Pacific Journal of Mathematics

SUPERALGEBRAS OF WEAK-*DIRICHLET ALGEBRAS

ΤΑΚΑΗΙΚΟ ΝΑΚΑΖΙ

Vol. 68, No. 1

March 1977

SUPERALGEBRAS OF WEAK-*DIRICHLET ALGEBRAS

Takahiko Nakazi

Let A be a weak-*Dirichlet algebra of $L^{\infty}(m)$ and let $H^{\infty}(m)$ denote the weak-*closure of A in $L^{\infty}(m)$. Muhly showed that if $H^{\infty}(m)$ is an integral domain, then $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$. We show in this paper that if $H^{\infty}(m)$ is not maximal as a weak-*closed subalgebra of $L^{\infty}(m)$, there is no algebra which contains $H^{\infty}(m)$ and is maximal among the proper weak-*closed subalgebras of $L^{\infty}(m)$. Moreover, we investigate the weak-*closed superalgebras of A and we try to classify them. We show that there are two canonical weak-*closed superalgebras of A which play an important role in the problem of describing all the weak-*closed superalgebras of A.

1. **Preliminaries.** Recall that by definition [7], a weak-*Dirichlet algebra is an algebra A of essentially bounded measurable functions on a probability measure space (X, \mathcal{A}, m) such that (i) the constant functions lie in A; (ii) $A + \overline{A}$ is weak-*dense in $L^{\infty}(m)$ (the bar denotes conjugation, here and always); (iii) for all f and g in A, $\int_{X} fgdm = \int_{X} fdm \int_{X} gdm$. The abstract Hardy space $H^{p}(m)$, $1 \le p \le \infty$, associated with A are defined as follows. For $1 \le p \le \infty$, $H^{p}(m)$ is the $L^{p}(m)$ -closure of A, while $H^{\infty}(m)$ is defined to be the weak-*closure of A in $L^{\infty}(m)$. For $1 \le p \le \infty$, let $H_{0}^{p} = \{f \in H^{p}(m); \int_{X} fdm = 0\}$.

A (weak-*closed) subalgebra B^{∞} of $L^{\infty}(m)$, containing A, is called a superalgebra of A. Let $B_0^{\infty} = \left\{ f \in B^{\infty}; \int_X f dm = 0 \right\}$ and let I_B^{∞} be the largest weak-*closed ideal of B^{∞} which is contained in B_0^{∞} . (The existence of I_B^{∞} is shown in Lemma 2 of [6]). If $B^{\infty} = H^{\infty}(m)$ (resp. $L^{\infty}(m)$), it is clear that $B_0^{\infty} = I_B^{\infty} = H_0^{\infty}$ (resp. $I_B^{\infty} = \{0\}$). In general, $I_B^{\infty} \subseteq$ H_0^{∞} by [6, Lemma 2]. Let \mathcal{L}_B^{∞} be a self-adjoint part of B^{∞} , i.e. the set of all functions in B^{∞} whose complex conjugates are also in B^{∞} .

For any subset $M \subseteq L^{\infty}(m)$ and $1 \leq p < \infty$, denote by $[M]_p$ the norm closed linear span of M in $L^p(m)$ and by $[M]_*$ the weak-*closed linear span of M. For a weak-*closed superalgebra B^{∞} , let $B^p = [B^{\infty}]_p$ and let $I_B^p = [I_B^{\infty}]_p$ for $1 \leq p < \infty$. For any measurable subset E of X, the function χ_E is the characteristic function of E. If $f \in L^p(m)$, denote by E_f the support set of f and by χ_f the characteristic function of E_f . LEMMA 1. If B^{∞} is a weak-*closed superalgebra of A, then B^2 and \overline{I}_B^2 are orthogonal in $L^2(m)$ and $B^2 \oplus \overline{I}_B^2 = L^2(m)$.

The proof is in [6, Lemma 2].

LEMMA 2. (Hoffman) Let E be a measurable subset of X such that 0 < m(E) < 1. Then there exists k in $H^{\infty}(m)$ such that k is real on E while k is not constant on E.

The proof for logmodular algebra [1, p. 138] is valid without change for weak-*Dirichlet algebras.

2. Support sets. If no nonzero function $H^{\infty}(m)$ can vanish on a set of positive measure, then $H^{\infty}(m)$ is a maximal weak-*closed subalgebra (cf. [3]). This shows the importance of the support set of each function in $H^{\infty}(m)$. We shall investigate properties of support sets of functions in superalgebras of A, in particular, in the algebra $H^{\infty}(m)$.

DEFINITION. Let B^{∞} be a weak-*closed superalgebra of A. We say that the characteristic function χ_E is *minimal for* B^{∞} in case any characteristic function χ_F in B^{∞} which satisfies the strict inequality $\chi_F \neq \chi_E$ on a set of positive measure must be zero a.e. Note that we do *not* assume that χ_E lies in B^{∞} . Similarly, χ_E is called *maximal for* B^{∞} in case any characteristic function χ_F in B^{∞} which satisfies the strict inequality $\chi_E \neq \chi_F$ on a set of positive measure must be 1 a.e.

LEMMA 3. Let B^{∞} be a weak-*closed superalgebra of A.

(1) If B^{∞} contains $H^{\infty}(m)$ properly, there exists a nontrivial characteristic function in B^{∞} .

(2) There exists no nontrivial minimal (maximal) characteristic function for B^{∞} in B^{∞} .

Proof. Assertion (1) is shown in the proof of [3, Theorem]. We shall show assertion (2). Let χ_{E_0} be a minimal characteristic function for B^{∞} in B^{∞} . Then, it follows that there exists no nonconstant real-valued function in $\chi_{E_0} \mathscr{L}_B^{\infty}$ and hence in $\chi_{E_0} B^{\infty}$. For if it were not the case, then $\chi_{E_0} \mathscr{L}_B^{\infty}$ would be a nontrivial commutative von Neumann algebra of operators on $L^2(m)$ contrary to the assumption on χ_{E_0} . On the other hand, Lemma 2 shows that there exists k in $H^{\infty}(m)$ such that $\chi_{E_0} k$ is a nonconstant real-valued function in $\chi_{E_0} B^{\infty}$. This contradiction shows that there exists no nontrivial minimal characteristic function for B^{∞} in B^{∞} . If χ_{F_0} were a nontrivial maximal characteristic function for B^{∞} in B^{∞} , then $1 - \chi_{F_0}$ would be a nontrivial minimal characteristic function for

 B^{∞} in B^{∞} . Since this is not possible by what was just proved, χ_{F_0} cannot be a nontrivial maximal characteristic function for B^{∞} in B^{∞} .

