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AN ANALOGUE OF OKA’S THEOREM FOR WEAKLY
NORMAL COMPLEX SPACES

WILLIAM A. ADKINS, ALDO ANDREOTTI, J. V. LEARY

Two well known results concerning normal complex spaces
are the following. First, the singular set of a normal complex
space has codimension at least two. Second, this property
characterizes normality for complex spaces which are local
complete intersections. This second result is a theorem of
Abhyankar [1] which generalizes Oka’s theorem. The purpose of
this paper is to prove analogues of these facts for the class of
weakly normal complex spaces, which were introduced by
Andreotti-Norguet [3] in a study of the space of cycles on an
algebraic variety. A weakly normal complex space can have
singularities in codimension one, but it will be shown that an
obvious class of such singularities is generic.

1. Preliminaries. All complex spaces are assumed to be
reduced. If X is a complex space, there is the sheaf Ox of holomorphic
functions on X, and the sheaf 0% of c-holomorphic functionson X. A
section of 0% on an open subset U of X is a continuous function
f: U~ C such that f is holomorphic on the regular points of U. The
complex space X is said to be weakly normal if Ox = 0% Examples of
weakly normal spaces are normal spaces and unions of submanifolds of
C™ in general position.

Let Vi={(xy,-"",x,)EC": x, =0 for n=k <j and j<k =m}
where n=j=m. Then V, is an n-dimensional linear subspace of
C". Let

Vi my = LmJ V,={(x), ", x.)EC" :xx,=0 for n=i<j=m}
|=n

and let S(V, ) be the singular set of V, ..

LEMMA. V.., is a weakly normal complex space and dim S(V,.)) =
n-—1.

Proof. Since S(Vium) ={(x1,- -, x, ) EC™: x, = -+ =x, =0},
dim S(V,n)=n—1. Letf: V,,,,— C be acontinuous function which is
holomorphic on the regular points of V,,,.,, To prove weak normality of
Viumy» We need to show that f is holomorphic. Let f, =f|,. By the
Riemann extension theorem, f; is holomorphic on the n-plane V, and
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298 W.A. ADKINS, A. ANDREOTTI AND J. V.LEAHY

thus f, = f,(x’, x,) is a convergent power series, where x'= (x,," -, x,_;)
and x, are coordinates on V.. Since f|,-o= fi |u=0 for n =j, k =m, we
let fo(x)=f(x',0) and set g(x',x)=f(x",x)—fi(x") for n=j=
m. Then f(x,, -, x,)= fo(x)+ 2", g(x',x,) and hence f is holomor-
phic on V...

If X is a complex space with dimX =n let Sg(X)=
S(X) U (Upzp<n X®) where S(X) is the singular set of X and X* is the
analytic subset of X defined by X® ={x € X: X has a branch of
dimension k at x}. If C,(X, x) denotes the fourth Whitney tangent cone
of X at x, then Stutz [6] has shown that W,=
Sg(X)N{x € X:dimCy(X,x)>n} is an analytic subset of X of
codimension at least two.

2. Codimension one singularities of weakly normal
spaces. Let X be a complex space. A point x € X is said to be an
elementary point of type (n,m), for n=m, if the germ (X,x) is
isomorphic to the germ (V,,,.),0). Note that if x € X is an elementary
point of type (n, m), then the germ (X, x) is of pure dimension n and the
imbedding dimension of (X, x) is m. The set of elementary points of X
contains the set of regular points of X, i.e. the elementary points of type
(n,n) for some n. In addition, it contains a particularly simple class of
singular points of X. If x is an elementary point of type (n, m) with
n < m, then x is singular and dim ($(X),x)=n—-1=dim(X,x)— 1.

IfdimX =n,let Y = Uy, X* and let X, = X\Y. By a theorem
of Remmert, X is an analytic set of pure dimension n. Let X, denote
the set of all elementary points of X of type (n, m) for some m with
m = n =dimX. Hence X, C X, and X, contains the regular points of X
of maximal dimension.

THEOREM 1. Let X be a weakly normal complex space. Then
A = X\ X, is an analytic subset of X, of codimension at least 2.

Proof. Let n=dimX. If dimS(X)=n-2 then A=
X, N S(X). Hence A is analytic and codimension A =2. Now sup-
pose that dimS(X)=n-1. We will show that A=
X, N (Sg(Sg(X)) U W,). Since Sg(Sg(X)) U W, is an analytic set of
codimension at least 2 in X and since dim X = dim X, this will prove the
theorem.

Let x € X, If x is a regular point of X, then x& Sg(Sg(X)) U
W,. If x is an elemetary point of type (n,m) where m >n, then
dim C(X,x)=n. Hence x& W,. Moreover, S(X) is a manifold of
dimension n — 1 in a neighborhood of x. Thus x& Sg(Sg(X)). Hence
X, C X:\(Sg(Sg(X)) U W,) and X, N (Sg(Sg(X)) U W,)C A.

Now suppose that x,€ X, N S(X) N (X, \(Sg(Sg(X))U W,)). Thus



AN ANALOGUE OF OKA’S THEOREM 299

xo € Sg(X)\Sg(Sg(X)) and dim C,(X, x,) = n. Note also that the germ
(X, x,) is of pure dimension n. Since the result to be proved is local, we
may assume that X CC'. By Proposition 4.2 of Stutz [6], there is a
neighborhood N of x, in X, a polydisc D CC" and a choice of
coordinates x;,+ -, x, in C" and y,,---, y, in C* centered at x, with the
following properties.

If By,---, B, are the global branches of X N N, then for each j
(0=j =r) there is a holomorphic map f;: D — B, such that

(a) f, is a homeomorphism;

(b) with respect to the coordinates x,, " * *, X, ¥1,** *, ¥, f;(0) = 0 and

fi(x)=(xq, oy Xuog, X5, frvr (), 0, fy (%))

where p; is a positive integer for 0=j =r;

© f,(xn %) =25, (x4, X0q) - xs for n+1=i=t and
0=j=r

Let g: B;— D be the continuous inverse of f and define a map
h: XNN—>C" by moh|s, =g where 7;: C""" —>C, .. ... is the
natural linear projection onto the n-plane with coordinates
X1, Xno1, Xaip for0 = j =r.  Tosee that the map h is well defined, note
first that S(X) is an n — 1 dimensional manifold in a neighborhood of
xo. Furthermore, B,N B, CS(X)NN for all j,k. But f(x',0)=
(x,0,---,0)= f.(x',0) where x" = (xy, -+, x,-1). Therefore, if N is cho-

sen small enough, then B, N B, =S(X)NN={y,=---=y,=0} for
0=j, k=r. For each (y;, -+, )€ S(X)NN, it follows that g(y)=
(yi, " Yu-1,0)for0=j=r. Thush is a well defined continuous map.

Since the jacobian matrix df,/dx is given by

I, O
_Qfl — p,~1
ax 0 P
% *

h is holomorphic on the regular points of X N N. Since X is weakly
normal and h is a homeomorphism onto its image, it follows that h is
biholomorphic. Therefore x, is an elementary singularity of type (n, n +
r). Hence A C X, N (Sg(Sg(X))U W,) and the theorem is proved.

ReEMARK. Let X be a weakly normal complex space and suppose
that codim S(X)=1. Theorem 1 shows that there is an elementary
singularity of type (n, m) where m >n. Since such a singular point is
not normal, Theorem 1 implies the well-known theorem that
codim S(X) =2 for a normal complex space X.
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THEOREM 2. Let X be a pure dimensional local complete
intersection. Then X is weakly normal if and only if codim X\X, = 2.

Proof. Let A =X\X. If X is weakly normal then codim A =2
by Theorem 1.

Conversely, suppose codimA =2. Since X\A =X, the germ
(X, x) is weakly normal for each x € X\ A. Since X is a pure dimen-
sional local complete intersection, pf(Ox,)=dimX for each x € X,
where pf = profondeur. From the Hartog theorem for weakK normality
[2], we conclude that X is weakly normal.

REmARKs. (1) For the case of curves, the assumption of local
complete intersection is not needed. A curve X is weakly normal if and
only if X\ X, =0. An algebraic proof of this fact was given by Bombieri
{51

(2) If X is a pure dimensional hypersurface in C"*', then Theorem 2
can be proved without the use of the Hartog theorem for weak
normality. This case follows from the result of Becker in [4].

(3) Let X CC""' be a pure dimensional hypersurface. If X is
weakly normal, there is another characterization of X\X, than that
which is given by the proof of Theorem 1. This description is as
follows. There is a holomorphic function f€&€ O(C™") such that X =
V(f)={x €C™": f(x)=0} and such that there is a sheaf equality
(f)- 0 = 9« where $x is the sheaf of ideals of X. Then

S(X)Z{xEX:%(x)ZOfor 1§i§n+1}.
At a point x,€ S(X) the Hessian form is defined by

H)u)= S 2L () - uu,

Ly=1 32,32,
Let w(x,) = rank H(f),, and set S,(X)={x € S(X): u(x)=1}.
Claim. If X is weakly normal and dimS(X)=n -1, then
W.N(S(X)\Sg(S(X))) = 5N (S(X)\Sg(S(X)))-
Proof. From the proof of Theorem 1, X\X, =
Sg(S(X))U W,. Suppose x € S(X)\Sg(S(X)) but x& W,. Then the
proof of Theorem 1 shows that x is an elementary singular point of type

(n,n+1). A proper choice of local coordinates about x shows that
(X, x) is isomorphic to (V(z,z,),0). Hence p(x)=2 and x& S,(X).
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Now suppose that x € S(X)\Sg(S(X)) but x&Z S,(X). Thus
w(x)z2. If w(x)>2 then the implicit function theorem shows that
dim(S(X),x)=n—2. Therefore w(x)=2 and choosing convenient
local coordinates centered at x gives f(z)=az,;z,+0(3) where
a#0. Hence x is an elementary singular point of type (n,n+
1). Therefore, x@& W, and the claim is proved.

For weakly normal hypersurfaces this claim gives an easy differential
criterion for computing the portion of the set W, which is contained in
S(X)\Sg(S(X)). This claim is false for hypersurfaces which are not
weakly normal.

ExampLE. Let X ={(x,y,2z)€ C* x>~ zy?= 0} be the Cayley um-
brella in C’. Then X\X, ={(0,0,0)} so that X is weakly normal by
Theorém 2. Remark (3) then shows that W,={0,0,0)}.
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ON NONSINGULARLY k-PRIMITIVE RINGS
A. K. BoyLE, M. G. DEsHPANDE AND E. H. FELLER

A ring R is called k-primitive if it has a faithful cyclic
critical right module C with |C|=k. We first show that
k -primitive rings with Krull dimension have many properties in
common with prime rings. For the case where R is a PWD
with a faithful critical right ideal, we obtain an internal charac-
terization.

1. Introduction. Let R be aring with Krull dimension. Then
R is prime if and only if R has a faithful compressible right R-
module. In this paper we consider a broader class of rings, those which
have a faithful cyclic critical right R-module. From [2] such a ring is
called a k-primitive ring where k denotes the Krull dimension of the
faithful critical.

In the case where the faithful critical is nonsingular, these rings
exhibit many of the properties of prime rings. Not all k-primitive rings
have this additional property as an example in §4 shows. We call a
k-primitive ring whose faithful critical is nonsingular, a nonsingularly
k-primitive ring. Section 2 is devoted to showing some of the
similarities with prime rings.

In §3 we consider piecewise domains (PWD) which are k-primitive
rings. An internal characterization of PWD’s with faithful critical right
ideal is obtained, which is our main result.

All rings will have identity, and the modules are right unital. The
singular submodule of a module My is denoted Z(M). If X is a subset
of R, then ann X 'or X" denotes the right annihilator of X in R. The
Krull dimension of a module My is denoted by |M|. A certain
familiarity with the definitions and basic results concerning Krull dimen-
sion is assumed. See [5] for reference.

2. Properties of k -primitive rings. If R is a prime ring
with Krull dimension then R is nonsingular and has a faithful critical C
such that |C|=|R|. These conditions are also true for nonsingularly
k -primitive rings.

ProOPOSITION 2.1. Let R be a k-primitive ring with faithful cyclic
critical C. Then Z(R)=0 and | C|=|R]| if and only if R is nonsingu-
larly k-primitive.

303



304 A.K.BOYLE, M. G. DESHPANDE AND E. H. FELLER

Proof. Suppose Z(C)=0. This immediately implies Z(R)=
0. Let X be the collection of annihilators of finite subsets of C. By [4,
Theorem 1.24], X satisfies the descending chain condition. Since C is
faithful M,cc(x") = 0 and there exists a finite subset such that N, (x)) =
0. This implies the existence of an R-monomorphism
R—>Z2., R/xj—> C™. Thus |R|=|C™|=|C|=|R].

Conversely if Z(R)=0, then Z(C)=C or Z(C)=0. Suppose
Z(C)=C. Then C=R/K where K is a large right ideal. Let L =
{D|D is acritical right ideal}. Then S = 3D, D € L is a two sided ideal
of R. Since R/K is faithful, SZ K. Hence there exists D € L such
that DZ K. Since K is large DN K#0 and |R/K|=|D +K/K|=
|ID/DNK|<|D|=|R|. This contradicts the fact that |C|=|R|, and
therefore Z(C)=0.

Let C be the faithful k-critical of a nonsingularly k-primitive ring
R. Then P =ass C is a prime ideal. In the remainder of this paper C
and P will be used in this way.

Lemma 2.2. If R is a nonsingularly k-primitive ring with faithful
critical C, then P = ass C is a nonessential minimal prime and |R|=
[R/P].

Proof. That P is a nonessential minimal prime is straightforward.

The module C contains a nonzero submodule C* where ann
C*=P. Since C* is a nonsingular, faithful R/P-module, then by 2.1
|R|=|C*|=|R/P|.

PrOPOSITION 2.3. Let R be a nonsingularly k-primitive ring with
faithful, critical C and let P = ass C. Then

(1) P contains all nonessential two sided ideals.

(2) R has exactly one nonessential prime ideal, namely P.

(3) If R is semiprime, then R is prime.

(4) Every uniform right ideal which misses P is compressible.

(5) Every uniform right ideal is critical and subisomorphic to C.

Proof. (1) If H is not essential, there exists a right ideal I such that
INH=0. Then IH =0 which implies H C ass C = P by [2, Proposi-
tion 3.2].

(2) This follows from (1).

3) If0=P, N --- NP, is an irredundant intersection of minimal
primes, then P, is not large and hence P, = P by (2) for each i. Thus
P=0.

4 If U is uniform and UNP=0, then U=U+P/PC
R/P. Since uniform right ideals of a prime ring are compressible, the
result follows.
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(5) Let U be a uniform right ideal. Then CU# 0. Thus there
exists x € C such that xU#0. Since Z(C)=0, U=xUCC and U is
critical.

A ring R with Krull dimension is called very smooth if every right
ideal of R has the same Krull dimension. In a prime ring any two
critical right ideals are subisomorphic and thus the ring is very smooth.

PROPOSITION 2.4. Let R be a nonsingularly k-primitive ring with
faithful critical C.

(1) If D is a critical right ideal, then ass D = P.

(2) R is a very smooth ring.

(3) If D is a critical right ideal then D NP =0 or D CP.
(4) If R is not prime and if C CR, then C CP.

Proof. (1) Let Py= ass D. Then D has a submodule D * such that
ann D*= P,. Since Z(D*)=0, P, is not essential and hence by 2.3(2),
P,=P = ass C.

(2) It suffices to show that if D is critical, | D|=|R|. By (1) D has
a submodule D * which is nonsingular and faithful as an R/P-module and
hence |D|=|D*|=|R/P|=|R|.

3 fDNP#0then D/IDNP=D+P/PCR/P. Since R/P is
very smooth and |R/P|=|D]| then |D/DNP|<|D| implies D =
DNP.

(4) IfCCR and CNP =0,then CP = 0 contradicting the faithful-
ness of C. Thus C N P#0. Therefore by (3) CCP.

PROPOSITION 2.5. Let R be a nonsingularly k-primitive ring. The
compressible right ideals of R are subisomorphic.

Proof. Since P = ass C is not large, there exists a critical right ideal
D#0Osuchthat D NP =0. By2.3(4) D iscompressible. Let K# 0be
any compressible right ideal. Then KD # 0 since DZ P = ass C. Thus
there exists a € K and a monomorphism D —aD C K. Since K is
compressible, K is subisomorphic to aD and hence to D. Since being
subisomorphic is a transitive property, any two compressible right ideals
are subisomorphic.

COROLLARY 2.6. Let R be a nonsingularly k-primitive ring with the
nonessential prime P# (0. Then P contains an isomorphic copy of all
uniform right ideals.

3. k-primitive piecewise domains. Let R be a ring with
Krull dimension and suppose that R is a piecewise domain with a faithful
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critical right ideal. Then R is nonsingularly k-primitive and is, in
general, not prime. We assume these rings have a faithful critical right
ideal. In §4 we provide an example to show that this need not always be
the case. From [7] we have

DermNITION 3.1. A ring R is a piecewise domain (PWD) with
respect to a complete set of orthogonal idempotents e, - -+, e, if x €
e.Re,, y € ¢,Re, then xy =0 implies x =0 or y =0.

In [7, p. 554] the following criterion is given for R tobea PWD. R
is a PWD with respect to the complete set of orthogonal idempotents {e,}
if and only if every nonzero element of Homg(eR,R) is a
monomorphism.

ProOPOSITION 3.2. Let R be a ring with Krull dimension. Then R is
a PWD with faithful critical right ideal if and only if R = 3@ e,R where
e.R is critical for every i and ¢,R is faithful and nonsingular for some
j. In this case R is nonsingularly k-primitive.

Proof. Suppose R is a PWD with faithful critical right
ideal. Then R =3%@ eR where e, ---, e, is a complete set of or-
thogonal idempotents. Since C is faithful, Ce,.R # 0 for all i. Hence for
any given i there exists ¢ € C such that ceR#0. We can therefore
define a homomorphism 6 of ¢,R into C using ¢ and by [7, p. 554] the
mapping 6 is a monomorphism. Thus eR is critical.

Now RC# 0 which implies ¢, RC# 0 for some j. By [8, Lemma 1],
Z(R)=0 and thus the mapping determined by the relation erC# 0 is a
monomorphism. So C is subisomorphic to at least one ¢R and
Z(eR)=0.

Conversely suppose R = 2 @ ¢,R where ¢,R iscritical. Since ¢R is
faithful and nonsingular by 2.4 we know that R is very smooth. So
consider a mapping f:eR—>R. If Ker f#0 then [f(eR)|=
leR/Kerf|<|eR|=|R|. Thus necessarily f=0.

The same technique employed in the above proof shows that any
two  faithful  critical right ideals of a PWD are
subisomorphic. Furthermore the faithful critical right ideal contains an
isomorphic copy of every critical right ideal.

ProposITION 3.3. Let R be a ring with Krull dimension. If R is a
PWD with faithful critical right ideal, say R = %@ eR where C = ¢,R is
faithful, then

(1) P=ass C=2,¢eR, where e,R is not compressible.
(2) If Q is a prime ideal not equal to P then |R/Q|<|R].
(3) If R is not a prime ring, then not all the e,R are compressible.
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Proof. (1) and (3). If R is prime, then the ¢, R are all compressible
and ass C = P =0. If R is not prime, then C cannot be compressible
because it is faithful.

Now suppose ¢,R are compressible for i = m +1,---,n and ¢R are
not compressible for j =1,---,m. Then

P=RP= (Z elR>PC_Z S eRPC S eR.
1=1 1=1

1=1

Conversely if D is critical either D NP =0 or D CP by 2.4(3).
Since ¢,R N P =0 implies by 2.3(4) that ¢,R is compressible, necessarily
eRCP 1=i=m and hence P =2, ¢R.

(2) If O is a prime ideal not equal to P, then Q is large. Suppose
IR/Q|=|R|. Asin the proof of 2.4(3) if D is critical D C Q. Thus Q
contains all critical right ideals and hence R C Q which is impossible.

In [8, Theorem 2] Gordon obtains an internal characterization of
prime right Goldie rings which are PWD’s. In the following theorem
we obtain an internal characterization for a nonsingularly k-primitive
ring with a faithful critical right ideal which is a PWD.

THEOREM 3.4. Let R be a PWD with Krull dimension, |R|=
k. Then R is nonsingularly k-primitive with faithful critical right ideal if
and only if R = (A,).x. Where for some s, m where 1=s<m <n,

(1) A, =0fori>sandj=sori>mandj=m.

2 A,Z0 fori=sorj>m.

(3) A.is a domain for 1=i=n.

4) If j =m then |(Ay)a,| <k.

5) A={(a,)EA)|a,=01=i=mor 1=j=m}isaprimering
of Krull dimension k and D, = {(a,)|a; =01=j=m, a,;, =0 k# i} asa
right A-module is k-critical for all i.

B |
/&11 | /aln T
. | . TOWS are
’ I ’ faithful criticals
/451 | fasn
ll A s+1,5+1 o .I As+l,n
| VZ7777777777/777 D,
L _Ame ol Am
IA m+1,m+1 A m+1l,n TOWS are
0 : : .
(. : compressible
L I An,m+1 Tt Ann B
Prime ring

A
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Proof. By 3.2 and 3.3 R =27, C with C, critical for all i where
C is faithful for 1=i=s and C is compressible for m+1=j=
n. Then R is isomorphic to the matrix ring with (i,j) entries in
A; = Homg(C, C), which are monomorphisms or zero. Since Z(R) =
0 by [7], then Z(C;)=0.

(1) Ifi>s, and j =s, then Hom(C, C) = 0 since these C; are not
faithful. Similarly, Hom(C, C;) =0 i > m, j = m, since these C, are not
compressible, and the C; are compressible (using the fact that sub-
modules of compressible modules are compressible). This proves (1).

(2) 1If G is faithful, then C,C;# 0 for all j and Hom(C, C) # 0 for
all j. If C is compressible, then CC#0 for any i. Hence
Hom(C, C)#0. This proves (2).

(3) A is a domain, since R is PWD ring.

(4) For j=m, let K, be an A; submodule of A;. Let K%,=
{(a.)|a, € K, and a, = 0 otherwise}. Let D, be as in the theorem, then
D,#0 by (2) and D, is a right ideal of R because of (1). Let S, =
K*%R + D;/D.. Then S, CC;/D. Then the mapping K; — S, is a lattice
isomorphism of the lattice of submodules of A, over A; into the lattice of
submodules of C,/D; over R. Since C; is critical and since D, # 0, then
the Krull dimension of A; over A; must be less than k.

(5) The first part follows since ass C = P isequalto C,+ -+ + C,
by 3.3and A = R/P. Now each D, is a submodule of a critical module,
and hence is critical over R. But the lattice of modules of D; over R is
the same as the lattice of D, over A, and D, is critical over A, and since
the Krull dimension of D, over R is k, then | D;| over A is also k.

Conversely, let R be a PWD satisfying these conditions and let C
denote the ith row of the matrix. We will show that C, is critical, and
that C, i =1,2,---, s is faithful. Since R is a PWD, and using (2), we
have that C, for i =1,2,--- s is faithful. We now show C; is k-
critical. Let M, be a nonzero submodule of C, over R. Let M,, =
{a € Aj;|a is the (1,]) entry of some member of M;}. Then M,;# 0 for
j>m. Now for j =m, M;; is an A; module. Thus by (4), the Krull
dimension of A;;/M;; over A; is less than k. If N=2I ., M7, where

*.={(a.)|a,, € M,; and a, = 0 otherwise}, then N is not zero, and by
(4), the Krull dimension of D,/N over A is less than k. Thus with each
submodule of C,/M,, we can associate an A; submodule of A, /M, one
for each j = m, and a factor moduie D,/N of D, as an A-module. We
construct a lattice isomorphism from the submodules of C,/M, into the
lattice of submodules of T=A, /M, P --PA./Mi, S D,/N over
S=A1P - PA.. DA, where in Ts we have scalar multiplication
defined as coordinate multiplication by elements of the ring S. Now the
Krull dimension of A;;/M,; is less than k over A; for 1=i=m, and
similarly for D;/N over A. Hence the Krull dimension of T over S is
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less than k. Thus|C,/M,|< k. Since D, over A has Krull dimension k,
one can show that C; has Krull dimension k over R in a similar
fashion. Thus C, is k-critical. Since R=C,PH---PC, and C, is
faithful, then each C, is R isomorphic to a submodule of C,, and hence is
critical of Krull dimension k. Thus |R|= k.

