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Let A be a weak-"Dirichlet algebra of L7(m) and let
H*(m) denote the weak-*closure of A in L7(m). Muhly
showed that if H™(m) is an integral domain, then H™(m) is a
maximal weak-"closed subalgebra of L”(m ). We show in this
paper that if H (m) is not maximal as a weak-"closed sub-
algebra of L "(m ), there is no algebra which contains H () and
is maximal among the proper weak-*closed subalgebras of
L*(m). Moreover, we investigate the weak-*closed superalgeb-
ras of A and we try to classify them. We show that there are
two canonical weak-*closed superalgebras of A which play an
important role in the problem of describing all the weak-*closed
superalgebras of A.

1. Preliminaries. Recall that by definition [7], a weak-
*Dirichlet algebra is an algebra A of essentially bounded measurable
functions on a probability measure space (X, o, m) such that (i) the
constant functions lie in A; (i) A + A is weak-*dense in L*(m) (the bar
denotes conjugation, here and always); (iii) for all f and g in A,

j fgdm = f fdm[ gdm. The abstract Hardy space H?(m), 1=p =
X X X

x, associated with A are defined as follows. For 1=p =0, H?(m) is
the L7 (m)-closure of A, while H*(m) is defined to be the weak-*closure

of A in L*(m). Forl=p =, let Hg = {fEH”(m);f fdm =O}.
X
A (weak-*closed) subalgebra B of L*(m), containing A, is called a
superalgebra of A. Let By = {fE B°°;J' fdm = 0} and let I3 be the
X

largest weak-*closed ideal of B~ which is contained in Bj. (The
existence of Iy is shown in Lemma 2 of [6]). If B*= H”(m) (resp.
L*(m)), it is clear that By = I5= Hj (resp. I5={0}). In general, I5C

5 by [6, Lemma 2]. Let &3 be a self-adjoint part of B*, i.e. the set of
all functions in B” whose complex conjugates are also in B™.

For any subset M C L*(m)and 1 = p <, denote by [M], the norm
closed linear span of M in L?(m) and by [M]. the weak-*closed linear
span of M. For a weak-*closed superalgebra B~, let B” = [B~], and let
I =[I3], for 1=p <. For any measurable subset E of X, the
function y is the characteristic function of E. If f € L?(m), denote by
E; the support set of f and by x; the characteristic function of E;.
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_ Lemma 1. If B” is a weak-*closed superalgebra of A, then B* and
I ; are orthogonal in L*(m) and B*@ I 3= L*(m).

The proof is in [6, Lemma 2].

LemMA 2. (Hoffman) Let E be a measurable subset of X such that
0<m(E)<1. Then thereexistsk in H"(m) such that k is real on E while
k is not constant on E.

The proof for logmodular algebra [1, p. 138] is valid without change
for weak-*Dirichlet algebras.

2. Support sets. If no nonzero function H*(m) can vanish on
a set of positive measure, then H”(m) is a maximal weak-*closed
subalgebra (cf. [3]). This shows the importance of the support set of
each function in H*(m). We shall investigate properties of support sets
of functions in superalgebras of A, in particular, in the algebra H*(m ).

DEerINITION.  Let B” be a weak-*closed superalgebra of A. We say
that the characteristic function xg is minimal for B* in case any
characteristic function y; in B* which satisfies the strict inequality
Xr = Xe on a set of positive measure must be zero a.e. Note that we do
not assume that yg liesin B*. Similarly, x¢ is called maximal for B* in
case any characteristic function yr in B~ which satisfies the strict
inequality xs = xr on a set of positive measure must be 1 a.e.

LEmMMA 3. Let B* be a weak-*closed superalgebra of A.

(1) If B” contains H*(m) properly, there exists a nontrivial charac-
teristic function in B~.

(2) There exists no nontrivial minimal (maximal) characteristic
function for B” in B™.

