A CHARACTERIZATION OF SOLENOIDS

CHARLES LEMUEL HAGOPIAN
A CHARACTERIZATION OF SOLENOIDS

CHARLES L. HAGOPIAN

Suppose \(M \) is a homogeneous continuum and every proper subcontinuum of \(M \) is an arc. Using a theorem of E. G. Effros involving topological transformation groups, we prove that \(M \) is circle-like. This answers in the affirmative a question raised by R. H. Bing. It follows from this result and a theorem of Bing that \(M \) is a solenoid. Hence a continuum is a solenoid if and only if it is homogeneous and all of its proper subcontinua are arcs. The group \(G \) of homeomorphisms of \(M \) onto \(M \) with the topology of uniform convergence has an unusual property. For each point \(w \) of \(M \), let \(G_w \) be the isotropy subgroup of \(w \) in \(G \). Although \(G_w \) is not a normal subgroup of \(G \), it follows from Effros' theorem and Theorem 2 of this paper that the coset space \(G/G_w \) is a solenoid homeomorphic to \(M \) and, therefore, a topological group.

1. Introduction. Let \(\mathcal{S} \) be the class of all homogeneous continua \(M \) such that every proper subcontinuum of \(M \) is an arc. It is known that every solenoid belongs to \(\mathcal{S} \). It is also known that every circle-like element of \(\mathcal{S} \) is a solenoid. In fact, in 1960 R. H. Bing [4, Theorem 9, p. 228] proved that each homogeneous circle-like continuum that contains an arc is a solenoid. At that time Bing [4, p. 219] asked whether every element of \(\mathcal{S} \) is a solenoid. In this paper we answer Bing's question in the affirmative by proving that every element of \(\mathcal{S} \) is circle-like.

2. Definitions and related results. We call a nondegenerate compact connected metric space a \textit{continuum}.

A \textit{chain} is a finite sequence \(L_1, L_2, \ldots, L_n \) of open sets such that \(L_i \cap L_j \neq \emptyset \) if and only if \(|i - j| \leq 1 \). If \(L_1 \) also intersects \(L_n \), the sequence is called a \textit{circular chain}. Each \(L_i \) is called a \textit{link}. A chain (circular chain) is called an \(\epsilon \)-\textit{chain} (\(\epsilon \)-\textit{circular chain}) if each of its links has diameter less than \(\epsilon \). A continuum is said to be \textit{arc-like} (circle-like) if for each \(\epsilon > 0 \), it can be covered by an \(\epsilon \)-chain (\(\epsilon \)-circular chain).

A space is \textit{homogeneous} if for each pair \(p, q \) of its points there exists a homeomorphism of the space onto itself that takes \(p \) to \(q \). Bing [2] [3] proved that a continuum is a pseudo-arc if and only if it is homogeneous and arc-like. L. Fearnley [9] and J. T. Rogers, Jr. [20] independently showed that every homogeneous, hereditarily indecomposable, circle-like
continuum is a pseudo-arc [11]. However, there are many topologically different homogeneous circle-like continua that have decomposable subcontinua [24] [25].

Let n_1, n_2, \cdots be a sequence of positive integers. For each positive integer i, let G_i be the unit circle $\{z \in \mathbb{R}^2 : |z| = 1\}$, and let f_i be the map of G_{i+1} onto G_i defined by $f_i(z) = z^{n_i}$. The inverse limit space of the sequence $\{G_i, f_i\}$ is called a solenoid. Since each G_i is a topological group and each f_i is a homomorphism, every solenoid is a topological group [13, Theorem 6.14, p. 56] and therefore homogeneous. Each solenoid is circle-like since it is an inverse limit of circles with surjective bonding maps [17, Lemma 1, p. 147].

A solenoid can be described as the intersection of a sequence of solid tori M_i, M_2, \cdots such that M_{i+1} runs smoothly around inside M_i exactly n_i times longitudinally without folding back and M_i has cross diameter of less than i^{-1}. The sequence n_1, n_2, \cdots determines the topology of the solenoid. If it is $1, 1, \cdots$ after some place, the solenoid is a simple closed curve. If it is $2, 2, \cdots$, the solenoid is the dyadic solenoid defined by D. van Dantzig [7] and L. Vietoris [23]. Other properties involving the sequence n_1, n_2, \cdots are given in [4, p. 210]. From this description we see that every proper subcontinuum of a solenoid is an arc.