4. Examples and questions. Using the results of §3, one
can easily construct nonsingularly k-primitive rings. Let I a right
Noetherian integral domain, where |I| = k, and I[x] be the polynomial
ring with commuting x. We construct three matrix rings of this type

r—1 I I[x] I[x] I[x]{y] I[x]ly]
I I Ifx] I{x] I{x]{y] I[x]{y]
R=10 0 I[x] A I[x][y] I[x][y]
0 0 B I[x] Ilx]ly]l Ilx][y]
0 0 0 0 Ix]{y] I[x]{y]
L0 00 0 Ix}{y} I[x]ly]

where (1) A=B=0, 2) A=I[x], B=0, 3) A=I[x], B=
I{x]. These are nonsingularly k-primitive rings of Krull diinension
k+2.

In each of these three rings, with the notation of Theorem 3.4, C, is
the faithful critical right ideal and s =2, m =4. In the case where
A = B = [, the two nonfaithful, noncompressible modules C; ard C, are
(sub)isomorphic. Clearly, in all cases, P = C,+ C,+ C;+ C..

One can show, in general, that if R is nonsingularly k-primitive,
then the complete ring of quotients Q is a simple Artinian ring. If R is
PWD, then by [9], R has an Artinian Classical quotient ring
Q.. However, Q, is never k-primitive unless R is prime. To illustrate

this consider for a field F the ring, R = [F F[x]]' Then Q(R)=

0 Fl[x]
F(x) F(x) _[F F(x)
[F(i) F(i)] and Qc,(R)—[o F(;)]'

Question 1. In general does R have a classical quotient ring Q,?
Does Q, contain a maximal k-primitive subting which contains R?

Question 2. Does N(R) being prime imply R is prime? (True for
PWD’s.)

Question 3. If R has left Krull dimension, is R a prime ring?
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In regard to questions 1 and 2, if our ring R has the regularity
condition (See [6]), and if N is prime, then R is a prime ring.

To give an example of a nonsingularly k-primitive PWD where the
faithful cyclic is not imbeddable in R consider a field F with a derivation
(). Let M =F[x]@ F[x]. Then M is a right F[x] module under
(f, g)h = (fh, gh), and M is a left F module under a(f,g) = (af + a'g, ag),
a € F. Thus M is a bimodule, and the matrices

_[F M .
R-[O F[x]]formarmg.

Let I= [8 F][\)Ic]]’ where N ={(0,f(x)|f(x)€ F[x]}. Then I is not
large, and contains no two-sided ideals. In addition C = R/I is
critical. In fact, if Cy#0 is a submodule of C, then C/C, is
Artinian. One can show that C cannot be embedded in R, and
Z(C)=10. One can also show that no right ideal of R is faithful and
critical. Hence R is a nonsingularly 1-primitive ring without a faithful
critical right ideal.

In the case where R is k-primitive but the faithful critical is not
nonsingular, then R may not have the properties established in
§2. Consider the following example.

Let A = F[x,()][z] where F is a field with derivative (') as in [3, p.
55], and z commutes with x. Let

R=[§ AAxA]_

The first row of R is a faithful cyclic critical C which is not
nonsingular. Now |[C|=1 and |R|=2. Thus R is not very
smooth. In addition, R does not satisfy the regularity
condition. Hence R does not have an Artinian classical right quotient
ring.
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MEASURES INVARIANT UNDER
A GROUP OF TRANSFORMATIONS

RorLanpo B. CHuAQuI

The purpose of this article is to present necessary and
sufficient conditions of an algebraic character for the existence of
a countably additive measure defined on a o-field of sets
vanishing exactly on a given subset of the field, and invariant
under a group of transformations.

0. Introduction. Most measures of interest defined on fields
of sets are required to be invariant under certain groups of transforma-
tions. For any field F of subsets of a set X, a group of transformations G
of F is a set of one-one functions closed under composition and inverse,
that contains the identity function restricted to X, and such that any
function in G transforms elements of F into elements of F. A measure
on F is invariant under G if any two elements A, B € F, such that A is
the image of B under a function in G, have the same measure.

The problem of finding algebraic conditions for the existence of such
measures has been discussed in several places; in particular, in Tarski’s
book [14], p. 231, where necessary and sufficient conditions are given for
the existence of a finitely additive measure invariant under a group of
transformations. To my knowledge, no general solution of this type has
been published, before this paper, for countably additive measures.

Partial solutions to this problem were obtained in [11, 2]. In this
second paper a conjecture was formulated which was proved false in [3].

The proof presented here uses extensively the theory of Cardinal
Algebras developed in [14]. I shall quote theorems and definitions from
this book by their number followed by a T. I also use a representation
theorem for certain types of Cardinal Algebras obtained in [6].

A related problem is the existence of a countably additive measure
on a Boolean ¢-algebra when no group of transformations is involved
(for the theory of Boolean algebras see [13]). The interesting problem,
in this case, is to find a strictly positive measure (i.e. a measure that
vanishes only on the zero of the algebra). Necessary and sufficient
conditions were found in [11], and better conditions in [10]. 1 shall use
these latter requirements for the existence of invariant measures.

The conditions obtained for the existence of an invariant o-measure
are a combination of Kelley’s requirements and the countably additive
version of the main condition of Tarski for the existence of a finitely
additive invariant measure: the nonexistence of paradoxical decomposi-
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tions of the unit set. The main theorem proved (Theorem 5.1) includes
as particular cases results obtained by [7] for a group generated by one
transformation, and by [9] for a continuous group.

Given a o-field ¥ of sets and a group of transformations of ¥, it can
be deduced from the main result in this paper mentioned above (5.1), that
an invariant o-measure exists iff an ideal in ¥ of a certain type
exists. This falls short of determining algebraic necessary and sufficient
conditions for the existence of an invariant o-measure (with no predeter-
mined ideal of null-sets). However, this shortcoming is shared by the
solutions available for the existence of a o-measure on a o-field of sets
when no group of transformations is involved: From Kelley’s conditions
it can also be deduced that a o-measure on § exists iff an ideal in § of a
certain type exists.

On the other hand, if we are given the ideal on which the measure
vanishes, both Kelley’s theorem and mine give algebraic necessary and
sufficient conditions for its existence.

In the first section the general setting of fields of sets and groups of
transformations is discussed. The second section contains some lemmas
about ideals and congruence relations in Boolean Algebras and Cardinal
Algebras. Section three studies the countable chain condiction. The
next section gives the main theorems on invariant measures on Boolean
Algebras. Finally, the fifth section applies these theorems to fields of
sets.

The measure-theoretic results obtained in this paper were an-
nounced without proof in [4], where they were applied to obtain
probability measures.

1. Groups of transformations on fields of sets.
Throughout this paper we employ the wusual set-theoretical
terminology. We identify an ordinal number with the set of preceding
ordinals, and a cardinal number with the corresponding initial
ordinal. In particular o, the set of natural number is the first infinite
ordinal and cardinal; w, is the first uncountable ordinal and the next
cardinal after w. For functions f, g, we use Dof, f7, feg, and f*x A
respectively for the domain of f, the inverse of f, the composition of f and
g, and the image of A under f. “B denotes the set of functions from A
into B. In particular, “A 1is the set of all denumerably infinite sequences
with terms in A; for n € w, "A is the set of all n-termed sequences; A
denotes the set of all finite sequences with terms in A. For arbitrary
relations R, we also use R * A for the image of A under R.

We shall also study measures on Boolean algebras. By a measure
on a Boolean o-algebra (a o-BA) B = (B, V,A, —,0, 1), we understand
a countably additive, nonnegative real function on B that assumes the
value one at the unit of the algebra.
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If x € “B, we write V{x,: i € w} and A{x,: i € w} for the least upper
bound (Lu.b.) and greatest lower bound (g.Lb.) of the sequence x. A
o-field of subsets of a set X, § =(F, U, N, —,J, X), is a particular kind
of 0-BA in which the universe F consists of subsets of X, and the
operations are set-theoretic union, intersection, and complement with
respect to X. L.u.b.’s and g.1.b.’s of denumerable sequences coincide
with countable unions and intersections. A group (or more properly, a
quasi-group) of transformations of the o-field of sets F is a set G of
one-one functions such that:

i) If ALBEF, feG, ACDof, BCDof, then fx*A,
f'*B€EF.

(i) The identity function restricted to X belongs to G.

(i) If g€ G, then f'and fog €G.

Notice that functions in G are not supposed to have a common
domain (see [14], p. 221).

A measure u on § is said to be invariant under G, or G-invariant, if
for any A,B € F such that there is an f€ G with A CDof and
B =fxA, we have u(A)= wu(B). Our problem, then, is to find neces-
sary and sufficient conditions on ¥ and G for the existence of such
measures. It is more convenient to work with equivalence relations on
BA’s thus, we define the equivalence relation ~; on F:

A ~sB iff thereisan f€ G suchthat A CDofand B=f*A. It
is clear that w is G-invariant iff:

For any A,BE€ F, A ~;B implies u(A)= u(B).

In general, for any equivalence relation R on a BA 8 and measure
w on B, we say that u is R-invariant if for any a, b € B, we have

aRb implies p(a)= u(b).

If a measure © on F is G-invariant, then it also has to be
= -invariant for the equivalence relation on F, =, defined by: A =;B
iff there are sequences of disjoint elements Y, Z € “F, such that A =
U{Y: i €Ew}, B= U{Z:i€E€ w}, and Y, ~;Z for every i < w.

It is easy to see, that if u is G-invariant, then for any A, B € F we
have,

AEN_B implies wu(A)= u(B).

It is convenient to introduce the disjunctive BA B associated with a
o-BA B. Disjunctive BA’s were introduced in Def. 15.14T. For any
a-BA B, the disjunctive BA associated with ¥ is the partial algebra
B =(B, +,3) where + is a binary partial operation and 3 a countable
partial operation defined by:

(@) For any a,b,c€EB,a+b=ciffavb=c and anb=0.
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(b) Forany x €“B and c €EB, Z,.,x; = ¢ iff V{x,:i €Ew}=c and
xAnx;=0fori<j<w.

This disjunctive BA B is a generalized cardinal algebra (GCA) by
15.24T. We shall use GCA'’s and cardinal algebras (CA) throughout this
paper. The terminology will be taken from [14] with a few exceptions
that will be noted in the appropriate places.

A congruence relation R on a GCA % = (A, +,2) is an equivalence
relation that satisfies:

(i) ifa,bc,d,a+bc+d€A;aRc and bRd, thena+bRc +d;

(i) if x,y €“A, Z,.,x, 2.<, ¥ € B, and xRy, for every i < w then
ZicoXiR 2.,y

Congruence relations are called in [14], infinitely additive equiva-
lence relations (see 6.4T).

A refining relation R on a GCA ¥ is a relation on A such that:

if a,x,x,b €E A, a=x,+x;,, and aRb, then there
are y,, y1€ A such that b=y,+y; xRy, and
x,Ry;.

Refining relations are called finitely refining in [14] (see 6.7T).

By 16.6T, =; is a refining congruence relation on the GCA
(disjunctive BA) .

The main purpose of this paper is to give necessary and sufficient
conditions for the existence of G-invariant measures on §. However, it
is more convenient to work in a more general setting and find measures
on a o-BA, ‘B that are R-invariant for R a refining congruence relation
on B. Ishall deal with this problem in the following sections, returning
to § in the last section.

2. Ideals and congruence relations. In thissection I shall
prove some lemmas, which will be needed later, about ideals and
congruence relations in -BA’s and GCA’s. For any o-BA B we have
the corresponding disjunctive BA B, which isa GCA. The notion of an
ideal in a GCA is defined and discussed in ([14], Chapter 9). I shall call
ideals in a GCA cardinal ideals to distinguish them from ideals in a BA
(see [13] for ideals in BA’s). There are, then, two notions of ideals in B:
o-ideals in B as a BA and cardinal ideals in B as a GCA. The first
lemma proves that they coincide.

Lemma 2.1. Let B beao-BA,I1C B. Then, lisao-idealin B iff
I is a cardinal ideal in B.

Proof. Suppose I is a cardinal idealin 8. It is clear that the partial
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ordering in B coincides with that in 8. Thus, if a € I and b = a (in B),
then b € I. Suppose, now that x € “I.  Define

Xo= Xo

X1 = Xpi— V{x;: [ = n}.
It is clear that x'€ “I and x{A x;=0 for i#j. Then,
V{x:i€Ew}=3,_,x€EL

Thus, I is a o-ideal in B.
The converse implication is obvious.

The next lemma proves that the equivalence relation determined by
a o-ideal I on a 0-BA B is the same as the relation determined by I as a
cardinal ideal in B (cf. 9.26T).

LEmMMA 2.2. Let B be a 0-BA, I a o-ideal in B. Then:

(i) for any a,bEB, a—bvb—a€]l iff there are a’,b' €I and
¢ € B such thata=c+a' and b=c+b’;

(i) (B/I)=B/L i.e. if x €E“B, c € B, then 2., (x;/I) = c/I iff there
is an x'€°B such that x;Ax'=0 ~IT=v'IT and ¥ (v I])=
Eicox )/, for i <j < w.

Proof. (i) (1) Suppose a—bvb—-a€1l Take a'=a—-b, b'=
b—a c=anhb.

(2) Suppose a=a'tc, b=b'tc, and b',a’'€l Then
a-bvb—-a=a'vb EL

(i) Suppose 2., (xi/I)=c/I. Then x;/IAx;/I=0/ and so,
x A EI fori<j<w. Letd=Vv{xirnx:i<j<w}andx;=x—d
for i<w. Then d€I x,Ax};=0, x}/I=x/I, and Z., (x}/I)=
Eicox)I=c/I for i<j<w.

We are interested in refining congruence relations on disjunctive
BA’s B, and how they behave when we pass to ®B8/I for an ideal I. This
is given in the following lemma:

LeEmMMA 2.3. Let SB be a 0-BA, I a o-ideal on B, and R a refining
congruence relation on B such that R« I C I (i.e. if a € I and aRb, then
b€1I). Define R on B/I by:

a/IRb/I iff there are a', b’ € B such that a/I = a'/l,
b/I=>b'/I, and a'Rb’.
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Under these conditions, R is a refining congruence relation on B/1.

Proof. 1t is easy to see that R is an equivalence relation on B. We
have to prove that R is refining and preserves £. Let

(1) a/IRb/I,

2) all=x 1+ x,/L
By (2) and 2.2(ii), there are disjoint x4, x; such that

(3) xi/I=xi/I and x,/I = x;/L

Also, by (1), there are a’, b’ such that a/I =a'/l, b/I = b'/I, and
a' Rb'. By 3), a'/ll = (x1+x2)/I Thus, there are x4, x’ sucH that,

4) a'=x7+x3 x)/I=x1/I and x,/I = x}/L

Since R is refining and (4), b’ = y, + y,, X1 Ry,, and x; Ry,. Then,
b/I = y,/I+ y,/I, yI/IRxl/I and yz/Isz/I Thus, R is refining.

Suppose now that x,y € “B with,

(5) xi//IRy/I for all i < w;

6) Zi<.(x:/I) and 2., (y:/I) exist in B/I. From (5) we obtain
x',y'€“B such that,

(7 xiYI=xJI, yi/l=y]/l and x;Ry/, for all i < w.

From (6) we deduce that x;/I A x;/I =0/I=y,/I Ay;/I for all i},
with i <j<w. Then, the same is true for x’,y’. Thus

®) xianxiel forall ij<w, i#]j.

Take c¢=V{xirnx:i<j<w}. Then c¢€IL Define «x’=
x'—c. Then xi/I =x'/I =x;/I. Also,

9 xiax?=0fori<j<ow.

We have, x,=x+z where z;,=c Ax| and z; EL From (7) we
obtain y”, z' € “B such that,

(10) y:=yi+zi, y'Rx", and zRz.

Since R*IC1I z'€] and

(11) yiI=yiI=y/L

Similarly as (7) we get,

(12) yinyj€lfori<j<w.

Take d = V{yiayi<j<w}(€I)and y'=yi—d We have

(13) yiI =y /[I=y/l and y Ay =0fori<j<w Also,y’
y"+ u; where u;=d anyi€ 1 From (9) we obtain,

(14) x7=x"+ui, xYRy", and u;Ru; for all i <w. Thus, since
R+ICI u'€l and,

15) x"%/I=x"/I=x/I for all i < w.

Since x7 = x, (9) implies:

(16) xax7=0fori<j<ow

Since R is a congruence relation on B, (13), (14), and (16) imply that
Ei<ux?)R (Z.<.y"). But then from (15) and (13) we obtain the desired
conclusion; i.e.

(Ei<wxi/I)R (2i<w yi/I)'
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The following lemma relates cardinal ideals in the GCA’s ¥ and
A/R. '

LemmA 2.4. Let A be a GCA, R a refining congruence relation on
A, ICA, and R*I1CIL Then Iis a cardinal ideal in ¥ iff I/R is a
cardinal ideal in UA/R.

Proof. (1)Suppose I is a cardinal ideal in 2. Let a/R € I/R,
a €Il and b/R =a/R. Then, there are a’,b'€ A with b'=a’, aRa’,
and bRb’'. Thus, since R *I C I, we have that a’,b’€ 1. But, then,
b'/R =b/R € I/R.

Let, now, x €“I and 2,., (x,/R)E€ A/R, i.e. Z,., (x;/R)=b/R for
some b € A. Then, there are x' € “A, and b’ € A suchthat 2, xi=b’,
x;Rx',and bRb',foralli<w. SinceR*ICI x'€1Ifori<w. Then
2<oXi€ I and, thus b/R =b'/R € I/R.

(2) Suppose, now, that I/R is a cardinal ideal in A/R. Let a € I,
and b=a. Then a/R € I/R, and b/R =a/R. Thus, b/R €EI/R, i.e.
thereisa b’ € I such that b’ Rb. But,thenfrom R*I C I, wegeth € L

Suppose x € “I with 2,.,x, € A. Then x;,/R € I/R for all i < w,
and 2., (x;/R)EI/R. Thus, 2., (x,/R)=(Zic.x)/R € I/R. There-
fore, there is a b € I such that 2,.,x,Rb. But then, from R *I C I, we
get that 2,_,x; € L

3. The countable chain condition. Let 2 be a
GCA. Wesay that asubset B C A is bounded if there is an a € A such
that b = a for every b € B. U satisfies the countable chain condition
(ccc) if every bounded subset B C A well ordered by the relation = is at
most countable. It is clear that if B is a o-BA, then the GCA B satisfies
the ccc if and only if B satisfies the countable chain condition in the usual
Boolean sense. [5] calls a GCA that satisfies the ccc, separable. In this
section I shall prove that the ccc is transmitted through several construc-
tions of GCA'’s.

If a,b € A, we write a A b, a v b for the g.1.b. and Lu.b. of a, b; if
X €E“A, Ne,x; and V ¢, x; stand for the g.1.b. and L.u.b. of the sequence x
(see Defs. 3.1T and 3.2T where slightly different symbols are employed).

THEOREM 3.1. Let A be a GCA satisfying the ccc, and R a refining,
congruence relation on A. Then A/R also satisfies the ccc.

Proof. Suppose the sequence y € “(A/R) is such that for § < a <
w,, we have y; <y, =a/R for some a € A. Choose a sequence x €
“A, such that y, = x,/R and x, = a for every a« € w,. It is possible to
obtain such an x because R is refining.

We shall first prove:
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(1) Foranyb,c € A with b, ¢ = a, we have b/R < c¢/R iff thereisa
d€ A such that d=a, b<d, and dRc.

From b/R < c/R we get b’ with b'<c and bRb'. Thus, we have,
b'<c=a, b=a, bRb',and aRa. Using 7.13T (vi) we obtain a d with
b=d=a and dRc. Now, if b = d, we would have ¢c/R = d/R = b/R
contradicting b/R < c/R. Thus b <d.

The converse implication is proved similarly, and, thus, (1) is
proved. We pass now, to the proof of the theorem:

Define by transfinite recursion the sequence z € “* A satisfying:

(2) y.=2x./R =2,/R, and if @« <B < w, then z, < z; = a, as fol-
lows:

(a) zo= x,.

(b) Suppose z, is defined. We have z,/R < x,.1/R, and z,, X, =
a. By (1) there is d € A such that z, <d =a, and dRx,,;. Take
Zaw1 = d.

(c) Let « be a limit ordinal, @ < w,, and z, defined for all
B € a. Let f € “a be a strictly increasing sequence of ordinals cofinal in
a. We shall prove that

() (ViewZin)/R = VpeaYp

It is enough to prove,

(ié/ Zf(i))/R = i\e/w (zs/R).

Let z;;+ w; = z;54y for every i <w. Then
Zii/ R + u;/R = zz,.y/R  forevery i < w.

Also, V.., 2z = Zj0+ Zi<o . Thus,

(_V zf(i)>/R = z;/ R + 2., (w:;/R)

i€w

= i\</w (zs/R).

So (3) is proved. :
Let now, b = Vic, 2. Then, since b/R = Ve, y5 =y, and b = q,
by (1) there isa d € A with b=d=a and dRx, Let, then, z, =d.
With this, we complete definition (2) and, thus, obtain a = -well-
ordered bounded subset of A of type w,, contradicting the ccc for U.
We pass now, to show preservation of the ccc under another
important operation on GCA'’s: the cardinal product (see Def. 6.11T).

THeOREM 3.2. Let U, be GCA’s that satisfy the ccc for every
i€l Then Ile; U, also satisfies the ccc.
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Proof. Suppose y € “(Ilic;A;) and a €11,¢;A; be such that y, =
Y. =a for B <a<w,. We then have yz =y, =a; for every i € L

The sets B, ={y.: @« € w,} C A, are bounded and = -well-ordered
for all i € I; then, card(B,)= w forall i € I

Since card(B;)= w for every i € I, there is an a € w, such that
Yo = ya for all B = @. Define y(i) as the least such «, i.e.,

y(i)= N{a: yu = ys forall B = a}.

We have, y(i) € ;.

Let J={i: a#0,}. From the definition of cardinal product,
card(J)= w. Also,for everya € w,,y, =0, foralli€I—~J. Let § be
the least upper bound of y(i) for i € J; i.e.

6= U{y@i):iel}
8 € wy, and y, = y; for all « = 8. Therefore, card{y,: a € v} = w.

CoroLLARY 3.3. Let U be a GCA that satisfies the ccc. Then
also satisfies the ccc.

Every GCA U can be closed to obtain a CA 9 which preserves most
of the properties of 2. In [14, Ch. 7], these closures are studied. We
prove, now, that closures preserve the ccc.

THEOREM 3.4. Let 9 be a GCA that satisfies the ccc. Then U, a
closure of 2, also satisfies the ccc.

Proof. By 7.7T, U is isomorphic to “%/R where R is a refining
congruence relation in . Thus, from 3.1 and 3.3 we obtain 3.4,

CorOLLARY 3.4. Let B be a o-BA that satisfies the ccc, R a
refining congruence relation on B, and U=LB/R (a closure of
B/R). Then W isa CA such that for any x € °A we have A c,x, € A..

Proof. U satisfies the ccc by 3.1 and 3.4. Hence applying 3.35T we
obtain the conclusion.

4. Invariant measures in Boolean algebras. In this
section we prove some theorems about the existence of R-invariant
measures on a o-distributive o-BA B where R is a refining congruence
relation on B. In the next section we apply the theorems to obtain
G-invariant measures on o-fields of sets.

For some of the following definitions see [10, 13 p.p. 62, 204].
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Let ®8 be a 0-BA and x € "B for some n € w. We define i(x) =
m/n where m is the largest integer k = n such that

XgA o AX A0 for 0= <ij<-- < <n
Then, if A C B we define the intersection number of A:
i(A)=inf{i(x): x €"A forsome n € w}.

We say that B has the Kelley property if B — {0} is a countable union of
sets with positive intersection number. B is o-distributive if for every
double sequence x € “*“B we have,

(*) VA {x, i JEw}i Ew}= A{V{X, 45 i Ew}: ¢ E“w}.

We say that B is weakly o-distributive if (%) is satisfied for every double
sequence x € “*“B such that x;;., = x; for every i,j € w.

Let I C B and  a measure on 8. We say that u is I-positive if we
have,

pn(a)=0 iff a€l foreverya€B.

Let a € B; we say that a is R-negligible if there is a sequence of
disjoint elements of B, x € “B, such that x;Ra for every i € w. Let
Nr ={a: a is R-negligible}. It is clear that if the measure u is
R-invariant, then if a € Ng, we must have w(a)=0.

