1, \dots, g_m be

distinct elements of G, and set $\alpha = \prod_{i=1}^m a_i^{g_i} \in \bar{A}$. Since W is residually central, $\alpha \not\in [\alpha, W] \ge [\alpha, \bar{A}] = \prod_{i=1}^m [a_i, A]^{g_i}$ as a direct sum. Let $b_i \in [a_i, A]$, $1 \le i \le m$. Then $b_i^{g_i} \in [a_i, A]^{g_i} \le [\alpha, W] \triangleleft W$; thus $b_i^{1g} = (b_i^{g_i})^{g_i^{-1}} \in [\alpha, W]$. Hence $\prod_{i=1}^m [a_i, A] = [K, A] \le [\alpha, W] \triangleleft W$, and so $\prod_{i=1}^m \{[K, A]^g \mid g \in G\} \le [\alpha, W]$. If $K \le [K, A]$, then $a_i \in [K, A]$, $1 \le i \le m$, and $\alpha = \prod_{i=1}^m a_i^{g_i} \in \prod_{i=1}^m [K, A]^{g_i} \le [\alpha, W]$, a contradiction.

LEMMA 2. Let A and G be residually central groups. Then W = A wr G is residually central if and only if for all $1 \neq \alpha \in \overline{A}$, $\alpha \notin [\alpha, G][\alpha, \overline{A}]^G$.

Proof. The necessity of the condition follows from the definition of residual centrality.

Let $w \in W$. Since W is a semi-direct product $\bar{A} \mid G$, w can be expressed uniquely in the form αg , where $\alpha \in \bar{A}$ and $g \in G$. Now $[\alpha g, W] \leq [\alpha, W][g, \bar{A}G] \leq \bar{A}[g, G]$. If $g \neq 1$, then $g \not\in [g, G]$, since G is residually central. Thus $\alpha g \not\in [\alpha g, W]$. If g = 1, then $[\alpha, W] \leq [\alpha, G][\alpha, \bar{A}]^G$. Hence if $\alpha \not\in [\alpha, G][\alpha, \bar{A}]^G$, then W is residually central.

A group G is ordered if it possesses a total order \leq which is preserved under right and left multiplication. Further information may be found in [8]. Orderable groups must be torsion-free. Examples of orderable groups are free groups [8, p. 17] and torsion-free locally nilpotent groups [8, p. 16].

THEOREM 2. If G is a residually central orderable group, and A is a Z-group, then W = A wr G is residually central.

Proof. Let $\alpha = \prod_{i=1}^m a_i^{g_i} \in \bar{A}$, where $g_i \in G$, $a_i \in A$, and $a_i \neq 1$, $1 \leq i \leq m$. By Lemma 2 it is enough to assume that $\alpha \in [\alpha, G][\alpha, \bar{A}]^G$ and reach a contradiction. Let $L = [\langle a_1, \dots, a_m \rangle, A]$. Since A is a Z-group, some $a_i \not\in L$, by [7]. If $\bar{L} = \prod \{L^g \mid g \in G\}$, then $\alpha \not\in \bar{L}$, but $\alpha \bar{L} \in \zeta_1(\bar{A}/\bar{L})$, where $\zeta_n(H)$ denotes the nth center of a group H. Let $A_1 = A/L$, and $W_1 = A_1 wrG$, a homomorphic image of W. Then $\alpha \in [\alpha, W]$ implies that $\alpha \bar{L} \in [\alpha \bar{L}, W_1]$. Because $\alpha \bar{L} \in \zeta_1(\bar{A}_1)$, a characteristic subgroup of \bar{A}_1 , $[\alpha \bar{L}, W_1] \leq \zeta_1(\bar{A}_1)$. Let $A_2 = \zeta_1(\bar{A}_1)$; then $W_2 = A_2 wrG$ is not residually central, and so we may assume that the base group \bar{A} is abelian. We may also assume that $A = \langle a_1, \dots, a_m \rangle$.

With these assumptions, there is a prime p and subgroup B of index p in A. Since some $a_i \not\in B$, $\alpha \not\in B^G$, so that we may factor out B and assume that A is cyclic of prime order p. Denoting the field of p elements by Z_p , we note that \bar{A} is a free Z_pG -module of rank 1. Let $\Delta = (1 - g \mid g \in G)$ denote the augmentation ideal of Z_pG . If $g \in G$, then $[\alpha, g]$ may be written in (additive) module notation as $-\alpha + \alpha g = 0$

 $-\alpha(1-g)$; thus the assumption that $\alpha \in [\alpha, G]$ means, in module notation, that $\alpha \in \alpha \Delta$. Hence there exists $\delta \in \Delta$ such that $\alpha = \alpha \delta$. Then $\alpha(1-\delta) = 0$, and $\alpha \neq 0$, $1-\delta \neq 0$. But since G is orderable, Z_pG can have no zero divisors [10, 26.2 and 26.4], a contradiction.

