A CHARACTERIZATION OF THE GAUSSIAN DISTRIBUTION IN A HILBERT SPACE

JEFFREY LYNN SPIELMAN
A CHARACTERIZATION OF THE GAUSSIAN DISTRIBUTION IN A HILBERT SPACE

JEFFREY L. SPIELMAN

In this paper we consider the case in which random variables $X_i$ take values in a real, separable Hilbert space $\mathcal{H}$. We look at a linear form $\sum A_i X_i$ where each $A_i$ is a bounded linear operator in $\mathcal{H}$. We then assume that this linear form is identically distributed with a monomial and form conditions under which it is possible to deduce that the common distribution of the random variables is the Gaussian distribution.

The study of identically distributed linear forms of independent and identically distributed random variables has been undertaken by several authors. J. Marcinkiewicz studied linear forms in which all moments of the random variables are assumed to exist. He then proved that the common distribution of the random variables was the Normal distribution. R. G. Laha and E. Lukacs have considered the case where one of the linear forms is a monomial. They have obtained characterizations of the Normal distribution for both the case when the variance is assumed finite and when no assumption is made concerning the variance.

1. Statement of the main result. Suppose now that $X_1, X_2, \cdots$ is a sequence (possibly finite) of independent, identically distributed, nondegenerate $\mathcal{H}$-valued random variables, where $X_1$ has a finite variance (i.e. $\text{Var} X_1 < +\infty$). Let $A_1, A_2, \cdots$ be a sequence of 1-1 bounded linear operators in $\mathcal{H}$, with the following two properties:

\begin{align}
&\sum_j \|A_j\|^2 < +\infty \quad \text{and} \quad \sum_j A_j^* A_j \succeq I \\
&\sup_j \|A_j\| < 1.
\end{align}

We note that in the above $A_j^*$ represents the adjoint of $A_j$ and that the inequality $\sum_j A_j^* A_j \succeq I$ is true in the sense of positive-definiteness. (For example, see page 313 of [7].)

Our goal is to prove the following theorem.
**Theorem 1.** Suppose that $\Sigma_y A_y X_y$ converges with probability one. If $\Sigma_j A_j X_j$ has the same distribution as $X_1$, then $X_1$ has a Gaussian distribution.

In §2 we will prove an important preliminary result (Theorem 2). Then in §3 we will present the proof of Theorem 1.

2. A preliminary result. In this section we will prove the following result.

**Theorem 2.** Let $X_1, X_2, \cdots$ be a sequence (possibly finite) of independent, identically distributed, nondegenerate, $\mathcal{H}$-valued random variables. Suppose that the sum $\Sigma_y A_y X_y$ exists with probability one, where $A_1, A_2, \cdots$ are bounded linear operators in $\mathcal{H}$, with $\sup_j \|A_j\| < 1$.

If $\Sigma_y A_y X_y$ has the same distribution as $X_1$, then $X_1$ has an infinitely divisible distribution.

Note. The hypotheses of Theorem 2 are somewhat weaker than the hypotheses of Theorem 1.

Before beginning the proof of Theorem 2, let us fix some notation.

Let $\varphi(y)$ be the common characteristic functional of $X_1, X_2, \cdots$. Then $\varphi(y) = \mathcal{E} e^{i(x, y)}$ for all $y \in \mathcal{H}$, where $\mathcal{E}$ denotes mathematical expectation.

The characteristic functional of $A_j X_j$ is then given by:

$$
\mathcal{E} e^{i(A_j x, y)} = \mathcal{E} e^{i(x, A^*_j y)} = \varphi(A^*_j y)
$$

where $A^*_j$ denotes the adjoint operator of $A_j$.

Now, suppose that $\Sigma_j A_j X_j$ has the same distribution as $X_1$. Then equation (3) gives us:

$$
\varphi(y) = \prod_j \varphi(A^*_j y), \quad \text{for all } y \in \mathcal{H},
$$

where the product converges uniformly on bounded spheres. (See Theorem 4.4, pg. 171 of [5].)

Since $\Sigma_j A_j X_j$ converges, then $\Sigma^*_n A_j X_j$ converges, with probability one, to the origin of $\mathcal{H}$ as $n \to \infty$. (Of course, if $X_1, X_2, \cdots$ is a finite sequence, the preceding statement is unnecessary.)

