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Just as (N, p, q) generalises Norlund methods, so also, in this
paper we define generalised quasi-Norlund Method (N*,p, q)
generalising the quasi-Norlund method due to Thorpe.

To begin with, we have determined the inverse of a generali-
sed quasi-Norlund matrix in a limited case. Besides, limitation
Theorems for both ordinary and absolute (N *, p, ¢ ) summability
have been established.

Finally we have established an Abelian Theorem (the main
theorem) for (N*,p,q) = (J,q), where (J,q) is a power series
method which reduces to the Abel method (A) for g, = 1 (all n).

1. Vermes {10] pointed out that there is a close relation between
the summability properties of a matrix A = (a..) regarded as a sequence
to sequence transformation and those of its transpose A * = (a,) re-
garded as a series to series transformation.

Suppose that A is a sequence to sequence transformation and
further that

Z a, =1 for all n,
k=0

then by using Theorems of regularity (see Hardy [5], Theorem 2) and
absolute regularity (see Knopp and Lorentz [6]) we see that A* is an
absolutely regular series to series transformation.

Conversely, given any absolutely regular series to series method
C = (cu), its transpose C* is regular as a sequence to sequence method
provided that

¢k —0 as k-—o forfixed n.

We can also see that if A is absolutely regular and the above
condition is satisfied then A * is regular and the converse also holds.

We shall call A * the quasi-method associated with A and remember
that, it is a series to series transformation.

Kuttner [7] defined quasi-Cesaro summability and investigated its
main properties as a quasi-Hausdorff transformation (see also Ramunu-
jan [8] and White [11]. Thorpe [9] defined quasi-Nortund (quasi-Riesz)
summability.

Just as (N, p, q) generalises Norlund methods, so also we can define
generalised quasi-Norlund method (N*,p,q) generalising the quasi-
Norlund methods. We give the definition in the following manner:
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Given p, and g, we define r, = 2}_, p,-.q, and suppose that r, # 0 for
n=0. We say that the (N*, p,q) method is applicable to the given
infinite series 2 a, if

(L.1) b, = g3, Bt
k=n k

exists for each n=0. If further, b, = s, then we say that %a, is
summable by (N*, p,q) method to sum s and if 3|b,| < then Za, is
said to be absolutely summable by | N*, p, q | method.

The method (N*, p, q) reduces to the quasi-Norlund method (N*, p)
if g, =1, to the quasi-Riesz method (N*,q) if p, =1, to (say) quasi-
Euler-Knopp method (E*, o) when

n n

G = (>0, 0>0),

R

to the (say) (C*, a, B) method (let us call it generalised quasi-Cesaro
method) when
n+a-—1 n+
p” = ( a )7 qn = < B B)

It may be recalled that (N, p, q) matrix is given by

DPn-iqx (k = n),
T,
Anx =
0 (k >n).

and the (N*, p,q) is given by its transpose matrix:

Grli-r (k= n),
* 1
ank_
0 (k <n).

Since for the (a, ) defined above we have

n
2 Ape = 1’
k=0

it follows from the above discussion that if

Pi-n =0(r,) as k—x,
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for each fixed n, then (N*, p,q) is regular if and only if (N,p,q) is
absolutely regular, and (N*, p,q) is absolutely regular if and only if
(N, p, q) is regular.

The main object of this paper is to obtain certain conditions for
which X a, € (N*,p,q) > %a, € (), q).

The method (J, q) is defined as follows. Suppose that g, =0 and
g.#0 for an infinity values of n. Let p, (p, <x) be the radius of
convergence of the power series

exists for 0 = x = p,, we say that (J, q) method is applicable to X a, (or
{s.}), and if further J(x)—s as x — p, — 0, we say that X a, (or {s,}) is
summable (J,q) to s. See Hardy [5], Das [4].

As well-known particular cases of the (J,q) method, we have the
Abel method when g, = 1, the logarithmic method or (L) method when
g. =1/n+1 (Borwein [1], Hardy [5] p. 81), the A, method when
qn = <n; a) (Borwein [2] (A, is the same as Abel method A ), the Borel
method where g, = 1/n ! (see Hardy [5]). We write p, € I, when p, >0
and p./p,-1 = pari/pa =1 (n>0).