We need the following lemma about Ng:

LemMA 4.1. Let B be aoc-BA, and R a refining congruence relation
on B. Then Ny is a o-ideal in B.

_ Proof. By 2.1 it is enough to prove that N is a cardinal ideal in
B. Consider A =B/R; Aisa GCA. Let h =1/R and

A(h)y={ceWU:.c+h=nh}
Then, by 9.15T, A(h) is a cardinal ideal. It is easy to see that
R *(Ng)C Nz. Hence by 2.4itisenough to prove that A(h) = Ni/R.
Since ¢ € A(h) iff oc = h (by 1.29T) the proof is reduced to:
a€ Ny iff =(a/R)=h.

Suppose, first, that a € Nx. Let x € “B be such that x; A x; =0 and
xiRa for every i <j < w.
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We have, a/R = x;/R, for every i<w. But 2,_,x;,=1. Thus,
o(a/R)=2Zi<. (x,/R)=1/R =h.

Suppose, now, that o(a/R)=h. Since h €U, »(a/R)EA by
7.4T. Then,(a/R)= b/R forsome b € B. From the definition of the
coset algebra (Def. 6.3T), there is a sequence of disjoint elements x € “B
andac € BsuchthatX,.,x; =candx,Ra foralli <w. Thus, a € Ng.

We formulate, now, the main theorem of this section:

THEOREM 4.2. Let B be a o-distributive o-BA, R a refining
congruence relation on B, and I a subset of B. The following conditions
are necessary and jointly sufficient for the existence of a countably additive,
I-positive, and R-invariant measure on ‘B:

(i) Iis a proper o-ideal,;

i) N:CI;

(iii) R=*=ICI,

(iv) B/I has the Kelley property and is weakly o-distributive.

For the proof we need a result of [6]. We have to introduce some
definitions. Let X be the Stone space of a o-BA and R the nonnegative
real numbers with ©. Then %(X,R) denotes the set of continuous
functions on X with compact support and values in R.  (4(X,R), +,2)
is a CA (cf [6], p. 31) where + is pointwise addition, and Z,,f, is the
continuous limit of the partial sums 2,.,f. This limit differs from the
pointwise limit in a set of first category.

Proof of 4.2. The necessity of the conditions is easy to prove. We
must use Kelley’s necessary and sufficient condition for the existence of a
strictly positive measure on a BA (see [10], Th. 9, and [8], Th. 3.7).

We proceed, now, to construct the desired measure. For th_e rest of
this section let B, R, and I satisfy (i}~(iv). Define the relation R on B/I
by:

a/IRb/I iff these are a’, b’ € B such that a/I = a'/l,
b/I=b'/I, and a'Rb'.

By 2.3, R is refining congruence relation on %[I. Let % = (B/I)/R,
i.e. is a CA that is a closure of the GCA (B/I)/R.
Let h = (1/I)/R. We shall prove that:

LEMMA 4.3. h is finite (Def. 4.10T: h + a = h implies that a =0
for all a € A). In fact, we have that h + a = h and a = c/I/R, implies
that c/I = 0/L
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Proof. Suppose h+a=h. Then by 129T, wa=h. Let a=
(c/T)/R with ¢ € B, By the refining property of R and 2.2 we obtain a
sequence of disjoint elements x € “B such that ¢/IRx,/I for all i <
w. From the definition of R we get x',z €“B such that ¢/I = z,/I,
x,/I =x/I, and z;Rx} for every i<w. Thus c=wu+v, z,=u +t,
x =y ty;, and xi=y +y7 with v, t, ¥y, yi€EL Let d=
Au,: i € w}. Then as B is o-distributive, ¢ = d + e with e € 1. Now,
dR s with s, = x forevery i < w. Thus, by 24T, s, = si+ s’ with s,= Vi
and s’ =yi. Then, s, €I for every i <w. Therefore, d =r, + r; with
rRs; and riRs’. Since R*xICI ri;€1 for every i <w. Thus by
o-distributivity, d = A{r,: i E w} + f where fE€ 1 We have that s’ is a
sequence of disjoint elements of B. Thus, A{r: i€ w}Rp =5/ for
every i < w; so, A{r;: i € w} is R-negligible and, therefore it belongs to
I Thend€lI and c €1 Therefore, ¢c/I =0/I and a =0. Thus, we
have proved 4.3.

A, also, has the following two properties:

(1) anb€gA, for every a,b € A.

This is obtained from 3.4, because B/I satisfies the ccc.

(2) For every a €E A, a =xh.

(2) is obtained from 7.1T.

Let € be the o-BA of idemmultiple elements of % (a is idemmulti-
ple if a = a + a; see Def. 4.1T and 8.3T for this algebra). Let X be the
Stone space of €.  3.11 of Fillmore 1965 implies that 9 is isomorphic to a
subalgebra of (€ (X, l_l), +,2), say by a function F. For each element
a € A, F(a) has support E(a), the open-closed set corresponding to
©a. Also, F(h) is the characteristic function of E(h)= X.

There is a strictly positive measure u on &€ with u(»h)=1. In
order to prove this, we need the following two lemmas:

LemMma 4.4. If B/I has the Kelley property, then € also has the
Kelley property.

Proof. Suppose B/I —{0/I}= U{B,: n € w} where each B, has a
positive intersection number. Let,

E,={a: a € Eandthereisa b € B, such that b/R = a}.
In this definition, = is the partial ordering of ¥.
Let x €"E,, and y € "B,, be such that y,/R = x, forall k <n. Let
i(x)=m,/n where m, is the largest k such that

XA o AX, #0 for i< - <i<n; i(y)=m,/n

where m, is defined similarly. We shall prove that m, = m,.
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Suppose that k =m, Then, there are y,,---,y,, such that
VoA A Y, #0. Thus,

(Yo A Ay ) R#O.
But
(Yo A A Yo )JRS0(yo/R) A~ A2 (y, /R)

SEX A A X,

SO, Xg A" A X, #0.
Thus, we have proved that i(x)= i(y). But

i(E,)=inf{i(x): x €¢E,} = inf{i(y): y €¢B,.}=i(B,)>0.
Therefore, the lemma is proved.

LEMMA 4.5. If B/I is weakly o-distributive, then € is also weakly
o-distributive.

Proof. 1In ([13], Th. 30.1 (2)), it is proved that a o-BA is weakly
o-distributive iff for every x € “*“E we have that:

AMV{x, sEw}: tEw}#0

implies that there is a function ¢ from w into the finite subsets of @ such
that,

MV{x,:sEP()}:tEw}#O0.
Suppose, then, that x € “**& and
AMV{x,:sEw}:tEw}#O.
So, there is a ¢ € B/I, ¢#0, such that,
c/R=ANV{x,: sEw}: tEw}
Since the elements x,, of € are idemmultiple in %, by 4.7T we get,
c/R =3,c.x,, for every t € w.
From 2.2T we obtain,

¢/R=3,c,y, with y,=x, for every t, s = .
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We define, by recursion, for each ¢ € w, a sequence z, € “(B/I) as
follows: We have,

cRZ., 2z, with z/R=y, foreveryts€ w.
Then, as R is refining,
C=2zo+ Uy, ZoRzjp, and wuoR Zic,zisi1,

for every t € w.
Repeat the same procedure to obtain z,,,, given z,,. We have, since
R is a congruence relation,

(Esz zts) R- (zsew V4 :_g) ﬁ C.

Let d=c—2,c.z,. Then ¢/R+d/R=c/R. Thus, h+d/R=nh
by 1.30T. By 4.3 we get that d =0/1.

Therefore, ¢ =3,.,z, and z,/R = ys for all t,s€ w. Now,
MV{z,:sEw}:tEw}=A{c:tEw}=c#0. SinceB/I is weakly o-
distributive, there is a function ¢ from w into the finite subsets of w such
that,

MV{z,:sEP(t)}: tEw}#0.
So,

0# AM{V{z,: SEP()}: t Ew}/R = ANZ,eoyyss i t € 0}
= MZeonXs i tEw}= AMV{x,: s €E P(1)}: t € w}.

Therefore, the lemma is proved. We now continue with the proof of
4.2

From (iv), 4.4 and 4.5 we obtain that € has the Kelley property and is
weakly o-distributive. Then using (Th. 9 of [10],), we obtain a strictly
positive measure u on €.

Let Co(X) be the family of open-closed sets of X. Define the
measure g on Co(X) by z(E(a))= n(~a). Since X is compact, & is
countably additive as a measure on the field of sets Co (X). Extend i to
the o-field B(X) of subsets of X generated by Co(X) (B(X) are the
Borel setsin X). Using normal measure-theoretic procedures, define an
integral Il on all &-measurable bounded functions. All functions in
% (X, R) are bounded s -measurable.

Define A on U by, A(a)=1I(F(a)). A satisfies the following
properties:

3) A(h)=1
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(3) is proved by,

A(h)=T1(F(h))= g(E(h))= pu(*h)=1.

4) A(a+b)=A(a)+ A(b), for all a,b € A.
(4) is proved by,

Aa+b)=1I(F(a)+ F(b))=I1(F(a))+II(F(b))= A(a)+ A(b).

(5) If xE“A is a nondecreasing sequence, and a =V ,x, then
lim, .. A(x,) = A(a).

Proof of (5). Let x€“A, x,=x., for all i<w, and a=
V,..%. Then

lim A (x,) = lim [T (F(x))) = II(lim F(x,)), where limF(x)=f

is the pointwise limit of the functions F(x,)’s (this limit exists, because
F(x,)= F(x,.,) for all i <w). We have that E(x;) is the support of
F(x,). Thus, if y & U{E(x,): i € w}, then f(y)=0.

We also have that V,F(x,)= F(a), where the Lu.b. is taken in
(€(X,R), +,%). The support of F(a) is E(a). Now, u(®a)=
lim,_, u(%®x,), because oa=V,,®x, and oox, =wx, for all
i€ w. Thus, g(E(a))=1lim_.x(E(x)). Also,

A(U{E(x,): i Ew})= lim & (E(x,)). Then

@(E(a)— U{E(x,): i €E w})=0, and, thus, A(a)=I1I(F(a))=1I(f).
Therefore, lim,_. A(x;) = A(a) and (5) is proved.
(6) If a#0. a € A, then A(a)>0.

Proof of (6). A(a)=1I1(F(a))and F(a)is a continuous nonnegative
function, which is positive somewhere. Then, there is an open-closed
set C such that F(a)= € >0 on C for some € >0. But, as u is strictly
positive, £ (C)>0. Thus, A(a)=11(F(a))>0.

Since A satisfies (3), (4), (5) and (6), we apply 16.11T and obtain a
strictly positive measure on B/I. Transfering the measure to 8 we
obtain the desired properties.

5. Invariant measures on fields of sets. In this section,
we apply Theorem 4.2 to measures on o-fields of sets. Thus, let ¥ be a
o-field of sets and G a group of transformations of &. If u is a
G-invariant measure, u has to vanish on all =-negligible sets. We call
these sets G -negligible i.e. A € F is G -negligible if there is a sequence of
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disjoint elements Y € “F, such that A=;Y, for every i <w. Ng is the
set of all G-negligible sets. From 4.2 we obtain immediately:

THEOREM 5.1. Let ¥ be a o-field of subsets of a set X, G a group
of transformations of ¥, and I a subset of F. The following conditions
are necessary and jointly sufficient for the existence of a countably
additive, G-invariant, and I-positive measure on §:

() I is a proper o-ideal in .

(i) If A€I and B ~A, then BE L

(i) Ng C L

(iv) ®/I has the Kelley property and is weakly o-distributive.

It is easy to generalize 5.1 to the case when the measure u is
required to be equal to one, not on X, but on another set C €&
F. Instead of considering G-negligible sets, we have to consider G-
negligible sets relative to C (i.e. A € F is G-negligible relative to C if
there is a sequence of disjoint elements Y &€ “F, such that Y,CC and
B =;Y for every i<w). Also, C should not belong to I. The
conjecture that the only necessary and sufficient condition for the
existence of a G-invariant measure is that X is not G-negligible, was
proposed in [2], at least for the case when F is the field of all subsets of
X. However in [3], the following counterexample was indicated:

Let X = w, and G be the group of all permutations f of X, such that
f(x)# x for at most denumerable x in X. It is easy to see that G is a
group of transformations on the field of all subsets of X. The ideal of
G -negligible sets contains all sets that are at most denumerable. Thus,
X is not G-negligible. However, the existence of a G-invariant meas-
ure on this field would imply that w, is a measurable cardinal.

When we want measures on BA’s we are mainly interested in strictly
positive measures. For G-invariant measures u on a o -field of sets, it is
hardly ever possible to obtain strictly -positive measures, since u must
vanish on the G -negligible sets and, by a result of ([1], p. 194), nonempty
G-negligible sets exist in most cases of interest. In particular, these sets
exist when for every n < g, there are disjoint Yy, - -+, Y,., € F such that
X=2_Y and Y,=5Y, for every i,j <n. What we can get are meas-
ures that only vanish at G-negligible sets. We call these measures
G-strictly positive (i.e. w is G-strictly positive iff w is Ng-
positive). Using 4.1 we get as a particular case of 5.1:

THEOREM 5.2. Let § be a o-field of subsets of a set X and G a group
of transformations of §. The following conditions are necessary and
jointly sufficient for the existence of countably additive, G-strictly positive,
and G-invariant measure on ¥:

(i) X&Ns;

(ii) #®%/Ng has the Kelley property and is weakly o-distributive.
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GAUGE GROUPS AND CLASSIFICATION OF
BUNDLES WITH SIMPLE STRUCTURAL GROUP

W.D. CurTis aND F. R. MILLER

Suppose 7, i =1,2 are principal K-bundles which are
C’-isomorphic in the sense that there exists a K-equivariant
C’-diffeomorphism f: #,— %,. I h belongs to the gauge
group H, of %, then hof lies in H, and we have a group
isomorphism H,— H, which is C”. It is the purpose of this
paper to investigate the converse in the case where K is a simple
Lie group. (If K is abelian the gauge group of every K bundle
over X is C'(X, K) so there is no hope of a converse. However
for simple groups the situation is much better).

0. Introduction. Let K be a compact connected Lie group
with Lie algebra #. Let w:  — X be a principal K-bundle of class C*
where X is a compact, connected C”-manifold.

Throughout this paper r will be a positive integer which is chosen at
this time and remains unchanged from here on.

We denote by H the subgroup of C'(%, K) consisting of all those h
for which h(pk)=k'h(p)k for all p in ? and k € K. H is naturally
isomorphic to the group of all C’-bundle automorphisms of ? which
cover the identity on X [1, 2]. The group H will be called the gauge
group of =7 the terminology being motivated by current usage in
theoretical physics. C'(%,K) is a Banach Lie group and H is a
sub-manifold and so H is a Banach Lie group [2]. The Lie algebra of H
can be identified as ¥ ={h: P —> ¥ |h is C" and h(pk)= Ad(k ")h(p)
for p € #, k € K}.

The bracket in ¥ and the exponential map exp: # — H are the
natural pointwise operations.

1. Ideals in . Suppose $CH is an ideal. For p€ 2P
e,: # — X is defined by e,(h)=h(p) for h € #. e, is a Lie algebra
epimorphism so e,(#) is an ideal in ¥.

LemMma 1.1. If p € P and k € K then ¢,($) = e (F).

Proof. eu(h)= h(pk)= Ad(k Yh(p)= Ad(k ')e,(h). Thus
ex(F)=Ad(k")e,(¥). But e, (F)is an ideal in ¥ so Ad(k")e,(F)=
e, (F).

DEerINITION 1.2, If x € X let ¥, = ¢,(¥) where p € 77'(x).
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DerFiNITION 1.3, If $ is an ideal in # we say $ has property s if
[, %)= 4.

We recall that [#, #] is the Lie subalgebra of # generated by all
elements of the form [a, b] where a € $, b € H. [F, ] consists exactly
of all finite sums Z,[a, b}, a, € 4, b € ¥.

We denote by F(X) the algebra of C’, real valued functions on
X. ¥ is a module over ¥(X) for if f€ #(X) and h € ¥ define
fh: P -3 by (fh)(p)=f(m(p))h(p). One easily sees fh lies in ¥ so
we have a module.

LeMMA 1.4. If the ideal $ C ¥ has property s then $ is a F(X)-
submodule of .

Proof. Leth € ¥, ¢ € F(X). Weshow ¢h € . J has property
s so we may write h =X, [h, f.] where h, € $ and f, € #. Then ¢h =
2. élh, f]= 2. [h, ¢f.] € $ where we used the pointwise nature of the
bracket to get the last equation.

LemMma 1.5. If #, and ¥, correspond to bundles w, and m, and
Y. H,— ¥, is a Lie algebra isomorphism then if $ has praperty s in ¥, then
Y (F) has property s in ¥,.

Before proving the final lemma of this section we make a prelimi-
nary construction. Suppose U is open in X and ¢ is a section of 7 over
U. Suppose h € ¥ and h has support in 7w '(U). Define h: X > ¥

by,

h(é(x)) xeU
h(x)= {
0 x & U.

h € C'(X, %) has support in U. Conversely if we start with h: X — %
having support in U we can define h € ¥ as follows. There is a unique
C”-map 0: 7w '(U)— ¥ such that £(w(p))0(p)=p forp E v '(U). We
define

Ad(6(p) Yr(m(p)) peE = '(U)
h(p)= {

0 p &« '(U).

It is easily checked that h € .
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If x,€ X we have:

H,={f€EH|f(p)=e forall pe&m'(x)}.
H,={h€X|h(p)=0 forall p€& 7 '(xy)}.

LEMMA 1.6. Assume ¥ is semisimple. Then ¥, has property s.

Proof. Let (¢,); be a finite partition of unity on X subordinate to an
open cover (U,); such that = is trivial over each U. Thenif h € ¥,, we
have h = Z,¢h and each ¢ph € #,. Therefore the problem is reduced
to proving the following: If U C X is open such that 7 has a local section
¢ defined on U and if h € #,, has support in 7 '(U) then h can be
written as h =23, [g,, ¢,] where g, € #,,, ¢, € X.

Let h: X — ) correspond to h using the section £ as above. Let
(E.); be a basis for #. Write h = ,h'E, where h* are real valued. Since
J is semisimple we may write E, =3, [Fj, G;] where F;, G; are in
%. Therefore h =32,h'[F,G}]=2, [h' i Gil=2,[8,®.] where g,
and ¢,: X = ¥ are C’ with g,(x,)=0. We can easily arrange that g,
and ¢, have support in U. Then let g, ¢, be the corresponding
functions on ?. Then if p € ? with w(p)= x we have,

h() = Ad@(R) i () = AdE) ) (S (8.6, 6.0 )
= 2 [Ad(6(p))g.(x), Ad(0(p) ). (x)]
= Z (8.(p). &.(p)] = (2 (8. ¢>»]>(p)~

2. A classification theorem. In this section, in addition to
the assumptions made in the introduction, we assume K is a simple Lie
group with trivial center. We first make some observations.

Given a principal K-bundle 7: ? — X we construct the associated
fiber bundle &/ — X with fiber ¥ where K acts on ¥ via the adjoint
representation of K. Each p&€ ® with w(p)=x gives a linear
isomorphism ¢,: ¥ — o,. Since Ad: K — Lis(¥) actually takes values
in Aut(¥) we see  is a bundle of Lie algebras. Therefore ["(«), the
space of C’-sections of &, is a Lie algebra with pointwise
bracket. There is a natural isomorphism % — I () given by h > h
where h(x)= ¢,(h(p)) for each x € X where p € w“(x) [3]. This
isomorphism is an isomorphism of %(X)-modules and is a homeomor-
phism with respect to the C’-topologies.

Now suppose m,: #— X are principal K-bundles, i =1,2, with
gauge groups H; and %, the Lie algebra of H. For x,E€ X the ideal #,,
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is closed. Let ¢: H,— H, be a C'-group isomorphism. There is an
induced Lie algebra isomorphism ¢ ,: #,— ¥, given by

1) =5 | [Wexp ()

Y« 1s a topological isomorphism and so for each x, € X ¢ ,(¥.,) is a
closed ideal having property s in #,. If we write $ = ¢ ,(¥,,,) and refer
to the discussion of section 1 we have ideals ¥, C¥ for each x €
X. There are apparently two possible cases.

Case 1. H, =X for all x € X.

We argue this cannot occur. Since £ is an ideal with property s # is
an F(X)-submodule. If %, =% for all x in X we shall show $ = &,
which is impossible since #,,, # #,. To show $ = ¥, we regard $ as a
closed #(X)-submodule of I'"(«/,). Then for x € X, v € «,, there is
h € $ for which h(x)=v. One now uses the %(X)-module structure to
show for any x € X and for any r-jet ¢ € j ., there is an h € # for which
jih = ¢ Since $ is a closed submodule we conclude $ =TI"(«,) by
applying a ‘“‘global” version of a well-known theorem of Whitney. We
refer to [5], Corollary 1.6, p. 25.

Case 2. H, =X for some x.

In this case there is some x, for which ¥, =(0) since K is
simple. We claim there cannot be an x, # x,, for which %,=0. For if
there were then we would have ¥ C #,,, N ¥,,,. But the codimension of
$ in ¥, equals the codimension of #,, in %, which equals the
codimension of #,,, in ¥, so $ C¥,, N ¥,, is not possible. Therefore
in the present case we see there is a unique x, € X for which # = #,,,.

Thus we see that a C' isomorphism ¢: H,— H, gives rise to a
bijection ¢: X = X defined by

‘p*(%u) = %zﬁ(x)'

Now let h € #,, f€ #(X). We have ¥: X — X and we write i .(f) =
fed™"

Lemma 2.1 u(fh) = §u(f)y«(h).

Proof. Let p,€ P,, let A = ¢ 4(f)(x). Then

Ua(fh)(p2) = Yra(fh = AR) (p2) + ¥ (AR ) (p2)
= U((f = V) (P) + A« (h) ().
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Let x' = ¢~'(x) and let pPE P... Then(f—A)h(p)=(f(x')—A)h(p)=
0 by choice of A. Thus (f—A)h € ¥, and so ¢.((f —A)h)E ¥,. so
U«((f = A)h)(p) =0. Thus

a(fh)(p2) = A () () = (P u(f) - ¥ £(h)) (p2)

as desired.
LEmMMA 2.2. The map ¢: X — X is a C'-diffeomorphism.

Proof. We need only show ¥ 'is C". It is enough to show that if
fe F(X)then foy'is C'. Choose x,€ X, U a neighborhood of x, %,
trivial over U. Then let V be a neighborhood of x, with VCU. Letk
be a section of &, over U which in the local trivialization has constant
principal part. We can then cut k down to get a new section, again
called k, defined on all of X and agreeing with the original k on
V. Then choose h € I'"(«,) such that ¢ .(h)= k. (We are identifying
9 and I'(sf)). Now by Lemma we have ¢.(fh)=(foy Ws(h)=
(fo ¢ )k. When we view the C'-section (f° ¢ ")k in our local trivializa-
tion we conclude fo¢ ' is C" on V. So we conclude fe¢'is C' and
hence ¢ ' is C".

We now define a bundle isomorphism ¢ such that the following
commutes:

A~ o,

L]

¢

X— X

Let @, € &,,. Choose a section h € I'" () such that h(x) = a,. Define
¥(a) by ¥(a,)= ¢4(h)(¥(x)). This is independent of the choice of h
for if h, were another section with h,(x)= «, then h — h, vanishes at
x. Hence ¢(h—h,) vanishes at §(x) so ¢(h)(W(x))=
¥4(h)(@(x)). It is clear that the diagram commutes and that ¢ map-
ping &, to #,; is a Lie algebra isomorphism.

LEMMA 2.3. ¢ is C".

Proof. We work locally trivializing &,. Let U be open in X,
V CU also open, y: UXR™— o, |U be a trivialization of s/, over
U. Using this we see there are C'-sections h, - - -, h,, € I'"(«,) such that
for each x in the subset V, h,(x), - - - h,,(x) give a basis for the fiber over x
which corresponds to the standard basis of R™ under y. We claim
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poy: VXR™— o, is given by
oy (8,8 = 3 £ (h) ).

If so then ¢ is C'. But given ¢',---,¢™ choose f'€E F(X),
f'(x)=¢'. Then by Lemma 2.1 we see

I g, e =82 en) = (2 ) )

b (2 £ ) ()
TGN () G ()

Il
i

S £ua(h)(F(x)).