Proof. Assertion (1) is shown in the proof of [3, Theorem]. We
shall show assertion (2). Let yg be a minimal characteristic function for
B~*in B*. Then, it follows that there exists no nonconstant real-valued
function in yg£5 and hence in ygB®. For if it were not the case, then
XeLs would be a nontrivial commutative von Neumann algebra of
operators on L*(m) contrary to the assumption on xg. On the other
hand, Lemma 2 shows that there exists k in H*(m) such that yzk is a
nonconstant real-valued function in ygB~™. This contradiction shows
that there exists no nontrivial minimal characteristic function for B” in
B~. If xr were a nontrivial maximal characteristic function for B* in
B~, then 1 — x, would be a nontrivial minimal characteristic function for
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B”in B”. Since this is not possible by what was just proved, yz cannot
be a nontrivial maximal characteristic function for B” in B”.

LemMA 4. If M is a closed invariant subspace of L*(m) (invariant
under multiplication by functions in A), then M N L*(m) is a weak-
*closed invariant subspace. Moreover, the map M — M N L*(m) is one-
to-one and onto.

The proof for logmodular algebras [1, p. 131} is valid without change
for weak-*Dirichlet algebras.

LEMMA 5. Let B” be a weak -*closed superalgebra of A and suppose
D7 =[xB~l«+ (1~ x;)L>(m) for some f in I5. Then D~ is a weak-
*closed superalgebra which contains B”, x; is in D”, and f lies in I,

Proof. 1t is clear that D~ is a weak-*closed superalgebra which
contains B” and y, By Lemma 1 and Lemma 4, I32 I}, but it is not
clear that fE€ I5. Since f € I3 by Lemma 2,

[ fx;gdm =0 g € B
X

and hence

f fx;gdm =0 gE D"
X

Thus again by Lemma 1 and Lemma 4, it follows that fE€ I'}.

THEOREM 1. If f is a function in B” such that 0 = x;= 1, then there
exists a nonzero g in B” such that x, = x

Proof. Suppose f€ I3 1If fh=0 ae for all & in I3 then by
Lemma 1 and Lemma 4, it follows that f € £3. Thus y; € £3CB",s0 by
(2) of Lemma 3, there exists a nonzero characteristic function y; in B~
such that yz= x. Thus we may assume that fh#0 for some h in
I3 Since I3 is an ideal of B”, fh € I3 and x; = x» = 0.

By taking fh if necessary we may assume that f &€ I3 Suppose
D*=[xB”}«+ (1 - x;)L*(m), then by Lemma 5, it follows that fE I}
and y; € D”. By (2) of Lemma 3, there exists a nonzero yg in D” such
that x;Z xe. Since Ip is an ideal of D”, xef € I; and hence xef €
B~. Suppose g = xgf, then g is a nonzero function in B” and x;= x,.

It is natural to ask if whenever there is a function f in B~ such that
0=x;=1, there also exists a function g in B" such that
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xs= x.=1. However, the third example of §6 shows that in general such
a g need not exist.

3. Non-maximality. Muhly [3] showed that if H"(m) is an
integral domain, then H*(m) is a maximal weak-*closed subalgebra of
L~*(m). In this section, we shall show that if H*(m) is not an integral
domain, there is no maximal proper weak-*closed superalgebra of A.

LemmA 6. Let B* be a weak -*closed superalgebra of A. Then B~
has the form B” = xg,B™+ (1 — xg)L"(m), where (1— xg)L"(m) is the
largest subspsace of B~ reducing L*(m). xg is called the essential
function of B™.

THEOREM 2. If H"(m) is not maximal as a weak-*closed sub-
algebra of L*(m), then there is no algebra which contains H*(m) and is
maximal among the proper weak -*closed subalgebra of L*(m).