Solenoids appear as invariant sets in the qualitative theory of differential equations. In [21] E. S. Thomas proved that every compact 1-dimensional metric space that is minimal under some flow and contains an almost periodic point is a solenoid.

Every homogeneous plane continuum that contains an arc is a simple closed curve [4] [10] [15]. Hence each planar solenoid is a simple closed curve.

Each of the three known examples of homogeneous plane continua (a circle, a pseudo-arc [2] [18], and a circle of pseudo-arcs [5]) is circle-like. If one could show that every homogeneous plane continuum is circle-like, it would follow that there does not exist a fourth example [6] [12] [14, p. 49] and a long outstanding problem would be solved.

A topological transformation group (G, M) is a topological group G together with a topological space M and a continuous mapping $(g, w) \rightarrow gw$ of $G \times M$ into M such that $ew = w$ (e denotes the identity of G) and $(gh)w = g(hw)$ for all elements g, h of G and w of M.

For each point w of M, let G_w be the isotropy subgroup of w in G (that is, the set of all elements g of G such that $gw = w$). Let G/G_w be the left coset space with the quotient topology. The mapping φ_w of G/G_w onto Gw that sends gG_w to gw is one-to-one and continuous. The set Gw is called the orbit of w.

Assume M is a continuum and G is the topological group of homeomorphisms of M onto M with the topology of uniform convergence [16, p. 88]. E. G. Effros [8, Theorem 2.1] proved that each
orbit is a set of the type G_δ in M if and only if for each point w of M, the mapping φ_w is a homeomorphism.

Suppose M is a homogeneous continuum. Then the orbit of each point of M is M, a G_δ-set. According to Effros' theorem, for each point w of M, the coset space G/G_w is homeomorphic to M. By Theorem 2 of §4, if M has the additional property that all of its proper subcontinua are arcs, then G/G_w is a solenoid and, therefore, a topological group. Note that G_w is not a normal subgroup of G.

Throughout this paper R^2 is the Cartesian plane. For each real number r, we shall denote the horizontal line $y = r$ and the vertical line $x = r$ in R^2 by $H(r)$ and $V(r)$ respectively.

Let P and Q be subsets of R^2. The set P is said to project horizontally into Q if every horizontal line in R^2 that meets P also meets Q.

We shall denote the boundary and the closure of a given set Z by $\text{Bd} Z$ and $\text{Cl} Z$ respectively.

3. Preliminary results. In this section M is a homogeneous continuum (with metric ρ) having only arcs for proper subcontinua.

Let p and q be two points of the same arc component of M. The union of all arcs in M that have p as an endpoint and contain q is called a ray starting at p.

The following two lemmas are easy to verify.

Lemma 1. Each ray is dense in M.

Lemma 2. If an open subset Z of M is not dense in M, then each component of Z is an arc segment with both endpoints in $\text{Bd} Z$.

Let ϵ be a positive number. A homeomorphism h of M onto M is called an ϵ-homeomorphism if $\rho(v, h(v)) < \epsilon$ for each point v of M.

Lemma 3. Suppose ϵ is a given positive number and w is a point of M. Then w belongs to an open subset W of M with the following property. For each pair p, q of points of W, there exists an ϵ-homeomorphism h of M onto M such that $h(p) = q$.

Proof. Define G, G_w, and φ_w as in §2. Since M is homogeneous, the orbit of each point of M is M. Therefore φ_w is a homeomorphism of G/G_w onto M [8, Theorem 2.1].

Let π_w be the natural open mapping of G onto G/G_w that sends g to gG_w. Define T_w to be the mapping of G onto M that sends g to $g(w)$. Since $T_w = \varphi_w \pi_w$, it follows that T_w is an open mapping [22, Theorem 3.1]. Note that the following diagram commutes.
Let \(U \) be the open subset of \(G \) consisting of all \(\epsilon/2 \)-homeomorphisms of \(M \) onto \(M \). Define \(W \) to be the open set \(T_\epsilon[U] \).

Since the identity \(e \) belongs to \(U \) and \(T_\epsilon(e) = w \), the set \(W \) contains \(w \).