Let p € ?,.. Then ¢, ¥ — &,, is a Lie algebra isomorphism. If
q € A5, then we have a Lie algebra isomorphism
b2 H — Ay (Note the superscripts tell which bundle is being used).

Now (¢2) "o yodl: H — I liesin Aut(¥). Let €={(p,q)|p € P.,
and q € P,;, forsome x € X}. & is the total space of the fiber product
of ? and ¢*P,, We have a map p: E€— Aut(¥), p(p,q)=
(¢ 'odiodl. p is continuous and € is connected so p takes values in
one of the connected components of Aut(J). Since K is a simple group
the identity component of Aut(¥) is Aut’(¥#)= Ad(K). Suppose
o € Aut(¥) and that p(E)CAut’(¥)o= Ad(K)o. Let q€ P,
k€ K. Then ¢ = ¢pi0oAd(k). So p(p,gk)= Ad(k)ep(p,q). We
conclude that for each p € ?,, there is a unique u(p) in P,;,, for which
p(p,u(p))=0. We then have a map u: P, — P, covering . K acts
freely on the right of both ?, and ?,. We now show there is an
automorphism ¢ of K, induced by o, such that if a new action of K on %,
is defined by q * k = q(k), (the right side being the original action) then
w becomes K-equivariant. We have o € Aut(¥). 7—oro™' is an
automorphism of Aut(¥) and hence restricts to an automorphism of
Aut’(¥)= Ad(K). Using the isomorphism Ad: K — Ad(K) we see a
unique automorphism ¢ is induced. ¢ satisfies the equation
Ad(a(k))=o0Ad(k)o™'. Now we show u(pk)= pu(p)*k for p € 2,
k € K. We need only show p(pk,u(p)*k)= 0. But

p(pk, n(p)* k)= p(pk, n(p)G(k)) = Ad(G(k)) " e p(p,n(p))°Ad(k)
= Ad(6(k)) oo Ad(k)= cAd(k)' o 'cAd(k)= o

so we are done.
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DEFINITION 2.4. Let 7: ?— X be a principal K-bundle, 7 an
automorphism of K. The principal K-bundle 7": ™ — X is defined by
introducing the new action *: » X K— P, pxk = pr(k). Wesay 7" is
conjugate to w by 7.

Considering the previous discussion we have now proved

THEOREM 2.5. Under the assumptions made above if §: H— H, is
a C' isomorphism then there is a C’-diffeomorphism : X — X and an
automorphism & of K such that m, = ¢y *(w3).

REMARK. Of course if & is an inner automorphism we get 75 = 7,
and ¢ can be dropped.

3. Classical groups. We apply the results of §2 to the groups
SO@2n+1)n=1,U(n) n=2,and SO(2n) n=3. Since the center of
SO(2n +1) is trivial and the automorphism group of its Lie algebra is
connected [6, pages 285-6] we get

THEOREM 3.1. Let m,: P, — X be principal SO(2n +1) bundles
with gauge groups H, i=1,2. Suppose : H— H, is a C' (local)
isomorphism. Then there is a C’-diffeomorphism : X — X so that

= §*(m).

Now let K be SO(2n) n =3 or U(n) n =2, m;: P, — X be principal
K bundles with gauge groups H, and ¢:H,—H, a C' local
isomorphism. Let Z denote the center of K. Now P = P1Z is a
principal K/Z bundle over X. Let H, be the gauge group of #. In
both cases (SO(2n) and U(n)) one can show that the Lie algebra
isomorphism ¢ ,: #,— ¥, gives Lie algebra isomorphism 1[/* % > %,
and also that the center of K/Z is trivial. Thus the results of §2 give a
C' diffeomorphism ¢: X — X and an automorphism o of K/Z so that
= ¢*(75). Note that if o is an inner automorphism #5= 7, so that o
can be dropped. The form of o not inner is given in [6, page 287]. It
can be seen that o liftsto o: K — K and that (?,/Z)” = P¢/Z. We thus
get

THEOREM 3.2. Let K be SO2n)n=3orU(n)nz2, m: P —>X
be principal K bundles with gauge groups H, i=1,2. Suppose
¢: Hi— H, is a (local) C" isomorphism. Then there is a C' diffeomor-
phism ¢: X —> X and automorphism o:K—K, so that P/Z =
U*(P,| Z) = §*(P3)| Z where Z is the center of K.

One can show that 2, is a ‘“‘tensor product” of 117*(?/’5’) with a
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principal Z-bundle over X. One way to see this is to use the classifica-
tion for bundles as given in [4]. We state the result in terms of
associated vector bundles.

THEOREM 3.3. Let m: P, — X be principal SO(2n) n=3 (U(n)
n = 2) bundles with gauge groups H, i = 1,2. Let £ be the real (complex)
vector bundle associated with P, using the usual representation of
SO@2n)(U(n)). Suppose : Hi— H, is a (local) C'-isomorphism then
there is a C' diffeomorphism §: X — X, o an automorphism of
SO(2n)(U(n)), and n a real (complex) line bundle so that &, is
SO(2n)(U(n)) isomorphic to y*(£5) & 7.

Final remark. We need not have assumed that ?, and P, were
bundles over the same manifold X. We could have considered
m: P, — X and 7,: P,— Y. Ifthe gauge groups H, and H, are (locally)
C! isomorphic we get a C’-diffeomorphism ¢: X — Y.
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THE ESSENTIAL UNIQUENESS OF
BOUNDED NONOSCILLATORY SOLUTIONS OF
CERTAIN EVEN ORDER DIFFERENTIAL EQUATIONS

G. J. ETGeEN AND W. E. TAYLOR, JR.

Let n be a positive integer, let p be a positive continuous
function on [0, =), and consider the 2nth order linear differential

equation

(N u®—p(x)u =0.

It is well known that this equation has a solution w = w(x)
satisfying

2) (- D*w®(x)>0, k=0,1,---,2n—1,

on [0,«), and it is clear that w is positive and bounded. The
purpose of this paper is to investigate the essential uniqueness of
the solution w, where the statement “w is essentially unique”
means that if y is any other solution of (1) which satisfies (2),
then y = kw for some nonzero constant k.

In addition to having solutions which satisfy (2), it is easy to show
that equation (1) has solutions z = z(x) satisfying

(3) 2®(x)>0, k=0,1,---2n—1,

on [a,©) for some a =0. For some recent results concerning the
behavior of solutions of (1) satisfying either (2) or (3), the reader is
referred to the work of D. L. Lovelady [6], and T. T. Read [7].

A solution of (1) which satisfies (2) is said to be strongly decreasing,
and a solution satisfying (3) is said to be strongly increasing. If y is a
nontrivial solution of (1), then y is oscillatory if it has infinitely many
zeros on [0,). Equivalently, y is oscillatory if the set of zeros of y is
not bounded above. The differential equation (1) is oscillatory if it has
at least one nontrivial oscillatory solution. Hereafter, the term “solu-
tion of (1)” shall be interpreted to mean ‘“‘nontrivial solution.” A
solution of (1) which is not oscillatory is called nonoscillatory. Clearly,
any solution satisfying either (2) or (3) is nonoscillatory. We shall say
that equation (1) has property (H) if every nonoscillatory, eventually
positive solution satisfies either (2) or (3).

S. Ahmad [1] has studied (1) in the case n = 2, and he has shown that
(1) is oscillatory if and only if it has property (H). While this result is

339
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not known in general, Lovelady [6, Theorem 2] has shown that property
(H) implies the oscillation of (1). Read [7] and G. W. Johnson [4] have
obtained some results on the asymptotic properties of solutions of
(1). In particular, they have obtained criteria which imply that any
solution w satisfying (2) has the property lim,_. w(x)=0. Finally, we
refer to the work of G. D. Jones and S. M. Rankin [5] where the problem
of the essential uniqueness of a solution w satisfying (2) was considered
for the case n =2.

2. Preliminary results. Let & denote the 2n-dimensional
vector space of solutions of equation (1). Our first result is essential in
the work which follows. Since the proof is straightforward, using well
known techniques, it will be omitted.

LEmMa 2.1. Ify & Fandy“(a)z0,k =0,1,---,2n — 1, for some
a =0, with at least one inequality being strict, then y*(x)>0, k =
0,1,---,2n—1, on (a,*) and

lim y®(x) = o, k=0,1,---,2n-2.
If z € Fand (—1)z%(b)=0,k =0,1,---,2n — 1, for some b >0, with at
least one inequality being strict, then (—1)*2%(x)>0 on [0, b).

Let J be the function defined on ¥ X & by

2n—1

4) J(u,0)(x)= 2 (= D o®0)ut*"(x)

k=0
For any pair of functions u, v € ¥, it is easy to verify by differentiating
J(u,v) that J'(u, v)(x) = 0 for all x € [0, ). Thus J(u, v) = c, a constant
on [0,%). The case where J(u,v)=0 shall be denoted by u L v. Fix
y € & Following the ideas introduced by J. M. Dolan in [2], we define
the subset #(y) of & by

Fy)={zeFly Lz}

Let wu,, uy, -+, uy,-; be 2n —1 solutions of equation (1), and let
W(uy, u,, - -+, uy,-) denote their Wronskian. It is well known that W is
a solution of (1), and that W is nontrivial if and only if the solutions are
linearly independent. Let y €% and let Ty, u,, us, "+, uy,-,] denote
the Wronskian of the 2n solutions. Then, by expanding T along its first
column, we get the following relationship between T, W and the
function J

(5) T[Y5 u17 uZ) Y u2n71] = J[ya W(ula u27 B u2n~1)]
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THEOREM 2.2. Let y €. Then the following hold.

i) L(y) is a 2n —1)-dimensional subspace of ¥ and y € F(y).

(i) IfzeP(y), and y and z are linearly independent, then there
exists a solution u € ¥(y) such that J(u, z) # 0.

(i) If {uy,uy - Uy} is a basis  for F(y), then
W(uy, Uy, -+, Uyy—1) = ky for some nonzero constant k.

(iv) Ifv €, then (y)N F(v) has dimension 2n — 1 if and only if
y and v are linearly dependent; otherwise ¥(y)N F(v) has dimension
2n —2.

Proof. Part (i) is easy to verify using (4) and the definition of ¥(y).

(i) Let z € #(y) be independent of y. Suppose z has a zero of
multiplicity k, 1=k =2n—1, at some point ¢ Z0. Since ¥(y) has
dimension 2n — 1 we can construct a solution u € ¥(y) such that

M(C) — u;(c): - u(2n—k~2)(c) — O — u(2n—k+1)(c) R u(2n—l)(c)= 0’
u(zn—k—l)(c)= 1, u(zn—k)(c) =,

where y is some constant. Then, from (4), J(u,z)=z%(c)#0. If
z#0 on [0,%), then choose a point ¢ such that y(c)#0, and choose
m#0 such that y(c)—mz(c)=0. Let v =y—mz. Then v € ¥(y)
and v#0 since y and z are independent. Now, we can repeat the
argument above to determine a solution u € ¥(y) such that
J(u,v)#0. SinceJ(u,v)=J(u,y — mz)= —mJ(u,z),we conclude that
J(u,z) # 0. .

(i) Let {uy, uy, -+, us1} be a basis for F(y). Since y € L(y),
y = 227" cu; and thus

0= T[)’, U, Uy, 0y u2n—1] = J[Y> Wup, us, -+, u2n~1)]

Hence the solution W(uy, u,, - - -, u,-,) is an element of #(y). The same
reasoning shows that

J[Z’ W(ul’ u27 Y u2n—1)] = O

for all z€ %(y), and we can conclude, from (i), that
W(uy, uy, -+ -, Use—y) = ky.

Part (iv) is an immediate consequence of either (ii) or (iii). This
completes the proof of the theorem.

We now consider the properties of the subspace ¥(w) in the case
where w satisfies (2).

THEOREM 2.3. Assume that equation (1) has property (H), and
suppose w € & satisfies (2). Then:
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(i) Ify€ P(w), then either y satisfies (2), or y is oscillatory

(i) Ifye€ P(w)andy®(a)=0 for some a =0 and some nonnega-
tive integer k, 0=k =2n — 1, then y is oscillatory

(i) If z € ¥ and z & F(w), then z is unbounded.

Proof. (i) Let y € ¥(w) and assume that y is nonoscillatory with
y >0on [a,®), a=0. Supposey does not satisfy (2). Then y satisfies
(3) and there is a number b = a such that y*(x)>0,k =0,1,---,2n — 1,
on [b,»). By evaluating J(w, y) at any x = b, we have that J(w,y) # 0,
contradicting the fact that y € £(w).

Part (ii) follows immediately from (i).

(i) Let z€ ¥ and suppose z & F(w). Fix any point a =
0. Since ¥(w) has dimension 2n — 1 we can construct a basis for £(w)

consisting of w and 2n — 2 solutions u,, u,, - * *, U,,-, such that u, has a
zero of multiplicity k at x =a, k =1,2,---,2n —2. By (ii) every linear
combination of the solutions u,, u,, - - *, u,,, is oscillatory. Let y be the

solution of (1) determined by the initial conditions y(a)=y'(a)="---=
y® a)=0, y*P(a)=1. Then y satisfies (3) on [b, ) for every
bz=a Thus y & ¥(w) and the set {y, w, u;, u,, - -, u»,_,} is a basis for
&. Now

2n—-2

=cy +dw + z cl;,

i=1

where ¢#0. Since w is bounded, and 2I27% cu; is oscillatory, we can

conclude that z is unbounded.
Our next result has appeared in [5, Lemma 4] for the case n =
2. The proof is straightforward and, consequently, it will be omitted.

LeEmMMA 2.4. Let {uy, Uy, - -, U,,} be a basis for . Then there exists
a basis {z,,z,,** *, 22,} for ¥ and 2n nonzero constants k,, k,, - - +, k,,, such
that

U; = k,'W(Z], 22, AR z,'_l, ZH.], AR ZZn), l = 1,2, ct 2n.

3. Main results. It is easy to see that equation (1) has no
oscillatory solutions when n =1. Also, it is easy to show that the
nonoscillatory solution w satisfying (2) is essentially unique in this
case. Our first result shows that this situation holds in general.

THEOREM 3.1. If equation (1) has no oscillatory solutions, then the
nonoscillatory solution w satisfying (2) is essentially unique.

Proof. Suppose that (1) has two linearly independent solutions w
and v satisfying (2). Fix any a=0 and choose k such that
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w(a)— kv(a)=0. Let y be the solution given by y(x)=
w(x)— kv(x). Since y is nonoscillatory, we shall assume that y >0, and
that I y®# 0 on [b,®), b >a. Then y®’=py >0. Since each of w
and v is bounded on [0, ), y is bounded and we can conclude that no two
consecutive derivatives y*), y**" 1=k =2n — 2, can have the same sign
on [b,%). But this implies

@2n—1)

sgny = sgny” = --- =sgny®’ #£ sgny’' = sgny” = --- = sgny

on [b,%0) and, with Lemma 2.1, contradicts the fact that y(a)=0.

We now consider the case where equation (1) is oscillatory. The
next result gives a connection between the essential uniqueness of the
solution w satisfying (2) and the maximum number of linearly indepen-
dent oscillatory solutions in .

THEOREM 3.2. Assume that equation (1) has property (H). The
following two statements are equivalent:

(a) The solution w of (1) satisfying (2) is essentially unique.

(b) Equation (1) has at most 2n — 1 linearly independent oscillatory
solutions.

Proof. To show that (a) implies (b) we use a simple extension of the
proof of the corresponding result for the case n =2 in [5, Theorem
4]. In particular, assume that w is essentially unique, and suppose &

has a basis consisiting of 2n oscillatory solutions u,, u,, - - -,u,,. Using
Lemma 2.4, let {z,, z,,- "+, 2,,} be a basis for & such that for each i,
1=i=2n,

W(zla Y, Zl*l? Z|+]7 Ty Zln) = klul'

Consider the solution u, = k,W(z,, z5,- - -, 2z,,). Since u, is oscillatory,
there is an increasing sequence {x;};=, such that lim,_. x, =« and u,(x,) =
0 for all i. Therefore, for each positive integer i there are 2n — 1
constants ¢, €3, * * *, C2,, sSuch that 77, ¢%=1 and the solution v,

2n

Ul: = 2 CjiZ/a

j=2

has a zero of order 2n—1 at x =x. Because the sequences {c;},
j=2,3,--+,2n, are bounded, we can assume, without loss of generality,
that lim,_..c; = ¢,j =2,3,---,2n,and 272, c?= 1. By using an argument
similar to the one used in [1, Theorem 1],

hm vl, = vl = C222+ C3Z3+ st CZnZZn

11—
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is a bounded nonoscillatory solution of (1) satisfying (2). Repeating this
process 2n — 1 more times with the solutions u,, u,, - - -, u,,, we obtain the
bounded nonoscillatory solutions

2n
— 2 _
v, =dyuz tdpzyto+ dz,znzzm Z d2j_ s
<~
i
2n
_ 2 _
U3 = d3121 + d3222+ d34z4+ st d3,2nz2m 2 d3j_ ’
j=1
j#3

2n-1

_ 2
Usn = d2m121 + dzmzzz +oeet d2n,2n—122n—17 z d2n,j" 1
j=1

The solution v, must be independent of at least one of the other v,’s,
because, if not, then it is easy to show that ¢, = ¢; =+ - = ¢,, = 0 which
contradicts 2%, ¢c3=1. Thus & cannot have more than 2n — 1 linearly
independent oscillatory solutions.

Now assume that & contains at most 2n — 1 linearly independent
oscillatory solutions. Let w € & satisfy (2). As seen in the proof of
Theorem 2.3 (iii), we can construct a solution basis for ¥(w) consisting of
w and 2n — 2 oscillatory solutions uy, u,, - - -, U,,-, such that u, has a zero
of multiplicity k at x =a, k =1,2,---,2n -2, a 20 fixed. Choose a
point b > a such that u,(b)# 0 and let m be chosen such that u,(b)—
mw(b)=0. Then y=u,—-mweF(w), y is oscillatory, and
Yy, Uy, Uz, * * +, Usa— are linearly independent. Suppose there exists a solu-
tion v satisfying (2) such that w and v are linearly independent. Then,
from Theorem 2.2 (iv) ¥(w) # $(v) and there exists a solution z € ¥(v)
such that z € ¥(w). Since z € $(v) and v satisfies (2), z cannot satisfy
(3). Since z & ¥(w), z must be unbounded. Therefore z is an un-
bounded oscillatory solution and it, together with the 2n — 1 independent
oscillatory solutions in &#(w) found above, constitute a solution basis for
&. This contradicts the hypothesis that & has at most 2n — 1 linearly
independent oscillatory solutions, and completes the proof of the
theorem.

COROLLARY 3.3. Assume that equation (1) has property (H). Ifall
the oscillatory solutions of (1) are bounded, then the solution w of (1)
satisfying (2) is essentially unique.

Proof. As seen in the proof of the theorem, if w is not essentially
unique, then there exists an unbounded oscillatory solution z & ¥(w).

Our final result requires the concept introduced by Dolan and
Klaasen in [3]. In particular, if # and 2 are subsets of ¥, then R is said
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to dominate 2, denoted # > 2, if foreachyE R andz € Q,y+Xz €ER
for all real numbers A.

Let % denote the unbounded nonoscillatory solutions of equation
(1), B the set of bounded nonoscillatory solutions, and @ the set of
oscillatory solutions. When equation (1) has property (H), the sets U
and A are easy to describe since z € U implies either z or —z is
strongly increasing and w € # implies either w or —w is strongly
decreasing.

THEOREM 3.4. Assume that equation (1) has property (H). The
following statements are equivalent

(a) >0

(b) O>R

(c) The solution w of (1) satisfying (2) is essentially unique.

Proof. Suppose (a) holds and suppose there is a number k # 0 such
that y + kw is nonoscillatory where y € 0 and w € 3, i.e., w satisfies
(2). It is clear that the solution v = y + kw does not satisfy (3), and so,
by property (H), v satisfies (2). Obviously w and v are linearly
independent. Fixany a=0. Letu;, u,, - -, u.-, be the 2n — 2 linearly
independent oscillatory solutions in &(w) such that w, has a zero of
multiplicity k, k =1,2,---,2n -2, at x =a. Let z € ¥(v) such that
z & $(w). We may assume that z(a) =0 (which implies z oscillates),
for if z(a)# 0, then choose m # 0 such that z,= z — mw has a zero at
a. Clearly z,€ ¥(v) and z, & ¥(w). Let y be the solution of (1)
determined by the initial conditions y(a)=y'(a)="--=y*?(a)=0,
y*Na)=1. From Lemma 2.1, y € U. The set {uy, us, -, Uz, 2, y}
forms a basis for the set of solutions of (1) having a zero at a. Therefore

2n—-2

z= 2 cu, +cy =u+cy.
i=1

Since u(a)=0 and u € F(w), u is oscillatory. Also, since z & ¥(w),
c#0. Thus Z = (1)c)z =y +(1/c)u is oscillatory and contradicts the
fact that U > 0.

Suppose (b) holds and w is not essentially unique. Then there
exists a solution v of (1) satisfying (2) which is independent of w. Let
Uy, Uy, "+ *, Uy, De the 2n — 2 linearly independent oscillatory solutions in
F(w) such that u, has a zero of multiplicity k, k =1,2,---,2n -2, at
x=a, a=0 fixed. Then {w, u, u,, -, u,_,} is a basis for ¥(w), and
every linear combination of u,, u,, - - -, u,,-, is oscillatory. Since v is
bounded, we must have v € ¥(w) by Theorem 2.3 (iii). Thus

2n-2

v= 2 CU; +cw
i=1



346 G.J.ETGEN AND W. E. TAYLOR, Jr.

where not all the ¢;’s are zero, that is, v = u + cw is nonoscillatory where
u€ 0 and w € B. This contradicts (b).

Finally, assume that (c) holds and suppose that % does not dominate
0. Then there exists z € U, y € 0 and a nonzero number k such that
z + ky is oscillatory. It follows from Theorem 3.2 that & contains at
most 2n — 1 linearly independent oscillatory solutions. Since ¥(w) has
a basis consisting of 2n — 1 oscillatory solutions (see the proof of
Theorem 3.2), we can conclude that both y and z +ky are in
&(w). But this implies z € ¥(w) which is impossible since either z or
— z is strongly increasing. This completes the proof of the theorem.
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ON A REPRESENTATION THEORY
FOR IDEAL SYSTEMS

PauL Ezust

In widely divergent branches of mathematics, objects
emerge which bear sufficient formal resemblance to the ideals of
rings for them to be called ‘““ideals”. In a series of papers, Karl
E. Aubert developed an axiomatic theory of ideal systems which
subsumes most of the existing ‘“ideal” theories. The goal of this
paper is a representation theory for ideal systems in com-
mutative monoids which will allow the formation of a cohomol-
ogy theory for these systems. One of the results is a theorem
which gives at once a monadic (co)homology for each ideal
system. The base category in the monad includes PTOP, the
category of pointed topological spaces and basepoint-preserving
continuous maps, as a full subcategory and, for each ideal
system, the category of algebras associated with the monad
consists of the module systems over the ideal system. It is the
module systems which are the principal objects of this study.

Described below are some of the basic notions of Aubert’s theory of
ideal systems. For simplicity in connection with our own work we
assume that S is a commutative monoid (written multiplicatively) with an
annihilating zero element (denoted 0).

DEFINITION. A closure operation x on a set W is a function which
assigns to each subset A C W a unique subset A, C W subject to the
following conditions:

i) ACA, foral ACW

(i) ACB, > A, CB, foral A, BCW

NoTe. We do not assume that a closure operation x satisfies the
(topological) condition: (A UB), = A, U B,. In general this condition
will not be satisfied.

DEFINITION. A pair (S, x) is an ideal system if S is a commutative
monoid with zero and x is a closure operation on S which satisfies the
following axioms.

x.1 {0} = {0}

x.2 AB, CB, for all A,B CS [“multiplicative ideal property’’]

x.3 AB, C(AB), for all A,B C S [“continuity axiom”].

347
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TerMINOLOGY. The sets A, C S are called the x-ideals of S.
NOTATION. A + B =(A U B),

A:B={s€S|sbe A Vbec B}

a=b(A,)iff A, +{a}= A, +{b}.

Several examples of particular ideal systems are discussed in Aubert’s
extensive survey paper [2] and the reader is referred to that paper for
definitions, etc.

In a brief note [8], Aubert and Hansen introduced the notion of
“module system’ over an ideal system as an ancillary device to the theory
of ideal systems. Despite the pessimism expressed in that paper, it is
our purpose to show that the theory of module systems over ideal systems
yields a representation theory analogous to the theory of modules over
rings.