LEMMA 4. If M is a closed invariant subspace of $L^2(m)$ (invariant under multiplication by functions in A), then $M \cap L^{\infty}(m)$ is a weak-*closed invariant subspace. Moreover, the map $M \to M \cap L^{\infty}(m)$ is oneto-one and onto.

The proof for logmodular algebras [1, p. 131] is valid without change for weak-*Dirichlet algebras.

LEMMA 5. Let B^{∞} be a weak-*closed superalgebra of A and suppose $D^{\infty} = [\chi_f B^{\infty}]_* + (1 - \chi_f)L^{\infty}(m)$ for some f in I_B^{∞} . Then D^{∞} is a weak-*closed superalgebra which contains B^{∞} , χ_f is in D^{∞} , and f lies in I_D^{∞} .

Proof. It is clear that D^{∞} is a weak-*closed superalgebra which contains B^{∞} and χ_{f} . By Lemma 1 and Lemma 4, $I_{B}^{\infty} \supseteq I_{D}^{\infty}$ but it is not clear that $f \in I_{D}^{\infty}$. Since $f \in I_{B}^{\infty}$, by Lemma 2,

$$\int_X f\chi_f g dm = 0 \qquad g \in B^\circ$$

and hence

$$\int_X f\chi_f g dm = 0 \qquad g \in D^{\infty}.$$

Thus again by Lemma 1 and Lemma 4, it follows that $f \in I_D^{\infty}$.

THEOREM 1. If f is a function in B^{∞} such that $0 \neq \chi_f \neq 1$, then there exists a nonzero g in B^{∞} such that $\chi_g \neq \chi_f$.

Proof. Suppose $f \in I_B^{\infty}$. If fh = 0 a.e for all h in I_B^{∞} , then by Lemma 1 and Lemma 4, it follows that $f \in \mathscr{L}_B^{\infty}$. Thus $\chi_f \in \mathscr{L}_B^{\infty} \subset B^{\infty}$, so by (2) of Lemma 3, there exists a nonzero characteristic function χ_E in B^{∞} such that $\chi_E \not\leq \chi_f$. Thus we may assume that $fh \neq 0$ for some h in I_B^{∞} . Since I_B^{∞} is an ideal of B^{∞} , $fh \in I_B^{\infty}$ and $\chi_f \geq \chi_{fh} \geq 0$.

By taking *fh* if necessary we may assume that $f \in I_B^{\infty}$. Suppose $D^{\infty} = [\chi_f B^{\infty}]_* + (1 - \chi_f) L^{\infty}(m)$, then by Lemma 5, it follows that $f \in I_D^{\infty}$ and $\chi_f \in D^{\infty}$. By (2) of Lemma 3, there exists a nonzero χ_E in D^{∞} such that $\chi_f \gtrless \chi_E$. Since I_D^{∞} is an ideal of D^{∞} , $\chi_E f \in I_D^{\infty}$ and hence $\chi_E f \in B^{\infty}$. Suppose $g = \chi_E f$, then g is a nonzero function in B^{∞} and $\chi_f \gtrless \chi_E$.

It is natural to ask if whenever there is a function f in B^{∞} such that $0 \leq \chi_f \leq 1$, there also exists a function g in B^{∞} such that

TAKAHIKO NAKAZI

 $\chi_f \not\equiv \chi_g \not\equiv 1$. However, the third example of §6 shows that in general such a g need not exist.

3. Non-maximality. Muhly [3] showed that if $H^{\infty}(m)$ is an integral domain, then $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$. In this section, we shall show that if $H^{\infty}(m)$ is not an integral domain, there is no maximal proper weak-*closed superalgebra of A.

LEMMA 6. Let B^{∞} be a weak -* closed superalgebra of A. Then B^{∞} has the form $B^{\infty} = \chi_{E_0}B^{\infty} + (1 - \chi_{E_0})L^{\infty}(m)$, where $(1 - \chi_{E_0})L^{\infty}(m)$ is the largest subspace of B^{∞} reducing $L^{\infty}(m)$. χ_{E_0} is called the essential function of B^{∞} .

THEOREM 2. If $H^{\infty}(m)$ is not maximal as a weak-*closed subalgebra of $L^{\infty}(m)$, then there is no algebra which contains $H^{\infty}(m)$ and is maximal among the proper weak-*closed subalgebra of $L^{\infty}(m)$.

Proof. Suppose B^{∞} contains $H^{\infty}(m)$ and is maximal among the proper weak-*closed subalgebras of $L^{\infty}(m)$. Then by assumption $B^{\infty} \neq H^{\infty}(m)$. Since $B^{\infty} \neq L^{\infty}(m)$, Lemma 6 implies that we can find a nonzero χ_{E_0} in B^{∞} such that $B^{\infty} = \chi_{E_0}B^{\infty} + (1 - \chi_{E_0})L^{\infty}(m)$ and the algebra $(1 - \chi_{E_0})L^{\infty}(m)$ is the largest subspace of B^{∞} reducing $L^{\infty}(m)$. By Lemma 3, there exists $\chi_F \in B^{\infty}$ such that $0 \lneq \chi_F \lessgtr \chi_{E_0}$. For such a χ_F in B^{∞} , set $D^{\infty} = \chi_F B^{\infty} + (1 - \chi_F)L^{\infty}(m)$. Then D^{∞} is a weak-*closed subalgebra which contains B^{∞} . Since $\chi_F \lneq \chi_{E_0}$ and $(1 - \chi_{E_0})L^{\infty}(m)$ is the largest subspace of B^{∞} reducing $L^{\infty}(m)$, it follows that D^{∞} contains B^{∞} properly and $D^{\infty} \neq L^{\infty}(m)$.