Assume \(p \) and \(q \) are points of \(W \). Let \(f \) and \(g \) be elements of \(U \) such that \(T_\epsilon(f) = p \) and \(T_\epsilon(g) = q \). Since \(f(w) = p \) and \(g(w) = q \), the mapping \(h = gf^{-1} \) of \(M \) onto \(M \) is an \(\epsilon \)-homeomorphism with the property that \(h(p) = q \).

For each positive integer \(i \), let \(A_i \) be an arc with endpoints \(p_i \) and \(q_i \). The sequence \(A_1, A_2, \ldots \) is said to be folded if it converges to an arc \(A \) and the sequence \(p_1, q_1, p_2, q_2, \ldots \) converges to an endpoint of \(A \).

Lemma 4. (Bing [4, Theorem 6, p. 220]). There does not exist a folded sequence of arcs in \(M \).

Lemma 4 follows from a simple argument (shorter than Bing’s) involving Lemma 3 and the fact that \(M \) does not contain a triod.

A chain \(L_1, L_2, \ldots, L_n \) in \(M \) is said to be free if \(\text{Cl} L_1 \cap \text{Cl} L_n = \emptyset \) and \(\text{Bd} \cup \{L_i : 1 \leq i \leq n\} \) is a subset of \(\text{Cl}(L_1 \cup L_n) \).

Lemma 5. (Bing [4, Property 17, p. 219]). Let \(A \) be an arc in \(M \) with endpoints \(p \) and \(q \). For each positive number \(\epsilon \), there exists a free \(\epsilon \)-chain \(L_1, L_2, \ldots, L_n \) in \(M \) covering \(A \) such that \(p \) and \(q \) belong to \(L_1 \) and \(L_n \) respectively.

A continuum is decomposable if it is the union of two proper subcontinua; otherwise, it is indecomposable.

Lemma 6. If \(M \) is decomposable, then \(M \) is a simple closed curve.

Proof. Since \(M \) is the union of two proper subcontinua (arcs), \(M \) is locally connected. Since \(M \) is homogeneous, it does not have a separating point. Hence \(M \) contains a simple closed curve [19, Theorem 13, p. 91]. It follows that \(M \) is a simple closed curve.
4. Principal results.

Theorem 1. If M is a homogeneous continuum and every proper subcontinuum of M is an arc, then M is circle-like.

Proof. According to Lemma 6, if M is decomposable, then M is a simple closed curve and therefore circle-like. Hence we assume that M is indecomposable.

By Lemmas 4 and 5, there exists a free chain $L_1, L_2, \ldots, L_\alpha$ ($\alpha > 5$) in M such that $N = \text{Cl} \cup \{L_i : 1 \leq i \leq \alpha\}$ is a proper subset of M and $N - \text{Cl} \cup \{L_i : 3 \leq i \leq (\alpha - 2)\}$ contains every arc in N that has both of its endpoints in $\text{Cl}L_1$ or $\text{Cl}L_\alpha$. (This chain is formed from another free chain by unioning links to make L_2 and $L_{\alpha-1}$ sufficiently long and narrow.) Let B be the union of all components of N that meet $\text{Cl}(L_3 \cup L_{\alpha-2})$. By Lemma 2, each component of B is an arc with one endpoint in $\text{Bd}L_1$ and the other endpoint in $\text{Bd}L_\alpha$. Note that B is a closed set. Since M is indecomposable, each component of B is a continuum of condensation.

Since B contains no folded sequence of arcs, we can assume that B is the intersection of M and the plane \mathbb{R}^2 and that the following conditions are satisfied:

I. A component C of B is $\{(x, y) : 0 \leq x \leq 6$ and $y = 0\}$.

II. Each component of $B - C$ is a horizontal interval above $H(0)$ (the x-axis) and below $H(1)$ that crosses both $V(1)$ and $V(5)$.

III. The sets $\text{Cl}(L_1 \cup L_2 \cup L_{\alpha-1} \cup L_\alpha)$ and $\{(x, y) : 1 \leq x \leq 5\}$ are disjoint.

(Bing's theorem [2, Theorem 11], involving sequences of refining covers that induce a homeomorphism, can be used to define this embedding of B in \mathbb{R}^2. Each cover of B consists of finitely many free chains that correspond to disjoint straight horizontal chains with rectangular links in \mathbb{R}^2.) Note that $B \cap \{(x, y) : 1 < x < 5\}$ is an open subset of M.