Throughout this paper the terminology and notations of category
theory have been used as are found in such standard texts as Herrlich and
Strecker [14] and Mitchell [22]. The author originally became in-
terested in the problems discussed herein during a course given by
Professor Karl E. Aubert at Tufts University during the academic year,
1969-70.

2. Axioms for module-systems.

DEfFINITION.  Let (S, x) be a fixed ideal system. A left S-set is a set
M together with amap § X M — M, denoted by (s, m )— sm, satisfying

(1) s(m)=(st)ym Vs,t€S,VmeEM

(i) lm =m Vm € M (where 1 denotes the identity element of the
monoid §).

DEFINITION. A pair (M, y), where M is a (left) S-set and y is a
closure operation on M, is a module-system over (S, x) if the following
are satisfied:

y.1 36 € M such that Om = 6 Vm € M, and {6}, ={6}. We shall
denote 6 = 0.

y2 AU CU VACS VUCM

y3 AU, C(AU), VACS, VUCM

yv4 AUC(AU), VACS VUCM.

NoTtAaTION. Let (M, y) be a module-system, let U, VCM, A CS,
u,v, w €M, and s € S. Then,

U+V=(UUV),
U.V={seS|sveUVve V}
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U:A={meM|am€€UVa€E A}
Ann(u)=0: u (={0}: {u})in S
Ann(a)=0:a (={0}: {a}) in M
w=o(U)iff U, +{w}= U, +{v}.

OBSERVATION. Frequent use shall be made of the following two
equivalences which were established by Aubert and Hansen [8].
1. Axiom y.3 is equivalent to the following statement:

(Uy:s),=U,:s VUCM, VsES.
2. Axiom y.4 is equivalent to the following statement:
(U,:v),=U,: v VUCM, VvEM.

DEFINITION.  Let (S, x) be a fixed ideal system. The category MS
consists of objects which are module systems (M,y) over (S,x) and
morphisms ¢ : (M,,y,)— (M,,y,) which are set functions that satisfy the
following conditions:

(i) €é(su)=sé(u)VsE S, Yu €M,

(i) £(U,)C(E(U)),. VUCM,.

REMARK. Morphism condition (ii), above, is equivalent to:

€ (V) =& (V)VV M,

EXAMPLES.

1. For any fixed ideal system (S, x), let M = A, for some A C S,
and y = x. Thus, for BC M, B, = B,, and (M, y) is an object of MS.

2. Let S be the multiplicative semigroup of a commutative ring
with identity, and let x be the classical ideal closure, A, = A, =(A)
VA CS. Then any module M over the ring, with the classical sub-
module closure, U, = (U), is an object of MS.

3. Let S be a commutative monoid with 0 and for each A C S, let
A, = SA [this closure is called the s-closure]. For any S-set, M, and any
U C M, define U, = SU [this closure will be referred to as the s-closure
also]. Then (M, y) is an object of MS.

4. Let (S, x) be an ideal system and let M be an S-set. For any
UCM, define U, = U U{0} [this closure will be referred to as the
discrete closure on M]. Then (M, y) is an object of MS.

5. Let S={l/n| n€ Z, n>0}U{0}. For each A CS, define
A, ={s€S| s=supA}, i.e.,, A, =[0,a], where a =supA. Then
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(S,x) is an example of an ideal system for which the inclusion x.3 is
proper.

3. The morphisms of MS.

DEerINITION. An S-set M with 0 is called an (S, x)-set provided
O:u),=0:u for al uEM. A map ¢: M,— M, from one S-set to
another is called an S-map if it satisfies (i) above.

PrOPOSITION 1. Let M be an (S, x)-set and {f: M—> M, | jE J} a
family of S-maps, where {(M,y;)| jE€J} is a family of objects of
S Then there exists a closure operator y such that (M, y) is an object and
f: M — M, is a morphism for allj € J. The coarsest such system y is said
to be induced in M by the family {f: M—> M, | j € J}.

Proof. Let M be an (S,x)-set and F={f: M—> M, | jEJ} be a
family of S-maps into objects (M,y;), for j€J. Let Q ={f;'(U})|
U CM, jeJlU{0}. For any VCM define V,=N{WEQ|
VC W}

DEeFINITION. Let M be an (S, x)-set and G ={g: M, > M | j € J}
be a family of S-maps from objects (M, y;) to M. The finest closure
system, y, on M (if one exists) such that (M, y) is an object of MS and
such that each g; is a morphism, will be called the closure system which is
coinduced in M by the family G. Let P={U C M | (g;'(U)),, = g;"(U)
forall j € J}. G iscalled a covering family of S-maps into M if (1) for
each U € P, 3j € J such that g(g;'(U))= U, and (2) 0E P.

PROPOSITION 2. Let M be an (S, x)-set and let G ={g;: M; > M |
j € J} be a covering family of S-maps from objects (M, y;) to M. Then
there exists a coinduced closure system y for M (with respect to G).

Proof. Let M and G be as described above and let P be as defined
above. Let Q={UEP| (U:m),=U: m Vm € M} and, for each
V C M, define V,=N{UE Q| VC U}

DEFINITION. An equivalence relation ~ on an object (M, y) is a
congruence if u ~v > su ~svV¥s€S. Let[v]={ueEM|u~rv}. A
congruence ~ is admissible if [0], = [0].

ProOPOSITION 3. Let (M, y) be an object of MS and ~ an admissi-
ble congruence on M. Then (M/~ ,y) is an object of MS, where M| ~ is
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the set of ~ classes in M and y is coinduced by the map w: M — M/~
defined by m(u)=[u] Vu € M.

Proof. By Proposition 2, one need only show that for any admissi-
ble congruence ~ on an object (M, y), the set M/~ is an (S, x)-set and
the map m: M — M/~ 1is a-covering S-map.

ProPOSITION 4. Let (M,y) be an object and U, C M. Then

(a) U, determines an admissible congruence on M’given by the rule :
u=v (U,) iff U +{u}= U, +{v}. Denote the set of congruence classes
“modulo U,” by M/U,.

(b) Theinclusionmap i: U, — M induces a system y’ on U, given by
the rule: V,=V,NU, =V, VVCU, Thus, U, is a subobject of
M. The prime is generally omitted.

PROPOSITION 5. The Zero object, M = {0}, is both initial and termi-
nal in MS and will be denoted, simply, 0.

THEOREM 6. Let ¢: (M,,y,)— (M., y,) be a morphism. Then
(a) ¢ is a monomorphism iff ¢ is injective.

(b) ¢ is an epimorphism iff ¢ is surjective.

(t) If ¢ is monic then (¢ '(U)),, C ¢ '(U,) YU C M.,.

Proof. (a) Suppose ¢ is a monomorphism such that ¢ (u) = ¢ (v) for
some u,v € M,. Define (Ms,y;) by: M;= S v S, the disjoint union of
two copies of S (labeled with u and v, respectively) with the zero
elements identified, and U,,= (U N S,). U(UNS,), VU C M;. In fact,
this construction is a special case of the more general construction of the
coproduct of S with itself, which is discussed in §4. Let ¢;: M;— M, be
defined by the rule: ¢,(s,)=su and ¢ (s,)=sv Vs€S. Define
U,: M;— M, by the rule: ¢,(s,) = sv and ¢ (s,)=su VsES. ¢, and ¢,
are morphisms such that ¢y, = ¢¢,. Since ¢ is monic, it follows that
U, = n; e, u=o.

(b) Suppose ¢ is an epimorphism. Then ¢ (M) is an S-set.

Claim. ¢(M,)=M,. Let M,= M,/¢(M,) be the S-set of congru-
ence classes in M, modulo the S-set ¢(M,); i.e., for u,vEM,, u=
v (¢(M,)) means Su U ¢ (M;)= Sv U ¢ (M,). For any U C M,, define
U,=SU. Let w: M,— M, be the S-map w(u)=[u] and let M =
{(u,[u)| u€eM}U{(u,[0])| u€ M,}. For each s€S, s(ufu])=
(su, s[u])= (su,[su]) and s(u,[0])= (su,[0]). Also, for each u € M,,
s(u,[0]) = (0,[0]) iff su =0 and s(u,[u])=(0,[0]) iff su=0, so that
O,[0D: (u,[0])=0:u =(0:u),. Hence, M is an (S, x)-set. Define
&: M,— M by the rule: &(u)= (u,[u]) Vu € M,. Define é&;: M,—» M
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by the rule: &(u) = (4, [0]) Yu € M,. Then {£, &} is a covering family of
S-maps into M. Let y be coinduced on M by {{,, &} and note that
& = & hence, &= &. Thus, w(u)=[0]Vu € M,;ie., ¢ (M) = M,.
(¢) Suppose ¢ is a monomorphism. Then, by (a) above, ¢ is
injective. Thus, ¢ ((¢ '(U)),) C U,,; hence, (¢ (U)), C ¢ '(U,).

THEOREM 7. MS has (a) Kernels, (b) Images, (c) Cokernels, and (d)
Coimages.

Proof. Let ¢: (M, y,)— (M, y,) be a morphism. (a) Ker¢ =
¢ '(0). (b) Ime = (¢(M,), yp), where the closure operator y¢ is coin-
duced by the (surjective) map ¢': M,— ¢(M,) defined by the rule:
o'(u)y=¢(u)Vu € M,. (c)Define the congruence ~ by the rule: u ~ u
Yu € M, and, for u# v, u ~ v iff {u, v} C (¢(M,)),,. In forming M,/ ~,
the S-set of ~ classes, (¢ (M,)),, is compressed down to [0] and the rest of
M, remains. unchanged. Let =m: M,— M,/~ be the projection
u—[u]. Note that [u]=[0] for u € (¢ (M), and [u]=u for
uf (¢(M)),,. Also note that M,/~ is an (S, x)-set and let y be
coinduced by {m}. Then Coker¢ = (M,/~,¥). (d) For each u € M,,
let @ = ¢ '(¢(u)) and let M,/ ={i | u € M;}. Let m: M,— M,/¢ be
the projection, u — 4. For each subset 7 (U) C M,/¢, define (7 (U)),, =
¢ '((¢(U)),), where ¢: M /¢ = M, is the map, ¢(it)=¢(u), for all
U € M,/¢. Then Coim¢ = (M,/¢, ¢y).

REMARKS. (1) ¢ monic = Ime¢ =M,.

(2) In any exact category (e.g., the category of modules over a
commutative ring with unity), for any morphism ¢: M;—> M,, Im¢ =
Coim ¢. The following example shows that this is not generally true in
MS.

ExampLE. Let M ={0,a,b,c}, S={0,1}, with the obvious
multiplication. Let (M,,y,) and (M,, y,) be defined as follows. M, =
M,= M. vy, isthe s-system on M,, and y, is the indiscrete system on M,:
{0},.,=1{0}, and U#{0} > U,=M,. Let ¢: M,— M, be the identity
map. Then (M,, yo)=Im ¢ # Coim ¢ = (M|, ¢y).

ProrosiTION 8. Let ¢: M;— M, be a morphism. If ¢(U,)=
(e (U)),, for all U C M, then Im ¢ = Coim ¢.

OBSeErRVATION. The example which precedes Proposition 8 also
illustrates the fact that a morphism in MS might be both monic and epic
and yet fail to be an isomorphism; i.e., MS is not balanced. Another
way of characterizing this situation is to note that the forgetful functor
F: MS — SET does not reflect isomorphisms. It follows (Proposition
32.5 [14]) that MS is not an algebraic category.
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4. Categorical constructions in MS.
THEOREM 9. MS has Products.

Proof. Let {(M,y;)]|j € J} be a family of objects of MS. Let [1M,
denote the cartesian product of the sets M; (j € J). For each (m,)€ 1M,
and each s € S, define s(m;) = (sm;). Let 0 denote (0;) and observe that,
forall (m;) €IIM, 0: (m,) = N{0: m, | j € J}, the latter being an intersec-
tion of x-idealsin S. Thus, IIM, is an (S, x)-set. For each k € J, define
m.: IIM; — M, by the rule, m.((m;)) = m, (this is the canonical projection
map from the cartesian product to its factors). Let Iy, be the system
induced in ITM; by the family of projections, {m; | j € J}. Then, for each
UCHM, Uy, = N{m,'(m(U)),) | j €T} = x{(m(U)), | j€T}. Ttis
easy to verify that (IIM, Ily,) is the product.

NotAaTION. M, X M, will frequently be used to denote the product,
I{M, | j=1,2}, of two objects of MS. The corresponding closure
system will be denoted, y, X y,.

THeorREM 10. MS has Coproducts.

Proof. Let{(M,y,)]|j € J}be afamily of objects of MS and let 2 M,
denote the disjoint union, v{M, | j € J} with all zeros identified. For
each k € J, let 8,: M, — 2 M, be the natural inclusion map. Let 2y, be
defined on XM, as follows. For any U C3M, Us, = v{(§;'(U)), |
k €J}. Note that Us, = U{(U N M,), | k € J} if we identify M, with
its set-theoretic image, &, (M) in 2M, Clearly (XM, Xy,) is an object of
MS and each map 8, is a morphism. Note that Xy; is the closure system
coinduced in %M, by the family of inclusions, {8, |j € J}. It is not hard
to verify that (2M, 2y;) is the coproduct.

DEFINITION.  An object of MS is free if it is of the form 2 M; (j € J),
where for each j € J, (M,,y,)=(S,x). We denote such an object (F(J),
y «) and refer to the index set J as the basis for the free object (F(J), y «).

REMARK. In particular, (S, x) is free with basis {1}.

ProposiTiON 11. [Universal Mapping Property of Free Objects].
(F(U), y«) is a free object with basis U iff for any object (M, y) and any set
map o: U— M, there is a unique morphism ¢: F(U)— M such that
¢n = o, where n: U— F(U) is the inclusion, u —1, for all u € U.

DEeriNiTION.  The morphism ¢ described above is called the lift
of o.
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ProrosiTioN 12. Let (M,y) be an object of MS and let
¢: F(M)— M be the epimorphism that lifts the identity morphism
1: M—> M. Then M = Coim (¢).

DErFINITION.  An object (M, y) is projective if for any morphism
0: M— M, and any epimorphism ¢: M;— M, [where (M,,y,) and
(M., y,) are objects] there exists a morphism £: M — M, such that ¢ = 6.

M, ——— M,

REMARK. It follows immediately from the above definition that if
(M, y) is projective, then (M, y’) is projective for any closure system y’
(on M) which is finer than y. Thus, since the s-system is the finest
possible closure system for M, each projective object in the category
ENS-S of all S-sets determines a family of projective objects of MS and,
conversely, each projective object of MS determines a projective object
of ENS-S.

ProrosiTION 13. Let (M,y) be an object of MS. Then M is
projective iff M is a retract of a free object of MS [In particular, each free
object of MS is projective.]

REMARK. In the category R-Mod, of left R-modules, an object is a
retract of a free iff it is a direct summand of a free. The following
example demonstrates that this is not the case in general in MS.

ExampLE. Let S ={0,1,a, b} with multiplication defined as fol-
lows: aa =bb=ab=ba=a. Let M={0,a} and let S and M each
have the s-system closure. Then (M, y) is a projective object of MS and
M is not a direct summand of S since (S — M), # (S — M)U{0}. Sincea
free object of MS must be a coproduct of copies of S it follows that M is
not a direct summand of any free object.

ProrosITION 14. Let {(M,y;)| jE€J} be a family of objects of
MS. Then (M, 3.y,) is projective iff (M, y;) is projective Vj € J.

REMARK. In view of Theorems 9 and 10, it is clear that MS is not
an additive category since finite products are not isomorphic to finite
coproducts.
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5. Completeness and cocompleteness of MS.
ProOPOSITION 15. MS is locally and colocally small.
ProOPOSITION 16. MS has Intersections.

Proof. Let{q;: (M, y;)— (M, y)|jE J}be afamily of subobjects of
(M, y). Since o; monic > M;=Ima,;, for each jE€J we take M' =
N{Ime, | j € J}, a set-theoretic intersection of subsets of M. For each
JE€J, let Bi: M'—Ima; be the natural inclusion map. Then M’ is an
(S,x)-set and B; is an S-map for each jE€J. Let y' be the system
induced on M’ by the family {8, | j € J}. Let a: M'— M be the natural
inclusion map. Then a: (M',y')—(M,y) is the intersection of the
subobjects {a; | j € J}.

ProrosiTioN 17. MS has Equalizers.

Proof. Let ¢,6: M;— M, be morphisms, and let E ={u € M, |
¢(u)=0(u)}. Then Equ(e,0)=(E,y.), where y. is induced by the
inclusion 7n: E — M,.

The following Theorem follows from Theorem 23.8 [14].

THEOREM 18. MS has the following properties :

(a) MS is complete (in particular, MS has inverse limits).
(b) MS has (multiple) pullbacks.

(c) MS has inverse images.

From Theorems 10 and 18 and Proposition 15 we obtain the
hypotheses of Theorem 23.12 [14], and using the dual of Theorem 23.8
[14] we obtain the following

THEOREM 19. MS has the following properties:

(a) MS is cocomplete (in particular, MS has direct limits).
(b) MS has (multiple) pushouts.

(c) MS has direct images.

(d) MS has coequalizers.

() MS has cointersections.

6. Properties of the hom functor MS — MS.
THEOREM 20. For each pair of objects (M,,y,), (M,,y,) of MS,

(homg (M, M), ) is an object of MS, where, for ¢ € homs (M,, M,) and
s €S, s¢ is defined by the rule: (s¢)(u) = s(¢(u)) Vu € M, and, for any
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W Choms (M, M), W; = N{[m,U,]| W C[m,U,]}, where [m,U,]=
{¢ € homg (M, M) | é(m) € U,}.

ProprosiTION 21. For any object (M,y) of MS, (M,y)=
(hom; (S, M), y), where (S, x) is considered as an object of MS.

THEOREM 22. MS has an internal Hom functor, Hom: MS® X
MS — MS.

Proof. By Theorem 20 it will suffice to verify that
homyg (¢, 8): homg (M;, M,)— homg (M1, M’) is a morphism for all ¢ €
homg (M1, M,) and all 6 € hom; (M,, M).

homg (M, M) M— M,
f

Jhoms(@,ﬂ) L" 4

homs (M, M) Mo M:

= hom; (¢, 6)(f)

Indeed, it is true in any category that the corresponding construction
yields a well defined set map. Thus, with homg (¢, 6)(f) = 6fp, we have
the following equations:

hOITls (‘P! 0)‘1([147 Uyé]) = {f S homs (Mb MZ) I 0f‘P(u) € Uyé}
= {f € homs (M, M) | f(¢(u)) € 67U} = [@(u), 67(U,,)].
NoraTiON. Since MS has an internal Hom functor, we will follow
the practice of Herrlich and Strecker [14] and others and write it with

a capital H. Also, we will suppress the subscript S when no confusion
will result.

PROPOSITION 23. For any family {(M, y;) | j € J} of objects of MS,
Hom((ZM, M) =I1Hom (M, M) for any object (M, y).

PROPOSITION 24. The functor Hom(M, _): MS - MS (for fixed
object (M, y)) preserves products; i.e., for any family {(M,y,)| j € J} of
objects, Hom(M, I1M;) = ITHom (M, M,).

PROPOSITION 25. The .functor Hom(M, _): MS — MS preserves
equalizers.

Proof. Let f, g € Hom(M,, M,).
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n f

M, -

T/ M,
\I 4
a 8
M

Then, by Prop. 1.17, n: E— M, is the equalizer of f and g, where
E={u€M,| f(u)=g(u)} and y., the closure on E, is induced by the
canonical inclusion, n: E — M,.

To prove that Hom (M, _ ) preserves equalizers we shall show that
Hom(M, E) = Equ(f, §), where f = Hom (M, f) and § = Hom(M, g), and
Equ(f, §) = {¢ € Hom(M, M) | f(¢)= g(£)}.

E

. f
Equ(f, ) Hom(M, M) Hom (M, M,)
; d ¢
Hom(M,E)

Let A: Equ(f,g)— Hom (M, M,) be the canonical inclusion and

Hom(M n): Hom(M, E)—>Hom(M,M,); i.e., 7(k)=nk. Then
fn gn, hence there exists a morphism, o: Hom (M, E)—Equ (f, )
such that ) = Av. o is the required isomorphism.

The next Proposition follows from Theorem 24.3 [14].

ProrosiTION 26. Hom(M, _ ): MS — MS  preserves  pullbacks,
multiple pullbacks, terminal objects, inverse images, finite intersections,
and limits.

THEOREM 27. Hom(M, _): MS — MS has a left adjoint.

Proof. Consider the functor diagram, where G = Hom(M, _),
U =homs (M, _ ), and V = Forgetful.

G
MS MS

O\ v

SET

Clearly this diagram commutes. By Propositions 15, 18, and 19, MS is
complete, cocomplete, locally small, and colocally small. By Proposi-
tion 26, G preserves limits. By Theorem 30.20 [14], U has a left
adjoint. Clearly V is faithful. The result follows from Theorem 28.12
[14].
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7. The tensor product in MS.

DEerINITION.  We denote the left adjoint of Hom(M, _ ): MS - MS
_ @M, and we refer to M'Q@ M as the tensor product of M' and
M. The closure system on M'Q@ M is denoted y' @ y.

ReEMARKS. The adjoint situation, (7,68): _ ® M 1Hom (M, _),
gives, for each object M, of MS a  morphism
N : Mi— Hom (M,, M, ® M,). Define ¢: M, x M,— M, @ M, by the
rule, ¥((u1, us)) = (nm (u1))(u,) and denote ¢ ((uy, uy)) = ui @ u,. Note
that s(u; @ u,) = su; Q u, = u; Q su,, for all s € S. In fact, ¢ is bilinear,
in the sense that both ¢(u,_ ) M,—>M Q@M, and ¢(_,u,):
M, — M; @ M, are morphisms (defined in the obvious ways). Indeed,
U (uy, _ )= nay(u)) E Hom(M,, M; Q@ M) by definition. To see that
Y(_ ,u,) € Hom(M,, M, Q M,), note that

() (Upey) = {1 € My | (us, ) € U,z
= {1, € M, | (ma,(w1)) (12) € U@y}
={um, €M, l M (U1) € [u, Uy1®)‘2]}
= nl_\'flx([ub UY1®)’2])'
DeriNiTION. Let G: A — B be a functor and let M be an object of
B apair (1, N), where N is an object of A and u: M — G(N), is called a
universal map for M with respect to G (or a G-universal map for M)

provided that for each N' (object of A) and each f: M — G (N’), there is
a unique A-morphism f: N— N’ such that the triangle commutes.

M G(N) N
f l G(f) lf
G(N) N’

NorAaTioN. Given  objects (M,y,), for j=1,2,3 let
Bihom (M, X M,, M), denote the set of all bilinear maps M; X M,— M.

ProrosITION 28. The map 6: Bihom (M, X M,, M;)—
Hom (M;, Hom (M,, M;)) given by, 6(c)=¢, where (5(u,))(u,)=
o (uy, uy), is a bijection.

THEOREM 29. Let a € Bihom (M, X M,, M;). Then there exists a
unigue o € Hom(M,®@M,,M;) such that oy =0 [where
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y: M X M,— M, ® M, is the canonical map, (m,, m,)— m,QQ m,; i.e.,
0(¢)= nMxl'

Proof.

¥
M1XM2 MI®M2

o o
M,

To complete the first diagram with a morphism o, we make use of the fact
that, by Theorem 27.3 [14] (1, , M; @ M,) is a universal map for M, with
respect to Hom (M,, _ ).

an

Ml“————“'* Hom(Mz,M1®M2) M1®M2
l& Aom (M,,5) l‘_’
Hom (M,, M) M;

Thus, there exists a unique ;EHom(Ml & M, M) such that &=
Hom(M,, 0)n, i.€., & = omy,. Note that o makes the first diagram
commute.

ProposiTioN 30. M, @M,={m @m,| m,EM, m,EM,} and
Y1Q Y., is the closure operation coinduced on M, Q M, by the family,

F = {ny,(m,) | m, € M} U{mm.(m;) | m, € M,}.

