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This paper gives an example of a strongly annular function
which omits 0 near an arc / on the unit circle C and which
omits 1 near the complementary arc C-L This example
affirmatively answers the following question of Bonar: Does
there exist any annular function for which we can find two or
more complex numbers w such that the limiting set of its
w- points does not cover C?

1. Introduction. The purpose of this paper is to study the distribu-
tion of a -points of annular functions. We recall that a holomorphic
function in the open unit disk D : | z \ < 1 is said to be annular [1] if there
is a sequence {/„} of closed Jordan curves about the origin in D,
converging out to the unit circle C : | z | = l, such that the minimum
modulus of f(z) on /„ increases to infinity as n increases. When the Jn

can be taken as circles concentric with C, f(z) will be called strongly
annular. Given a finite complex number α, the minimum modulus
principle guarantees that every annular function / has infinitely many
a -points in D and hence their limit points form a nonempty closed
subset, say Z'(f,a), of C. On the other hand, by virtue of the
Koebe-Gross theorem concerning meromorphic functions omitting three
points, it follows from the annularity of / that open sets C - Z'(f, a) and
C - Z'(f, b) on the circle can not overlap if a φ b and consequently that
the set of all values a for which Z'(/, a) ^ C must be at most countable.
Therefore we may well say such a to be singular for /.

For this reason we will be concerned with the set 5(/) =
{a : Z'(/, a) ^ C} in this paper. We denote by \S(f)\ the cardinality of
5(/) and then, from the simple fact observed above, we have that
0 g 15(/)| ^ Ho, which in turn conversely tempt us to raise the following
question: Given a cardinality JV(0^JV^N0), can we find any annular
function / for which |5(/) | = ΛΓ? ([1], [2]).

We know many examples of strongly annular functions such that
|5(/)| = 0 [4]. In particular if an annular function / belongs to the
MacLane class, i.e., the family of all nonconstant holomorphic functions
in D which have asymptotic values at each point of everywhere dense
subsets of C, the set S(f) becomes necessarily empty. As for N = 1,
Barth and Schneider [3] constructed an example of an annular function /
for which |S(/)| = 1. The example involved in their construction,
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however, did not appear to be strongly annular. An example of a
strongly annular / with |5(/) | = 1 was constructed independently by
Barth, Bonar and Carroll [2] and the author [5]. The aim of this paper is
to give an example of a strongly annular function / for which | S(f) | = 2.

2. For this purpose we consider a class of functions holomorphic in
D. Let /0 and Iλ be a pair of complementary open arcs on the unit circle
C and choose a Jordan arc /, connecting the end points of Jy, which is
contained, except for its end points, in the open sector

Further denote by Gy the Jordan domain surrounded by Jy and J} and
consider

S(G0, Gx) = {g E H(D):g is bounded away from 0 (or 1) in Go (or G,)}

where H(D) denotes the set of all functions holomorphic in D. In terms
of this notation our purpose is in amount to find a strongly annular
function which is locally a uniform limit of a sequence in 5(G0, Gι). To
construct such a function, we make essential use of the approximation
theorem of Runge, which asserts that if K is a compact set with
connected complement relative to the plane and a function g is
holomorphic in an open set containing K, for any p > 0, there is a
polynomial P such that

\P(z)-g(z)\<p (zEK).

We call such P an approximating polynomial with respect to the triple
(K,g,ρ). In our arguments to follow we may restrict ourselves to the
special pair of Go and Gλ such that

G o = {z = x + iy : | z | < 1, 2x + | y | > 1} a n d Gλ = {z:- z <Ξ Go}

with no loss of generality, which serves to simplify the geometric
formulation. Then the Runge theorem, in cooperation with our previ-
ous lemma, yields the following:

LEMMA. Let there be given positive numbers e and fc, numbers a and
b with 0 < a < b < 1, and a function f in S(G0, Gi) (simply S), which is
bounded in Gλ. Then there exists a function g in 5, which is also bounded
in Gu such that

(1) | g ( z ) | > f c (\z\ = b)
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and

(2)

Proof. We first divide the circle \z\ = b into 4 closed arcs as
follows:

Λo =[-bieu, bieu],

Bo = [bie~", bie% Bo}.

