A COMMUTATIVITY THEOREM FOR NON-ASSOCIATIVE ALGEBRAS OVER A PRINCIPAL IDEAL DOMAIN

Jiang Luh and Mohan S. Putcha
A COMMUTATIVITY THEOREM FOR
NON-ASSOCIATIVE ALGEBRAS OVER A
PRINCIPAL IDEAL DOMAIN

JIANG LUH AND MOHAN S. PUTCHA

Let A be an algebra (not necessarily associative) over a principal ideal domain R such that for all $a, b \in A$, there exist $\alpha, \beta \in R$ such that $(\alpha, \beta) = 1$ and $\alpha ab = \beta ba$. It is shown that A is commutative.

Throughout this paper N will denote the set of natural numbers and Z^+ the set of positive integers. A will denote an algebra with identity 1 over a Principal Ideal Domain R. If $a, b \in A$ then $[a, b] = ab - ba$. If $\alpha, \beta \in R$, then (α, β) denotes the greatest common divisor of α and β. If $a \in A$, then the order of a, $o(a)$ is the generator of the ideal $I = \{a \mid a \in R, \alpha a = 0\}$ of R.$ o(a)$ is unique up to associates. As a generalization of concepts in [1], [2], [3], [4], [5] we consider the following:

(*) For all $\alpha, b \in A$, there exist $\alpha, \beta \in R$ such that $(\alpha, \beta) = 1$ and $\alpha ab = \beta ba$.

We will show that if A satisfies (*), then A is commutative. This generalizes [3; Theorem 3.5].

Lemma 1. Let p be a prime in R, $m \in Z^+$ such that $p^m A = (0)$. If A satisfies (*), then A is commutative.

Proof. Let C denote the center of A. Let $x \in A$, $o(x) = p^k$, $k \in N$. We prove by induction on k that $x \in C$. If $k = 0$, then $x = 0$. So let $k > 0$. Let $y \in A$. First we show

(1) $[x, y] \neq 0$ implies $[yx, y] = 0$.

If $yx = 0$, this is trivial. So let $yx \neq 0$. Now for some $\alpha_1, \alpha_2 \in R$,

$\alpha_1 xy = \alpha_2 yx, (\alpha_1, \alpha_2) = 1$

(2) $\beta_1(x + 1)y = \beta_2 y(x + 1), (\beta_1, \beta_2) = 1$.

So $\alpha_1 \beta_1(x + 1)y = \alpha_1 \beta_2 y(x + 1)$. Thus substituting the above, we get

(3) $(\alpha_2 \beta_1 - \alpha_1 \beta_2)y x = (\alpha_1 \beta_2 - \alpha_1 \beta_1)y$.

485
We claim that \((\alpha_2\beta_1 - \alpha_1\beta_2)yx \neq 0\). For otherwise \((\alpha_1\beta_2 - \alpha_1\beta_1)y = 0\). Since \(y \neq 0\), we get \(p \mid \alpha_1\beta_2 - \alpha_1\beta_1\).

Also \((\alpha_1\beta_2 - \alpha_1\beta_1)yx = 0\). Since \((\alpha_2\beta_1 - \alpha_1\beta_2)yx = 0\), we get \((\alpha_2 - \alpha_1)\beta_1yx = 0\). Since \(yx \neq 0\), \(p \mid \beta_1(\alpha_2 - \alpha_1)\). So

\[
p \mid \alpha_1(\beta_2 - \beta_1), p \mid \beta_1(\alpha_2 - \alpha_1).
\]

Case 1. \(p \nmid \alpha_1\). Then since \(\alpha_1(\beta_2 - \beta_1)y = 0\), we get \((\beta_2 - \beta_1)y = 0\). So by (2), \(\beta_1[x, y] = 0 = \beta_2[x, y]\). Since \([x, y] \neq 0\), we get \(p \mid \beta_1, p \mid \beta_2\), contradicting (2).

Case 2. \(p \mid \alpha_1\). Then \(p \nmid \alpha_2\) and so \(p \nmid \alpha_2 - \alpha_1\). Thus \(p \mid \beta_1\). So \(p \nmid \beta_2, p \nmid \beta_2 - \beta_1\). Since \(\alpha_1(\beta_2 - \beta_1)y = 0\) we get \(\alpha_1y = 0\). So \(\alpha_1xy = 0\). By (2), \(\alpha_2yx = 0\). Since \(yx \neq 0\), we get \(p \mid \alpha_2\), a contradiction.