Let ρ be a metric on M whose restriction to B agrees with the Euclidean metric on \mathbb{R}^2 [1, Theorems 4 and 5].

There exists a positive number d less than 1 such that $M \cap H(d) = \emptyset$ and the following condition is satisfied:

Property 1. Every arc in M that has its endpoints in $\{(x, y) : x = 3$ and $0 \leq y < d\}$ meets both $\{(x, y) : x = 1$ and $0 \leq y < d\}$ and $\{(x, y) : x = 5$ and $0 \leq y < d\}$.

To see this we assume Property 1 does not hold for any positive number d. For each positive integer i, let W_i be an open set in
\(M \cap \{(x, y) : 1 < x < 5\} \) that contains \((3,0)\) such that for each pair \(p, q\) of points of \(W\) there exists an \(i^{-1}\)-homeomorphism of \(M\) onto \(M\) that takes \(p\) to \(q\) (Lemma 3). For each \(i\), there exists an arc \(A_i\) in \(M\) with endpoints \(p_i\) and \(q_i\) in \(W_i \cap V(3)\) such that the horizontal interval \(\Gamma_i\) from \(p_i\) to \(V(1)\) is in \(A_i\), if and only if the horizontal interval \(\Delta_i\) from \(q_i\) to \(V(1)\) is in \(A_i\).

For each \(i\), let \(h_i\) be an \(i^{-1}\)-homeomorphism of \(M\) onto \(M\) such that \(h_i(p_i) = q_i\). Since each \(h_i\) maps \(\Gamma_i\) approximately onto \(\Delta_i\), for each \(i\), there exists a point \(a_i\) of \(A_i\) such that \(h_i(a_i) = a_i\).

For each \(i\), let \(B_i\) be the arc in \(A_i\) from \(p_i\) to \(a_i\). Note that for each \(i\), the diameter of \(B_i\) is greater than 1 and \(B_i \cap h_i[B_i]\) consists of the point \(a_i\).

Let \(a\) be a limit point of the sequence \(\{a_i\}\). Assume without loss of generality that \(\{a_i\}\) is a convergent sequence in \(E = \{v \in M : \rho(v, a) < 1/2\}\).

For each \(i\), let \(E_i\) be an arc in \(B_i \cap \text{Cl}\ E\) that goes from a point \(b_i\) of \(\text{Bd}\ E\) to \(a_i\). Assume without loss of generality that \(\{b_i\}\) converges to a point of \(\text{Bd}\ E\) and \(\{E_i\}\) converges to an arc \(F\) in \(\text{Cl}\ E\). Since each \(h_i\) is an \(i^{-1}\)-homeomorphism, \(\{E_i \cup h_i[E_i]\}\) is a folded sequence of arcs converging to \(F\). This contradiction of Lemma 4 completes our argument for Property 1.

For \(i = 1\) and 2, let

\[D_i = M \cap \{(x, y) : i \leq x \leq 6 - i \text{ and } 0 \leq y < d\}. \]

Let \(\epsilon\) be a given positive number less than \(\rho(D_2, M - D_1)\). We shall complete this proof by defining an \(\epsilon\)-circular chain that covers \(M\).

By Lemma 1, there exists an arc \(A\) in \(M\) that is irreducible with respect to the property that it contains \(\{(5,0),(6,0)\}\) and intersects \(\{(x, y) : x = 5\text{ and } 0 < y < d\}\). According to Property 1, \(A\) intersects \(\{(x, y) : x = 4\text{ and } 0 < y < d\}\).

Let \(W\) be an open set in \(D_1 - A\) containing \((4,0)\) such that for each pair \(p, q\) of points of \(W\), there exists an \(\epsilon/50\)-homeomorphism of \(M\) onto \(M\) that takes \(p\) to \(q\) (Lemma 3).

Let \(c\) be a number \((0 < c < \epsilon/50)\) such that \(M \cap H(c) = \emptyset\) and \(M \cap \{(x, y) : x = 4\text{ and } 0 \leq y < c\}\) is in \(W\). Since \(W\) and \(A\) are disjoint, \(c\) is less than \(d\).