4. Relation between two superalgebras. In this section, we shall investigate the relation between two superalgebras. Let B_1^{\times} and B_2^{\times} be weak-*closed superalgebras of A such that $\chi_F B_1^{\times} \subseteq \chi_F B_2^{\times}$ for some χ_F in B_1^{\times} . If $\chi_E \cdot \chi_F B_1^{\times} \neq \chi_E \cdot \chi_F B_2^{\times}$ for all χ_E in B_1^{\times} with $\chi_E \cdot \chi_F \neq 0$, then we write $\chi_F B_1^{\times} < \chi_F B_2^{\times}$. For a weak-*closed superalgebra B^{\times} of A, we define B_{min}^{\times} to be the intersection of all weak-*closed superalgebras $\{B_{\alpha}^{\times}\}$ such that $B^{\times} \subseteq B_{\alpha}^{\times}$ and $\chi_{E_0} B^{\times} < \chi_{E_0} B^{\times}$, χ_{E_0} being the essential function of B^{\times} .

LEMMA 7. Let B^{∞} be a weak-*closed superalgebra of A. (1) Each weak-*closed superalgebra D^{∞} such that $B^{\infty} \subseteq D^{\infty} \subseteq B^{\infty}_{min}$ has the form

$$D^{\infty} = \chi_E B^{\infty} + (1 - \chi_E) B^{\infty}_{\text{mur}}$$

for some χ_E in B^{∞} .

(2) If f is a function in I_B^{∞} and $\chi_f \ (\neq 1)$ is minimal for B^{∞} , then f lies in $I_{B_{mm}}^{\infty}$.

Proof. (1) Let $\alpha = \sup\{m(F); \chi_F D^{\infty} = \chi_F B^{\infty}(\chi_F \in B^{\infty})\}$. Choose χ_{E_n} in B^{∞} with $m(E_n) \rightarrow \alpha$ and $\chi_{E_1} \leq \chi_{E_2} \leq \cdots$. Set $E = \bigcup_{n=1}^{\infty} E_n$, then $\chi_E \in B^{\infty}, \chi_E D^{\infty} = \chi_E B^{\infty}$ and $(1 - \chi_E) D^{\infty} > (1 - \chi_E) B^{\infty}$. By the definition of B_{\min}^{∞} , it follows that $(1 - \chi_E) D^{\infty} = (1 - \chi_E) B_{\min}^{\infty}$ and hence $D^{\infty} = \chi_E B^{\infty} + (1 - \chi_E) B_{\min}^{\infty}$.

(2) Let f be in I_B^{∞} and let $\chi_f \ (\neq 1)$ be minimal for B^{∞} . Suppose $D^{\infty} = [\chi_f B^{\infty}]_{+} + (1 - \chi_f) L^{\infty}(m)$. By Lemma 5, $f \in I_D^{\infty}$, $\chi_f \in D^{\infty}$ and hence in order to prove assertion (2), it is sufficient to prove that $I_D^{\infty} \subseteq I_{B_{min}}^{\infty}$. If there existed a nonzero χ_E in B^{∞} such that $\chi_E \leq \chi_{E_0}$ and $\chi_E D^{\infty} = \chi_E B^{\infty}$, where χ_{E_0} is the essential function of B^{∞} , then $\chi_E \cdot \chi_f \in B^{\infty}$ because $\chi_f \in D^{\infty}$. Since $\chi_f \ (\neq 1)$ is minimal for B^{∞} , it follows that $\chi_E \cdot \chi_f = 0$ a.e. and hence $\chi_E < 1 - \chi_f$. By the definition of D^{∞} , $\chi_E B^{\infty} = \chi_E L^{\infty}(m)$ and hence $\chi_E \leq 1 - \chi_{E_0}$. This contradiction shows that $\chi_{E_0} B^{\infty} < \chi_{E_0} D^{\infty}$, hence $D^{\infty} \supseteq B_{\min}^{\infty}$. By Lemma 1 and Lemma 4, it follows that $I_D^{\infty} \subseteq I_{B\min}^{\infty}$.

LEMMA 8. Let B_1^{∞} and B_2^{∞} be weak-*closed superalgebras of A. If B_2^{∞} contains B_1^{∞} properly, there exists a nontrivial minimal characteristic function for B_1^{∞} in B_2^{∞} .

Proof. Suppose there exists no nontrivial minimal characteristic function for B_1^{∞} in B_2^{∞} . Then if χ_E is in B_2^{∞} , then χ_E lies in B_1^{∞} . For given $\chi_E \in B_2^{\infty}$, let $\alpha = \sup\{m(F); \chi_F \leq \chi_E \ (\chi_F \in B_1^{\infty})\}$. Then, as in the proof of (1) in Lemma 7, there is χ_{F_0} in B_1^{∞} such that $\chi_{F_0} \leq \chi_E$ and $m(F_0) = \alpha$. If $m(E) > \alpha$, then $(1 - \chi_{F_0})\chi_E$ would be a minimal characteristic function for B_1^{∞} in B_2^{∞} contrary to the assumption on B_2^{∞} . Hence $m(E) = \alpha$ and hence $\chi_E = \chi_{F_0} \in B_1^{\infty}$. On the other hand, as in the proof of (1) of Lemma 3 we can show that there exists at least one characteristic function χ_S in B_2^{∞} with $\chi_S \notin B_1^{\infty}$. This contradiction implies that there exists a nontrivial minimal characteristic function for B_1^{∞} in B_2^{∞} .

LEMMA 9. Let B_1° and B_2° be weak-*closed superalgebras of A such that $B_1^{\circ} \subseteq B_2^{\circ}$. Let $\overline{K} = B_2^{\circ} \ominus B_1^{\circ}$, where ' \ominus ' denotes the orthogonal complement of B_1° in B_2° . If $\chi_f \in B_1^{\circ}$ for every $f \in K$, then each weak-*closed superalgebra B° such that $B_1^{\circ} \subseteq B^{\circ} \subseteq B_2^{\circ}$ has the form $B^{\circ} = \chi_E B_1^{\circ} + (1 - \chi_E) B_2^{\circ}$ for some χ_E in B_1° .