Thus, it is possible to choose $N_0$ for any $\epsilon > 0$, such that $P(\|\Sigma^*_n A_j X_j\| > \epsilon) < \epsilon$, whenever $N \geq N_0$. Let $\varphi_N(y)$ denote the characteristic functional of $\Sigma^*_n A_j X_j$. Then using equation (4), we have:

$$
\varphi(y) = \varphi(A^*_1 y) \cdots \varphi(A^*_n y) \varphi_N(y).
$$
Proof of Theorem 2. We assume that $\Sigma_j A_j X_j$ has the same distribution as $X_1$. Then equation (5) holds. If we replace $y$ by $A_j^* y$ in equation (5), we obtain:

$$\varphi(A_j^* y) = \varphi(A_1^* A_j^* y) \cdots \varphi(A_N^* A_j^* y) \varphi_N(A_j^* y)$$

for each $j = 1, 2, \cdots, N$.

Combining equations (5) and (6) we have:

$$\varphi(y) = \prod_{j=1}^N \varphi((A_j^*)^2 y) \cdot \prod_{j \neq k} \varphi(A_j^* A_k^* y) \prod_{j=1}^N \varphi_N(A_j^* y) \varphi_N(y).$$

If we repeat the above process $n$ times, we get the following result:

$$\varphi(y) = \prod \varphi(A_j^* \cdots A_k^* y) \prod_{k=1}^{n-1} \varphi_N(A_j^* \cdots A_{j-k}^*) \varphi_N(y).$$

The product on the right hand side of equation (7) consists of $N^n + N^{n-1} + \cdots + N + 1$ factors, where each of the subscripts $j_1, \cdots, j_n$ can take any of the values $1, \cdots, N$ with repetitions allowed.

Thus, equation (7) says that $X_1$ is distributed as the sum of $k_n = \sum_{k=0}^n N^k$ independent, $\mathcal{K}$-valued random variables, $Y_{nk}$ ($k = 1, 2, \cdots, k_n$), for any positive integer $n$.

We will now show that $Y_{nk}$ is a uniformly infinitessimal collection of random variables. That is, we will show that for any $\varepsilon > 0$, $\sup_{1 \leq k \leq k_n} P\{|Y_{nk}| > \varepsilon\} \to 0$ as $n \to \infty$. Once this has been established, the infinite divisibility of $X_1$ will follow from Corollary 6.2, page 199 of [5].

Consider the factors on the right hand side of equation (7). Let $\varepsilon > 0$ be given. By definition $\varphi_N(y)$ is the characteristic functional of $\sum_{j=N+1}^n A_j X_j$ and $P\{|\sum_{j=N+1}^n A_j X_j| > \varepsilon\} < \varepsilon$, for all $N \geq N_0$.

Consider now a factor of the form $\varphi_N(A_1^* A_j^* \cdots A_{j-n}^* y)$. This is the characteristic functional of

$$A_{j-n} \cdots A_2 A_1 \sum_{j=N+1}^n A_j X_j.$$ 

Also,

$$P\left\{\left\|A_{j-n} \cdots A_2 A_1 \sum_{j=N+1}^n A_j X_j\right\| > \varepsilon\right\} \leq P\left\{\left\|A_{j-n}\right\| \cdots \left\|A_2\right\| \left\|A_1\right\| \left\|\sum_{j=N+1}^n A_j X_j\right\| > \varepsilon\right\}$$

$$\leq P\left\{\left\|\sum_{j=N+1}^n A_j X_j\right\| > \varepsilon\right\} < \varepsilon \quad \text{whenever} \quad N \geq N_0,$$

since $\sup_j \left\|A_j\right\| < 1$. 

Finally, we consider a factor of the form $\varphi(A_{*1}, \cdots A_{*j}, y)$, which is the characteristic functional of $A_{*n} \cdots A_{*j} X_1$. Set $\alpha = \sup_i \|A_i\|$. Then

$$P\{\|A_{*n} \cdots A_{*j} X_1\| > \epsilon\} \leq P\{\|A_{*n}\| \cdots \|A_{*j}\| \cdot \|X_1\| > \epsilon\} \leq P\left\{\|X_1\| > \frac{\epsilon}{\alpha^n}\right\}.$$ 

Now choose an integer $N'$ such that $P\{\|X_1\| > \epsilon/\alpha^n\} < \epsilon$, whenever $n \geq N'$. (This is possible because $0 < \alpha < 1$). Set $n_0 = \max\{N_0, N'\}$.