Proof. Suppose B~ contains H"(m) and is maximal among the
proper weak-*closed subalgebras of L*(m). Then by assumption
B*# H*(m). Since B*# L*(m), Lemma 6 implies that we can find a
nonzero g, in B” such that B™ = yz,B™+ (1 — xg,)L*(m) and the algebra
(1= xg)L*(m) is the largest subspace of B~ reducing L*(m). By
Lemma 3, there exists yr € B” such that 0 = yr= ys. For such a yr in
B~ set D= xeB*"+ (1 — xz)L"(m). Then D~ is a weak-*closed sub-
algebra which contains B”. Since xr= xs and (1 - xg)L"(m) is the
largest subspace of B” reducing L*(m), it follows that D” contains B~
properly and D”# L*(m). This contradiction proves theorem.

4. Relation between two superalgebras. In this section,
we shall investigate the relation between two superalgebras. Let B} and
B7 be weak-*closed superalgebras of A such that xzB7 C xB?; for some
xr in BT, If xg - xeB7# xe - xeB5 for all x¢ in BT with x¢ - xz# 0, then
we write xeBT < xeB3. For a weak-*closed superalgebra B” of A, we
define B7,, to be the intersection of all weak-*closed superalgebras {B}
such that B*C B, and xz B~ < xuB”, xs being the essential function of
B~

LeEmMMA 7. Let B” be a weak-*closed superalgebra of A.

(1) Each weak-*closed superalgebra D~ such that B>C D*C B},
has the form

Dm: XEBx+(1—XE)Biun

for some xg in B”.
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(2) Iffisa functionin I3 and x; (# 1) is minimal for B*, then f lies
in I3,

Proof. (1) Let a = sup{m (F); xrD* = xeB“(xr € B”)}. Choose xe,
in B* with m(E,)>a and xg=xs=---. Set E=U;_E, then
Xe €EB”, xeD”= xgB” and (1 — xz)D”>(1— xz)B”. By the definition
of B, it follows that (1— xz)D*=(1- xz)Bm. and hence D~ =
xeB™+ (1= xe)Brin-

(2) Let f bein I3 and let y; (# 1) be minimal for B*. Suppose
D”=[xB~*] + (1—- x;)L"(m). By Lemma 5, f € I5, x; € D” and hence
in order to prove assertion (2), it is sufficient to prove that I;C I5. If
there existed a nonzero xg in B” such that xg = x5 and xeD”= yB~,
where xg is the essential function of B, then x: - x; € B* because
x; €E D”. Since x; (# 1) is minimal for B, it follows that xz < x; =0 a.e.
and hence yz <1—x. By the definition of D*, xgB” = x¢L"(m) and
hence ye =1~ xg. This contradiction shows that 5B~ < xg D", hence
D*2 B;,.. By Lemma 1 and Lemma 4, it follows that I;CI5..

LEmMmA 8. Let BT and B3 be weak -*closed superalgebras of A. If
B3 contains BT properly, there exists a nontrivial minimal characteristic
function for BY in B5.

Proof. Suppose there exists no nontrivial minimal characteristic
function for BTin B5. Thenif xz isin B3, then x; liesin B7. For given
xe € B3, let a = sup{m (F); xr = x& (xr € B7)}. Then, asin the proof of
(1) in Lemma 7, there is xz in BY such that x5 = xz and m(F,)=a. If
m(E) > a, then (1 — yg)xe would be a minimal characteristic function for
BT in B3 contrary to the assumption on B5. Hence m(E)=a and
hence xz = xr € B7. On the other hand, as in the proof of (1) of
Lemma 3 we can show that there exists at least one characteristic
function ys in B3 with ys & Bi. This contradiction implies that there
exists a nontrivial minimal characteristic function for BY in Bj.

LEMMA 9. Let BT and B’ be weak -*closed superalgebras of A such
that B;C B;. Let K= B3O B?, where ‘©’ denotes the orthogonal
complement of B in B3. If x; € B for every f € K, then each weak -
*closed superalgebra B~ such that B;C B”C B3 has the form B”=
xeB7+ (1— xg)B5 for some g in B7.