For \(i = 1\) and 2, let

\[C_i = M \cap \{(x, y) : i \leq x \leq 6 - i \text{ and } 0 \leq y < c\}. \]

Let \(\delta\) be the minimum of \(\epsilon\) and \(\rho(C_2, M - C_1)\). Let \(U\) be an open subset of \(C_1\) containing \((2,0)\) such that for each point \(q\) of \(U\), there exists a \(\delta\)-homeomorphism of \(M\) onto \(M\) that takes \((2,0)\) to \(q\) (Lemma 3).
Define S to be the ray in M that starts at $(2,0)$ and contains A. Let
\{s_i\} be the sequence consisting of all points of $S \cap \{(x,y): x = 3$ and
$0 \leq y < d\}$ and having the property that for each i, the points s_i precedes
s_{i+1} with respect to the linear order on S.

Define T_1 to be an arc containing A in S that starts at the point
$t_1 = (2,0)$ and ends at a point t_2 of $U \cap V(2)$. Let h be a δ-
homeomorphism of M onto M that takes t_1 to t_2.

We proceed inductively. Assume an arc T_n is defined in S with
endpoints t_n and t_{n+1} in $C_2 \cap V(2)$. Let y be the number such that
$h(t_{n+1})$ belongs to $H(y)$. Define T_{n+1} to be the arc in S with endpoints
t_{n+1} and $t_{n+2} = (2, y)$. Since h is a δ-homeomorphism, t_{n+2} belongs to
C_2. Note that since each T_n has diameter greater than 1, the ray S is the
union of \{$T_n; n = 1, 2, \cdots$\}.

Define β to be the largest integer such that \{$s_i: 1 \leq i \leq \beta$\} is a subset
of T_1. The δ-homeomorphism h maps each T_n approximately onto
T_{n+1}. Hence, for each n, the arc T_n contains \{$s_i: (n-1)\beta < i \leq \n\beta$\}. Furthermore, β has the following property:

\textbf{Property 2.} For each positive integer i, the point s_i belongs to C_2 if
and only if $s_{i+\beta}$ belongs to C_2.

Define γ to be the least positive integer that has Property 2. Note
that since s_2 does not belong to C_2, the integer γ is greater than 1.

Let K be \{$s_i: i = j\gamma + 1$ and $j = 0, 1, 2, \cdots$\}, and let L be
$(S \cap D_2 \cap V(3)) - K$.

\textbf{Property 3.} The sets $\text{Cl} K$ and $\text{Cl} L$ are disjoint.

To establish Property 3, we assume there is a point z in $\text{Cl} K \cap
\text{Cl} L$. Let Z be an open subset of M containing z such that for each pair
p, q of points of Z, there exists a δ-homeomorphism of M onto M that
takes p to q (Lemma 3).

Let s_i and s_n be points of $Z \cap K$ and $Z \cap L$, respectively, and let f
be a δ-homeomorphism of M onto M such that $f(s_i) = s_n$. Let θ be the
smallest positive integer such that $s_{n+\theta}$ belongs to K. The existence of f
implies that θ has Property 2. Since θ is less than γ, this is a
contradiction and Property 3 is established.

Note that since $M = \text{Cl} S$ (Lemma 1), $\text{Cl} (K \cup L) = D_2 \cap V(3)$.

Let I be the arc in S that goes from s_i to s_{i+1}. By an argument
similar to Bing's [4, Property 17, p. 219], there exists a free $\epsilon/50$-chain
$P_1, P_2, \cdots, P_\lambda$ in M covering I such that

(i) s_i and s_{i+1} belong to P_i and P_{i+1} respectively,

(ii) $P_i \cup P_{i+1}$ is in C_2,

(iii) each component of \(H = \bigcup \{ P_i \colon 1 \leq j \leq \lambda \} \) that meets \(\text{Cl } P_i \) also meets \(P_i \) and \(V(5) \), and

(iv) each component of \(H \) that meets \(\text{Cl } P_i \) meets \(P_i \) and \(V(1) \).

From Property 1 we get the following:

Property 4. Each component of \(H \) meets both \(P_i \) and \(P_\lambda \).