Hence, we have shown that $P\{\|Y_{nk}\| > \epsilon\} < \epsilon$, for all $k = 1, 2, \cdots, k_n$, whenever $n \geq n_0$. Therefore, the collection $Y_{nk}$ is uniformly infinitesimal and $X_1$ is infinitely divisible. This completes the proof of the theorem.

3. Proof of the main result. For convenience, we now will make the assumption that $X_1, X_2, \cdots$ are symmetric random variables. Since the common distribution of these random variables is infinitely divisible, the common characteristic functional, $\varphi(y)$, has a unique Levy–Khintchine representation given by:

$$\ln \varphi(y) = -\frac{1}{2} \langle Sy, y \rangle + \int (\cos \langle x, y \rangle - 1) dL(x)$$

where $S$ is an $S$-operator (a nonnegative, self-adjoint compact operator on $\mathcal{H}$, with a finite trace), and $L$ is a $\sigma$-finite measure with finite mass outside every neighborhood of the origin and with the property that

$$\int_{\|x\| \leq 1} \|x\|^2 dL(x) < +\infty.$$ 

(see [5], page 181.)

Furthermore, since $X_1, X_2, \cdots$ have finite variance, $\varphi(y)$ has a unique Kolmogorov representation, given by:

$$\ln \varphi(y) = -\frac{1}{2} \langle Sy, y \rangle + \int_{\mathcal{H}\setminus\{0\}} \frac{\cos \langle x, y \rangle - 1}{\|x\|^2} dK(x)$$

where $S$ is an $S$-operator and $K$ is a finite measure on $\mathcal{H}$. (See [6].)

By equations (4) and (8) we have:

$$-\frac{1}{2} \sum_i \langle SA_{*i}y, A_{*i}y \rangle + \sum_i \int (\cos \langle x, A_{*i}y \rangle - 1)dL(x)$$

$$= -\frac{1}{2} \langle Sy, y \rangle + \int (\cos \langle x, y \rangle - 1)dL(x).$$
Also,

\[-\frac{1}{2} \sum_j \langle SA_j^* y, A_j^* y \rangle + \sum_j \int (\cos \langle x, A_j^* y \rangle - 1) dL(x)\]

(10)

\[= -\frac{1}{2} \left( \sum_j A_j SA_j^* y, y \right) + \sum_j \int (\cos \langle A_j x, y \rangle - 1) dL(x)\]

\[= -\frac{1}{2} \left( \sum_j A_j SA_j^* y, y \right) + \sum_j \int (\cos \langle x, y \rangle - 1) dLA_j^{-1}(x).\]

It is not difficult to show that $\sum_j A_j SA_j^*$ is an $S$-operator. Also, it is clear that $LA_j^{-1}$ is the $\sigma$-finite measure which occurs in the Levy–Khintchine representation of $A_j X_j$, for each $j$.

We denote by $\mathcal{B}$, the class of Borel sets in $\mathcal{H}$. Then the measure $K_j$, defined by:

$$K_j(D) = \int_D \|x\|^2 dLA_j^{-1}(x), \quad \text{for all } D \in \mathcal{B}$$

is the finite measure which occurs in the Kolmogorov representation of $A_j X_j$, for each $j$.

Since $X_1, X_2, \cdots$ have finite variance,

(11) \[\int \|x\|^2 dL(x) < +\infty. \quad \text{(See [6].)}\]

By equation (10), $\ln \Pi \varphi(A_j^* y)$

(12) \[-\frac{1}{2} \left( \sum_j A_j SA_j^* y, y \right) + \sum_j \int \frac{(\cos \langle x, y \rangle - 1)}{\|x\|^2} dK_j(x).\]

We note that

\[\sum_j \int_{\|x\| \neq 0} \left| \frac{\cos \langle x, y \rangle - 1}{\|x\|^2} \right| dK_j(x) \leq \sum_j \int_{\|x\| \neq 0} \frac{\|x\|^2}{\|x\|^2} dK_j(x)\]

\[= \|y\|^2 \sum_j \int_{\|x\| \neq 0} dK_j(x) = \|y\|^2 \sum_j \int \|x\|^2 dLA_j^{-1}(x)\]

\[= \|y\|^2 \sum_j \int \|A_j x\|^2 dL(x) \leq \left( \sum_j \|A_j\|^2 \right) \|y\|^2 \int \|x\|^2 dL(x) < \infty\]

because of relations (1) and (11).