Proof. Suppose S = B3O B? then S C K. Hence the hypothesis
shows that yx; € B} for every fE€S. Let a =sup{m(E;);f€S}. If
f, g €S, there exists h in S with E, = E;UE,. Forleth=f+(1-x)g,
since £35S C S and hence £35S CS, then h lies in S. Choose f, €S
with m(E;, )=« and E,CE,C---. Alter the function f, by the
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technique above so that their supports are disjoint. Suppose f,=
w127, then f,€S, m(E;)=« and hence y;, = xs, Where E is the
support set of S. Thus xe € B;. Since (1 — xg)B3 is orthogonal to §
and is contained in B3, the set (1~ y¢)B3 is contained in B?. Thus by
Lemma 4, it follows that B*D xeB7+ (1 — x&)B5 and xzB7+ (1 — x£)B35
is a weak-*closed superalgebra. If the two superalgebras above did not
coincide, by Lemma 8, there would exist at least one nontrivial minimal
Xr for yeBT+(1— xeg)B5 in B”. Then it may be assumed that yg =
xe- For if it were not so, the set xg(1— xz)B3 would be contained in
xeB7+ (1— xe)B73since xg liesin B5. By (2) of Lemma 3, there exists a
nonzero xg in xeBT+ (1 — xg)B3 such that yg(l1—x:)Z xe. This con-
tradicts minimality of g, for BT+ (1 — x&)B5.
It is clear that yzS C S. If xrS# {0}, since x; € BT for every f € §,
Xr, May not be minimal. If y;S = {0}, the set E may not be the support
set of S. Thus B”= xeB7+ (1 — xz)B5.

THEOREM 3. Let B} and B3 be weak-*closed superalgebras of A
such that B} C B3 and hence 15,2 1%, If f € 1%, for every f € 15, such
that x; is minimal for B3, then each weak -*closed’ superalgebra B~ such
that B7C B~ C B73 has the form

B”= xeB7+ (1- xe)B3
for some x¢ in B7.

Proof. Suppose K = BiO B3, K=1301% byLemmal. If k=
min(1/|f],1) for fEK, then k is in L*(m) and logk is in
L'(m). Consequently, by [7, Theorem 2.5.9] there is an outer function g
in H*(m) such that k =|g|. Then, by Lemma 4 fg €I} N L"(m)=
Is,. However, fg does not lie in I3, For since g is the outer function,
there exist g, in H*(m) such that g,fg — f(n—o)weakly in L*(m). If
fg € I3, by g.fg € I3, it follows that f € I%, contrary to the assumption
on f. Thus fg & I3, and x; = x,. By the hypothesis, x; is not minimal
for BT and hence there exists nonzero xg in BT such that x; = xe. If
Xi# Xe let h =(1— xg)f, then h lies in K again. We can repeat the
above argument for g = (1 — xz)f and hence we can show that x; € B7 as
in the proof of Lemma 8. Now Lemma 9 proves theorem.

THEOREM 4. Let BT and B35 be weak-*closed superalgebras of A
such that B C B5 (so 15,2 1%,). Suppose xg,BT < Xg.BTmin for the essen -
tial function xg, of BS. Then the following are equivalent.

(1) IffisinI%, and x; (# 1) is minimal for BT, thenf liesinI3,.

(2) IffandgareinI3, if both x; and x, are minimal for B3, and if
fg =0, a.e., then either f or g lies in I3,
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(3) Each weak-*closed superalgebra B* such that B;C B*C B3
has the form

Bw=XEBT+(1"XE)B§
for some xg in B7.

Proof. (1) > (2) is trivial. (2) = (1). Take f € I3, such that x;
(#1) is minimal for BS. Suppose D= [x;B7]+ (1 — x;)L*(m), then by
Lemma 5, D~ is a weak-*closed superalgebra such that BiC D*, f € I},
and x; € D”. By (2) of Lemma 3, there exists at least one xx in D~ such
that both xgf and (1 — xz)f are nonzero functionsin I ;(soin I'z). Since
X; is minimal for B7, it follows that both xgx; and (1 — xg)x; are minimal
for B7. (2) implies that yzf € I, or (1— xz)f € I3, Thus we have
proved that, for f € I, such that y; is minimal, there exists yr € B3 such
that xf# 0 and xef € I5,. Thus we can show that f € I3, as in the proof
of Lemma 8.