Let \(P_\mu \) be an element of \(P_1, P_2, \ldots, P_\lambda \) that contains the point \((4,0)\). Since \(W \) intersects each component of \(C_2 \), there exists a finite sequence \(g_1, g_2, \ldots, g_\sigma \) of \(\epsilon/50 \)-homeomorphisms of \(M \) onto \(M \) such that \(\text{Cl } K \) projects horizontally into \(\bigcup \{ g_i[P_\mu] : 1 \leq i \leq \sigma \} \). Assume without loss of generality that no proper subsequence of \(g_1, g_2, \ldots, g_\sigma \) has this horizontal projection property.

Note that each \(g_i[P_\mu] \) is a subset of \(D_1 \).

From Properties 1 and 4 we get the following:

Property 5. For each \(i (1 \leq i \leq \sigma) \), if \(T \) is a component of \(g_i[H] \), then \(T \cap g_i[\text{Cl } P_\mu] \) is a nonempty set that projects horizontally to a point of \(D_2 \cap V(3) \).

For each \(i (1 \leq i \leq \sigma) \), let \(X_i \) be the set consisting of all points in \(g_i[P_\mu] \) that project horizontally into \(\text{Cl } K \), and let \(Y_i \) be the union of all components of \(g_i[H] \) that meet \(X_i \).

For each \(i (1 \leq i \leq \sigma) \), the set \(Y_i \) is open in \(M \). To see this assume that for some \(i \), a point \(u \) of \(Y_i \) is in \(\text{Cl } (M - Y_i) \). According to Property 3, \(u \) does not belong to \(g_i[P_\mu] \). By Property 5, there exists a sequence \(\{ J_n \} \) of arcs in \(g_i[H] \) that meet \(g_i[P_\mu] \) such that the limit superior \(J \) of \(\{ J_n \} \) is an arc in \(g_i[H] \) that contains \(u \) and for each \(n \), the set \(J_n \cap g_i[P_\mu] \) projects horizontally to a point of \(\text{Cl } L \). It follows that \(J \cap g_i[\text{Cl } P_\mu] \) is a nonempty set that projects horizontally to a point of \(\text{Cl } L \). Since \(J \) is in the \(u \)-component of \(Y_n \) this is a contradiction of Property 5. Hence \(Y_i \) is an open subset of \(M \).

For each \(i (1 \leq i \leq \sigma) \) and \(j (1 \leq j \leq \lambda) \), let \(Q_{ij} = Y_i \cap g_i[P_j] \). It follows from an argument similar to the one given in the preceding paragraph that for each \(i \), the set \(\text{Cl } (Q_{i1} \cup Q_{i\lambda}) \) contains \(\text{Bd } \cup \{ Q_{ij} : 1 \leq j \leq \lambda \} \). Hence, for each \(i \), the sequence \(Q_{i1}, Q_{i2}, \ldots, Q_{i\lambda} \) is a free chain in \(M \).

Property 6. For each \(i (1 \leq i \leq \sigma) \), the set \(Q_{i1} \cup Q_{i\lambda} \) projects horizontally into \(\text{Cl } K \).

Obviously, \(Q_{i1} \) projects horizontally into \(\text{Cl } K \). Therefore, to establish Property 6, we assume there is a point \(t \) of \(Q_{i\lambda} \) that projects horizontally into \(\text{Cl } L \). By Property 3, there exists a positive number \(\eta \) less than \(\epsilon \) such that \(Q = \{ v \in M : \rho(v, t) < \eta \} \) projects horizontally in \(\text{Cl } L \).
Let T denote the t-component of Y_h and let w be a point of $T \cap Q_{i1}$ (Property 4). Since g_i is an $\epsilon/50$-homeomorphism, T crosses $D_1 \cap V(1)$ exactly γ times (Property 1). Since w belongs to Q_{i1}, it projects horizontally into $\Cl K$.

By Lemma 3, there exists an η-homeomorphism g of M onto M such that $g(w)$ belongs to Q_{i1} and projects horizontally into K. Since the $g(w)$-component of Y_i is an arc segment in S that crosses $D_1 \cap V(1)$ exactly γ times and is mapped approximately onto T by g^{-1}, the point $g(t)$ of Q projects horizontally into K. This contradiction of the definition of Q completes our argument for Property 6.