Proof. Let M={m@m,| m€EM, m,EM,}. Then MCC
M, @ M,. Although F is not a covering family, we can form the
coinduced closure, y as follows: Let Q,={U C M | (ns (m)(U)),,=
M(m)(U)  Vm € MIN{UCM|  (ma(m2) (U)),, = maa(m2) (V)
VmeM,}. Let Q={U€Q,| (U:(uQu) =U:(uQu),
Vu @Qu,€ M} and note that Q,= Q. For each VCM, let V, =
N{UE€ Q| VCU}. Then(M,y)isan object of MS and y is the finest
closure system on M which permits all the S-maps in F to be morphisms
into M. Define ¢:M XM,—»M by the rule: ¢&(m,my)=
m;Q m, Then £ is bilinear and surjective.

M, X M, £ M

l o
‘ o

M,
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Let o: M, X M,— M, be a bilinear map. Define o: M — M; by
the rule: o (m,®m,)= o(m;, m,). Then o is a morphism and the
diagram commutes. In fact, o is the identity morphism,
m, @ m,—> m; @ m, and, by Theorem 29, its inverse is also a morphism;
hence, M@ M,=M and y,Qy, =

ProrositioN 31. For any objects (M y), (M,y,) in MS,
M, Q M, =M, Q M,.

ProrosiTiION 32. For any object (M,y) of MS, SQM=M =
M®S.

Proof. Let u: SQQM—M be the map given by u(sQ@m)=
sm. Note that u = ns(1)"". pu is the required isomorphism.

ProrosiTioN 33. Q) is associative.

Proof. By Theorem 10 [17] it is enough to show that
Hom (M; ® M,, M;) = Hom (M,, Hom (M,, M;)). By Theorem 27.9 [14],
the adjoint situation, (7,8): _ @ M 1Hom (M, _), gives a bijection
a: Hom (M; @ M,, M;)— Hom (M;, Hom (M,, M;)) defined by the rule,
(a(f)(m,))(m,) = f(m,Q m,), for all f € Hom(M, X M,, Ms). « is the
required isomorphism since, for all m, @ m, € M, M, and all U,,C M,,
a([ml ® my, Uya]) = [ml’ [mZa Uyz]]-

PrROPOSITION 34. _ X M preserves colimits. In particular, _ QM
preserves coproducts.

ProrosiTioN 35. Let ¢ € Hom(M,, M,). Then, for any object
My) in MS oM MIM—->MQLM is the map,
uQu—o(u)Pu.

Proof.
an
M1 Hom(M7 M1®M)
sol Hom (M, ¢ ® N)
M ‘
M, Hom (M, M, M)

The adjoint situation (7, d): _ @M 1+Hom (M, _) makes the diagram
commute for each object M. Thus, for each m, €M,
Hom (M, ¢ @ M) (s (m,)) = mue (¢ (m1)); i.e., for all m € M,
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(¢ ®M) (M (m))(m) = (¢ M)(m, Qm)
= M(e(my))(m)=o(m)Qm.

NoTATION. ¢ &)1 will sometimes be written instead of ¢ ® M in
cases where no confusion will result.

ProposiTION 36. For any object (M,y), the functor _ QM pre-
serves epimorphisms.

DEFINITION. An object (m,y) is Flat if the functor _ @ M pre-
serves monomorphisms.

ProrosiTioN 37. S is a flat object of MS.

ProrosiTioN 38. Let {(M,y;)| jE€J} be a family of objects of
MS. Then (ZM,2y;) is flat iff (M, y;) is flat for each j € J.

ProposiTioN 39. Every projective object of MS is flat.

8. Restriction and extension of scalars.

REMARKS. Let ¢: (S, x)—(S’, x') be a morphism of ideal systems;
ie, o(st)=o@(s)e(t), for all s,t€S, and ¢(A,)C(¢(A)), for all
A CS. Then any object (M', y’) of MS' can be considered as an object
of MS in the following manner: for each s € S, u’' € M’, define su’' =
e(s)u’. It is easy to verify that, with this S-set structure, (M’,y’) is an
object of MS (the closure system y’ does not change). This process is
usually referred to as restriction of scalars. Let ¢ € Homs (M3, M;). If
we restrict scalars as described above, we can consider both objects M}
and M; as objects of MS and then £' becomes an S-morphism with its
S-map structure defined by the rule, ¢'(su’)= ¢'(¢(s)u’) for all s € S.

ProPOSITION 40. Let ¢: (S,x)—(S’,x') be a morphism of ideal
systems. Then the process of restriction of scalars determines a faithful,
covariant functor, R,: MS'— MS, which preserves monomorphisms and
epimorphisms.

DErFINITION. A functor which preserves monomorphisms and
epimorphisms shall be called exact.

ProrosiTION 41. Let ¢: (S,x)—(S’,x') be a morphism of ideal
systems. Then the functor R,: MS'—> MS has a left adjoint
E,: MS — MS' given by the rule, E,(M)=M Q@ R,S' for all objects



362 PAUL EZUST

(M, y) of MS [E,(M) is given S'-set structure by defining for each s' € S’
and each u Q'€ E,(M), s'(u@t)=uQs't'] and E,(8) =5 ®R,S’
for any morphism 8 € Homg (M,, M,).

Proof. By Theorem 27.9 [14], it is sufficient to show that the two
set-valued bifunctors, homg (E, _, _ ) and homs (_, R, _) are naturally
isomorphic. Thus, let (M,y) be an object of MS and (M',y’) be an
object of MS’, and define B: hom(E,M, M')—hom(M, R,M’) by the
rule: B(f)(m)=f(m Q1) Vm € M. Then B is a bijection.

ReEMARK. The functor E,: MS — MS’ is usually referred to as
extension of scalars.

PROPOSITION 42. Let ¢: (S,x)—(S’,x") be a morphism of ideal
systems. Then the functor R,: MS'— MS has a right adjoint
H,: MS — MS' given by the rule: H,(M)=Hom(R,S', M) V objects
(M, y) of MS [H,(M) becomes an object of MS' by defining for each
s'€ 8" and each o € H,(M), (s'o)(t)= o(s't')Vt'E R,S'| and H,(A) =
Homg (R,S’, 1) VA € Hom (M, M,).

Proof. By Theorem 27.9 [14], it is sufficient to show that the two
set-valued bifunctors, homs (R, _, _ ) and homg (_, H, _ ) are naturally
isomorphic. Thus, let (M, y) be an object of MS and (M’,y’) be an
object of MS’, and define y: hom(R,M’', M)— hom(M’', H,M) by the
rule: (y(g)(m")(s')=g(s'm)Vs'€ S’ and Vg € hom(R,M’', M). Then
v is a bijection.

REMARK. Let ¢:(S,x)—>(S’,x’) be a morphism of ideal
systems. Then for any object (M, y) of MS and any object (M’, y’) of
MS', M & R,M' may be regarded as an object of MS' if it is given S’-set
structure in the following manner: s'(m @ m’)=m @ s'm’' Vs' € S’ and
Vm@m'eMQQRM'.

PROPOSITION 43.- Let ¢: (S,x)— (S’,x') be a morphism of ideal
systems. Let (M,y) be an object of MS and let (M',y') be an object of
MS'. Then (in MS) M @ RM'= R, (E.M&' M') [where Q' indicates
that the tensor product is formed in MS’].

Proof. Let a: M X RM'— R,(E,MQ' M') be defined by the rule:
a(u,u)=(u@1)X . Then « is S-bilinear; hence, there exists an
S-morphism a: M Q@ R.M'— R,(E,MQ’ M') such that the diagram
commutes; i.e., a(m @m')=a(m,m’)=(m Q1) Q' m' [¢ is the cano-
nical bilinear map]. Note a(m @ s'm')=(m Qs )R m'.
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a
M®RM —— R,(E.M® M)

M X R.M'

Let a: MQRM' - EME' M' denote & regarded asan S'-
morphism. Now, for each m'e€ RM', define m': M X
R,S"> M @R,M' by the rule: m'(m,s')=m Qs'm’. Then m’ is
S-bilinear; hence, there exists an S-morphism m': M QR,S'—
M ® R,M’ such that ii'(m Qs )=m Qs'm’.

Foly

M®R.S' L M®QRM'
4 ~
M xR,S'

Actually, m' is an S’-morphism with domain E,M and codomain
M Q@ R, M’, the latter regarded as an object of MS'. Let B: EIM X
M'->MQ@RM' be defined by the rule: B(m&s,m')=
m@s'm’. Note that B is well defined since, for each fixed m'€ R.M’,
B(_,m’)=m’and, hence, does not depend upon the choice of represen-
tative of m @ s’. Since B is S'-bilinear, it follows that there is an
S’'-morphism B:(MRRSYQM' -MRRM’ such that

Blm ®s)Q@ m)=m Qs'm'".

>

MPRS Q' M M@ RM’
v { /
MQR,S)x M
Thus, we have produced S'-morphisms,

é:MQRM —EME® M’ and B: EM® M'— M ® R,M’ which are
inverses of one another; i.e., MQYRM' =EM M’ in MS'. 1t fol-
lows that M Q@ RM'= R, (E.MQ' M') in MS.

PROPOSITION 44. Let ¢: (S,x)—(S’,x') be a morphism of ideal
systems. Then the two MS-valued bifunctors, _ @R, _:MS X
MS'—> MS and R,(E, _ Q' _): MSXMS'— MS are naturally isomor-
phic.

PROPOSITION 45. Let ¢:(S,x)—>(S',x") be a morphism of ideal
systems. Suppose that R,S' is a flat object of MS. Then R,M' is flat in
MS for all flat objects (M',y') in MS’.
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Proof. The functor _ Q@ R.M': MS — MS preserves monomor-
phisms whenever (M’,y’) is a flat object of MS’.

PROPOSITION 46. Let ¢: (S,x)—(S’,x") be a morphism of ideal
systems. Suppose that (M, y) is a flat object of MS. Then E,M is flat in
MS'.

Proof. Let £&: M{— M; be an S'-monomorphism. Then by Prop-
osition 40, R, ¢: R.M|— R,M; is an S-monomorphism; hence, since M
is flat in MS, MQPREMIRM —-MRRM;, is an S-
monomorphism. By Proposition 44, we have that R, (E,MQ' €):
R (EME M))— R,(ELM®' M’) is an S-monomorphism; hence,
EMER ¢ EMQ Mi— EME' M; is an S’-monomorphism (since R,
is faithful).

9. Monads and algebras in M{0, 1}.

NotaTiON. We shall denote the category M{0, 1}, simply, 8. For
any ideal system, (S,x), 7:{0,1}— S will denote the map, 7(0)=0,
7(1)=1. Clearly 7 is a morphism of ideal systems [{0, 1} is given the
obvious (s-system) closure system]. In the sequel we will denote R,S,
simply, S.

THEOREM 47. For any ideal system (S,x), Ks=(Ks,m, ) is a
monad in B, where K;: B— B is the functor, _ ® S, and n: 13— K is
the natural transformation given by, ny(m)=m @1, and pn: KKs — K
is the natural transformation, py: (M QS)RS—-MEKS given by
pul((m @ s)Qt)=m & st.

Proof. The “‘unit,” 7, and the ‘‘multiplication,” u, make the
following diagrams commute:

pKs
K K
Ks n SA KSKS sT KS KSKSKS e KsKs
\‘l / Ks“l l“
Ks KsKs _[.L—) KS

where
(mKs)w = uegs: M @S> (MR S)X S
K = QL MRIS>MRYS)RXS
(Ks)m = pugs: (M QS)Q )RS > (MY S)RQS
Ksp v = un @L: (M QSR S)RS > (MR S)RQ S.
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THEOREM 48. For any ideal system, (S,x), Hs = (Hs,€,6) is a
comonad ‘in B, where Hs:B—>B is the functor, Hom(S, _), and
€: Hy — 1y is the natural transformation, €y : Hom (S, M)— M, given by,
en(f)=f(Q1), and &: Hs— HsHs is the natural transformation,
8y : Hom (S, M)— Hom (S, Hom (S, M)), given by, (8u(f)(s))(t) = (sf)(¢)
for all t €S.

Proof. One must verify here that the following diagrams commute:

EHs HsE 8HS
Hy «——HH,—— H, HsH;H; «—— H,H;

N

’ HH; <—5—— H;

where

(eHs)m = €yomsmy: Hom (S, Hom (S, M))— Hom (S, M)
(Hs€)m = Hom (S, € ): Hom (S, Hom (S, M))— Hom (S, M)
(6Hs)m = 8 tioms.i: Hom (S, Hom (S, M))
— Hom (S, Hom (S, Hom (S, M)))
(Hsé)u = Hom (S, 8y ): Hom (S, Hom (S, M))
— Hom (S, Hom (S, Hom (S, M))).

REMARKS. Let (S, x) be an ideal system and let B° denote the
category of Ks-algebras. Let G: MS — B° be defined as follows: For
each object (M, y) of MS, G(M)=(R.M, h), where h: RM KX S - RM
is the B-morphism m @ s— sm. For each S-morphism f: M — M’,
G(f)=R.f: RM— R.M'. Then G(f)is a B*-morphism and, hence, G
is a (covariant) functor.

Now let F: 8% — MS be defined as follows: For each object (M, h)
of B* (where (M,y) is an object of B), F((M, h))=(M,y), where
M =M, equipped with the S-multiplication, sm = h(s @ m) for all
SES, m €M. For any B°-morphism g: (M,h)—(M', k'), F(g)= g,
where g = g, converted into an S-map by taking g(sm)= g(h(s @ m))
foralls€S, meM

THEOREM 49. [Monadicity]. For any ideal system, (S,x), B° is
isomorphic to MS.

Proof. With notation as in the remarks above we need only show
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that FG = 1, and GF = 1lgs. To show FG = 1,: since for any object
(M,y) of MS, FG(M)=F(R.M,h))=(R,M,y), where R.M= RM,
endowed with an S-multiplication which is derived from the map 4 ;i.e.,
(R.M,y)=(M,y). For each object (M,h) of B°, GF(M,h))=
G((M,y))={(R.M,h), where h: RM & S — R,M is defined by the rule,
h(m ®s)=sm =h(m ®s). Thus, h =h, and, since it is clear that
R.M = M, it follows that GF((M, h)) = (M, h).

Concluding remarks. The monads and comonads constructed
above provide the tools with which resolutions and derived functors can
be constructed which, in turn; lead to a (co)homology theory for 8. The
category of pointed topological spaces and basepoint preserving maps,
PTOP, can be found in B. In fact, the inclusion functor PTOP— B is a
full, faithful embedding.
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THE DEFICIENCY INDEX OF A
THIRD ORDER OPERATOR

RicHARD C. GILBERT

Let L be a formally selfadjoint third order linear ordinary
differential operator defined on [r,»). Using a method of
Fedorjuk, asymptotic formulas are found for the solutions of
Ly = igy, 0#0. These formulas are used to determine the
deficiency index of L when L has polynomial coefficients. As a
consequence, the deficiency index is determined for values of the
parameters involved for which it has not previously been de-
termined.

1. Introduction. The general form of a third order formally
selfadjoint linear ordinary differential operator L can be written

(1) Ly = (ib,y"Y +[Q27'ibi+ a)y') + ibyy'+ 27'ibi + a,)y,

where a,, a;, by, b, are real functions of x and b,(x)# 0. (See (4, Ch. 1,
§1.5]. We have assumed sufficient differentiability on the coefficients so
that the Dunford and Schwartz form can be written in the form
(1).) Unsworth [12] considered the case that b,(x)=2, b(x)=2ax",
a,(x)=bx® aix)=cx”, 1=x <. Using the asymptotic methods of
Devinatz [3], Unsworth deduced the deficiency index of L for various
values of the parameters a, b, ¢, a, B, y. Pfeiffer [10] considered the case
by(x)=1, bi(x)=ax*, a(x)=0, ay(x)=cx”. The purpose of the pres-
ent article is to obtain by the method of Fedorjuk [6] asymptotic formulas
for the solutions of Ly = ioy, o# 0, and to apply these formulas to
finding the deficiency index of L for the case by)(x)=1, bi(x)= ax",
a,(x)= bx® aix)= cx”. Although Fedorjuk applied his method only to
even order operators, it can be used for odd order operators as
well.  Shirikyan [11] applied the Fedorjuk method to a certain class of
odd order operators. It turns out that the Fedorjuk method applied to
the above case yields the deficiency index for values of the parameters
different from Unsworth and Pfeiffer.

It is known that, except for a first order operator, a differential
operator of order n cannot have deficiency index (n, p) or (p, n), where
p <n. (See Atkinson [1] or Kogan and Rofe-Beketov [7], [8].) Further,
for an operator of order n =2v —1 it is known that the deficiency
numbers n., and n_ satisfy the inequalities v=n, =2v-1,v-1=n_=
2v -1, or the same inequalities with n, and n_ interchanged. (See
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Everitt [5] or Kogan and Rofe-Beketov [8].) It follows that the defi-
ciency indices (2, 1), (1,2), (2,2) and (3, 3), obtained in this paper and by
Unsworth and Pfeiffer, are the only possible deficiency indices for a third
order operator.

2. Asymptotic formulas for the solutions of Ly =
iocy. We shall make the following assumptions on the coefficients a,, a,,
b,, b, of L. The need for the various assumptions will be seen as we go
along.

In all that follows in this article, it will be necessary in various places
to require that x is sufficiently large. We shall therefore assume once
and for all that x, is chosen so large that if x = x,, then x is sufficiently
large in all places where this is needed. We shall also often omit the
stipulation x = x, when it is clear from the context that this is needed.

AssumMPTION 1. bi(x), by(x) € C[r,»). ay(x), a\(x) € C[r,»).
b,(x)#0 for x=r, by(x)=14+0(1) as x— +o. ayx)#0 for x =
r. Either ao(x)— + and ay(x) >0 for x = x,, or else a,(x)— —* and
ay(x)<0 for x = x,.

AssuMpTION II. lim,_.a,/ay’ = d#3/2*®, bJ/ai’=o0(1), bila,=
o(1), bilai®=o0(1).

AssumpTiON III.  b5/ai’=o0(1), ai/ai®=0(), bilai”’=0(1),
aiai’®=o(1).

AssumMpTION IV. bjand bi/ai” are absolutely integrable on [r, »).

Let

Q) f(Ax)= — A*+im(x)b3'(x)A> = by(x)b3'(x)A + in(x)b3'(x),

where
3 m(x)=27""iby(x)+ a\x),
4) n(x)=27"ibi(x)+ aix) — io.

Here o is a real constant, o # 0.
Let

©) 7(x) = [ao(x)by'(x)][1 + (bi(x) — 20) (2as(x))"i]",

where if z =pe”, —7m <@ =m then we take z'’=p"e”®” Then,
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*=nb;', and 7(x)#0 for x =r.

Putting
(6) A = in7(x),
then
™ fx)=0
becomes
® h(n,x)=0,
where

©) h(n,x)=mn"=m(x)[b(x)7(x)] "0’ = bi(x)[bo(x)7*(x)] ' + 1.

An essential part of the Fedorjuk method is that we should have

(10) limm (x)[b.(x)7(x)]™ = d + ie,,

(11) lim b,(x) [ba(x)72(x)] = dy + ie,

where d +ie; and d,+ ie, are complex constants. Then, as x — o,
h(m, x) approaches a polynomial h(n) with constant coefficients. We
also want hy(n) = 0 to have distinct roots. For reasons that will appear
later we further want as x — % that | a,(x)|— « and that

(12) 7(x)=a*(x)[1+0(1)].
In I and II we have assumed ao(x)— =, b,=1+0(1), bi/a,= o(1)
in order that (12) and | a,(x)| — « might be true. In order to explain the

remaining assumptions in I and II, let us note that if (10) and (11) are to
be true, we must have

(13) lim (b3/al) = 2e,,
(14) {133 (a/ai®) =4,

(15) lim (b/a¥") = d»,
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and e,=0. But then (13) and our assumptions that [a,|—® and
b,=1+ o(1) imply that e, =0. Further, (15) and the assumptions on q,
in I and the assumption that b{/a” is absolutely integrable on [r, ) in IV
imply that d, = 0. Thus, we have explained the reasons for all the limit
assumptions in I and II.

From Assumptions I and II we have that

(16) m (x)[b(x)7(x)] " = d + fi(x),
(17) bi(x) [b(x)7* ()] = fulx),

where fi(x)=o0(1), fo(x)=0(1), and fi(x) and f,(x) are continuously
differentiable on [r,®). It follows that

(18) h(n, x) = ho(n)—n’fi(x)— nf(x),
where
(19) hon)=mn’—dn’+1.

Since we have assumed in II that d# 3/2°”, hy(n) =0 has three distinct
nonzero roots. If d <3/2*”) then hy(n) =0 has one real negative root
and two complex conjugate nonreal roots. If d >3/2*°) then hy(n)=0
has three distinct real roots, one of which is negative and the other two
positive. We denote the roots by 1, M0, M, Where 1y < Mg, < g3 In
the case of three real roots, and 7, is real and Im 1y, >0, Im 79, <0 in the
case of one real root. In the case of three real roots, h'(n,)>0,
h'(ny) <0, h'(n4)>0. In the case of one real root, h'(n,)>0. In
every case, h'(ny)#0, k =1,2,3.

According to Bellman [2, p. 26], for x = x,, (8) has three distinct
roots n,(x), k =1,2,3 which are given by the formula

(20) m(x)= @iy [ ah, o 0)lhn ) dn,

where C, is a small circle around 7. M (x) is continuously differenti-
able, and

(1) M (x) = Mo [1+ 0 (1)].

We have that &, (n.(x), x) # 0, and that n,(x) #0, for x = x,. From (6)
one sees that (7) has for x = x,, three distinct continuously differentiable
nonzero roots A (x) given by

(22) A(x) =i (x)7(x), k=1,2,3,



THE DEFICIENCY INDEX OF A THIRD ORDER OPERATOR 373

and
(23) A(x)=ia*(x)nu 1+ 0(1)].
We have that f, (A (x),x)#0.

ASSUMPTION V. (bylai?, (b3 /a,, (ai)/a,, (b1)/ai?, (bY)/ai’,
(ao)/ai’, b5lai”, b5/ai’, a'llai’, bila,, b'i/ai’®, at/ai” are all absolutely
1ntegrable on [r,®).

AssumpTION VI. For each pair j, k, one of the following is true:

(a) Re(A(x)— A(x))=0 for x = x,;
(b) Re(X(x)— A(x))=0 for x = x,, and

f Re (A, (x)— Ac(x)) dx = — o;

(c) J Re (A (x) = A (x)) dx is convergent.

Using Assumptions I-VI, it is now possible to obtain asymptotic
formulas for the solutions of the equation

(24) Ly = ioy.

Let w be the column vector with components w, =y, w,=y’, w;=
ib,y"+ my'. (24) is then equivalent to the system

(25) w'=A(x)w,
where
0 1 0
(26) Ax)= ( 0 imb;' —ib5' )
—n - lbl O

The eigenvalues of A (x) are the roots of (7), i.e., A(x), k =1,2,3.
Let us now make the transformation

27) w = TW(E + Ty)z,
where z is a column vector with components z,, z,, z;, and T; and T, are

matrices to be determined, and E is the identity matrix. Then, (25)
becomes
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(28) 2'= Aoz + (AT — Toho— T5'Th)z + B(x)z,
where
B(x)=(E + To)'(T3Ac+ T.To'T4) (E + T,)— T3]

(29) CTAJT- T3 T} T,

and
Ao=TF'AT,.

We shall show that we can choose T, and T, such that for x = x,, T;' and
(E + T,) " exist, and T;'AT, and AT, — ToA,— T;'T; are diagonal. To
that end, we choose T, to be a matrix whose columns are eigenvectors for
A, namely,

1 1 1
(30) T, = ( Ay A A >,
[iby\l + m])h [ibzAz + m]Az [ibz)\3 + m]Ag

n/AF, (Al,x) —iAby/F, (Alax) —1/F, (Al,x)
(31) T,'= ( n/AF, (Az, x) — iA;b,/F, (Az, x) —1/F, (Az, x) )a
n//\:;F)‘ (A3,x) —il\g,bz/FA (A:;,x) —1/FA (1\3,x)
where
(32) F(A, x)=ib,f(A, x).

Then, for x = x,,
(33) T;'AT, = A, = diagonal[A,].
We note that
(34) lim ag™(x)F, (A,(x), x) = ihi(ne) = po; exp[ify ],

where — 7 <8, =, p; >0. Let

(33) ao(X)F, (A(x), x) = p;(x) exp[i6;(x)],

where p;(x) and 6;(x) are chosen so that lim...p,(x)=p,, and
lim,_... 6,(x)=6,. We choose that branch of log such that for x = x,,

(36) log F, (A;(x), x) = (2/3) Log| ax(x )|+ Log p;(x) + i6, (x).