Assertion (1) implies (3) by Theorem 3. We will show that assertion
(3) implies (1). If we can show that B5C Bi., and hence I3, . C13,
then by (2) of Lemma 7, it follows that if f € I3, and x; is minimal for B7,
then f € I3,, and the proof is complete. As in the proof of Lemma 7
there is xr in BT such that ygxB7T = xrBS3, (1= xr)B7 < (1 - xr)B5, and
(I-xr)=xe- It is clear that (1— xg)B32 (1~ xr)Bims Suppose
(1= xr)B5# (1= xr)Bimn, and let D= (1— xg)Bimn+ xpB". Then
B7C D”% B3. By hypothesis, we can write D= xeB7+ (1 — x¢)B? for
some x¢ in BT. D*=(xr+ Xr— Xr* Xe)B1+ (1= x¢)(1 — xr)B5 because
B5=xxB7+ (11— xr)B5. If x¢(1— xg)=0.a.e., then D*= B7. Hence
xr(1—xr)#0 and xr(1— Xxr)Bimin C kD™ = xeB7. Thus xr(1-xg)=
XF ' Xeo= Xe- This contradicts that xgB7<XgBim.. Thus Bj=
XrB7T+ (1= Xr)Bimin C Binin-

5. Two canonical superalgebras. As corollaries of the
results in §4, we shall show that there are two canonical superalgebras of
A. Wedefine Hy,, to be the weak-*closed superalgebra of A generated
by H*(m) and x; for all f in H*(m). This superalgebra was considered
by the author [5]. If no nonzero function in H”(m) can vanish on a set
of positive measure, then Hy..= H”(m).

CorOLLARY 1. Each weak-*closed superalgebra B~ of A which
contains H,,, has the form B*= xeHp, + (1 — xe)L*(m) for some xt in
H;ax'

Proof. Apply Theorem 4 with B7= H,, and B5= L"(m). By
definition of H ., X; € Ha for every f € I3, and hence if yx; (#1) is
minimal for H,,, then by (2) of Lemma 3, f =0 a.e.
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If xe,H o < xe,B~ for the essential function xg, of H;,.., by Corollary
1 it follows that B*= L*(m). Hence (Hmu)mn= L(m) and if xg #0,
then XE(JH:IBX < X&)(H;ax)min'

COROLLARY 2. Let B” be a weak-*closed superalgebra of A. If
each weak -*closed superalgebra D~ of A which contains B” has the form
D*= xeB*+ (1= xg)L*(m) for some xg in B”, then B*D H,,.

Proof. We may assume that B®# L*(m). It is easy to show that
Bi..= L*(m)andhence I;,. ={0}. Applying Lemma?7,if f € I3and x;
(# 1) is minimal for B”, then f =0 a.e. Henceif fEIzwith0= =1,
then there exists nonzero xe in B” such that x;= x.. If f € B~, f#0,
then f € &5 or there exists a function g in I3 such that gf# 0. Thus if
f€B” and f#0, then there exists nonzero x, in B” such that
X;= xr As in the proof of Lemma 8, we can show that x; € B®. Thus
B”D H},,..

The second canonical superalgebra of A is Hy,,. If xge € H"(m),
then y; =0 ae. or y =1 a.e. So Hp, is an intersection of all
weak-*closed superalgebras { B3} which contains H*(m ) properly. Then
H;, may coincide with or may be different from H~*(m). If
H;.# H*(m), then Hp,, is the minimum weak-*closed superalgebra
which contains H"(m) properly.