Proof. Suppose $\overline{S} = B_2^2 \bigoplus B^2$, then $\overline{S} \subseteq \overline{K}$. Hence the hypothesis shows that $\chi_f \in B_1^\infty$ for every $f \in S$. Let $\alpha = \sup\{m(E_f); f \in S\}$. If $f, g \in S$, there exists h in S with $E_h = E_f \cup E_g$. For let $h = f + (1 - \chi_f)g$, since $\mathscr{L}_B^\infty S \subseteq S$ and hence $\mathscr{L}_{B_1}^\infty S \subseteq S$, then h lies in S. Choose $f_n \in S$ with $m(E_{f_n}) \to \alpha$ and $E_{f_1} \subseteq E_{f_2} \subseteq \cdots$. Alter the function f_n by the technique above so that their supports are disjoint. Suppose $f_0 = \sum_{n=1}^{\infty} 2^{-n} f_n$, then $f_0 \in S$, $m(E_{f_0}) = \alpha$ and hence $\chi_{f_0} = \chi_E$, where *E* is the support set of *S*. Thus $\chi_E \in B_1^{\infty}$. Since $(1 - \chi_E)B_2^{\infty}$ is orthogonal to \overline{S} and is contained in B_2^{∞} , the set $(1 - \chi_E)B_2^{\infty}$ is contained in B^2 . Thus by Lemma 4, it follows that $B^{\infty} \supseteq \chi_E B_1^{\infty} + (1 - \chi_E)B_2^{\infty}$ and $\chi_E B_1^{\infty} + (1 - \chi_E)B_2^{\infty}$ is a weak-*closed superalgebra. If the two superalgebras above did not coincide, by Lemma 8, there would exist at least one nontrivial minimal χ_{F_0} for $\chi_E B_1^{\infty} + (1 - \chi_E)B_2^{\infty}$ in B^{∞} . Then it may be assumed that $\chi_{F_0} \leq \chi_E$. For if it were not so, the set $\chi_{F_0}(1 - \chi_E)B_2^{\infty}$ would be contained in $\chi_E B_1^{\infty} + (1 - \chi_E)B_2^{\infty}$ such that $\chi_{F_0}(1 - \chi_E) \geq \chi_{E_1}$. This contradicts minimality of χ_{F_0} for $\chi_E B_1^{\infty} + (1 - \chi_E)B_2^{\infty}$ such that $\chi_{F_0}(1 - \chi_E) \geq \chi_{E_1}$.

It is clear that $\chi_{F_0} S \subseteq S$. If $\chi_{F_0} S \neq \{0\}$, since $\chi_f \in B_1^{\infty}$ for every $f \in S$, χ_{F_0} may not be minimal. If $\chi_{F_0} S = \{0\}$, the set *E* may not be the support set of *S*. Thus $B^{\infty} = \chi_E B_1^{\infty} + (1 - \chi_E) B_2^{\infty}$.

THEOREM 3. Let B_1° and B_2° be weak-*closed superalgebras of A such that $B_1^{\circ} \subseteq B_2^{\circ}$ and hence $I_{B_1}^{\circ} \supseteq I_{B_2}^{\circ}$. If $f \in I_{B_2}^{\circ}$ for every $f \in I_{B_1}^{\circ}$ such that χ_f is minimal for B_1° , then each weak-*closed superalgebra B° such that $B_1^{\circ} \subseteq B^{\circ} \subseteq B_2^{\circ}$ has the form

$$B^{\infty} = \chi_E B_1^{\infty} + (1 - \chi_E) B_2^{\infty}$$

for some χ_E in B_1^{∞} .

Proof. Suppose $K = B_2^2 \bigoplus B_1^2$, $\overline{K} = I_{B_2}^2 \bigoplus I_{B_2}^2$ by Lemma 1. If $k = \min(1/|f|, 1)$ for $f \in K$, then k is in $L^{\infty}(m)$ and $\log k$ is in $L^1(m)$. Consequently, by [7, Theorem 2.5.9] there is an outer function g in $H^{\infty}(m)$ such that k = |g|. Then, by Lemma 4 $fg \in I_{B_1}^2 \cap L^{\infty}(m) = I_{B_1}^{\infty}$. However, fg does not lie in $I_{B_2}^{\infty}$. For since g is the outer function, there exist g_n in $H^{\infty}(m)$ such that $g_n fg \to f(n \to \infty)$ weakly in $L^2(m)$. If $fg \in I_{B_2}^{\infty}$ by $g_n fg \in I_{B_2}^{\infty}$, it follows that $f \in I_{B_2}^{\infty}$ contrary to the assumption on f. Thus $fg \notin I_{B_2}^{\infty}$ and $\chi_f = \chi_{fg}$. By the hypothesis, χ_f is not minimal for B_1^{∞} and hence there exists nonzero χ_E in B_1^{∞} such that $\chi_f \cong \chi_E$. If $\chi_f \neq \chi_E$, let $h = (1 - \chi_E)f$, then h lies in K again. We can repeat the above argument for $g = (1 - \chi_E)f$ and hence we can show that $\chi_f \in B_1^{\infty}$ as in the proof of Lemma 8. Now Lemma 9 proves theorem.

THEOREM 4. Let B_1° and B_2° be weak-*closed superalgebras of A such that $B_1^{\circ} \subseteq B_2^{\circ}$ (so $I_{B_1}^{\circ} \supseteq I_{B_2}^{\circ}$). Suppose $\chi_{E_0} B_1^{\circ} < \chi_{E_0} B_{1\min}^{\circ}$ for the essential function χ_{E_0} of B_1° . Then the following are equivalent.

(1) If f is in $I_{B_1}^{\infty}$ and $\chi_f \ (\neq 1)$ is minimal for B_1^{∞} , then f lies in $I_{B_2}^{\infty}$.

(2) If f and g are in $I_{B_1}^{\infty}$, if both χ_f and χ_g are minimal for B_1^{∞} , and if fg = 0, a.e., then either f or g lies in $I_{B_2}^{\infty}$.

(3) Each weak-*closed superalgebra B^{∞} such that $B_1^{\infty} \subseteq B^{\infty} \subseteq B_2^{\infty}$ has the form

$$B^{\infty} = \chi_E B_1^{\infty} + (1-\chi_E) B_2^{\infty}$$

for some χ_E in B_1^{∞} .