Then, for ¢, x = x,,
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7) (d/dx)log F,(A,(x), x)

= [Fa (4 (), X () + Fua 8, (), 1R, (6,001
68) | [(@/ds)log (A (5),9)] ds = log (4 (x), ) ~ log Fu(4 (0). 1),
(39) exp[(1/2)log Fi (A (x). )] = [1+ o(D)]|ai"(x) o} exp (if 12).

Now we note that the elements (T;'T;), of the matrix T,'T; are
given for x = x,, by

(To'To); = (1/2)[Fua (A (x), x)A )(x) + Fi (A, (x), x)

(40) FibYA(x) + ib1CO)][FL (A (), )]
or,
(T5'Ts), = (1/2)(d/dx) log F. (A, (x), x)
(41) + 271 [b4()A2(x) + biCONE (A (x), X)]
and
(T3 T = [A(BBINA, + ib)) + m'AA, + 1]
(42) X[ = MEX @), O, k#],
Let
43) AD= — (T3 T},
(44) A, = diagonal [A{"].

We note that the A ’(x) are continuous for x = x,. Let the matrix
T, be defined by the equations

(45) (T2); =0,
(46) ()i = = (To'Toha (e = X)), k# ).

T, has been defined so that A,T,— T)A,— T;'Ty is a diagonal matrix;
indeed,

47) AT, — T A — T5'To= A,

Thus, T; and T; in the transformation (27) have been chosen so that
for x = x,, equation (28) is
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(48) z'=(Ao+A)z + Bz.
We shall now show that for x = x,, B(x) exists and is continuous,
and || B(x)|| is integrable on [x,,®). To do this will require a series of

lemmas whose proofs are mostly straightforward or else contained in
Fedorjuk [6] and are therefore omitted. For x = x,, let

(49) /\(x)=ml_ax|)\,-(x)l.
Then,
A(x) =7 (x)| max|m (x)| = | as”(x)|[1+ o(1)] max|n,|>0.

In the following, the capital letters C and D denote suitably chosen
positive constants.

LEmMMA 1. D(|ai*(x)|= A (x) = D,|ai’(x)].
LEMMA 2. GCA(x)=|A(x)— L (x)]|= CA(x), j# k.
Let

(50)  a(x)=max{|ba|,[m'|/A,|bi|/A%|n'|/A%},

1) B(x)=max{|bz],|m"|/A(x),[BI|/A*(x), | n" /A (x)},
(52)  8(x)=max{|bs|,|m’|/las®|,|bil/|ai’|,|n'l/| al},
(53)  y(x)=max{|b3],|m"|/|ai®|,| bi|/| ai, | n"|/| aol}.

Lemma 3. a(x)= C8(x).
Lemma 4. B(x) = Cy(x).

LEMMA 5. CAYx)=|F,(A(x), x)| = CA%(x).
LemMa 6. |F, (A (x), x)| = CA%(x)a(x).

Lemma 7. [[A(x) = A ()]F (A (x), x)| = CA3(x).
LemMa 8. |[A(x)— A (x)PF.(A (x), x)| = CA“(x).

LEMMA 9. |F, (A (x), x)|= CA(x).
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LEMMA 10. |F, (A;(x),x)|= CA*(x)a(x).
LEmMMA 11. |A)(x)| = Ca(x)A(x).

If A=(A;)- is an n X n matrix, we define the norm ||A || by
IA | = nmax; |Axl.

Lemma 12, ||A,(x)| = Ca(x).

Lemma 13, || To'(x)Ti(x)| = Ca(x).

LEMMA 14. || Ty(x)||= Ca(x)/A(x).

LEmMA 15, || Tix)| = C{a®(x)+ B(x))/A(x).

LEMMA 16. [E + Ty(x)]™' exists and is continuous for x Z x,, and
IE + T,(x)] || = C.

LEmMMA 17. B(x) exists and is continuous for x Z x,, and | B(x)| =

Cla’(x) + B )/A(x).

We note that Lemmas 16 and 17 depend on the fact that
lim,_.a(x)/A(x) =0, which follows from Assumptions II and III.

LemMa 18. ||B(x)|| is integrable on [x,, ).

We note that Lemma 18 follows from Lemma 17, and Assumption V.

It is now possible to show that (48) has three linearly independent
solutions which satisfy certain specified boundary conditions at
infinity. To that end, we observe that a fundamental matrix Zy(x,, x) for
the homogeneous equation

(54) z'=(Ag+ Az, X = X,

is given by

(55) Zy(xy, x) = diagonal [exp f: (A () +A0(1) dt].
Putting

(56) Z(x)=U(x)Zo(x0,x),

we find that Z(x ) is a matrix solution of (48) for x = x, if U(x) satisfies
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57 Ux)=C+(KU)(x), X = X,

where C is an arbitrary constant matrix, and K is a linear operator on
matrices U(x) such that

69 KU = [ (@E0BOUOZE )L

ik

x; being an arbitrary number in the interval [x,,%].

Let M be the Banach space of continuous matrices V(x) on [x,, ®),
with || V| = sup,z,[ V(x)] <. For reasons that will appear in Lem-
mas 19 and 20 below, if Assumption VI (a) or (c) holds, we take x; = =; if
Assumption VI (b) holds, we take x, = x,. Also, we take C = E.

LemmA 19.  If x, is sufficiently large, then K: M — M, and ||K |y =
1/2.

Proof. From (58) it follows that if V€ M and if x = x,, then

[((KV)(x)e | =
(59)

f [expﬁx Re()\,(s)~)\k(s))ds]

x[exp [ Re@ () = AN ds | IBO e[| V

By (41), (43) and (38),

| )= ey ds

= (1/2)[log F\ (A;(x), x) — log F. (A, (t), 1))
(60) —(1/2)[log F, (A (x), x) — log F, (A (2), 1)]

+12) [ BRI RO (), 9017 = N E O (5), )] s
#2) [ BIOTE N (5), )1 = (R (u(5), ) s

It now follows from (36), (49), Lemma 1, Lemma 5, and Assumption IV

that J' (AP(s)— A(s)) ds‘ is bounded for ¢, x = x,. Hence, if VE M,

then
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BV ()|
(61) . .
f [expjl Re (A, (s) = Ac(s)) ds]uB(z)n dtl IVIe xZ %
By our choice of x;, if Assumption VI (a) or (b) holds, exp fx Re(A;(s)—
[ Retr(5)-

Ac(s)) ds' = C, for t, x = x,, and therefore expfx Re(Aj(s)— A(s))ds =
exp C,. It follows from (61) that

=C

A(s))ds=1. If Assumption VI (c) holds, then

6 (&R IBOIEIVE  xzx.
Hence,

63) IKV)@)=3max [(KV)))| =3[ 1BOId]V e

If we now choose x, so large that f |B(¢)|ldt =1/6C, then |K|y =
1/2. This proves Lemma 19.

Lemma 20. If x, is sufficiently large, equation (57) has a unique
solution U(x)E M. It is true that |[(KU)(x)||=0(1) as x > ». U(x)
can be written in the form

(64) Ux)=E+o0(1), X=X,

Proof. The existence and uniqueness of U(x) follows from Lemma
18 and Banach’s contraction mapping theorem or successive
approximations. To prove that [|(KU)(x)| = o(1), we observe that if
Assumption VI (a) or (c) holds (so that we take x, = ), then from (61),

(KUY (x) | = C f “IB@)|dt | Ul = o(1). If Assumption VI (b) holds

(so that we take x; = x,), then from (61),
(KUY =C{ [ [exp [ Re(u)=A(s)ds | 1B ar

+ [ 1BOIaiviL,

where x = x, =Z x,. From this inequality it is seen that |((KU)(x))i | =
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0(1) also when Assumption VI (b) holds. (64) follows from (57) and the
fact that [[(KU)(x)| = o(1). This completes the proof of Lemma 20.

THEOREM 1. Under Assumptions 1-V1, the equation Ly = ioy, x =
r, o # 0, has three linearly independent solutions y,, k = 1,2,3, of the form

(65) v =[1+0(1)]a;"(x)exp fx Ac(2) dt, X = X,

where the A, (t) are given by equation (22).

Proof. By (56) and (64), there is a solution matrix Z(x) for (48) of
the form

(66) Z(x)=[E + 0(1)]Zo(x0, x), X Z Xo.

If x, is sufficiently large, det[E + o(1)] # 0 for x = x, and therefore Z(x)
is a fundamental matrix for (48). By (66) and (27) a solution matrix for
(25) is given by

(67) W(x)= Ty(x)[E + To(x)][E + o(1)] Zo(x0, x), X = X,.

Since [E + T,(x)] ™' exists by Lemma 16 and T;'(x) exists by (31), W(x) is
a fundamental matrix. By Lemma 14 and the fact that
lim,_..a(x)/A(x) =0, we see that

(68) W(x) = T(x)[E + 0 ()] Zo(¥0, X), X = x,.

Let y(x)=wi(x), k =1,2,3, where w,,(x) is the element in the first
row and kth column of W(x). Then, by the equivalence of (24) and
(25), y« is a solution of (24), and by (68) and (30),

(69) Yo = [1+0(1)] expfx () +APE] d,  x=Za

From the equations y, = wyy, y'= wiy, yi= — (ib,) 'mwy, + (ib,) 'w,, we
see that W(y,, y,, y5)(x) = det W(x) # 0, x = x,, where W(y,, y,, y,) is the
Wronskian of y,, y,, y;. Hence, y,, y,, y; are linearly independent for
X Z x,. By (43), (41), (38), (39), (49), Lemma 5, Lemma 1 and Assump-
tion IV we see that

(70) expjx APy dt = Clag™(x)|[[1+0()], x=x,, GC#O.
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(65) now follows from (69), (70) and the fact that |a,|— =, so that
a)(x)>0oray(x)<0forx = x,. Thisfinishes the proof of Theorem 1.

3. Asymptotic formulas for the A, (x). In thissection we
take the coefficients of the operator L of equation (1) to be the following
on the interval [1, »):

(71) by(x) =1,

(72) bi(x)=ax", a <2y/3,
(73) a(x)=bx"",

(74) a(x)=cx, y>0, c#0.

LEMMA 21. If b/c'” #3/2*°, then the coefficients of L given by
(71)~(74) satisfy Assumptions 1-V with

(75) d=blc'".

The proof is straightforward. We note that it is required in (74) that
y >0 and ¢# 0 in order that g,(x)— +® or a,(x)— —® (Assumption
I). The exponent y/3 occurs in (73) in order that lim,..a/a" = d
(Assumption IT) with the possibility that d# 0. The inequality @ <2vy/3
is required in (72) in order that b,/ai” = o(1) (Assumption II).

LEmma 22. If b/c'” <3/2%°, the coefficients of L given by (71)-(74)
satisfy Assumptions 1-V1.

Proof. Since d = b/c'? <3/2°", ho(n) = 0 has one real negative root
and two complex conjugate nonreal roots. Suppose ng, =p +iq, Nn=
p —igq, ¢ >0. Then from (23) one sees that Assumption VI is satisfied;
in fact, (a) or (b) is true for each pair j, k. This proves the lemma.

If d>3/2*", then hy(n)=0 has three real roots. In this case in
order to check Assumption VI it is necessary to have asymptotic formulas
for the A, (x) which are more precise than (23). We obtain these by use
of (20).

LEMMA 23.  Suppose the coefficients of L are given by (71)-(74) and
that b/c'” # 3/2*°.  Then the roots A, (x) of (7) are given by
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A (x) = ial? {mk + [moc — v1d] (6¢)(iD)
+acPoex ™" + [~ (Mo — vud) + v,d’](6¢)*(iDY)
—ac P[vy+ v,d](6¢)7'(iD)x "
+ (ac P vypx
+((5/3) (Mox — v11d) — 302d” — v35d] (6¢)(iD )’
(76) + O(D™x™)+ O(Dx )+ (ac ™ var ™

n+2
S 3 0D v)+ O(Dx )

]45

+ 2 vo(ac Pyx "

+ W, o(x)(ac -—2/3)n+1 —(n+1)v

+ w,,+2,0(x)(ac’2’3)"”x —(n+2)p ,
where n is an integer, n = 4, the v, are constants which depend on 7, and

are real when n, is real, w,.,o(x) and w,.,o(x) are complex functions
which are bounded as x — ©,

(77) v=2y/3-a>0,
D = qax P —2gx 7"

(78) =0(l) as x—>oo.

If Mo is real,

ReA (x) = aé’3{[v11d — o] (6¢)'D
+ ac’[vy + dvy](6¢)'Dx
— [(5/3) (vnd — mox) + d*(3om + dvs)] (6¢)°D*
(79) + O(D*x~*)+ O(Dx*)

'l+2
S 3 0(Dx 1)+ O(Dx )

145

+ O(x‘(n+1)v)+ O(x—(n+2)u)}.
It is true that

(80) v = nadho(mo)]
(81) vnd = Mo = 3[ho(no)] ™,
(82) V10 = Nox[Ao(Ma)] ™,
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(83) v =na[3hi(Mox) — Moch (N0} [Ao(M0:)]7,
(84) vy =27 <3)k[4h (’)(7)0k ) — Noch g("?otc )] [h 6(710k )1437
(85) vn= 2“‘n8k{[3h6(110k) — Noch 5(Nox )]2 + [h (Mo )]2} [h(')(”'lok )]_2~

Proof. From (5) and (71)-(74) we see that

(86) 7(x)= ai’(x)t(x),
(87) t(x)=[1+ Q2c)'(iD)]™.
As x — o,

(88) t(x)=1+(6c)'(iD)— (6¢)*(iD) + (5/3)(6¢c)*(iD )y + O(D*).
The functions f,(x) and f,(x) of (16)—(18) are given for x — » by
(89) fi(x)=d[—(6c)'(iD)+2(6¢c)*(iD )y — (14/3)(6¢)*(iD )+ O(D*)],

f(x)=ac™x"[1-2(6¢)"'(iD)

(%0) +5(6¢)2(iD ) - (40/3)(6¢) (D’ + O (D).

Now, h™'= hi'[1 = (n/ho)(nfi + f)]”'. Let n be a positive integer. For
n € C, and for x = x,,

ht= b {145 byt + £ + (b afi £
X [1- (/o) (ofi + £)]°

" =hi'+ 3, (2 i)
+:2; Guors (i1 = (n/ho) (f s + £)]7
Hence,
i = kit + S b (n)fift
(92) + [Z cm,s(n,x)fifs“‘wg Curzs (M, X )fifi‘”“]

X[1=(n/ho)(nfi+ fZ)]_l-

Substituting (92) into (20),
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M (X) = Nox +§ 2 vifif}

j=1 s=0

nt+l

(93) + 2 Was (Xfif5

s=0

nt+2

2 Wasas (X)fif377,

s=0

where the v, are constants which are real if 7, is real, and the functions
Wai1s(x) and w,.;,(x) are bounded as x — 4. If we substitute (93)
into (22), we obtain for x = x,,

A(x) = ta0’3{tn0k + E S vutfifs

j=1 s=0

n+1 ) )

+ , [v,otf’2+ 2 v,-stfif’z"]

j= s

(94) "
+ W"+10tf"+l

oo
A

M

n+1 stf fn+1 s

“©
[

=
¥
[N

+ wn+2,0tf;+2 + n+2 stf fn+2 S}

=1

»

We now use (88), (89), (90) to calculate asymptotic expansions for each of
the terms tnq, tfifi*. We obtain

Mo = Nox + Mo (6¢)7'(iD) — Mo (6¢)*(ID Y’ + (5/3)noi (6¢)°(iD )’
+ O(D"Y),

tfi=d[~ (6¢)'(iD)+ (6¢)*(iD ) — (5/3)(6¢)*(iD )’ + O (DY)},
tf,=ac ™ x[1-(6¢)'(iD)+-O(D?Y], etc.

Substituting into (94), we obtain (76). (79) follows immediately from
(76). From the way in which (93) was derived, we see that v, =

(27ri)“f [n°ho—277ho)h;* dn. Hence,
Ci
b= Qi) | [nhs' = (d/dn)(n*hsh] dn
= (2771')*1"; n’ho' dn = no[hi(ne)] ™

This proves (80). (82)—(85) are proved similarly. (81) follows from (80)
and the fact that d = (93, + 1)n;’. This proves Lemma 23.
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Let
w=min{r+1+y/3,y} if aa#0
(93) =vy if aa =0.
Then, as x — oo,
(96) D=0((x").

In the following we shall consider three cases. Case 1 is the case
that » = 2u, which occurs if @ = —4y/3. Case 2 is the case v >2u,
which occurs if a < —4y/3. Case 3 is the case v < 2u, which occurs if
—4y3<a<2y/3.

LEMMA 24.  Suppose the coefficients of L are given by (71)~(74) and
that b/c'” # 3/2°". If no is real, Re A (x) has the following asymptotic
expansions:

Case 1. v=2u (ie., «a = —4vy/3). Then,

Re A (x) = ad™{[hi(no)]'(2¢)'D
+ ac P[vy + dvy ] (6¢) ' Dx
= [5(hs(mo))™" + d*(3vx + dvs3)] (6¢) D’
+ O(x*)}.

©7)

Case 2. v>2u (ie., a < —4y/3). Then,

Re A (x) = ai™{[hi(no)])'Q2c)'D
G8) = [5(ho(no)) '+ d*(Boy + dvss)] (6¢) D3 + O (x 79},

where € > 0.
Case 3. v<2u (ie., —4y/3<a <2vy/3). Then,
Re A (x) = ad™{[hi(no)] '(2¢)'D

(99) + ac (v, + dvy](6¢c)'Dx ™"
+O(x™*7)},

where € > 0.



386 RICHARD C. GILBERT

Proof. (97) and (98) follow directly from (79). If we choose n so
large that nv > u, then we also see that (99) follows from (79). This
proves Lemma 24.

LEmMA 25. If b/c'>3/2"2) b/c'? #3/2', and o # aa/2, then the
coefficients of L given by (71)-(74) satisfy Assumptions 1-VI.

Proof. Since d=b/c”>3/2"", hyi(n)=0 has three real
roots. Because d # 3/2'%, hi(n0), hi(nw), ho(ne) are all distinct.  From
(78) and (95) we see that D = Cix *[1+ o(1)], where C,# 0 because
o# aa/2. By Lemma 24,

Re[A;(x) = Ac(x)] = Ci2c) 'aiP{[ho(mo)]™ — [Ri(noc)] '}
(100) x x~#[1+ o(1)].

From (100) and (74) it follows that Assumption VI is satisfied. This
proves Lemma 25.

LEMMA 26. Suppose the coefficients of L are given by (71)-(74) and
that b/c'”=3/2"". Then the roots of ho(n)=0 are ny =2""(1-3"),
Noe =27, Mes =27"(1+3"%), and

(101) hi(na) = hi(nos) # ho(n02),

(102) Vi(Mor) + dvu(ne) = 37272P(= 2+ 3",

(103) Vio(N0s) + dva(nes) = 3727(=2-3"),

(104) 3vn(no) + dvs(ne) = 372727250 — (143)3'7],
(105) 305(N03) + dvss(mes) = 37272°[250 + (143)3'7).

The proof follows immediately from (80)-(85) and the fact that
ho(n)=n"-G12")m*+1.

Lemma 27. Suppose that b/c'” =32, a < —4y/[3. Then, the
coefficients of L given by (71)-(74) satisfy Assumptions 1-VI.

Proof. Since a < —4y/3, v+1+vy/3>y. By (95), w =v. By
(78), D= —-20x7"(1+0(1)). From (101) and (98) it follows that
Re[Ax(x)— Ai(x)] and Re[A,(x) — A5(x)] satisfy (a), (b) or (c) of Assump-
tion VI. From (98), (101), (104), (105),

Re[As(x)— A(x)] = Cix*"?(1 + 0(1)),
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where C;#0. Thus, Re[As(x)— A(x)] also satisfies (a), (b) or (c) of
Assumption VI. This proves Lemma 27.

LEMMA 28. Suppose that b/c'?=3/2" —4y[3<a<2y/3, o#
aa(2, a#0. Then, the coefficients of L given by (71)-(74) satisfy
Assumptions 1-VI.

Proof. 1t follows from (78) that D = C,x*(1+ 0(1)), where C,# 0
because o# aa/2. By (101) and (99), Re[A,(x)— A(x)] and Re[A,(x)—
As(x)] satisfy (a), (b) or (¢) of Assumption VI. From (99) and
(101)-(103), Re[As(x)— A(x)]= Cox#7"""*(1+ 0(1)), where C,# 0 be-
cause a # 0. Hence, Re[As(x)— A,(x)] satisfies (a), (b) or (c) of Assump-
tion VI. This proves Lemma 28.

LEMMA 29. Suppose that b/c'*=3/2"", a= —-4y/3, o*#
—2"ac*’[143. Then, the coefficients of L given by (71)-(74) satisfy
Assumptions 1-V1.

Proof. Since a = —4vy/3, u =v. Hence, D= —20x7"(1+0(1))
by (78). From (101) and (97) it follows that Re[A,(x)—A,(x)] and
Re[A(x)— As(x)] satisfy (a), (b) or (c) of Assumption VI. From (97) and
(101)-(105), Re[As(x) — Ai(x)] = Cix*"2(1 + 0(1)), where C, # 0 because
a’# —2"%ac*?/143. Hence, Re[A;(x)— A (x)] satisfies (a), (b) or (c) of
Assumption VI. This proves Lemma 29.

LeMMA 30. Suppose the coefficients of L are given by (71)-(74) and
that b/c'” # 3/2**.  If ny is real, Re A, (x) has the following asymptotic

expansions:

Case A. Suppose a =0. Then,

(106) ReA(x)= = a[hy(mu)] ¢ xP(1 + 0(1)).

Case B. Suppose a# 0.
(i) Suppose 1<2vy/3.
(a) If 1<a<2y/3, then

(107) Re A, (x) = aac™[2h (o)) 'x* 721+ 0(1)).

) Ifa=1and a# a/2,

(108) ReA (x)=(a —20)[2hi(no )] e x 23(1 + o(1)).
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(c) If a <1, (106) is valid.
() If @ <2y/3=1, (106) is valid.

The proof follows directly from Lemma 24 with calculation of u and
D in the various cases.

4. The deficiency index of the operator L. In the
following, L, will denote the space L,[1,x), i.e., the space of complex-
valued functions on [1,) which have Lebesgue square integrable
absolute values.

LEmMA 31. Suppose the coefficients of L are given by (71)-(74) and
that b/c'? < 3/2*", so that no. = u, + iv,, where v,>0 and v;<0. Then

the function f,(x) = ag”’(x)expfx Ac(t)dt, x = x,, has the following prop-
erties: 0

(i) Ifk=2andc>0orifk =3 and c <0, then f, €L, forcd >0
and for o <0.

(i) Ifk=2andc<0orifk =3 andc >0, then f, & L, forc >0
and for o <0.

Proof. We shall give an intuitive proof which can be made precise
as in Naimark [9, §23]. We have by (23) that

x

[fe(x)|=]c l””f*”eXp[ - vkch' ¢ dt]

e ,c '—lllx“vls exp [ — U 1/3(7/3 + 1)—1(x y3+1 _ xg/3+1)]

- +o if pc"”<0.
This proves (ii). Also,

x

[fe(x)P = e[ x " exp [ 2y ]

X0

13 dt]

x
= IC |‘2’3x”’3exp[ _ zukcl/sj

Xxo

t7/3 dt:l

x

=(—2vc)'(d/dx)exp [ - 20,(c”3f

1P dt] .
This proves (i).

LEMMA 32. Suppose the coefficients of L are given by (71)—(74) and
that b/c'"#3/2*°. If mo is real, the function f(x)=a;"(x)
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exp ' A (t) dt, x = x,, has the following properties:

() If2y3>1ando# a2, thenf € L, fora >0 and foro <0.
(I1) If 2y/3=1, then fE L, for o/hynw)>0, and fE L, for
O'/hé(n()k)<0.

Proof. Case A. Suppose a =0. By (106),

x

[fO)f~ ¢ x " exp{ —20c " [hi(no)]™ f R dt}

X0

= (= 20) " hi(no)(d/dx ) exp { 26 [hY(no)] f " dz}.

From this last expression we see that (I) and (II) are true for Case A.

Case B. Suppose a#0. If 1 <a <2y/3, then by (107),

X

[f(x)F = ¢ x> exp { aac [hi(nau)]™ f temir dt}

X0

é C>2/3xa—1—27/36Xp{aac—Z/S[h(l)(n()k)]*lf ta—1—27/3 dt}

= (aa) "hiCmon) (@] dx) exp { aac Thima)) [ o0 drf.