Hence by (3)

\[
(\alpha_2\beta_1 - \alpha_1\beta_2)yx \neq 0.
\]

In particular

\[
\alpha_2\beta_1 - \alpha_1\beta_2 \neq 0.
\]

So

\[
\alpha_2\beta_1 - \alpha_1\beta_2 = p\delta, \ t \in N, \delta \in R, (\delta, p) = 1.
\]

If \(t \geq k\), then \((\alpha_2\beta_1 - \alpha_1\beta_2)yx = 0\), a contradiction. So \(t < k\). Hence

\[
p^{k-t}(\alpha_2\beta_1 - \alpha_1\beta_2)y = p^{k-t}p\deltayx = 0.
\]

Let \(o(y) = p^i, i \in N\). If \(i < k\), then \(y \in C\), a contradiction. So \(i \geq k\). Hence

\[
p^k \mid p^i \mid p^{k-t}(\alpha_2\beta_1 - \alpha_1\beta_2).
\]

So \(p^i \mid \alpha_2\beta_2 - \alpha_1\beta_1\) and \(\alpha_2\beta_2 - \alpha_1\beta_1 = p^i\gamma, \gamma \in R\). Then \(p^i\gammayx = p^i\gammay\). Hence \(p^i(\deltayx - \gammayx) = 0\). By induction hypothesis, \(\deltayx - \gammayx \in C\). So \([\deltayx - \gammayx, y] = 0\). Thus \(\delta[yx, y] = 0\). Since \((\delta, p) = 1, [yx, y] = 0\). This establishes (1).

Now let \(u \in A\) and suppose \([x, u] \neq 0\). Then also \([x, u + 1] \neq 0\). By (1), \([ux, u] = 0 = [(u + 1)x, u]\). So \([x, u] = 0\), a contradiction. So \(x \in C\) and the lemma is proved.

Lemma 2. Suppose \(A\) satisfies (*). Let \(a, b \in A, o(b) = 0\). If \(ba = 0\), then \(ab = 0\).
Proof. Suppose \(ab \neq 0 \). Then there exist \(\beta_1, \beta_2, \gamma_1, \gamma_2 \in R \) such that

\[
\begin{align*}
\beta_1(a + 1)b &= \beta_2b(a + 1), \quad (\beta_1, \beta_2) = 1, \\
\gamma_1a(b + 1) &= \gamma_2b(a + 1), \quad (\gamma_1, \gamma_2) = 1.
\end{align*}
\]

So

\[
\begin{align*}
(\gamma_2 - \gamma_1)\beta_1ab &= (\gamma_1\beta_1(ab)b \\
&= \gamma_1\beta_1(b(ab) \\
&= \beta_1(\gamma_2 - \gamma_1)ba \\
&= 0.
\end{align*}
\]

So \(o(ab) \neq 0 \), a contradiction. This proves the lemma.

Lemma 3. Suppose \(A \) satisfies (*)\#. Let \(b \in A, o(b) = 0. \) Then \(b \in C, \) the center of \(A. \)

Proof. Let \(a \in A. \) There exist \(\alpha_1, \alpha_2, \beta_1, \beta_2 \in R \) such that

\[
\begin{align*}
\alpha_1ab &= \alpha_2ba, \quad (\alpha_1, \alpha_2) = 1, \\
\beta_1(a + 1)b &= \beta_2b(a + 1), \quad (\beta_1, \beta_2) = 1.
\end{align*}
\]

Multiplying the second equation by \(\alpha_1 \) and substituting the first we obtain

\[
b[(\alpha_2\beta_1 - \alpha_1\beta_2)a - (\alpha_1\beta_2 - \alpha_1\beta_1) \cdot 1] = 0.
\]

By Lemma 2,

\[
[(\alpha_2\beta_1 - \alpha_1\beta_2)a - (\alpha_1\beta_2 - \alpha_1\beta_1) \cdot 1]b = 0.
\]

Let \(\mu = \alpha_2\beta_1 - \alpha_1\beta_2. \) Then \(\alpha_1(\beta_2 - \beta_1)b = \mu ab = \mu ba. \) By (6) \(\alpha_1\mu ab = \alpha_2\mu ba = \alpha_2\mu ab. \) So
\[(\alpha_2 - \alpha_1)\alpha_1(\beta_2 - \beta_1)b = 0.\]

Since \(o(b) = 0\), we obtain by (6) that either \(\alpha_1 = \alpha_2\) is a unit, \(\beta_1 = \beta_2\) is a unit or else \(\alpha_1 = 0\). The first two cases imply by (6) that \(ab = ba\). So let \(\alpha_1 = 0\). Then \(\alpha_2ba = 0\) and \(\alpha_2\) is a unit by (6). So \(ba = 0\). By Lemma 2, \(ab = 0\). Thus in any case \(ab = ba\) and we are done.