Proof. (1) \Rightarrow (2) is trivial. (2) \Rightarrow (1). Take $f \in I_{B_2}^{\infty}$ such that $\chi_f (\neq 1)$ is minimal for B_1^{∞} . Suppose $D^{\infty} = [\chi_f B_1^{\infty}] + (1 - \chi_f) L^{\infty}(m)$, then by Lemma 5, D^{∞} is a weak-*closed superalgebra such that $B_1^{\infty} \subseteq D^{\infty}$, $f \in I_D^{\infty}$, and $\chi_f \in D^{\infty}$. By (2) of Lemma 3, there exists at least one χ_E in D^{∞} such that both $\chi_E f$ and $(1 - \chi_E)f$ are nonzero functions in I_D^{∞} (so in $I_{B_1}^{\infty}$). Since χ_f is minimal for B_1^{∞} , it follows that both $\chi_E \chi_f$ and $(1 - \chi_E)\chi_f$ are minimal for B_1^{∞} . (2) implies that $\chi_E f \in I_{B_2}^{\infty}$ or $(1 - \chi_E)f \in I_{B_2}^{\infty}$. Thus we have proved that, for $f \in I_{B_1}^{\infty}$ such that χ_f is minimal, there exists $\chi_F \in B_2^{\infty}$ such that $\chi_F f \neq 0$ and $\chi_F f \in I_{B_2}^{\infty}$. Thus we can show that $f \in I_{B_2}^{\infty}$ as in the proof of Lemma 8.

Assertion (1) implies (3) by Theorem 3. We will show that assertion (3) implies (1). If we can show that $B_2^{\circ} \subseteq B_{1\min}^{\circ}$ and hence $I_{B_{1\min}}^{\circ} \subseteq I_{B_2}^{\circ}$, then by (2) of Lemma 7, it follows that if $f \in I_{B_1}^{\circ}$ and χ_f is minimal for B_1° , then $f \in I_{B_2}^{\circ}$, and the proof is complete. As in the proof of Lemma 7 there is χ_{F_0} in B_1° such that $\chi_{F_0}B_1^{\circ} = \chi_{F_0}B_2^{\circ}$, $(1 - \chi_{F_0})B_1^{\circ} < (1 - \chi_{F_0})B_2^{\circ}$, and $(1 - \chi_{F_0}) \leq \chi_{E_0}$. It is clear that $(1 - \chi_{F_0})B_2^{\circ} \supseteq (1 - \chi_{F_0})B_{1\min}^{\circ}$. Suppose $(1 - \chi_{F_0})B_2^{\circ} \neq (1 - \chi_{F_0})B_{1\min}^{\circ}$, and let $D^{\circ} = (1 - \chi_{F_0})B_{1\min}^{\circ} + \chi_{F_0}B^{\circ}$. Then $B_1^{\circ} \subseteq D^{\circ} \subseteq B_2^{\circ}$. By hypothesis, we can write $D^{\circ} = \chi_F B_1^{\circ} + (1 - \chi_F)B_2^{\circ}$ for some χ_F in B_1° . $D^{\circ} = (\chi_F + \chi_{F_0} - \chi_F \cdot \chi_{F_0})B_1^{\circ} + (1 - \chi_F)(1 - \chi_{F_0})B_2^{\circ}$ because $B_2^{\circ} = \chi_{F_0}B_1^{\circ} + (1 - \chi_{F_0})B_2^{\circ}$. If $\chi_F(1 - \chi_{F_0}) = 0$ a.e., then $D^{\circ} = B_2^{\circ}$. Hence $\chi_F(1 - \chi_{F_0}) \neq 0$ and $\chi_F(1 - \chi_{F_0})B_{1\min}^{\circ} \subseteq \chi_F D^{\circ} = \chi_F B_1^{\circ}$. Thus $\chi_F(1 - \chi_{F_0}) \leq \chi_F \cdot \chi_{E_0} \leq \chi_{E_0}$. This contradicts that $\chi_{E_0}B_1^{\circ} < \chi_{E_0}B_{1\min}^{\circ}$. Thus $B_2^{\circ} = \chi_{F_0}B_1^{\circ} + (1 - \chi_{F_0})B_{1\min}^{\circ} \subseteq B_1^{\circ}$.

5. Two canonical superalgebras. As corollaries of the results in §4, we shall show that there are two canonical superalgebras of A. We define H_{\max}^{∞} to be the weak-*closed superalgebra of A generated by $H^{\infty}(m)$ and χ_f for all f in $H^{\infty}(m)$. This superalgebra was considered by the author [5]. If no nonzero function in $H^{\infty}(m)$ can vanish on a set of positive measure, then $H_{\max}^{\infty} = H^{\infty}(m)$.

COROLLARY 1. Each weak-*closed superalgebra B^{∞} of A which contains H^{∞}_{\max} has the form $B^{\infty} = \chi_E H^{\infty}_{\max} + (1 - \chi_E)L^{\infty}(m)$ for some χ_E in H^{∞}_{\max} .

Proof. Apply Theorem 4 with $B_1^{\infty} = H_{\max}^{\infty}$ and $B_2^{\infty} = L^{\infty}(m)$. By definition of H_{\max}^{∞} , $\chi_f \in H_{\max}^{\infty}$ for every $f \in I_{H_{\max}}^{\infty}$ and hence if χ_f ($\neq 1$) is minimal for H_{\max}^{∞} , then by (2) of Lemma 3, f = 0 a.e.

If $\chi_{E_0}H_{\max}^{\infty} < \chi_{E_0}B^{\infty}$ for the essential function χ_{E_0} of H_{\max}^{∞} , by Corollary 1 it follows that $B^{\infty} = L^{\infty}(m)$. Hence $(H_{\max}^{\infty})_{\min} = L^{\infty}(m)$ and if $\chi_{E_0} \neq 0$, then $\chi_{E_0}H_{\max}^{\infty} < \chi_{E_0}(H_{\max}^{\infty})_{\min}$.

COROLLARY 2. Let B^{∞} be a weak-*closed superalgebra of A. If each weak-*closed superalgebra D^{∞} of A which contains B^{∞} has the form $D^{\infty} = \chi_E B^{\infty} + (1 - \chi_E) L^{\infty}(m)$ for some χ_E in B^{∞} , then $B^{\infty} \supseteq H^{\infty}_{max}$.