CoRrROLLARY 3. Let B” be a weak-*closed superalgebra of A which
contains H*(m) properly. Suppose Hy,# H*(m). Then the following
are equivalent.

(1) If f in H*(m) vanishes on a set of positive measure, then f lies
in I

(2) Iffand gin H*(m) and fg =0 a.e., then f lies in I3 or g lies
in I3

(3) Each weak-*closed superalgebra D* such that H*(m)C D~ C
B~ coincides with H*(m) or B™.

(4) B~ is a minimum weak-*closed superalgebra which contains
H~(m) properly, i.e. B*= H;,,.

Proof. Since H;,# H*(m), assertions (3) and (4) are
equivalent. Apply Theorem 4 with B7= H”(m) and B5= B~, then
I3, =Hj and 13,=1% 1If f€ H"(m) vanishes on a set of positive
measure, then by Jensen’s inequality, f € Hg. For any nonzero function
f in H5(m), x; is minimal for H*(m).

As a corollary of Corollary 3, Muhly’s theorem [3] follows.

COROLLARY 4. (Muhly) The following properties for H*(m) are
equivalent.
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(1) No nonzero function in H*(m) can vanish on a set of positive
measure.

(2) H™(m) is an integral domain.

(3) H~(m) is a maximal weak-*closed subalgebra of L*(m), i.e.
H..= Lx(m )

Proof. Apply Corollary 3 with B”= L*(m) remarking I3= {0}.

We can show the next result which was shown by the author [5,
Theorem 1] as a slight modification of Hoffman [2, p. 194].

COROLLARY 5. Suppose Hy = ZH”(m) for some inner function Z in
H*(m) and let B” be the weak -*closure of U;_, Z_H“’(m ). Then B~ is
the minimum of all weak-*closed superalgebras of A which contains
H~(m) properly, i.e. B*= H;,, (# H*(m)).

Proof. By Theorem 5 of [6] and the proof of Corollary 3 of [6], it
follows that H*(m )= #~ I 3 where ¥~ is the weak-*closure of polyno-

mials of Z. By Jensen’s inequality and Z#~ = {f € 96’“’;"’ fdm = O}, it
X

follows that if g € H*(m) and g € I';, then log|g|€ L'(m) and hence
lg|>0 ae. Apply Corollary 3.

If H"(m) is an integral domain, then H”(m)= H,,C Hp,=
L*(m). If H*(m) is not an integral domain, then H*(m)C H;,,C
H;,.CL*(m). We are interested in case H”(m) is not an integral
domain. If Hi=ZH"(m) for some inner function Z then
H>(m)# H},, by Corollary 5. In general, H;,, may coincide with or be
different from H*(m). In the second example in §6 Hy;, coincides with
H”(m). In general, H;, may coincide with or be different from
L*(m). In the first example in §6 Hp, coincides with L*(m). In
general, H},, may coincide with or be different from H7,,.

Since H”(m) has no nonconstant real-valued function, H*(m) has
not a subspace reducing L~(m), i.e. the essential function of H*(m) is
constant. But when H"(m) is not an integral domain, it is not clear
whether Hi,, has a subspace reducing L*(m). For in case which
H;.# H*(m), Hy, has nonconstant real-valued functions. Many
natural examples show that H,, has no subspace reducing L*(m). The

third example in §6 shows that in general H,, need not have a subspace
reducing L*(m).

6. Examples. First example. Let A be the algebra of con-

tinuous complex-valued functions on the infinite torus T, the countable

product of circles, which are uniform limits of polynomialsin z{'z%--- z &

where (¢, €5, -+, ¢,0,0,---)ET and I" is the set of (¢,, ¢, -) € Z~, the
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countable direct sum of the integers, whose last nonzero entry is positive,
together with 0. Denote by m the normalized Haar measure on T~,
then A is the weak-*Dirichlet algebra of L*(m).

We shall show that H;,,,= L*(m). Let B, be the weak-*closure of
U7,z H*(m). Then

H*(m)$Bi$ B3-S B3+ CL*(m).