Thus we may interchange the integral and summation signs in equation (12) to obtain:
\[
\ln \prod_j \varphi(A_i^*y) = -\frac{1}{2} \left( \sum_j A_iSA_i^*y, y \right) + \int_{\|x\| \neq 0} \frac{\cos \langle x, y \rangle - 1}{\|x\|^2} d\left( \sum_j K_j(x) \right).
\]

Then, by the uniqueness of the Kolmogorov representation, we have:

\[
\sum_j A_iSA_i^* = S \quad \text{and} \quad \sum_j K_j = K.
\]

From the second of these relations, \( \sum_j K_j(\mathcal{H}) = K(\mathcal{H}) \), which leads to the following sequence of equations.

\[
\sum_j \int \|x\|^2 dL \mathcal{A}^{-1}_j(x) = \int \|x\|^2 dL(x)
\]

\[
\sum_j \int \|A_jx\|^2 dL(x) = \int \|x\|^2 dL(x)
\]

\[
\int \left[ \sum_j \|A_jx\|^2 - \|x\|^2 \right] dL(x) = 0
\]

\[
\int \left[ \left( \sum_j A_i^*A_jx, x \right) - \langle x, x \rangle \right] dL(x) = 0.
\]

In view of relation (4), it must then be true that

\[
(13) \quad L\left\{ x: \sum_j \|A_jx\|^2 - \|x\|^2 > 0 \right\} = 0.
\]

We note that for \( n \) a positive integer, \( \sum_{i=1}^{n} A_jX_j \) has characteristic functional \( \Pi_{j=1}^{n} \varphi(A_i^*y) \), and

\[
\ln \prod_{j=1}^{n} \varphi(A_i^*y) = -\frac{1}{2} \left( \sum_{j=1}^{n} A_iSA_i^*y, y \right) + \int (\cos \langle x, y \rangle - 1) d\left( \sum_{j=1}^{n} L\mathcal{A}^{-1}_j(x) \right).
\]

Thus \( \sum_{i=1}^{n} L\mathcal{A}^{-1}_j \) converges weakly, outside closed neighborhoods of \( 0 \in \mathcal{H} \), to \( L \), as \( n \to \infty \). (See [5], page 189).

It now becomes necessary to state and prove two technical lemmas.

**Lemma 1.** For any \( \epsilon > 0 \),

\[
\int_{\|x\| > \epsilon} \|x\|^2 dL(x) = \sum_j \int_{\|A_jx\| > \epsilon} \|A_jx\|^2 dL(x).
\]
Proof. Let $\epsilon_1$ and $\epsilon_2$ be positive constants with $\epsilon_1 < \epsilon_2$. Define a function $f(x)$ by:

$$f(x) = \begin{cases} \|x\|^2, & \epsilon_1 < \|x\| \leq \epsilon_2 \\ (\epsilon_2)^2, & \|x\| > \epsilon_2. \end{cases}$$

Then $f(x)$ is bounded and continuous. Thus by comment (14),

$$\int_{\|x\|>\epsilon_1} f(x) dL(x) = \lim_{n \to \infty} \sum_{j=1}^{n} \int_{\|x\|>\epsilon_1} f(x) dL A_j^{-1}(x)$$

which implies that

$$\sum_{j=1}^{n} \int_{\epsilon_1 < \|x\| \leq \epsilon_2} \|x\|^2 dL A_j^{-1}(x) + (\epsilon_2)^2 \sum_{j=1}^{n} L A_j^{-1}\{\|x\| > \epsilon_2\}$$

converges to

$$\int_{\epsilon_1 < \|x\| \leq \epsilon_2} \|x\|^2 dL(x) + (\epsilon_2)^2 L\{\|x\| > \epsilon_2\}$$

as $n \to \infty$.

But, again because of comment (14), $\sum_{j=1}^{n} L A_j^{-1}\{\|x\| > \epsilon_2\}$ converges to $L\{\|x\| > \epsilon_2\}$ as $n \to \infty$.

