Pacific Journal of Mathematics

RESIDUALLY CENTRAL WREATH PRODUCTS

ROGER DALE KONYNDYK

Vol. 68, No. 1 March 1977

RESIDUALLY CENTRAL WREATH PRODUCTS

ROGER D. KONYNDYK

This paper is concerned with the problem of determining which standard restricted wreath products of two groups A and G are residually central. Complete characterizations are obtained in the case where G is orderable and in the case where A and G are locally nilpotent.

The contents of this paper formed a part of the author's doctoral dissertation submitted to Michigan State University in 1975. I wish to thank Professor Richard E. Phillips for his guidance and advice. I also wish to thank the referee for his suggestions for simplifying the proofs of Lemma 1, Theorem 2, and Lemma 3.

A group G is said to be residually central if for all $1 \neq x \in G$, $x \notin [x, G]$. Other definitions may be found in $[10]$ and [11]. Residually central groups were first studied by Durbin in [3] and [4]. Further information may be found in papers by Ayoub [1], Slotterbeck [12], and Stanley [13] and [14].

The wreath product of two groups A and G is the semi-direct product $W = \overline{A} \mid B$, where \overline{A} is the direct sum $\Pi\{A_{\varepsilon} | g \in G\}$ of copies of A. If $\alpha \in \overline{A}$, then α can be written as $\alpha = \prod_{i=1}^{m} a_i^s$, meaning that $\alpha(g_i) = a_i$, $1 \leq i \leq m$, and $\alpha(g) = 1$ if $g \notin \{g_1, \dots, g_m\}$. If $g \in G$, then $\alpha^s = \prod_{i=1}^m a_i^{s_i s_i}$. The subgroup \overline{A} is called the base group of W. Note that if $a \in A$, the element a^1 in \overline{A} can be identified with a. Note also that if $B \triangleleft G$, then (A/B) wr G is a homomorphic image of A wr G in the obvious way; the kernel of the homomorphism is $\overline{B} = \Pi \{B_{\varepsilon} | g \in$ G . Throughout this paper W will denote the wreath product A wr G and \overline{A} its base group.

LEMMA 1. If
$$
g_1, \dots, g_n \in G
$$
, then $\Pi_{i=1}^n[g_i, G] = [\langle g_1, \dots, g_n \rangle, G]$.

Proof. Since each $[g_0, G] \leq [\langle g_1, \dots, g_n \rangle, G], \quad \Pi_{i=1}^n[g_0, G] \leq$ $[\langle g_1, \dots, g_n \rangle, G]$. Let $K = \prod_{i=1}^n [g_i, G]$, a normal subgroup of G. If Z/K is the center of G/K , then each $g_i \in Z$. Hence $\langle g_1, \dots, g_n \rangle \leq Z$, and so $[\langle g_1, \cdots, g_n \rangle, G] \leq K.$

THEOREM 1. Suppose that $W = A w r G$ is residually central. If G is infinite, then A is a Z -group.

Proof. Let $a_1, \dots, a_m \in A$, $K = \langle a_1, \dots, a_m \rangle$. By a theorem of Hickin and Phillips [7], it suffices to show that $K \not\leq [K, A]$. Let g_1, \dots, g_m be

distinct elements of G, and set $\alpha = \prod_{i=1}^m a_i^{\alpha} \in \overline{A}$. Since W is residually central, $\alpha \notin [\alpha, W] \geq [\alpha, \overline{A}] = \prod_{i=1}^{m} [a_i, A]^{s_i}$ as a direct sum. Let $b \in [a, A], 1 \leq i \leq m$. Then $b^{s} \in [a, A]^{s} \leq [\alpha, W] \triangleleft W$; thus $b^{1} =$ $(b_i^s)^{s_i} \in [\alpha, W]$. Hence $\Pi_{i=1}^m [a_i, A] = [K, A] \leq [\alpha, W] \triangleleft W$, and so $\Pi_{i=1}^m \{[K, A]^s | g \in G\} \leq [\alpha, W]$. If $K \leq [K, A]$, then $a_i \in [K, A]$, $1 \leq i \leq K$ *m*, and $\alpha = \prod_{i=1}^{m} a_i^s \in \prod_{i=1}^{m} [K, A]^{s_i} \leq [\alpha, W]$, a contradiction.

LEMMA 2. Let A and G be residually central groups. Then $W =$ A wr G is residually central if and only if for all $1 \neq \alpha \in \overline{A}$, $\alpha \notin$ $[\alpha, G][\alpha, \overline{A}]^G$.

Proof. The necessity of the condition follows from the definition of residual centrality.

Let $w \in W$. Since W is a semi-direct product $\overline{A} \mid G$, w can be expressed uniquely in the form αg , where $\alpha \in \overline{A}$ and $g \in G$. Now $[\alpha g, W] \leq [\alpha, W][g, \overline{A}G] \leq \overline{A}[g, G]$. If $g \neq 1$, then $g \notin [g, G]$, since G is residually central. Thus $\alpha g \notin [\alpha g, W]$. If $g = 1$, then $[\alpha, W] \le$ $[\alpha, G][\alpha, \overline{A}]^c$. Hence if $\alpha \notin [\alpha, G][\alpha, \overline{A}]^c$, then W is residually central.

