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The following result is obtained. Let f be a self map on a
nonempty complete metric space (X, d). Then the following
conditions are equivalent: (i) For any ¢ > 0, there exists §(¢) >0
such that d(f(x), f(y)) < € whenever ¢ < d(x,y)<e + 8(e). (ii)
There exists a function w of [0, ) into [0, ») such that w(s)>s
for all s >0, w is lower semicontinuous from the right on (0, »)

and w(d(f(x), f(y))=d(xy), xy € X

1. Imtroduction. In 1969, E. Keeler and A. Meir [3] obtained
the following result.

TueoreM A. (Keeler and Meir). Let f be a self map on a
nonempty complete metric space (X, d). Suppose that for any € >0, there
exists 8(e)>0 such that d(f(x),f(y))<e whenever e=d(x,y)<
€ + 8(e). Then f has a unique fixed point x, and {f"(x)} converges to x, for
all x in X.

Theorem A generalized the following result of D. W. Boyd and
J.S. W. Wong [1] (and therefore, an earlier result of E. Rakotch [4]).

THeorem B. (Boyd and Wong). Let f be a self map on a
nonempty complete metric space (X, d). Suppose that there exists a self
map ® on [0,%) such that ® is upper semicontinuous from the right,
()<t for t >0 and f is ®-contractive:

d(f(x), f(y))=Pd(x,y)), xy€EX
Then f has a unique fixed point x, and {f"(x)} converges to x, for all x in X.

In this paper, equivalent conditions in terms of monotone transfor-
mations are obtained. These will show that the essential difference
between Theorems A and B is a matter of imposing monotone transfor-
mations on the left side or right side of certain inequalities.

2. Main results.

THEOREM 1. Let f be a self map on a nonempty complete metric
space (X, d). Then the following conditions are equivalent:
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(i) For any € >0, there exists §(€)>0 such that d(f(x), f(y))<e
whenever € = d(x,y)< e + 8(€).

(ii) There exists a self map w of [0,) into [0,] such that w(s)>s
for all s >0, w is lower semicontinuous from the right on (0,°) and

w(d(f(x), f(y))=d(xy), xy€X

Proof. (i) = (ii). Let e€>0. (i) implies that f is contractive:
d(f(x),f(y))<d(x,y) for distinct x,y in X. So

(*) d(f(x),f(y)) < e whenever d(x,y)<¥(e).
Define w(0)=0 and
w(e)=sup{6(e)>0: 6(e) satisfies (*)}.
Then w is an increasing function of [0, ) into [0, ®] such that w(s)>s

for all s >0. Also w is semicontinuous from the right. We need only
prove that

w(@d(f(x), fy)=d(xy), xyeX

Suppose not. Then

w(d(f(x), f(y))>d(xy)

for some x,y in X. Thus
e=d(f(x),f(y))>0 and d(x,y)<w(e).
By the choice of w, d(f(x),f(y))<e, a contradiction.

(ii) > (i). Let € >0. Since w is lower semicontinuous from the
right at ¢, there exists §,(e) >0 such that

€+ w(e
< w(s) whenever € =s < ¢+ §,(¢).

Let &(e)=min{d,(¢),(w(e)—€)/2}. Suppose that e=d(x,y)<
€+8(e). We need only to prove that d(f(x),f(y))<e Suppose
not. Then by the contractivity of f,

e=d(f(x),f(y)<e+d(e)=e€+ 8e).

So
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”_;’(ﬂ<w(d(f(x),f()’)))
=d(x,y)
=e+d(e)
=e€ +_w_(e_21_-_§
_ e+ w(e
= >

a contradiction.

As shown above, Theorem 1 gives Theorem A. Intuitively, one
would think that the conditions on f in Theorem B and (ii) of Theorem 1
should be equivalent. However, Theorem B is a special case of, and is
not equivalent to Theorem A [3]. In other words, there is no symmetry
in “right and left” in the sense that the fixed point theorems obtained
depend on the sides—left or right—on which we impose monotone
transformations. However, the following shows that such symmetry
does exist if we restrict ourselves to the case where w in (ii) of Theorem 1
is lower semicontinuous (or @ in Theorem B is upper
semicontinuous).

THEOREM 2. Let f be a self map on a nonempty complete metric
space (X,d). Then the following conditions are equivalent:

(i)  There exists a self map ® on [0, ) such that ®(t)<tfort >0,
is increasing, continuous and f is ®-contractive.

(i) There exists a self map w on [0, ) such that w(s) > s fors >0, w
is lower semicontinuous and

wd(f(x), fy)=d(xy), xyeEX

For related fixed point theorems for function f satisfying conditions
in Theorem 2, we refer the reader to [2] and [5].

Added in proof: Indication of a proof for Theorem 2 is given in [6]:
Chi Song Wong, Maps of Contractive Type, Proceedings of the Seminar
on fixed point theory and its applications, Academic Press (1976),
197-207.
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