It is sufficient to show that H},, contains Z, for any n. Let &3 be the

self-adjoint part of B, then we can show that there exists f in H"(m)

such that x; = xx for every yx¢ in £3, and £75, is generated by characteris-

tic functions in £3,. Since x; € H,, for every f in H*(m), H., contains
3. and hence contains Z,. Thus Hj, = L*(m).

Second example. Let A be the algebra of continuous complex-
valued functions on the infinite torus T which are uniform limits of
polynomials in z{, z§--- z% where (€1, €5+, €,0,0,---)ET and I is
the set of (¢), ¢,, - - - ) € Z* whose first non-zero entry is positive, together
with 0. Denote by m the normalized Haar measure on 77, then A is
the weak-*Dirichlet algebra of L*(m).

We shall show that Hy,,,= H*(m). Let B, be the weak-*closure of
Ur,Z.H*(m), then

L*(m)=Bi2H,.=B32B32--H"(m).
It is easy to show that M., B:= H*(m).

Third example. Let & be the o-algebra of all Borel sets on the
torus T?. Let &, be the o-subalgebra of & consisting of Borel sets of
the form E, X T where E, is a Borel set on the circle T. Suppose B be
the o-subalgebra which consists of all Borel sets such that {(E§ X T)N
F;Fe A }U{(E; X T)NF'; F' € o} for some fixed Borel set E, on T
such that 8(E,)<1, where 6 is the normalized Haar measure on T.

Denote by m the normalized Haar measure on 77 and denote by m,
the restriction to #. Let A be the algebra of complex-valued Borel
function on T? which are polynomials in z"q™ where

(nnm)ET ={(n,m);m >0}U{(n,m); n =0}

and g = xexr*w and both z and w are coordinate functions on
T?. Then A is a weak-*Dirichlet algebra of L*(m,). For it is clear that
m, is multiplicative on A. To show that A + A is weak-*dense in
L~*(m,) it is sufficient to show that the characteristic functions for the
Borel sets of T? of the form of (E, X T) U {(E, X T)N F}, where F is any
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Borel set of T2 are in the weak-*closure of A + A. However it is not
difficult to show this.

By Corollary 5, the minimal superalgebra H7,, = H7 . is a weak-
*closure of Uj_, Z2"H*(m,) which contains H~(m,) properly. Then I7,,
is Mz, z"H*(m,) and the support set of Iy, is E,XT. Since
HZ @ T3..= L (my) by Lemma 1, Hj, has a subspace reducing
L*(my). For q = xgxr-w in H*(m,), x, satisfies that if x,=y; for
f € H*(my), then x; = 1,a.e. Forif y;= 1, by Corollary 3, it follows that
feI;i...

Fourth example. Let A be the algebra of continuous complex-
valued functions on the polydisc T° = {(z,, 25, 23) € C*; | z,| = | z,| = | 23| =
1} which are uniform limit of polynomials in z{'z$z{ where

(51, (2, &)E I'= {(gb (2, €3)§ €3>0} U
{(¢,, €:,0); €,> 0} U{(£,,0,0); £,>0}.

Denote by m the normalized Haar measure on T°, then A is a
weak-*Dirichlet algebra of L*(m). H, is the weak-*closure of

s 0Z'H”(m). HzZ, is the weak-*closure of U;_, Z;H*(m). Theorem
3 can be applied each weak-*closed superalgebra B~ such that H;;,, C
B*C H;, has form B” = xcHp,+ (1 = xg)H . for some x: € H},,. For
it is sufficient to show that if f€ I3, and x; is minimal for H,,, then
f€I;.. By[6, Theorem 4], H*(m)= H*(m)N Hz, @ I'7,.. and hence
if fely., then f=u+f, for some u € H*(m)N H<=,. and for some
fo€Ig,.,. Itisnot difficult to show that if u# 0, then x; is not minimal
for H;,. Moreover H;, = (Hpu)mn-
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