Proof. We may assume that $B^{\infty} \neq L^{\infty}(m)$. It is easy to show that $B_{\min}^{\infty} = L^{\infty}(m)$ and hence $I_{B\min}^{\infty} = \{0\}$. Applying Lemma 7, if $f \in I_B^{\infty}$ and χ_f $(\neq 1)$ is minimal for B^{∞} , then f = 0 a.e. Hence if $f \in I_B^{\infty}$ with $0 \not\equiv \chi_f \not\equiv 1$, then there exists nonzero χ_E in B^{∞} such that $\chi_f \not\supseteq \chi_E$. If $f \in B^{\infty}$, $f \neq 0$, then $f \in \mathscr{L}_B^{\infty}$ or there exists a function g in I_B^{∞} such that $gf \neq 0$. Thus if $f \in B^{\infty}$ and $f \neq 0$, then there exists nonzero χ_F in B^{∞} such that $\chi_f \not\subseteq \chi_F$. As in the proof of Lemma 8, we can show that $\chi_f \in B^{\infty}$. Thus $B^{\infty} \supseteq H_{\max}^{\infty}$.

The second canonical superalgebra of A is H_{\min}^{∞} . If $\chi_E \in H^{\infty}(m)$, then $\chi_E = 0$ a.e. or $\chi_E = 1$ a.e. So H_{\min}^{∞} is an intersection of all weak-*closed superalgebras $\{B_{\alpha}^{\infty}\}$ which contains $H^{\infty}(m)$ properly. Then H_{\min}^{∞} may coincide with or may be different from $H^{\infty}(m)$. If $H_{\min}^{\infty} \neq H^{\infty}(m)$, then H_{\min}^{∞} is the minimum weak-*closed superalgebra which contains $H^{\infty}(m)$ properly.

COROLLARY 3. Let B^{∞} be a weak-*closed superalgebra of A which contains $H^{\infty}(m)$ properly. Suppose $H^{\infty}_{\min} \neq H^{\infty}(m)$. Then the following are equivalent.

(1) If f in $H^{\infty}(m)$ vanishes on a set of positive measure, then f lies in I_{B}^{∞} .

(2) If f and g in $H^{\infty}(m)$ and fg = 0 a.e., then f lies in I_{B}^{∞} or g lies in I_{B}^{∞} .

(3) Each weak-*closed superalgebra D^{∞} such that $H^{\infty}(m) \subseteq D^{\infty} \subseteq B^{\infty}$ coincides with $H^{\infty}(m)$ or B^{∞} .

(4) B^{∞} is a minimum weak-*closed superalgebra which contains $H^{\infty}(m)$ properly, i.e. $B^{\infty} = H^{\infty}_{\min}$.

Proof. Since $H_{\min}^{\infty} \neq H^{\infty}(m)$, assertions (3) and (4) are equivalent. Apply Theorem 4 with $B_1^{\infty} = H^{\infty}(m)$ and $B_2^{\infty} = B^{\infty}$, then $I_{B_1}^{\infty} = H_0^{\infty}$ and $I_{B_2}^{\infty} = I_B^{\infty}$. If $f \in H^{\infty}(m)$ vanishes on a set of positive measure, then by Jensen's inequality, $f \in H_0^{\infty}$. For any nonzero function f in $H_0^{\infty}(m)$, χ_f is minimal for $H^{\infty}(m)$.

As a corollary of Corollary 3, Muhly's theorem [3] follows.

COROLLARY 4. (Muhly) The following properties for $H^{\infty}(m)$ are equivalent.

(1) No nonzero function in $H^{\infty}(m)$ can vanish on a set of positive measure.

(2) $H^{\infty}(m)$ is an integral domain.

(3) $H^{\infty}(m)$ is a maximal weak-*closed subalgebra of $L^{\infty}(m)$, i.e. $H^{\infty}_{\min} = L^{\infty}(m)$.

Proof. Apply Corollary 3 with $B^{\infty} = L^{\infty}(m)$ remarking $I_{B}^{\infty} = \{0\}$.

We can show the next result which was shown by the author [5, Theorem 1] as a slight modification of Hoffman [2, p. 194].

COROLLARY 5. Suppose $H_0^{\infty} = ZH^{\infty}(m)$ for some inner function Z in $H^{\infty}(m)$ and let B^{∞} be the weak-*closure of $\bigcup_{n=0}^{\infty} \overline{Z}H^{\infty}(m)$. Then B^{∞} is the minimum of all weak-*closed superalgebras of A which contains $H^{\infty}(m)$ properly, i.e. $B^{\infty} = H_{\min}^{\infty}$ ($\neq H^{\infty}(m)$).

Proof. By Theorem 5 of [6] and the proof of Corollary 3 of [6], it follows that $H^{\infty}(m) = \mathcal{H}^{\infty} \bigoplus I_{B}^{\infty}$ where \mathcal{H}^{∞} is the weak-*closure of polynomials of Z. By Jensen's inequality and $Z\mathcal{H}^{\infty} = \left\{ f \in \mathcal{H}^{\infty}; \int_{X} fdm = 0 \right\}$, it follows that if $g \in H^{\infty}(m)$ and $g \in I_{B}^{\infty}$, then $\log |g| \in L^{1}(m)$ and hence |g| > 0 a.e. Apply Corollary 3.

If $H^{*}(m)$ is an integral domain, then $H^{*}(m) = H_{\max}^{*} \subseteq H_{\min}^{*} = L^{*}(m)$. If $H^{*}(m)$ is not an integral domain, then $H^{*}(m) \subseteq H_{\min}^{*} \subseteq H_{\min}^{*} \subseteq L^{*}(m)$. We are interested in case $H^{*}(m)$ is not an integral domain. If $H_{0}^{*} = ZH^{*}(m)$ for some inner function Z, then $H^{*}(m) \neq H_{\min}^{*}$ by Corollary 5. In general, H_{\min}^{*} may coincide with or be different from $H^{*}(m)$. In the second example in §6 H_{\min}^{*} coincides with $H^{*}(m)$. In the first example in §6 H_{\max}^{*} coincides with $L^{*}(m)$. In general, H_{\max}^{*} may coincide with or be different from $L^{*}(m)$. In the first example in §6 H_{\max}^{*} coincides with $L^{*}(m)$. In general, H_{\min}^{*} may coincide with or be different from $L^{*}(m)$. In the first example in §6 H_{\max}^{*} coincides with $L^{*}(m)$. In general, H_{\min}^{*} may coincide with or be different from H_{\max}^{*} .