Let π be an integer ($5 < \pi < \mu$) such that P_π contains the point $(3 + \epsilon/10, 0)$. Let ω be an integer ($\mu < \omega < \lambda - 4$) such that P_ω contains the point of $V(3 - \epsilon/10)$ that projects horizontally to s_{y+1}.

Property 7. For each n ($1 \leq n \leq \sigma$), the set $Q_{n1} \cup Q_{n\lambda}$ does not intersect $\bigcup \{Q_{i1} : 1 \leq i \leq \sigma \text{ and } \pi \leq j \leq \omega \}$.

To see this assume there exist integers i, j, and n such that $\pi \leq j \leq \omega$ and a point p belongs to $Q_{i1} \cap (Q_{n1} \cup Q_{n\lambda})$. According to Property 6, $\{p\} \cup Q_{i1} \cup Q_{i\lambda}$ projects horizontally into $\Cl K$. By Property 3, there exists a positive number χ less than ϵ such that $\{v \in M : \rho(v, p) < \chi\}$ projects horizontally into $\Cl K$.

Let P be the p-component of Y_i. Let Y be an arc in P that goes from a point q of Q_{i1} to p. Since g_i and g_n are $\epsilon/50$-homeomorphisms and $\pi \leq j \leq \omega$, the set $Q_{i1} \cup Q_{i\lambda}$ and the p-component of $P \cap D_1$ are disjoint. Hence Y crosses $D_1 \cap V(1)$ exactly ι times where ι is a positive integer less than γ.

By Lemma 3, there exists a χ-homeomorphism k of M onto M such that $k(q)$ belongs to Q_{i1} and projects horizontally into K. The arc $k[Y]$ crosses $D_1 \cap V(1)$ exactly ι times. Since $k[Y]$ is in S and $\rho(p, k(p)) < \chi$, the point $k(p)$ projects horizontally into K. It follows from the definition of K that ι is a multiple of γ, and this is a contradiction. Hence Property 7 holds.

For each i ($1 \leq i \leq \sigma$) and j ($1 \leq j \leq \lambda$), let $P_{ij} = Q_{ij} - \Cl \cup \{Y_n : 1 \leq n < i\}$. By Property 7, for each i, the subchain of $P_{i1}, P_{i2}, \cdots, P_{i\lambda}$ that has $P_{i\pi}$ and $P_{i\omega}$ as end links is free in M.

For each j ($1 \leq j \leq \lambda$), let $U_j = \bigcup \{P_{ij} : 1 \leq i \leq \sigma\}$. The subchain \mathcal{C} of $U_1, U_2, \cdots, U_\lambda$ that has U_π and U_ω as end links is a free $\epsilon/16$-chain in M.

Let D be the union of all components of $C_2 \cap \{(x, y) : 3 - \epsilon/5 < x < 3 + \epsilon/5\}$ that meet $\Cl K$. According to Property 3, D is open in M. The diameter of D is less than $\epsilon/2$. Each point of $U_\pi \cup U_\omega$ is within $\epsilon/5$ of $V(3)$. By Property 6, $U_\pi \cup U_\omega$ projects horizontally into $\Cl K$. Hence $U_\pi \cup U_\omega$ is in D.

Let τ be the largest integer less than μ such that U_τ intersects
Let ψ be the smallest integer greater than μ such that U_ϕ intersects D. For each j ($1 \leq j < \psi - \tau$), let $Z_j = U_{\tau+j}$. Note that $Z_1, Z_2, \cdots, Z_{\psi-\tau-1}$ is a free ϵ-chain in M.

Define $Z_{\psi-\tau}$ to be the union of D and all elements of $D = \{U_j : \pi \leq j \leq \tau \text{ or } \psi \leq j \leq \omega\}$. Since $C\overline{K}$ projects horizontally into U_μ and C is a free chain in M, each element of D intersects D. Thus $Z_{\psi-\tau}$ is an open set in M of diameter less than ϵ.

Note that $Z_{\psi-\tau}$ meets both Z_1 and $Z_{\psi-\tau-1}$.

Since C is free and $U_\sigma \cup U_\omega$ is in D, the boundary of $\cup \{Z_j : 1 \leq j < \psi - \tau\}$ is in $Z_{\psi-\tau}$. Since $C\overline{K}$ projects horizontally into U_μ, the set Z_1 contains every boundary point of $Z_{\psi-\tau}$ that is to the right of $V(3)$ in R^2.