Let Pn‘—‘EL':on, Q.= EZ:oqv.

Let ¢, be defined formally by the identity,

(Sr)(Ser)s

=0

2. Statements of the theorems. As in the case of quasi-
Norlund, it is not always possible to obtain an inverse to the transforma-
tion (1.1) but we have succeeded in getting an inverse for a class of
sequences p, € I and ¢,#0 (n = 0).

This is embodied in.

THEOREM 1. Suppose that p, €M and q,#0 (n=0). Then
(N*, p, q) (where applicable) has an inverse transformation, whose matrix
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is given by the transpose of the inuverse of (N, p, q), that is, if b, is given by
transformation (1.1), then

(2'1) an = rnz %'
k=n 4k

This is our basic theorem in the sense that it is widely used here and
elsewhere and it may be noted that this theorem yields a result due to
Thorpe [8] in the case q, = 1.

The next couple of theorems are limitation theorems which assert
that the method can not sum too rapidly divergent series.

THEOREM 2. Suppose p, €I, q,7# 0 (n =0) and that |q,| is non-
decreasing. If % a, be summable (N*,p,q) to s then

=ofl2]).

qn

If further r, 2 0, then
s, =s+0(Q./1q.]).

THEOREM 3. Suppose p, € I, q. is positive, {q.} is nondecreasing
and {q./r.} is nonincreasing. Then if . a, is summable [N*,p, q|, then

{M}EBV.

n

The main theorem in this paper is the Abelian theorem which is
stated as:

THEOREM 4. Suppose p, € IR, q, >0 and that {q,} and {q./q...} are
nondecreasing. Also let

(2.2) r, (qm - q..) = O(q,.+1(rn+1 - ))
Then
2a,=s(N*,p,q)> 2a,=s(J,q).

It may be remarked that the relationship between (N, p, q) and (J, q)
was studied by Das (4). Putting g, =1 in Theorem 4, we obtain the
result of Thorpe regarding (N*,p) = (A). We need the following
lemma for the proof of the theorem.
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LEMMA 1. Let p, €M. Then
1) Ziolel<e,
(i) ¢>0,¢c,=0(n=1),
(i) ¢, =0,
(iv) Z2c¢, =0, if and only if P,—> > as n — «,

The above theorem is due to Kaluza. The proof of the theorem
appears in Hardy (5), Theorem 22.

3. Proof of Theorem 1. We know from the identity:

Eecx")Epx")=1

that
1 (k=0),
(3‘1) pnckfn = {
"= 0 (k>0).
Hence
N v
(3’2) kg Ck-—npv—k = - k=§N:+1 Cic-nPo-k (v > n)'

Now for N > n and by (1.1) we have,

by (3.1). Thus the necessary and sufficient condition for the validity of
(2.1) is that, for each fixed n,

X N
a
z .;E Z Ck—npu-k _-)O’ as N-—)w9
k=n

v=N+1 Ty



182 PREMALATA MOHAPATRO

which is the same thing as, for each fixed n,
(3.3) by = Z L E Ci-nPo-x —0, a8 N—oow
v=N-1 To k=N+1
in view of (3.2).
Let us write

b,= 9o Z &%’

k=6 Tk

N Pr Qi
w, = q() 2 r .
k

k=v

(3.4)

Since (N*, p, q) method is applicable to X a,, b, is finite and hence, w, is
well defined and tends to zero as v —®. Now from (3.4)

a, W, — Wy
rv q()pv

Hence

1 Wy, = Wy
by = = N G Puk
qo U;H qoPv  k=N-1 il

o o=N+1 D» Py
:l i w{ O PooiChon E Qu—kﬂckvn]
qo <N+ LeSa P k=N+1 Pu—1
_ Loy X
9o Dm k;ﬂ PrsCin-
Since p, € M (by Lemma 1)
M
2 Pu-iCk-n| = O(1), as M-,
k=N+1

and by definition,

wy =0(l), as M—ox,

we see that,

¢N:l i w, i Ck—n<&:—k"M>.

qo v=N+1 k=N+1 Dv Do-1
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Since {w, } is an arbitrary sequence tending to 0, hence (3.3) is valid, that
is, ¢ — 0 if and only if, (see Hardy (5), Theorem 8) for fixed n,