Since $H^{\infty}(m)$ has no nonconstant real-valued function, $H^{\infty}(m)$ has not a subspace reducing $L^{\infty}(m)$, i.e. the essential function of $H^{\infty}(m)$ is constant. But when $H^{\infty}(m)$ is not an integral domain, it is not clear whether H^{∞}_{\min} has a subspace reducing $L^{\infty}(m)$. For in case which $H^{\infty}_{\min} \neq H^{\infty}(m)$, H^{∞}_{\min} has nonconstant real-valued functions. Many natural examples show that H^{∞}_{\min} has no subspace reducing $L^{\infty}(m)$. The third example in §6 shows that in general H^{∞}_{\min} need not have a subspace reducing $L^{\infty}(m)$.

6. **Examples.** First example. Let A be the algebra of continuous complex-valued functions on the infinite torus T^{∞} , the countable product of circles, which are uniform limits of polynomials in $z_1^{\ell_1} z_2^{\ell_2} \cdots z_n^{\ell_n}$ where $(\ell_1, \ell_2, \cdots, \ell_n, 0, 0, \cdots) \in \Gamma$ and Γ is the set of $(\ell_1, \ell_2, \cdots) \in Z^{\infty}$, the

countable direct sum of the integers, whose last nonzero entry is positive, together with 0. Denote by m the normalized Haar measure on T^{∞} , then A is the weak-*Dirichlet algebra of $L^{\infty}(m)$.

We shall show that $H_{\max}^{\infty} = L^{\infty}(m)$. Let B_n^{∞} be the weak-*closure of $\bigcup_{i=0}^{\infty} \bar{z}_n^i H^{\infty}(m)$. Then

$$H^{\infty}(m) \subsetneq B_{1}^{\infty} \subsetneq B_{2}^{\infty} \cdots \subsetneq B_{n}^{\infty} \cdots \subseteq L^{\infty}(m).$$

It is sufficient to show that H_{\max}^{∞} contains \overline{z}_n for any *n*. Let $\mathscr{L}_{B_n}^{\infty}$ be the self-adjoint part of B_n^{∞} , then we can show that there exists *f* in $H^{\infty}(m)$ such that $\chi_f = \chi_E$ for every χ_E in $\mathscr{L}_{B_n}^{\infty}$ and $\mathscr{L}_{B_n}^{\infty}$ is generated by characteristic functions in $\mathscr{L}_{B_n}^{\infty}$. Since $\chi_f \in H_{\max}^{\infty}$ for every *f* in $H^{\infty}(m)$, H_{\max}^{∞} contains $\mathscr{L}_{B_n}^{\infty}$ and hence contains \overline{z}_n . Thus $H_{\max}^{\infty} = L^{\infty}(m)$.

Second example. Let A be the algebra of continuous complexvalued functions on the infinite torus T^{∞} which are uniform limits of polynomials in $z_1^{\ell_1}, z_2^{\ell_2} \cdots z_n^{\ell_n}$ where $(\ell_1, \ell_2, \cdots, \ell_n, 0, 0, \cdots) \in \Gamma$ and Γ is the set of $(\ell_1, \ell_2, \cdots) \in Z^{\infty}$ whose first non-zero entry is positive, together with 0. Denote by *m* the normalized Haar measure on T^{∞} , then A is the weak-*Dirichlet algebra of $L^{\infty}(m)$.

We shall show that $H_{\min}^{\infty} = H^{\infty}(m)$. Let B_n^{∞} be the weak-*closure of $\bigcup_{i=0}^{\infty} \bar{z}_n^i H^{\infty}(m)$, then

$$L^{\infty}(m) = B_1^{\infty} \supseteq H_{\max}^{\infty} = B_2^{\infty} \supseteq B_3^{\infty} \supseteq \cdots H^{\infty}(m).$$

It is easy to show that $\bigcap_{n=1}^{\infty} B_n^{\infty} = H^{\infty}(m)$.

Third example. Let \mathscr{A} be the σ -algebra of all Borel sets on the torus T^2 . Let \mathscr{A}_0 be the σ -subalgebra of \mathscr{A} consisting of Borel sets of the form $E_1 \times T$ where E_1 is a Borel set on the circle T. Suppose \mathscr{B} be the σ -subalgebra which consists of all Borel sets such that $\{(E_0^c \times T) \cap F; F \in \mathscr{A}_0\} \cup \{(E_0 \times T) \cap F'; F' \in \mathscr{A}\}$ for some fixed Borel set E_0 on T such that $\theta(E_0) < 1$, where θ is the normalized Haar measure on T.

Denote by *m* the normalized Haar measure on T^2 and denote by m_0 the restriction to \mathcal{B} . Let *A* be the algebra of complex-valued Borel function on T^2 which are polynomials in z^nq^m where

$$(n, m) \in \Gamma = \{(n, m); m > 0\} \cup \{(n, m); n \ge 0\}$$

and $q = \chi_{E_0 \times T} \cdot w$ and both z and w are coordinate functions on T^2 . Then A is a weak-*Dirichlet algebra of $L^{\infty}(m_0)$. For it is clear that m_0 is multiplicative on A. To show that $A + \overline{A}$ is weak-*dense in $L^{\infty}(m_0)$ it is sufficient to show that the characteristic functions for the Borel sets of T^2 of the form of $(E_1 \times T) \cup \{(E_0 \times T) \cap F\}$, where F is any

206

Borel set of T^2 , are in the weak-*closure of $A + \overline{A}$. However it is not difficult to show this.