A group G is ordered if it possesses a total order \leq which is preserved under right and left multiplication. Further information may be found in [8]. Orderable groups must be torsion-free. Examples of orderable groups are free groups $[8, p. 17]$ and torsion-free locally nilpotent groups [8, p. 16].

THEOREM 2. If G is a residually central orderable group, and A is a Z-group, then $W = A w r G$ is residually central.

Proof. Let $\alpha = \prod_{i=1}^m a_i^{s_i} \in \overline{A}$, where $g_i \in G$, $a_i \in A$, and $a_i \neq 1$, $1 \leq$ $i \leq m$. By Lemma 2 it is enough to assume that $\alpha \in [\alpha, G][\alpha, \overline{A}]^c$ and reach a contradiction. Let $\vec{L} = [\langle a_1, \dots, a_m \rangle, A]$. Since A is a Zgroup, some $a_i \notin L$, by [7]. If $\overline{L} = \Pi \{ L^s | g \in G \}$, then $\alpha \notin \overline{L}$, but $\alpha \overline{L} \in \zeta_1(\overline{A}/\overline{L})$, where $\zeta_n(H)$ denotes the *n*th center of a group H. Let $A_1 = A/L$, and $W_1 = A_1 w r G$, a homomorphic image of W. Then $\alpha \in [\alpha, W]$ implies that $\alpha L \in [\alpha L, W]$. Because $\alpha L \in \zeta_1(\overline{A}_1)$, a characteristic subgroup of \overline{A}_1 , $[\alpha \overline{L}, W_1] \leq \zeta_1(\overline{A}_1)$. Let $A_2 = \zeta_1(\overline{A}_1)$; then $W_2 =$ A_2 wr G is not residually central, and so we may assume that the base group \overline{A} is abelian. We may also assume that $A = (a_1, \dots, a_m)$.

With these assumptions, there is a prime p and subgroup B of index p in A. Since some $a_i \notin B$, $\alpha \notin B^G$, so that we may factor out B and assume that A is cyclic of prime order p . Denoting the field of p elements by Z_{p} , we note that \overline{A} is a free $Z_{p}G$ -module of rank 1. Let $\Delta = (1 - g) g \in G$ denote the augmentation ideal of $Z_{\varrho}G$. If $g \in G$, then $\lceil \alpha, \beta \rceil$ may be written in (additive) module notation as $-\alpha + \alpha g =$

 $-\alpha(1-g)$; thus the assumption that $\alpha \in [\alpha, G]$ means, in module notation, that $\alpha \in \alpha \Delta$. Hence there exists $\delta \in \Delta$ such that $\alpha =$ Then $\alpha(1-\delta) = 0$, and $\alpha \neq 0$, $1-\delta \neq 0$. But since G is orderable, $\alpha\delta$ Z_nG can have no zero divisors [10, 26.2 and 26.4], a contradiction.

This shows that if G is a residually central, orderable group, then A wr G is residually central if and only if A is a Z-group. For example, free groups are orderable and are residually nilpotent; thus the wreath product of two free groups is residually central.

LEMMA 3. Suppose that $W = A w r G$ is residually central, and G has an element g of prime order p. Then every element of A and of G of finite order has p-power order.

Proof. Suppose $a \in A$ has prime order $q \neq p$. As elements of \overline{A} , $a \neq a^s$. However, in a residually central group, elements of relatively prime, finite orders commute [10, Theorem 6.14], and so $a = a^s$, which is impossible.

Suppose $h \in G$ has prime order $q \neq p$. Then g and h commute, and $\langle g, h \rangle$ is cyclic of order pq. Let $1 \neq a \in A$ and $A_1 = \langle a \rangle$. Then $W_1 = A_1 w r \langle g, h \rangle$ is residually central with an abelian base group. Let $\alpha = [a, g, h]$. Modulo $[\alpha, g]$ we have

$$
1 = [a, g, h^q] \equiv [a, g, h]^q = \alpha^q.
$$

Since h and g commute, and \overline{A}_1 is abelian,

$$
\alpha = [a, g, h] = [a, g]^{-1}[a, h]^{-1}[a, gh] = [a, h]^{-1}[a, g]^{-1}[a, hg]
$$

$$
= [a, h, g].
$$

As before, modulo $[\alpha, G]$,

$$
1 = [a, h, g^p] \equiv [a, h, g]^p = \alpha^p.
$$

Thus $\alpha^p \in [\alpha, G]$, $\alpha^q \in [\alpha, G]$ for the distinct primes p and q, so that $\alpha \in [\alpha, G]$, implying that W is not residually central, a contradiction.

THEOREM 3. Suppose A and G are locally nilpotent. Then $W =$ A wrG is residually central if and only if either

 (1) G is torsion-free, or

(2) For some prime p, all elements of G and of A of finite order have p-power order.