Therefore, $\sum_{j=1}^{n} \int_{\epsilon_1 < \|x\| \leq \epsilon_2} \|x\|^2 dL A_j^{-1}(x)$ converges to

$$\int_{\epsilon_1 < \|x\| \leq \epsilon_2} \|x\|^2 dL(x),$$

whenever we choose $0 < \epsilon_1 < \epsilon_2$.

Let $\epsilon > 0$ be given. Let $\epsilon_n$ be a strictly increasing sequence of positive numbers, $\epsilon_n \uparrow + \infty$, with $\epsilon_1 > \epsilon$. For convenience we set $\epsilon = \epsilon_0$.

Then

$$\int_{\|x\|>\epsilon_0} \|x\|^2 dL(x) = \sum_{k=0}^{\infty} \int_{\epsilon_k < \|x\| \leq \epsilon_{k+1}} \|x\|^2 dL(x)$$

$$= \sum_{k=0}^{\infty} \sum_{j=1}^{\infty} \int_{\epsilon_k < \|x\| < \epsilon_{k+1}} \|x\|^2 dL A_j^{-1}(x)$$

$$= \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} \int_{\epsilon_k < \|x\| \leq \epsilon_{k+1}} \|x\|^2 dL A_j^{-1}(x)$$

$$= \sum_{j=1}^{\infty} \int_{\|x\|>\epsilon} \|x\|^2 dL A_j^{-1}(x) = \sum_{j=1}^{\infty} \int_{\|A_j x\|>\epsilon} \|A_j x\|^2 dL(x).$$

This completes the proof.

**Lemma 2.** $L(\{x: \|A_k x\|^2 \geq \|x\|^2, \text{ for some } k = 1, 2, \cdots\}) = L(\{0\}).$
Proof. Let $k$ be a fixed positive integer.
Set $E_k = \{x: \|A_kx\|_2^2 = \|x\|_2^2\}$. Then, using equation (13), $L(E_k) = L(E_k \cap \{x: \sum_j \|A_jx\|_2^2 = \|x\|_2^2\}).$
Thus, $L(E_k) = L\{x: \sum_{j \neq k} \|A_jx\|_2 = 0\} = L(\{0\})$, since each operator $A_j$ is 1-1.

(15) Similarly, $L\big( \bigcup_k E_k \big) = L(\{0\}).$

Using the same type of argument, it is easy to show that for all $k = 1, 2, \ldots$

(16) $L\{x: \|A_kx\|_2^2 > \|x\|_2^2\} = 0.$

Combining equations (15) and (16) we are done.
From relations (1) and (13), we see that $L\{x: \|x\|_2 \neq \sum_j \|A_jx\|_2^2\} = 0$. Hence, referring to Lemma 1, it is true that, for all $\epsilon > 0$,

$$\sum_j \int_{\|x\|_2 > \epsilon} \|A_jx\|_2^2 dL(x) = \sum_j \int_{\|A_jx\|_2 < \epsilon} \|A_jx\|_2^2 dL(x),$$

and this implies that

(17) $\sum_j \left[ \int_{\|x\|_2 > \epsilon} \|A_jx\|_2^2 dL(x) - \int_{\|A_jx\|_2 < \epsilon} \|A_jx\|_2^2 dL(x) \right] = 0$, for all $\epsilon > 0$.

But

(18) $L\{x: x \neq 0 \text{ and } \|A_jx\| \geq \|x\|\} = 0$, for all $j$.

Thus, each term in the sum of equation (17) must be nonnegative, which yields:

$$\int_{\|x\|_2 > \epsilon} \|A_jx\|_2^2 dL(x) = \int_{\|A_jx\|_2 < \epsilon} \|A_jx\|_2^2 dL(x), \text{ for all } \epsilon > 0 \text{ and all } j.$$

Or, using equation (18),

$$\int_{\{\|x\|_2 > \epsilon\} \cap F_j} \|A_jx\|_2^2 dL(x) = \int_{\{\|A_jx\|_2 > \epsilon\} \cap F_j} \|A_jx\|_2^2 dL(x),$$

for all $\epsilon > 0$ and all $j$, where $F_j = \{x: \|A_jx\| < \|x\|\}$, for each $j = 1, 2, \ldots$. The above implies that
THE GAUSSIAN DISTRIBUTION IN A HILBERT SPACE

\[ \int_{\{x : \|x\| > \epsilon \cap \|A_j x\| \leq \epsilon \}} \|A_j x\|^2 dL(x) = 0, \text{ for all } \epsilon > 0 \text{ and all } j, \]
or,

\[ \int_{\{x : \|x\| > \epsilon \text{ and } \|A_j x\| \leq \epsilon \}} \|A_j x\|^2 dL(x) = 0, \text{ for all } \epsilon > 0 \text{ and all } j. \]