Furthermore, each point of $\text{Bd} Z_{\psi-\tau}$ that is to the left of $V(3)$ is in $Z_{\psi-\tau-1}$. To see this let s be such a point. Let X be the arc in M that intersects $V(1)$ and is irreducible between s and $C\overline{U}_\mu$ (Lemma 1). By Property 1, X does not meet $U_\sigma \cup U_\omega$. Since U_μ is an interior link in the free chain C, the arc X is covered by C and s belongs to $Z_{\psi-\tau-1}$.

It follows that $\text{Bd} Z_{\psi-\tau}$ is in $Z_1 \cup Z_{\psi-\tau-1}$. Therefore $Z_1, Z_2, \cdots, Z_{\psi-\tau}$ is an ϵ-circular chain that covers M. Hence M is circle-like.

Since every homogeneous circle-like continuum that contains an arc is a solenoid [4, Theorem 9, p. 228], Theorem 1 implies the following:

Theorem 2. A continuum M is a solenoid if and only if M is homogeneous and every proper subcontinuum of M is an arc.

References

Received April 2, 1976 and in revised form February 15, 1977.

CALIFORNIA STATE UNIVERSITY
SACRAMENTO, CA 95819
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann K. Boyle, M. G. Deshpande and Edmund H. Feller, On nonsingularly k-primitive rings</td>
<td>303</td>
</tr>
<tr>
<td>Rolando Basim Chuaqui, Measures invariant under a group of transformations</td>
<td>313</td>
</tr>
<tr>
<td>Wendell Dan Curtis and Forrest Miller, Gauge groups and classification of bundles with simple structural group</td>
<td>331</td>
</tr>
<tr>
<td>Garret J. Etgen and Willie Taylor, The essential uniqueness of bounded nonoscillatory solutions of certain even order differential equations</td>
<td>339</td>
</tr>
<tr>
<td>Paul Ezust, On a representation theory for ideal systems</td>
<td>347</td>
</tr>
<tr>
<td>Richard Carl Gilbert, The deficiency index of a third order operator</td>
<td>369</td>
</tr>
<tr>
<td>Basil Gordon and S. P. Mohanty, On a theorem of Delaunay and some related results</td>
<td>399</td>
</tr>
<tr>
<td>Douglas Lloyd Grant, Topological groups which satisfy an open mapping theorem</td>
<td>411</td>
</tr>
<tr>
<td>Charles Lemuel Hagopian, A characterization of solenoids</td>
<td>425</td>
</tr>
<tr>
<td>Kyong Taik Hahn, On completeness of the Bergman metric and its subordinate metrics. II</td>
<td>437</td>
</tr>
<tr>
<td>G. Hochschild and David Wheeler Wigner, Abstractly split group extensions</td>
<td>447</td>
</tr>
<tr>
<td>Gary S. Itzkowitz, Inner invariant subspaces</td>
<td>455</td>
</tr>
<tr>
<td>Jiang Luh and Mohan S. Putcha, A commutativity theorem for non-associative algebras over a principal ideal domain</td>
<td>485</td>
</tr>
<tr>
<td>Akio Osada, On the distribution of a-points of a strongly annular function</td>
<td>491</td>
</tr>
<tr>
<td>Jeffrey Lynn Spielman, A characterization of the Gaussian distribution in a Hilbert space</td>
<td>497</td>
</tr>
<tr>
<td>Robert Moffatt Stephenson Jr., Symmetrizable-closed spaces</td>
<td>507</td>
</tr>
<tr>
<td>Peter George Trotter and Takayuki Tamura, Completely semisimple inverse Δ-semigroups admitting principal series</td>
<td>515</td>
</tr>
<tr>
<td>Charles Irvin Vinsonhaler and William Jennings Wickless, Torsion free abelian groups quasi-projective over their endomorphism rings</td>
<td>527</td>
</tr>
<tr>
<td>Frank Arvey Wattenberg, Topologies on the set of closed subsets</td>
<td>537</td>
</tr>
<tr>
<td>Richard A. Zalik, Integral representation of Tchebycheff systems</td>
<td>553</td>
</tr>
</tbody>
</table>