Proof. The necessity of (1) or (2) follows from Lemma 3. If (1) holds, then G is orderable [8, p. 16], and Theorem 2 applies.

Suppose (2) holds. Since residual centrality is a local property [3], it suffices to show that every finitely generated subgroup $\langle w_1, \dots, w_m \rangle$ of W is contained in a residually central subgroup. Each $w_i = \alpha_i g_i$, where $g_i \in G$ and $\alpha_i \in \overline{A}$, and each $\alpha_i = \prod_{i=1}^{n_i} a_{ij}^{g_{ij}}$. Hence

$$
\langle w_1, \cdots, w_m \rangle \leq \langle a_{ij}, g_{ij}, g_i \mid 1 \leq i \leq m, i \leq j \leq n_i \rangle
$$

= $\langle a_{ij} \rangle$ wr $\langle g_{ij}, g_i \rangle$.

Thus we may assume that both A and G are finitely generated and hence nilpotent.

Let $\alpha = \prod_{k=1}^{l} a_k^{s_k}$. By Lemma 2, it suffices to assume that $1 \neq \alpha \in$ $[\alpha, G][\alpha, \overline{A}]^G$ and reach a contradiction. Since A is nilpotent, there is an integer r such that each $a_i \in \zeta_i(A)$ and some $a_i \notin \zeta_{i-1}(A)$. Then

$$
[\alpha,\bar{A}\,]^G\leqq[(a_1,\cdots,a_l),A\,]^G\leqq[\zeta,(A),A\,]^G\leqq(\zeta_{r-1}(A))^G.
$$

 $W_1 = (A/\zeta_{r-1}(A))$ wr G is a homomorphic image of W in the obvious way. If $\bar{\alpha}$ denotes the image of α in W_1 , then $\bar{\alpha} \in$ $[\bar{\alpha}, G][\bar{\alpha}, \overline{A/\zeta_{r-1}(A)}] = [\bar{\alpha}, G]$ in W_1 , since $\alpha \in [\alpha, G][\alpha, A]^c$ in W. Let $A_1 =$ $\zeta_{I}(A)/\zeta_{I-1}(A)$. Thus A_1 wr G is a subgroup of W_1 containing $\bar{\alpha}$. $[\bar{\alpha}, G] \leq \bar{A}_1$, since A_1 is a characteristic subgroup of $A/\zeta_{r-1}(A)$. By [2, Corollary 2.11], every element of A_1 of finite order has p-power order. By [5, Theorem 2.1], A_1 and G are residually finite pgroups. Because $\bar{\alpha} \in [\bar{\alpha}, G]$, $A_1 w r G$ is not residually central and therefore not residually nilpotent. Hartley [6], however, has shown that A_1 wr G is residually nilpotent, a contradiction.

COROLLARY. If A is abelian and G is locally nilpotent, then $W = A w r G$ is residually central if and only if W is locally a residually nilpotent group.

Proof. The sufficiency of the condition is clear. Theorem 3 and Theorems B1 and B2 of [6] combine to prove the necessity.

REFERENCES

1. C. Ayoub, On properties possessed by solvable and nilpotent groups, J. Austr. Math. Soc., 9 (1969), 218-227.

2. G. Baumslag, Lecture Notes on Nilpotent Groups, Amer. Math. Soc., (Regional Conference Series in Mathematics, no. 2), Providence, Rhode Island, 1971.

3. J. R. Durbin, Residually central elements in groups, J. Algebra, 9 (1968), 408-413.

4. -----, On normal factor coverings in groups, J. Algebra, 12 (1969), 191-194.

5. K. W. Gruenberg, Residual properties of infinite solvable groups, Proc. London Math. Soc., 7 $(1957), 29 - 62.$

6. B. Hartley, The residual nilpotence of wreath products, Proc. London Math. Soc., (3) 20 (1970), 365-392.

7. K. K. Hickin, and R. E. Phillips, On classes of groups defined by systems of subgroups, Archiv. der Math., 24 (1973), 346-350.

8. A. I. Kokorin, and V. M. Kopytov, Fully Ordered Groups, transl. D. Louvish., John Wiley and Sons, Inc., New York, 1974.

9. D. S. Passman, *Infinite Groups Rings*, Marcel Dekker Inc., New York, 1971.

10. D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Part I, Springer-Verlag, Berlin, 1972.

11. - Finiteness Conditions and Generalized Soluble Groups, Part II, Springer-Verlag, Berlin, 1972.

12. O. Slotterbeck, Finite factor coverings of groups, J. Algebra, 17 (1971), 67-73.

13. T. E. Stanley, Generalizations of the classes of nilpotent and hypercentral groups, Math. Z., 118 $(1970), 180-190.$

14. - Residual *X*-centrality in groups, Math. Z., 126 (1972), 1-5.

Received February 18, 1976 and in revised form August 9, 1976.

URSINUS COLLEGE COLLEGEVILLE, PA 19426

Pacific Journal of Mathematics
Vol. 68, No. 1 March, 1977 Vol. 68, No. 1