Theorem 4. Suppose \(A\) satisfies (*) Then \(A\) is commutative.

Proof. Suppose \(A\) is not commutative. We will obtain a contradiction. There exists \(x \in A\) such that \(x \notin C\), the center of \(A\). So \(x + 1 \notin C\). By Lemma 3 \(o(x) \neq 0\) and \(o(x + 1) \neq 0\). Hence \(o(1) \neq 0\). Let \(o(1) = d \neq 0\). Then \(d\) is not a unit and hence \(d = p_1^{\alpha_1} \cdots p_l^{\alpha_l}\) for some primes \(p_1, \ldots, p_l \in A\) and some positive integers \(\alpha_1, \ldots, \alpha_l\). Let \(A_i = \{a \mid a \in A, p_i^{\alpha_i}a = 0\}\). Then each \(A_i\) is a nonzero subalgebra of \(A\) and \(A = A_1 \oplus \cdots \oplus A_r\). Being subalgebras of \(A\), the \(A_i\)'s also satisfy (*). Being homomorphic images of \(A\), all the \(A_i\)'s have identity elements. By Lemma 1 each \(A_i\) and hence \(A\) is commutative, a contradiction. This proves the theorem.

References

Received October 5, 1976. The second author was partially supported by NSF Grant MCS 76–05784.

North Carolina State University

Raleigh, NC 27607
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate, may be sent to any one of the four editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Jerusalem Academic Press, POB 2390, Jerusalem, Israel.

Copyright © 1977 Pacific Journal of Mathematics
All Rights Reserved
William Allen Adkins, Aldo Andreotti and John Vincent Leahy, *An analogue of Oka’s theorem for weakly normal complex spaces* 297
Ann K. Boyle, M. G. Deshpande and Edmund H. Feller, *On nonsingularly k-primitive rings* ... 303
Rolando Basim Chuaqui, *Measures invariant under a group of transformations* ... 313
Wendell Dan Curtis and Forrest Miller, *Gauge groups and classification of bundles with simple structural group* 331
Garret J. Etgen and Willie Taylor, *The essential uniqueness of bounded nonoscillatory solutions of certain even order differential equations* .. 339
Paul Ezust, *On a representation theory for ideal systems* 347
Richard Carl Gilbert, *The deficiency index of a third order operator* 369
John Norman Ginsburg, *S-spaces in countably compact spaces using Ostaszewski’s method* ... 393
Basil Gordon and S. P. Mohanty, *On a theorem of Delaunay and some related results* .. 399
Douglas Lloyd Grant, *Topological groups which satisfy an open mapping theorem* .. 411
Charles Lemuel Hagopian, *A characterization of solenoids* 425
Kyong Taik Hahn, *On completeness of the Bergman metric and its subordinate metrics. II* ... 437
G. Hochschild and David Wheeler Wigner, *Abstractly split group extensions* ... 447
Gary S. Itzkowitz, *Inner invariant subspaces* 455
Jiang Luh and Mohan S. Putcha, *A commutativity theorem for non-associative algebras over a principal ideal domain* 485
Akio Osada, *On the distribution of α-points of a strongly annular function* .. 491
Jeffrey Lynn Spielman, *A characterization of the Gaussian distribution in a Hilbert space* .. 497
Robert Moffatt Stephenson Jr., *Symmetrizable-closed spaces* 507
Peter George Trotter and Takayuki Tamura, *Completely semisimple inverse \(\Delta\)-semigroups admitting principal series* 515
Charles Irvin Vinsonhaler and William Jennings Wickless, *Torsion free abelian groups quasi-projective over their endomorphism rings* 527
Frank Arvey Wattenberg, *Topologies on the set of closed subsets* 537
Richard A. Zalik, *Integral representation of Tchebycheff systems* 553