Jv= >

v=N+1

= 0(1)

X <M_Ev‘k~}>ck~
k=N+1 pu pv~1 "

as N—>. But by virtue of (3.1)

v N
2, G e =2 (55

for v > n and also,

pv pu—l
Hence
X N
Jr\] _ 2 z ( vk EU_k'l)Ck.—n
v=N+1 k=n pv pv—l
< < c E_ul__ Evvnfl
v;H ¢ pv pv—l
. * N ck~n<b_ Bu~k-l>,
v=N+1 k=n+1 pv pu—l

=JO+JR, (say).
Since p, € IR, {p./p..1} is nonincreasing and so,
J=0(1), as N,

Since p,/p..1 = 1 and {p./p...} is nonincreasing it follows that, limp,/p,.,
exists and

A =limp,/p,=1.
Hence,

5,05

pv pv—l
= limM _ Dn-k
v pv pN

— hm( Ev-—k Ev+lvk - u~1>_ N-k
Po+1-k Do+« D P~

=Ak_w
25

v
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Therefore, by (3.1)

2) —
I =

I
2=
o
;
>
+
Sy
F
:

k=n+1 P~
Since,
N
k
E Ck_,,A §0,
k=n+1
we get,
JE\Z,)S_CQBN:_"
PN

=0(), as N-o»,

This completes the proof of the theorem.

4. Proof of Theorem 2. Since X a, is (N*, p,q) summable, 2 b, is
convergent and hence b, = 0(1). By using the inversion formula as
given in Theorem 1 we obtain, by using hypotheses,

= becr -
rnz klk—n
k=n 4k

<Mi | bici |

- ,qn k=n

=%"—l§ o(1)|ci-n]
)

2]

la.|=

since X|c,| < and b, = o(1).
Next, suppose that 2 b, =s. Since

Eex")Erx")=2qx"
(EC(,,I)X")(Z""X"): E'Onx")
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it follows that

n

4.1) ICn-v = Gn,

v=0

4.2) S re®,= 0,
v=0

Thus, when p, € I we have ¢’ =0 and if r, = 0, it follows from (4.2) that
Q. =z 0 whether or not g, is positive.
Now by (4.1)

n=0 k=n  k=m+1 qx
b = bkaA
= — FiCi—n + S Tn :
k=0 9k n=0 n=0 k=m+1 Yk
S by
=2 bt > X
k=0 n=0 k=m+1 {k

k=0 n=0 k=m+1 q
=0 En S lenl.
But when p, € ¢, by Lemma 1, we have
4.3) 2 laal=cla;
k=m+1

and hence, by identity (4.2)

Sm — S bk
k=0

—0(1)l m[i r.c

=o(g2

This completes the proof.

Proof of Theorem 3. We have
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i ML‘_ Sn+lgn+l — i A (%)
n=0 rn Fus1 n=0 r,
= 2 ’anﬂlgn—ﬂ'f"z Is.] A ﬂ'
n=0 Fivt n=o T,

=L, + M, (say).

By using (2.1), we get (as g, is nondecreasing)

Ln é i n+l Toit i bk Ck—n-1

n=0 Tn+1 k=n+1 qx

=3 3 bllcenl

n=0 k=n+1

since 3| b, | <®and 2|c,| < as p, EM. Since {q./r.} is decreasing we
have,

o

DN (T_Gn\ <G
n2=v Arn 712=v<rn rn+1)§ru.
Hence,
M= [a%]]S .3 bl
n=0 njlo=o k=0 Ck
Sm Gn| < S
—rg) Arn v=0 rvkzu qk
___irvi Agg i b |[ci v
v=0 n=v | k=n qk
=3 n 3 hllanlS )&
v=0 k=v qk n=v r,
EANILARS 9
—gquzlbklick—ulru
=E Z [Bi || Cee |
v=0 k=v
=2 lkaE | ce- |
k=0 v=0
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by hypothesis. Hence

E’A(-S—;g—") =L, +M,=0(1) as n—o

and therefore
{s.g./r.} € BV.

This completes the proof of Theorem 3.