This shows that if G is a residually central, orderable group, then A wr G is residually central if and only if A is a Z-group. For example, free groups are orderable and are residually nilpotent; thus the wreath product of two free groups is residually central.

LEMMA 3. Suppose that W = A wr G is residually central, and G has an element g of prime order p. Then every element of A and of G of finite order has p-power order.

Proof. Suppose $a \in A$ has prime order $q \neq p$. As elements of \overline{A} , $a \neq a^s$. However, in a residually central group, elements of relatively prime, finite orders commute [10, Theorem 6.14], and so $a = a^s$, which is impossible.

Suppose $h \in G$ has prime order $q \neq p$. Then g and h commute, and $\langle g, h \rangle$ is cyclic of order pq. Let $1 \neq a \in A$ and $A_1 = \langle a \rangle$. Then $W_1 = A_1 wr \langle g, h \rangle$ is residually central with an abelian base group. Let $\alpha = [a, g, h]$. Modulo $[\alpha, g]$ we have

$$1 = [a, g, h^q] \equiv [a, g, h]^q = \alpha^q.$$

Since h and g commute, and \bar{A}_1 is abelian,

$$\alpha = [a, g, h] = [a, g]^{-1}[a, h]^{-1}[a, gh] = [a, h]^{-1}[a, g]^{-1}[a, hg]$$
$$= [a, h, g].$$

As before, modulo $[\alpha, G]$,

$$1 = [a, h, g^p] \equiv [a, h, g]^p = \alpha^p.$$

Thus $\alpha^p \in [\alpha, G]$, $\alpha^q \in [\alpha, G]$ for the distinct primes p and q, so that $\alpha \in [\alpha, G]$, implying that W is not residually central, a contradiction.

THEOREM 3. Suppose A and G are locally nilpotent. Then W = A wrG is residually central if and only if either

- (1) G is torsion-free, or
- (2) For some prime p, all elements of G and of A of finite order have p-power order.

Proof. The necessity of (1) or (2) follows from Lemma 3. If (1) holds, then G is orderable [8, p. 16], and Theorem 2 applies.

Suppose (2) holds. Since residual centrality is a local property [3], it suffices to show that every finitely generated subgroup $\langle w_1, \dots, w_m \rangle$ of W is contained in a residually central subgroup. Each $w_i = \alpha_i g_i$, where $g_i \in G$ and $\alpha_i \in \overline{A}$, and each $\alpha_i = \prod_{i=1}^n a_{ij}^{g_i}$. Hence

$$\langle w_1, \dots, w_m \rangle \leq \langle a_{ij}, g_{ij}, g_i | 1 \leq i \leq m, i \leq j \leq n_i \rangle$$

= $\langle a_{ij} \rangle wr \langle g_{ij}, g_i \rangle$.

Thus we may assume that both A and G are finitely generated and hence nilpotent.

Let $\alpha = \prod_{k=1}^{l} a_k^{g_k}$. By Lemma 2, it suffices to assume that $1 \neq \alpha \in [\alpha, G][\alpha, \bar{A}]^G$ and reach a contradiction. Since A is nilpotent, there is an integer r such that each $a_i \in \zeta_r(A)$ and some $a_i \notin \zeta_{r-1}(A)$. Then

$$[\alpha, \bar{A}]^G \leq [\langle a_1, \cdots, a_l \rangle, A]^G \leq [\zeta_r(A), A]^G \leq (\zeta_{r-1}(A))^G.$$

 $W_1 = (A/\zeta_{r-1}(A)) \ wr \ G$ is a homomorphic image of W in the obvious way. If $\bar{\alpha}$ denotes the image of α in W_1 , then $\bar{\alpha} \in [\bar{\alpha}, G][\bar{\alpha}, \overline{A/\zeta_{r-1}(A)}] = [\bar{\alpha}, G]$ in W_1 , since $\alpha \in [\alpha, G][\alpha, A]^G$ in W. Let $A_1 = \zeta_r(A)/\zeta_{r-1}(A)$. Thus $A_1 \ wr \ G$ is a subgroup of W_1 containing $\bar{\alpha}$. $[\bar{\alpha}, G] \leq \bar{A}_1$, since A_1 is a characteristic subgroup of $A/\zeta_{r-1}(A)$. By [2, Corollary 2.11], every element of A_1 of finite order has p-power order. By [5, Theorem 2.1], A_1 and G are residually finite p-groups. Because $\bar{\alpha} \in [\bar{\alpha}, G]$, $A_1 \ wr \ G$ is not residually central and therefore not residually nilpotent. Hartley [6], however, has shown that $A_1 \ wr \ G$ is residually nilpotent, a contradiction.