By Corollary 5, the minimal superalgebra $H_{\min}^{\infty} = H_{\max}^{\infty}$ is a weak-*closure of $\bigcup_{n=0}^{\infty} \bar{z}^n H^{\infty}(m_0)$ which contains $H^{\infty}(m_0)$ properly. Then $I_{H_{\min}}^{\infty}$ is $\bigcap_{n=0}^{\infty} z^n H^{\infty}(m_0)$ and the support set of $I_{H_{\min}}^{\infty}$ is $E_0 \times T$. Since $H_{\min}^2 \bigoplus \bar{I}_{H_{\min}}^2 = L^2(m_0)$ by Lemma 1, H_{\min}^{∞} has a subspace reducing $L^{\infty}(m_0)$. For $q = \chi_{E_0 \times T} \cdot w$ in $H^{\infty}(m_0)$, χ_q satisfies that if $\chi_q \leq \chi_f$ for $f \in H^{\infty}(m_0)$, then $\chi_f = 1$, a.e. For if $\chi_f \leq 1$, by Corollary 3, it follows that $f \in I_{H_{\min}}^{\infty}$.

Fourth example. Let A be the algebra of continuous complexvalued functions on the polydisc $T^3 = \{(z_1, z_2, z_3) \in C^3; |z_1| = |z_2| = |z_3| = 1\}$ which are uniform limit of polynomials in $z_1^{\ell_1} z_2^{\ell_2} z_3^{\ell_3}$ where

$$(\ell_1, \ell_2, \ell_3) \in \Gamma = \{(\ell_1, \ell_2, \ell_3); \ell_3 > 0\} \cup \{(\ell_1, \ell_2, 0); \ell_2 > 0\} \cup \{(\ell_1, 0, 0); \ell_1 > 0\}.$$

Denote by *m* the normalized Haar measure on T^3 , then *A* is a weak-*Dirichlet algebra of $L^{\infty}(m)$. H_{\min}^{∞} is the weak-*closure of $\bigcup_{n=0}^{\infty} \bar{z}_{1}^{n} H^{\infty}(m)$. H_{\max}^{∞} is the weak-*closure of $\bigcup_{n=0}^{\infty} \bar{z}_{2}^{n} H^{\infty}(m)$. Theorem 3 can be applied each weak-*closed superalgebra B^{∞} such that $H_{\min}^{\infty} \subseteq B^{\infty} \subseteq H_{\max}^{\infty}$ has form $B^{\infty} = \chi_{E} H_{\min}^{\infty} + (1 - \chi_{E}) H_{\max}^{\infty}$ for some $\chi_{E} \in H_{\min}^{\infty}$. For it is sufficient to show that if $f \in I_{H_{\max}}^{\infty}$ and χ_{f} is minimal for H_{\min}^{∞} , then $f \in I_{H_{\max}}^{\infty}$, By [6, Theorem 4], $H^{\infty}(m) = H^{\infty}(m) \cap \bar{H}_{\max}^{\infty} \oplus I_{H_{\max}}^{\infty}$ and hence if $f \in I_{H_{\max}}^{\infty}$. It is not difficult to show that if $u \neq 0$, then χ_{f} is not minimal for $H_{\max}^{\infty} = (H_{\min}^{\infty})$.

REFERENCES

1. T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.

2. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, 1962.

3. P. S. Muhly, Maximal weak -* Dirichlet algebras, Proc. Amer. Math. Soc., 36 (1972), 515-518.

4. S. Merrill, Maximality of certain algebras $H^{\infty}(m)$, Math. Zeit., 106 (1968), 261–266.

5. T. Nakazi, Nonmaximal weak-*Dirichlet algebras, Hokkaido Math. J., 5 (1975), 88-96.

6. ——, Invariant subspaces of weak -* Dirichlet algebras, to appear in Pacific J. Math., 68 (1977), 151–167.

7. T. P. Srinivasan and Ju-Kwei Wang, *Weak-*Dirichlet algebras*, Proc. Internat. Sympos. On Function Algebras (Tulane Univ., 1965), Scott-Foresman, Chicago, III., 1966, 216–249.

Received April 6, 1976.

RESEARCH OF APPLIED ELECTRICITY HOKKAIDO UNIVERSITY SAPPORO, JAPAN

Pacific Journal of Mathematics Vol. 68, No. 1 March, 1977

Richard Julian Bagby, On L ^p , L ^q multipliers of Fourier transforms	1
Robert Beauwens and Jean-Jacques Van Binnebeek, Convergence theorems in	
Banach algebras	13
James Cyril Becker, Skew linear vector fields on spheres in the stable range	25
Michael James Beeson, Continuity and comprehension in intuitionistic formal	
systems	29
James K. Deveney, Generalized primitive elements for transcendental field extensions	41
Samuel S Feder Samuel Carlos Gitler and K Y I am <i>Composition properties</i>	
of projective homotopy classes	47
Nathan Jacob Fine. Tensor products of function rings under composition	63
Renno Fuchssteiner Iterations and fixnoints	73
Wolfgang H Heil On punctured halls in manifolds	81
Shiperu Itoh A random fixed point theorem for a multivalued contraction	01
mapping	85
Nicolas P Jewell Continuity of module and higher derivations	91
Roger Dale Konvndyk Residually central wreath products	00
Linda M. Lesniak and John A. Roberts. On Ramsay theory and graphical	"
narameters	105
Vo Thanh Liem. Some cellular subsets of the spheres	115
Dieter Lutz A perturbation theorem for spectral operators	127
P H Maserick Moments of measures on convex hodies	135
Stephen Joseph McAdam Unmixed 2-dimensional local domains	153
D. P. Ma Alistor and Norman P. Pailly. Equitary acousts for imperso	155
b. B. McAnster and Norman K. Kenry, <i>E-unitary covers for inverse</i>	161
William H. Meeks. III and Julie Patrusky. Representing codimension-one	101
homology classes by embedded submanifolds	175
Premalata Mohapatro Generalised augsi-Nörlund summability	177
Takahiko Nakazi Superaloehras of weak-*Dirichlet aloehras	197
Catherine Louise Olsen. Norms of compact perturbations of operators	209
William Henry Ruckle, Absolutely divergent series and isomorphism of	207
subspaces. II	229
Bernard Russo, On the Hausdorff-Young theorem for integral operators	241
Arthur Argyle Sagle and J. R. Schumi, Anti-commutative algebras and	
homogeneous spaces with multiplications	255
Robert Evert Stong, Stiefel-Whitney classes of manifolds	271
D. Suryanarayana, On a theorem of Apostol concerning Möbius functions of	
order k	277
Yoshio Tanaka, On closedness of C- and C*-embeddings	283
Chi Song Wong, Characterizations of certain maps of contractive type	293