5. Now we will prove our main theorem and for this, we require the
following lemma.

LemMa 2. Letp, €M, q, >0 and nondecreasing. Then (2.2) im-
plies that

0

A
A

k
qi ZO quroCi-o = O(q3).

Proof. Since g, >0 and nondecreasing and p, >0, it follows that
r, >0 and nondecreasing. Since, as p, € I, by Lemma 1, ¢,>0, ¢, =0
(n=1), when we get

v

k k .
— 2
D GiCis Z G D, MCio = 4320,
v=0 v=0

by identity (4.1). Now

k k
20 quvck~u = Z() Av(qk—vrkﬂ))cv (1)

il
M=

qk~v(rk—u - rk—u-l)Cu(l)

i
(=]

v

k
+ ZO rk—v~l(qk~v - (Ik~v~1)cu(1)-
Hence, as ¢’z 0, we get by (4.2)
k
Z CIk«u("k—u - rk—u—l)c(vl)§ qk(Ok - Ok—l) = qi-
v=0

Again by (2.2)
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||/\

k
Z k v*l(qk*v - qkAvfl)CE)I)

k

1)2 Geo(re o — Ny p)c?

= O(l)qi’

as in the previous case.
Hence

k
0= 2 o€ = O(q7).

This completes the proof of the lemma.

Proof of Theorem 4. We shall first prove that whenever 2 a, is
summable (N*,p,q), then (J,q) method is applicable to X a,.
By Theorem 2, we have

S, = s+o<%>= O(%)

Hence

J(x)= —Lz qsx"

20.x"
2q.x"

=0()xx".

= 0(1)

Since X x" = 1/(1—x) for |x| <1, it follows that J(x) exists for |x|<1
and hence (J, q) method is applicable. Now for |x|<1,

J(x)=

q k=v qk
G Z Zv k;:—vz gnx"
(5.1) e
— Yk n
B q(x)zo G 20 r”ck'”; X
2 x)bk7
k=0

where,
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99 (x )

gi(x)="*

The change of order of summation involved in obtaining (5.1) is justified
in the range | x| <1, by the absolute convergence of the double sum.
Now (5.1) is a series to function transformation, transforming the
series 2 b, to the function J(x). To prove the theorem, we have to show
that the transformation (5.1) is regular, that is, we have to show that the
conditions of regularity (see Cooke [3], page 65) are satisfied. Note that

i ToCr~ v<Q(x) SQH )

] qq(x)

- (2 e S ax*) /(@0a)
by identity (4.1).

Since g, >0 is increasing, we have

gi(x)=

(5.2) =

i

3qX"Zqxx"—>~ as x—>1-0.

Hence from (5.2), we obtain
g&(x)—1, as x—1-0.

We have only to show that

(53) > 18:(x) ~ gen(x)| = M

for 0 <x <1, where M is a positive number.
Now let us write

6.0)= 2 qx*lg(x).

It is obvious that, ¢y(x)=1. Hence

8e(x) = ginilx) = '§¢(x)r(6kkv C;—:i—”)

k
=3 a0 g () ) -y S,
9k gk +1

2=0 qr+1
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Since by hypothesis 3|c,| <« and {1/q,} decreases as n increases, we
have,

Hence in order to show that (5.3) holds it is enough to show that,

< k
00 =2 | 2 a0 2= o) 22 )| < M,
k=0 | v=0 qx qi+1
for 0<x < 1.
Now since

v

_ - 4
d)v(x) d)vﬂ(x) - q()C)’

it follows that,

659 000= 5 |3 (00 o) o) (LB

=0 | 5=0 Qrc+1
=M(x)+ N(x),
where,
01
M(x)= r.x"’
(x) o
N =33 e <x)( - L)
—~ | = Ci—v u+1 qk qk+1 .
Since

E Co ool X ® = Z Ce ool (X° —xk)+xk2 CeouTs

v=0

to prove M(x)= O(1) we need only show that,

M’(x)—~—1—)2 Z Cogolo (x° — x¥) = 0(1),

15
qi §

in view of Lemma 2.
Since ¢, =0 (n=1) and {1/q,} is decreasing, we get,
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M'(x)= ——— 1 GooCi—n(x? = x¥)

il
|
iH
0
N
<%
=
gl
o)
!
it
|
=
)

1l
|
‘H
Ma
C-‘
=
<
~
o
P
[N
N’
|
o
A~
=
N’
p—

Hence,
(5.6) M(x)=0(1).