COROLLARY. If A is abelian and G is locally nilpotent, then W = A wr G is residually central if and only if W is locally a residually nilpotent group.

Proof. The sufficiency of the condition is clear. Theorem 3 and Theorems B1 and B2 of [6] combine to prove the necessity.

REFERENCES

- 1. C. Ayoub, On properties possessed by solvable and nilpotent groups, J. Austr. Math. Soc., 9 (1969), 218-227.
- 2. G. Baumslag, Lecture Notes on Nilpotent Groups, Amer. Math. Soc., (Regional Conference Series in Mathematics, no. 2), Providence, Rhode Island, 1971.
- 3. J. R. Durbin, Residually central elements in groups, J. Algebra, 9 (1968), 408-413.
- 4. ——, On normal factor coverings in groups, J. Algebra, 12 (1969), 191-194.
- 5. K. W. Gruenberg, Residual properties of infinite solvable groups, Proc. London Math. Soc., 7 (1957), 29-62.

- 6. B. Hartley, The residual nilpotence of wreath products, Proc. London Math. Soc., (3) 20 (1970), 365-392.
- 7. K. K. Hickin, and R. E. Phillips, On classes of groups defined by systems of subgroups, Archiv. der Math., 24 (1973), 346-350.
- 8. A. I. Kokorin, and V. M. Kopytov, *Fully Ordered Groups*, transl. D. Louvish., John Wiley and Sons, Inc., New York, 1974.
- 9. D. S. Passman, Infinite Groups Rings, Marcel Dekker Inc., New York, 1971.
- 10. D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Part I, Springer-Verlag, Berlin, 1972.
- 11. ——, Finiteness Conditions and Generalized Soluble Groups, Part II, Springer-Verlag, Berlin, 1972.
- 12. O. Slotterbeck, Finite factor coverings of groups, J. Algebra, 17 (1971), 67-73.
- 13. T. E. Stanley, Generalizations of the classes of nilpotent and hypercentral groups, Math. Z., 118 (1970), 180-190.
- 14. ——, Residual *X*-centrality in groups, Math. Z., **126** (1972), 1-5.

Received February 18, 1976 and in revised form August 9, 1976.

URSINUS COLLEGE

COLLEGEVILLE, PA 19426

Pacific Journal of Mathematics

Vol. 68, No. 1

March, 1977

Richard Julian Bagby, On L^p , L^q multipliers of Fourier transforms	I
Robert Beauwens and Jean-Jacques Van Binnebeek, <i>Convergence ti</i>	
Banach algebras	
James Cyril Becker, Skew linear vector fields on spheres in the stab	
range	
Michael James Beeson, Continuity and comprehension in intuitionic	
systems	
James K. Deveney, Generalized primitive elements for transcenden extensions	
Samuel S. Feder, Samuel Carlos Gitler and K. Y. Lam, <i>Composition</i>	
of projective homotopy classes	
Nathan Jacob Fine, Tensor products of function rings under compos	
Benno Fuchssteiner, <i>Iterations and fixpoints</i>	
Wolfgang H. Heil, On punctured balls in manifolds	
Shigeru Itoh, A random fixed point theorem for a multivalued control	
mapping	85
Nicolas P. Jewell, Continuity of module and higher derivations	91
Roger Dale Konyndyk, Residually central wreath products	99
Linda M. Lesniak and John A. Roberts, On Ramsey theory and grap	phical
parameters	105
Vo Thanh Liem, Some cellular subsets of the spheres	115
Dieter Lutz, A perturbation theorem for spectral operators	127
P. H. Maserick, Moments of measures on convex bodies	
Stephen Joseph McAdam, <i>Unmixed 2-dimensional local domains</i> .	153
D. B. McAlister and Norman R. Reilly, <i>E-unitary covers for invers</i>	e
semigroups	161
William H. Meeks, III and Julie Patrusky, Representing codimension	n-one
homology classes by embedded submanifolds	175
Premalata Mohapatro, Generalised quasi-Nörlund summability	
Takahiko Nakazi, Superalgebras of weak-*Dirichlet algebras	197
Catherine Louise Olsen, Norms of compact perturbations of operators	ors 209
William Henry Ruckle, Absolutely divergent series and isomorphism	
subspaces. II	
Bernard Russo, On the Hausdorff-Young theorem for integral operation	
Arthur Argyle Sagle and J. R. Schumi, Anti-commutative algebras of	
homogeneous spaces with multiplications	
Robert Evert Stong, Stiefel-Whitney classes of manifolds	
D. Suryanarayana, On a theorem of Apostol concerning Möbius fun	
order k	
Yoshio Tanaka, On closedness of C- and C*-embeddings	
Chi Song Wong, Characterizations of certain maps of contractive t	ype 293