So, we must have that

(19) \[ L \{x : \|x\| > \epsilon \text{ and } \|A_j x\| \leq \epsilon \} = 0, \text{ for all } \epsilon > 0 \text{ and all } j. \]

Consider the set \( Q^+ \) of positive rational numbers. Let \( k \) be a fixed positive integer.

\[ L \left( \bigcup_{r \in Q^+} \{x : \|x\| > r \text{ and } \|A_k x\| \leq r \} \right) = L \{x : \|A_k x\| < \|x\| \} = L [\mathcal{H} \setminus \{0\}]. \]

Therefore, \( L [\mathcal{H} \setminus \{0\}] \subseteq \bigcup_{r \in Q^+} L \{x : \|x\| > r \text{ and } \|A_k x\| \leq r \} = 0, \) by equation (19).

This last relation says that \( L \) is degenerate at \( 0 \in \mathcal{H} \), which means that the common characteristic functional of \( X_1, X_2, \cdots \) is given by:

\[ \ln \varphi(y) = -\frac{1}{2} \langle S y, y \rangle \quad (\text{see Eq. (8)}). \]

Hence \( X_1, X_2, \cdots \) have a common Gaussian distribution.

Recall that we have assumed \( X_1, X_2, \cdots \) to be symmetric, but it is now easy to extend our result to the general case by using Cramer's Theorem (see page 141 of [1]).

The proof of Theorem 1 is now completed.

REFERENCES


Received April 2, 1976.

CHICAGO STATE UNIVERSITY
CHICAGO, IL 60628
William Allen Adkins, Aldo Andreotti and John Vincent Leahy, An analogue of Oka’s theorem for weakly normal complex spaces ........ 297
Ann K. Boyle, M. G. Deshpande and Edmund H. Feller, On nonsingularly $k$-primitive rings ........................................ 303
Rolando Basim Chuaqui, Measures invariant under a group of transformations ............................................. 313
Wendell Dan Curtis and Forrest Miller, Gauge groups and classification of bundles with simple structural group ................. 331
Garret J. Etgen and Willie Taylor, The essential uniqueness of bounded nonoscillatory solutions of certain even order differential equations .................................................. 339
Paul Ezust, On a representation theory for ideal systems .................. 347
Richard Carl Gilbert, The deficiency index of a third order operator ........ 369
John Norman Ginsburg, $S$-spaces in countably compact spaces using Ostaszewski’s method .................................. 393
Basil Gordon and S. P. Mohanty, On a theorem of Delaunay and some related results ............................................ 399
Douglas Lloyd Grant, Topological groups which satisfy an open mapping theorem .......................................... 411
Charles Lemuel Hagopian, A characterization of solenoids .................. 425
Kyong Taik Hahn, On completeness of the Bergman metric and its subordinate metrics. II ............................................. 437
G. Hochschild and David Wheeler Wigner, Abstractly split group extensions .................................................... 447
Gary S. Itzkowitz, Inner invariant subspaces .................................. 455
Jiang Luh and Mohan S. Putcha, A commutativity theorem for non-associative algebras over a principal ideal domain ............... 485
Donald J. Newman and A. R. Reddy, Addendum to: “Rational approximation of $e^{-x}$ on the positive real axis” ............. 489
Akio Osada, On the distribution of $a$-points of a strongly annular function ............................................................ 491
Jeffrey Lynn Spielman, A characterization of the Gaussian distribution in a Hilbert space ................................................. 497
Robert Moffatt Stephenson Jr., Symmetrizable-closed spaces ............. 507
Peter George Trotter and Takayuki Tamura, Completely semisimple inverse $\Delta$-semigroups admitting principal series .................. 515
Charles Irvin Vinsonhaler and William Jennings Wickless, Torsion free abelian groups quasi-projective over their endomorphism rings .......... 527
Frank Arvey Wattenberg, Topologies on the set of closed subsets ........ 537
Richard A. Zalik, Integral representation of Tchebycheff systems .......... 553