The inner sum of N(x) can be written as,

k k
d)kﬂ(x) 2 Ck’v<£— 121) + 2 Ck'u((bvﬂ(x) - ¢k+l(x)) <Ib_—
v=0() qk qk+1 v=0 qk
= \ fz-iﬂ)
d)kH(X)vZO Ck»v(qk qk¢1
k k
Cov [Ty Tona
+ bl “.
;) Q(X)<qk qk“)u;ﬂ""
Hence,
(5.7 N(x)= N'(x)+ N"(x),
where,
' N S ru rvH
N =3 0 o 2L
k=0 v=0 9k Gk
and

> gux*

* k
N// — »U<LL—' rv+l >E=v+1
(X) k§=:0 L;'! Ck Gk Qi+ Q(x)

Fyt1 )
qi+1

191
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By (4.1)
_r_v__ X rv+1
v§=:0 G g 1)2=0 ko Gk +1
1 k
=1~ Ci—olos
qk+1112=0 k !
1 k+1
=1- (Z Ci+1-o1, Ck+lr0)
qk+1 v=0
Cr+i
o qk+1
Hence,

N'(x) = rog ¢k+,(x)%1.

We know from the very definition of ¢, (x) that for 0 <x <1,

0=d(x)=1.
Hence
N'(x)<r Z Ck+1< rOEka+1,<°°
k=0 k+1
And

k

> qux*

N"(x)égjglchv ﬁ*%%
_q(lx)v};; 2 e '”(q_lk_qj+1)+%
q(x)Z(’”“ ’),LEM v 2'0‘%

=a(x)+B(x), (say).
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Now, since {q.} and {g./q...} are increasing with n we get, by using
hypothesis (2.2) and (4.3)

1 0 0 %
a@= iy Sn 3 xS e (1)
( v=0 =9 =u qk+l
1 r(qu qv) )
= "
(I(x)u 0 qu+1 #Zvﬂ Crumom X
Iy (qv+l qv u+1 1)
C, x"
T e >
1 N rviqm—qu)xm

TA-0ap) & e
= ___.1_— N _ v+l
- (1—x)r(x) O(l)vzo (roei—r)x
= 0(1),
by using the identity,
I-x)p(x)2cPx" =1, 0<x<1).

Again since {r,} increases with n as {q,} increases, we get,

BOS a2 (e ) 3 2+ 3 |
gq(lx)é} oot r)#ZU+1 xte®,
:(1—x)p(X)q(X)vE;("’“_"’)"M1
=1.

Hence,
N"(x)=a(x)+ B(x)= O(1).
Hence by (5.7), (5.6) and (5.5)
0(x)=M(x)+ N(x) = O(1).

Hence (5.3) holds and this completes the proof of the theorem.
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6. In thissection, we now deduce some corollaries of Theorem 4.

CoroLLARY 1. (Thorpe [9]). Suppose p,EIM, then Za, €
(N*,p) > 2 a, €(A), where (A) is the Abel method.

Proof. Put g, =1, for all n in Theorem 4.

COROLLARY 2. Letq, >0 for all n,{q.} be increasing in n, such that
{q./q.+\} is also increasing in n and,

(6.1) Q.(qu1—q.)= O(q).
Then,
Sa,E(N*,q)> 2a,. €, q).
Proof. Put p, = 1forall n,in Theorem 4. In this case we have,
=1 ¢=-1, ¢,=0 (n>2).
CoroLLARY 3. (C*,a,B) > Ag for 0<a=1=8.
Proof. Set
p.= A g. = A% in Theorem 4.
Then r, = A;**"" and condition (2.2) reduces to proving that
nefnf 2= 0P 'nr?),

which is valid in the present case. Also when 0<a =1, then p, =
A€M and when B = 1, then q, = AL is nondecreasing.

Lastly I would like to thank Professor G. Das for his valuable

suggestions during the preparation of this paper. I would also like to
thank the referee for some suggestions.
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