Here t( > 0) should be chosen so small that we may apply our lemma [5]
to an appropriately small open annular sector Rθ9 which is contained in

, \z \ >a,2\x | + \y

and contains the arc Bo. Set Rι = {z : z G Ro}.

Next, to make use of the Runge theorem, we prepare two triples, which
are defined, except for q and ph by the following:
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(3)

K"; = G, U A , U A w U D α , Da={z:\z\^a}

g,(z) = 0 ( z e G , UA, UDα)

g,(z)=c,(>0) (zEA1.l)

As for c, (or p,) we shall later choose positive numbers large (or small)
enough to satisfy our requirements. Obviously these definitions allow us
to apply the Runge theorem to (Kh gp p,){j = 0,1) and hence we can find
an approximating polynomial Pr On the other hand, if necessary,
adding a small vector we may assume that /(z)^0,1 on the circle
I z I = b. Combining these functions, define a function F holomorphic in
D by

F(z) = {(/(z) - 1) exp (P0(z)) + 1} exp (P,(z)).

Then carefully observing (3) and suitably choosing values of cy and py, we
can conclude that the function F is a member of S, bounded in Gλ and has
the following properties:

(4) \F(z)\>2k (zE{z:\z\ = b}-B0-Bί)

(5) | F ( z ) - / ( z ) | < 6 / 2 (zGDa).

In addition it may be supposed that F does not vanish on BQUB^

Thus the last step in our construction of g is to make | F(z) | large on
the remaining arcs Bo and Bλ without losing the properties described
above of F. Given c 2 >0 and p 2 >0, applying our lemma [5] to the
annular sectors Ro and R{ previously chosen, and successively using the
standard "pole sweeping" method for the resulting rational functions, we
can find a holomorphic function H} in D such that

(6) \Hj(z)\>c2 (zeB,),

(7) R e H ; ( z ) > - p 2 (zERjΠ{z:\z\ = b}-B})

and

(8) \H,(z)\<2p2 (zED-Tj)

where Γo (or Γj) denotes an appropriate "pole sweeping route" ending at
z = i (or - i) which is contained in

Eo = [z = x + iy : y > 0, | z | > 6, 21 x | + | y | < 1}
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(or Eι — {z : z E Eo}) (see Figure 1). Using these functions and F defined
above, set

Since F does not vanish on Bo U Bu if we appropriately choose a large (or
small) positive number as a value of c2 (or p2)> by virtue of (4) and (5)
together with (6), (7) and (8), we can show that the function g belongs to
the class 5, is bounded in Gx and further satisfies (1) and (2). This proves
Lemma.

3. The following result is immediate from Lemma in 2.

THEOREM. Let {rn} and {kn} be two sequences of positive numbers
with rn I 1 and 1 < kn f + <». Then there exists a function f which is
locally a uniform limit of a sequence in S and which furthermore satisfies
that \f(z)\^kn on the circle \z\ = rn.

Proof It is sufficient to construct a sequence {/„ (z)} in 5 such that

(9) \fn(z)\>k] if l S / g n ( z G C , = { z : | z | = r,}),

(10) I /„ (z) - fn-ι{z) I < €„-! (I z I ̂  rn_1? n g 2)

and

(11) /„ is bounded in Gλ

where {en} is a preassigned sequence of positive numbers with Σen < + α>.
In order to construct {/„} inductively, let fι(z) = 2k1 and suppose that
/i, * >/π-i have already been defined. In Lemma in 2, on setting
/ = /„-!, a = rn-u b = rn, fc = ίcn and e = min{en_1? mu , m ^ J where
my = min{|/π_i(z)| - fc7 : z E Cy}, we can find a function /„ in 5 satisfying
(9), (10) and (11). Thus we obtain a sequence {/„} in S, which, by virtue
of (10), converges uniformly on any compact subset of D. Obviously its
limit / is a desired function in Theorem. Hence our proof is complete.

The author is grateful for the valuable comments and suggestions of
the referee.
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