Since j t* "R dt converges, we see that (I) is true if 1 <a <2y/3. If

X0

a =1<2y/3 and o# a/2, then by (108),

FR = e exp | (a - 200 Hhicnu) || 0 )

= (a - 20’)‘1;16(7)01() .
x (d1dx)exp] (@ = 20)c [hiCn)]” |

X0

LB dt} )

Since J t™” dt converges, we see that (I) is true for « = 1<2vy/3 and

o#Zaf2. fa<1<2y/3orifa <2y/3=1,then by Lemma 30, (106) is
valid and therefore (I) and (II) follow as in Case A. This proves Lemma
32.

Let n. denote the dimension of the space of solutions of Ly = iay,
x 2 r, which are in L,[r,©) for o > 0. Itis known that n, is independent
of 0. Let n. denote the same number for ¢ <0. We shall call n, and
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n_ the deficiency numbers of L, and we shall call the pair (n., n.) the
deficiency index.

THEOREM 2. Suppose that the coefficients of L are given by (71)—(74)
and that b/c'?<3/2*P. If 2y/3>1, n.=n_=2. If 2y/3=1, n,=2,
n.=1.

Proof. By Lemma 22, the coefficients of L satisfy Assumptions
I-VI. By Theorem 1, Ly = ioy, x = 1, o # 0, has three linearly indepen-
dent solutions y, given by (65). By Lemma 31, for ¢ >0, y,E€ L, and
ys & L, for o >0 and for o <0; for ¢ <0, y, € L, and y; € L, for o >0
and for 0 <0. By Lemma 32, if 2y/3>1, y,€ L, for 0 >0 and for
o0<0, o#a/f2; if 2y/3=1, y,€L, for 0 >0, and y, & L, for o <0,
because ho(ny)>0. It follows that if 2y/3>1, then n, = n_ =2, and if
2y/3=1, then n,=2. It also follows that if 2y/3=1, then n.=1,
provided we can show that for ¢ >0 and o <0 no nontrivial linear
combination of y, and y; is in L,, and for ¢ <0 and o <0 no nontrivial
linear combination of y, and y, is in L,. We deal with the case ¢ >0,
o < 0; the case ¢ <0 and o <0 is similar. It is sufficient to show that
yi+Bys €L, if B#0. By Theorem 1, (23), and Lemma 30,

yafys| = [1+ o (1)] exp f [Re A,(r) — Re Ay(1)] dt

=[1+o(1)]exp c‘%;f t"*[1+0(1)]dt—>0 as x— +x.

X0

Hence, for x = x;, |y,/y;+ B|*= K, where K is a constant. Thus

J ly1+By3l2dx=f lyslzlyl/yﬁBlzdxéKf |ys[* dx.

It follows that y, + By; & L,. This completes the proof of Theorem 2.

THEOREM 3. Suppose that the coefficients of L are given by (71)-(74)
and that b/c'” >3/2°",

Case A. Suppose b/c"#3/2". If 2y/3>1, n,=n_=3. If
2vy3=1,n,=2, n.=1.

Case B. Supposeb/c'”=3/2" anda = —4y/3. If2y/3>1,n.=
n.=3. If 2y/3=1/4, n.=2, n_=1.

Case C. Suppose b/c'?=3[2"", —4y[3<a<2y/3, a#0. If
2v3>1, n.=n_=3. If4y[3-1=a<2y/3<1, thenn,=2, n_=1.
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Proof. By Lemmas 25-29, the coeflicients of L satisfy Assumptions
I-VI in all three cases, provided o# aa/2 and o’# —2"ac*’/143.
Hence, if we avoid these values of o, Ly = ioy, x =1, o# 0, has three
linearly independent solutions y, given by (65). By Lemma 32 we have
the following: (I) If 2y/3>1 and o # a/2, then y,, y,, y;€ L, for ¢ >0
and for o <0; (II) if 2y/3 =1, then for 0 >0, y,,y;E€ L, and y, € L,,
while for o <0, y,€ L, and y,,y; € L,. By (I) we see that if 2y/3>1,
then n, = n_=3 in all three cases. If2y/3=1, then n,=2and n_=1,
provided we can show that no non-trivial linear cembination of y, and y;
isin L,. Using (106), this can be proved for Case A as in the proof of
Theorem 2. In Cases B and C it is necessary to use (97)-(99). The
assumptions in Cases B and C enable one to do this as in the proof of
Theorem 2. This completes the proof of Theorem 3.

THEOREM 4. Suppose that the coefficients of L are given by (71-74)
(without the requirements that a <2vy/3, y>0). Then the deficiency
index of L is as follows for the indicated values of the parameters y, a:

L y>3/2, a<2y/3: (2,2) if b/c"?<3/2°"; (3,3) if b/c'”>3/2%",
b/cm ;é 3/21/3'

O 0<y=3/2,a<2y/3:(2,1)ifb/c'”#3/2°" and b/c'" # 3/2"".

. y=0, «a=0: (2,1).

IV. 0<a=1, a>2y/3: (2,1).

V. 1<a a>2y/3: (3,3)ifa>0; (2,2) if a <O0.

Proof. The statements for regions I and II follow from Theorems 2
and 3. III follows from the fact that n.+n_=3 by Dunford and
Schwartz [4, XIII. 10. E.II(5)] and from the fact that 2=n, and 1 =n_by
Everitt [5] or Kogan and Rofe-Beketov [8]. IV and V follow from
Unsworth [12]. This proves Theorem 4.

ReMARK 1. Note that @ =2vy/3, vy >0, is the only portion of the
(v, @)-plane not included in Theorem 4.

ReMARK 2. The results of §7 of Pfeiffer [5] are included in
Theorem 4 except for the case ¢ = 0.
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S-SPACES IN COUNTABLY COMPACT SPACES
USING OSTASZEWSKI'S METHOD

JouN GINSBURG

A method adapted from that used by A. J. Ostaszewski is
used to construct S-spaces as subspaces of given
spaces. Assuming the set-theoretic principle <, it is shown that
every countably compact space containing no nontrivial con-
vergent sequences contains a perfect S-space. As a corollary,
assuming <, if X is a countably compact F-space, then X
contains a hereditarily extremally disconnected, hereditarily
normal, perfect S-space.

1. Introduction. The set-theoretic principle <, due to Jen-
sen [3], has found many interesting applications in topology, particularly
the construction of Souslin lines and various S-spaces. The basic
technique for constructing S-spaces from < is due to A. J. Ostaszewski
[6], and has been modified and applied in constructing other interesting
topological spaces, notably in [S] and [8]. Roughly speaking, the
method involves constructing a space having desired properties by
defining its topology inductively over more and more of the space (and in
some cases refining a given topology) using some principle of enumera-
tion. :

Here we will show how the method can be used to construct
S-spaces as subspaces of given spaces. That is, rather than building up a
space by inductively defining its topology, the desired examples will be
obtained by working within a given topological space and extracting a
subspace.

Our principal topological references are [2], [7] and [10]. For
set-theoretic notions we refer to [4].

For the reader’s convenience we now recall a few notions from
topology which we will employ.

A space X is an S-space if X is regular, hereditarily separable and
not Lindelof.

X is countably compact if every countable covering of X by open
sets has a finite subcover.

For a completely regular space X, BX denotes the Stone-Cech
compactification of X.

A subset A of X is C*-embedded in X if every bounded, continuous
real-valued function on A admits a continuous extension to X. A
cozero-set in X is a set of the form {p € X: f(p) # 0} where f is a
continuous real-valued function on X. X is an F-space if X is com-

393
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pletely regular and every cozero-set in X is C*-embedded in X. A
completely regular space X is extremally disconnected if the closure of
every open subset of X is open.

For the basic information on F-spaces and extremally disconnected
spaces, the reader is referred to [2] and [10]. We will make use of the
following two facts, established in 1.62 and 1.64 of [10].

1.1. If X is o-compact and locally compact, then BX — X is.a
compact F-space.

1.2. If X is an F-space then every countable subspace of X is
C*-embedded in X.

For the consistency of <& with the axioms of set theory the reader is
referred to [3]. We will not need a precise statement of &, rather we
will use the following consequence of < derived in [6].

1.3. Let limw, denote the set of limit ordinals less than w,. Then
there is a family {S,: y € limw,} of subsets of w, such that each S, is a
cofinal subset of y and such that for every uncountable subset S of w;
there is a y € limw, with S, C S.

It is clear we may assume that each S, is a simple w-sequence
increasing to y in 1.3. This is the form in which we will apply 1.3. (the
conclusion of 1.3 is often referred to as “club’; see [7])

2. S-subspaces of countably compact spaces. We now
assume the conclusion of 1.3. This assumption will enable us to
construct S-spaces in certain countably compact spaces. It is apparently
not yet known whether 1.3 is equivalent to <& or whether it is strictly
weaker. It is known that < is equivalent to the conjunction of 1.3 and
the continuum hypothesis, and so this question amounts to whether or
not 1.3 implies the continuum hypothesis. (see [7])

All hypothesized spaces are assumed to be infinite.

2.1. THeOrREM. If X is a regular, countably compact Hausdorff
space containing no nontrivial convergent sequences, then X contains a
perfect S-space.

Proof. Let {S,: y Elimw,} satisfy 1.3 where each S, is an w-
sequence increasing to y. Let X satisfy the hypotheses of the
theorem. We inductively select points (x;: ¢ € w;) in X, and open sets
(G;: ¢ € w) in X so that

(i) for all ¢ x, € G;

i) ¢<n—x&G

(ii)) for all limit ordinals y and all n € o, x,., €Ecl{x,: £ € S,}.
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To get the desired sequences (x;: ¢ € w;) and (G;: £ € w,) we
construct (x,: £ <vy) and (G;: £ <vy) by induction on the limit ordinal
v. To start the construction, we choose a countable discrete subset
(x.: n € w) of X, (X is assumed infinite), and a sequence of open sets
(G.: n € ) in X such that x, EG, and m# n—x, & G.'

Now suppose o € limw, and for every limit ordinal y <o we have
chosen the sequences (x;: £ < y) and (G;: & < y) satisfying (i), (ii), and
(iii). If o is a limit of limits, we simply gather together all the x,’s and
G,’s previously constructed to form (x,: £ < o) and (G;: ¢ <o), clearly
satisfying (i), (i), and (iii). So we need only consider the case where
o =y + o for some limit ordinal y. Thus, having the sequences (x;: £ <
v) and (G;: ¢ < y) we must define the points (x,..: n € w) and the open
sets (G,+.: n € w). Consider the infinite set R, = {x,: £ € S,}. Since
X is countably compact, every countable subset of X has a limit point in
X. But since X contains no nontrivial convergent sequences, every
countable set has infinitely many (in fact uncountably many) limit
points. Thus clR, — R, is infinite, and so contains a countable discrete
subspace (x,,,: n € w). Choose a sequence of open sets (G,.,: n € »)
which witnesses this discreteness, that is, with x,., € G,., and such that
m#n—x,mZ G,

We now check (i), (ii), and (iii) for (x;: £ <y + w) and (G;: E<y +
w). (i) is clear, as is (iii), by virtue of the induction hypothesis and the
selection of the points x,., in clR,. To verify (ii), because of the
induction hypothesis and the choice of (x,.,: n € w) and (G,.,: n € w),
it is sufficient to check the following:

If {<y and n € o, then x,.,€ G, But S, is an w-sequence
increasing to 7y, and so there are at most finitely many ordinals in S,
which are less than ¢ By property (ii) of the induction hypothesis, this
means there are at most finitely many x, with n €S, which lie in
G. But x,,, is a limit point of R,, so every neighborhood of x,.,
contains infinitely many x, with n € S,. In particular, x,.,Z G,.

This completes the inductive construction, and results in sequences
(x;: £ € w)) and (G;: € € w,) satisfying (i), (ii), and (iii).

We now claim that Y ={x,: £ € w,} is a perfect S-space. The
verification of this is essentially identical with the argument given in [6],
so we will be content to sketch that argument here. That Y is not
Lindelof is immediate from (ii) and (i). Any countable subspace of Y is
separable, and if {x,: £ € S} is an uncountable subspace of Y, there is, by
1.3, a y € limw, such that S, C S. Using (iii) we see that {x,: ¢ € S and
&<y} is a countable dense subset of {x,: £ € S}. This proves Y is
hereditarily separable. Since y <n — x, € cl{x,: ¢ € S,}, the same ar-

! The fact that every infinite Hausdorff space contains a countably infinite discrete subspace is
well-known and easy to prove. A proof may be found in 0.13 of [2].



396 JOHN GINSBURG

gument shows that every closed subset of Y is either countable or
co-countable, from which it is immediate that every closed subset of Y is
a G;s in Y, that is, Y is perfect.

2.2. CororLary. If X is a countably compact F-space then X
contains a hereditarily extremally disconnected, hereditarily normal, perfect
S-space.

Proof. Using 1.2 it is easy to see there are no nontrivial convergent
sequences in an F-space, so the hypotheses of 2.1 apply. We show that
the S-space Y obtained in 2.1 is hereditarily extremally disconnected and
hereditarily normal under the present assumptions on X. Now, as is
well-known, a space is extremally disconnected if and only if each of its
open subsets is C*-embedded (see 1H in [2]), and a space is normal if and
only if each of its closed subsets is C*-embedded (see 3D in [2]). Soto
verify that Y is normal and extremally disconnected hereditarily, it is
sufficient to prove that every subspace of Y is C*-embedded in Y. So,
let ZC Y, and let f be a bounded, continuous real-valued function on
Z. Since Y is hereditarily separable, Z contains a countable dense
subset D. By 1.2, D is C*-embedded in X, and so the function f|D
admits a continuous extension F to all of X. Clearly F|Y is the desired
extension of f.

REMARK. 2.3. There is a large number of spaces to which these
results can be applied. One class of such spaces is furnished by 1.1.  So
assuming 1.3 we see for example that BR—R and BN — N contain
interesting S-spaces.

REMARK. 2.4. The fact that < implies the existence of S-spaces
which are extremally disconnected was previously observed by M. Wage
[9]. Wage’s construction, like Ostaszewski’s original method, involves
inductively defining a topology to get the desired example.

One significant difference between the S-spaces obtained in 2.2 and
the original S-space described in [6] is countable compactness. The
S-space in [6] is, in addition, countably compact, while the S-spaces in
2.2 are never countably compact. If CH is true this follows from the
results in [11] which imply that, assuming CH, every countably compact,
separable normal F-space is compact, and therefore Lindelof. If CH is
false, we argue as follows: A slight modification of the argument in [1]}
shows that a countably compact space of cardinality < c is sequentially
compact. Since our S-spaces have cardinality », and contain no con-
vergent sequences, they cannot be countably compact if CH fails
either. Thus our S-spaces constructed using 1.3 are not countably
compact.
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Dedicated to the memory of Professor T. S. Motzkin

Delaunay has proved that if € = ap¢” + bpd + ¢ is a unit in
the ring Z[6], where 6°— P8°+ Q6 — R =0, p is an odd prime,
¢ =p'6,t=0and p t a, then no power €™ (m positive) can be
a binorm, i.e. €™ = u + v0 is impossible for m a positive integer.
Hemer has pointed out that in the above situation, €™ = u + 00
is also impossible for m a negative integer.

In this paper the above result is extended as follows.

THEOREM L. If € = af’+ b0 + ¢ is a unit in Z[0], where
‘=do*ted+fand p*|a, p®|lb, p being a prime, then " =
u + 08 is impossible for n# 0 in the following cases:
(i) When l=qa = and p is odd,
(il) When 2=aq =B andp =2,
(iiil) When B =a <28 and p is odd,
(iv) When B=a <281 andp =2.

As an application of this and some other similar theorems,
all integer solutions of the equation y°=x’+113 are de-
termined.

First we prove two simple lemmas.
Lemma 2. If p*| <pr2) then p* | <7>, where the prime p satisfies
pi<i<p® and p*' a <p:l”>' Furthermore if p|n and p X i then

L (n
pa 1’ <i>'

Proof. lLeti=p?+r. Then 0<r<p?'—p9 Hence
(=G (") e
. . . - —.
v [T+
-
Since IT_, (p? +j)/r! is an integer not divisible by p and p*| <prz>, we
have p* | <’:)
If pln and p ¥ i then p tr for i =p?+r. Then
()= ()
r r r—1
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is divisible by p. Hence p**'| (:l)

Again from
q+ q q+l __ . q s g+1 5
p p p ’121 (pq+1_j) p

where s = p!

—p?—1, we see that p""[( :l+1>,and the lemma is
proved. P

LEMMA 3. Let € =af>+ bl +c be a unit in Z[0], where 6°=
do*+eb +f,ande'=a'0*+b'0+c'. Ifp|a, p®|b wherepisaprime
and aB#0, then p|la’ and p*?| b’ in the following cases:

i) a=B<2a

() B=a<2B
For a = 8 we have p*|a’ and p*|b'.

Proof. Since (a6>*+ b0 +c)(a’0’+ b'6+ c')=1, we have,

(1) aa'd’*+ab'd +a'bd + aa’e + ac’'+ ca’ + bb' = 0,
(2) aa'f +aa'de + ab'e + a'be + bc'+ b'c =0,
and

3) aa'df + ab'f+ a'bf + cc' = 1.

From (3) it follows that p 4 ¢’.

Case (i). From (1) we have ca’=0 (modp®) as @ =B. Since
p 4 c wegeta =0 (modp®). From (2) we obtain b'c =0 (mod p*) for
a =B, whence b'=0 (modp®). If B <2a, then (2) gives b'c =0
(modp?),or b'=0 (modp®). If p**'|a’, then from (1) we have ac'=
(modp=*'). Since p £ ¢'we get a =0(modp~"'),a contradiction. Hence
p®lla’. Similarly if p#"'|b’, then from (2) we get bc'=0 (modp**')
when B <2a. Again we arrive at a contradiction since p 4 ¢’ and
p? | b. Hence p°|b'.

Case (ii). Since B = a, (2) yields b'c =0(modp?). Then we have
b'=0(modp?) for p 4t c Using a<2B, we get a'(bd+c)
0 (modp*®) from (1). Then a'=0(modp®) as p + (bd +c). If b’

([
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0 (mod p#*'), then from (2) we see that bc'=0 (modp?''), a
contradiction. Hence p?||b’. If a’=0 (modp**') we have from (1)
ac'+ bb'=0 (modp**'). We get a contradiction for a« <2B8. Hence

pella’.

Proof of Theorem 1. Letn>0. Case(i)and(ii). Letlsa=p.

Since € is a unit, p 4 c. Moreover € =ab*+bhf+c=
pe(r6°>+s6)+c where p ¥ r. Let (r8°+s8) = a0’ + b0 + ¢, with a;, b,
and ¢; rational integers. Then

n

€"=(ab*+ bl +c) =[c+p (r0*+s0)]"=c"+ (1

) c*'pe(re*+ s0)

+ G) c"’p*(a,0°+ b0+ ¢c,)+ -+ p™(a.0>+ b0 +c,) = u + v6.

Comparing the coefficients of 6°, we have

4 nc"”'per + <g> c"?*p*a,+---+p™a, =0.

If p is an odd prime, we see using Lemma 2 that the first term of (4) is
divisible by a lower power of p than the others. If p =2 and a =2 the
same conclusion holds. Hence (4) can never be satisfied. So €" can
never be of the form u + vf in these cases.

Cases (iii) and (iv). Now € = p?(r8°+ s8)+ ¢, where p=~#|r.
Then the coefficient of 6° in €” = [c + p?(r0*+ s0)]" is

) nc"'pfr+ <;) c"?p*a,+ - -+pa,,

where (r8°>+s0) = a,0°>+ b0 + ¢, with a, b, and ¢ rational integers.
Again using Lemma 2 and the fact that a <28, we see that the first
term of (5) is divisible by a lower power of p than the others if p is an odd
prime.

In case p =2 and & < 28 — 1 the same conclusion holds. Hence (5)
can never be zero, i.e. €" = u + vf is impossible. This proves the
theorem for n > 0.

We next consider €" = u + v for n <O0.

Let n=—-m and e€'=a'0’+b'0+c’. Then we have €"=
(e)"=(a’'6’+b'60 +¢')" where m >0. From Lemma 3, we see that
pella’, p|b' for a =B, and p*|a’, p?|b' for B=a<2B-1,a=8<
2a and B=a <2B. Hence (a'0’+b'0+c')" =u+ v6 is impossible
for m >0. Combining these results we see that €” = u + v6 is impossi-
ble for n# 0, and the theorem is proved.
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We note that if the conditions of Theorem 1 are not fulfilled, then
€" = u + vf is possible for n > 3; examples are given in [2, page 417].
Very often the following theorem is useful.

THEOREM 4. Let € = a,0°+ b,0 + ¢, be a unit in Z[0], where ° —
P60 —q,=0. If p,=0 (mod3), then

(6) €"=u+vb

is impossible for n# 0 provided a, #0 (mod 3), b1+ 2a,c, #0 (mod 3), and
bic,+ a,ci+ aib,q, #0 (mod3).

Proof. Let €" = a,0°+ b,0 +c,. Then we have

An = a,(aip,+c¢;))+ bb, + ca,
b,.,= an(al% + b1p1)+ bn(cl + a1P1)+ b,

and

cn+] = anblql + bnalql + Cncl'

Hence we get a, = aip,+ bi+2a,c,, b,= aiq, +2b,c, +2a,b,p,, and ¢, =
ci+2a,bq. Then as= aipi+3abip,+3aic,p,+3bic,+3aci+
3aibiq;, bs=2aip,q.+3a,biq,+3aic,q,+3aib,pi+bipi+6a.bicip,+
3bci, and ¢;=3aib,p,q,+ biq, + 6a,b,c,q,+ aiqi+ ci. Suppose p,=0
(mod3). Then a;=0 (mod3), b;=0 (mod3), and ¢c;=bq,+ aqi+ ¢,
(mod 3).

Since €’ is a unit, ¢;#0 (mod3) as a;= b, =0 (mod3).
Hence we have ¢;=1 or 2 (mod 3).

Suppose n =1 (mod3), and put n =1+3m in (6). We get

€ (e’)" = u+ o,

or

(a;0°+ b0 +¢,)(=x1)" =u + vf (mod3).

This congruence is impossible unless a, =0 (mod3). Hence if a,#0
(mod3), then n#1 (mod3). Suppose n=2 (mod3), and let n=
2+3m. Then (6) gives

(a,0°+ b,60 + ) (£1)" = u + vh (mod 3).

This is impossible unless a,=0 (mod3), ie. bi+2a,c;,=0
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(mod3). Hence if bi+2a,c;#0 (mod3), then n=2 (mod3) is
impossible. Finally suppose n =3m in (6). Then we get

(7) (a302+ b30 + C3)m =u + vé.

Now a;=b,=0 (mod3), and a,=3bjc,+3a,ci+3aib,q, (mod9). If

bic,+ a;ci+ aib,q;#0 (mod3), then a;#0 (mod9) and hence by

Theorem 1, (7) is impossible for m an integer, positive or negative.
Therefore n = 0 is the only solution to (6).

LemMma 5 (Delaunay [2, page 385]). If b0 + c, where b#0,%1, is
a positive unit of Z[0] where 6° — P>+ Q8 — R = 0, then no power >1 of
b6 + c can be a binomial unit. (In other words all the positive powers of
the positive unit bf + ¢ are of the form L8*+ M6 + N, where L # 0).

We prove two theorems which are useful when b= *1.
THEOREM 6. Let € = =0+ ¢ be a unit in Z[0], where 9°— P>+
Q0—R=0. If °=0 (modp?), where p is a prime, then p f ¢ and

€" = u + vl is impossible for n > 1.

Proof. We have (e —¢)’=0 (modp?). If p|c then €’=0 (modp)
where p*|N(e’)= =1. Hence p ¥ c. Let €"=u+v6, n>1. Then

cxoy=c+ (1’) e (= 0)+ (;’) "0+ <;’> C"HEO)+ -
+(x0)=u + v6.

Let 6" =r6°+s5,0 +¢t. Then
] <;>c""2+(;l)c"‘3(tr3)+-'-+(ir,,)=0.

As 6°=0 (modp®), we have r,=0 (modp™™). Since p £ c
pl@. Suppose p*|| (’2') If p=2 then 2| ('2’) If p#2 then
k

|0 (3(, )

each term of (8) except the first is divisible by at least p**'. Hence

l (;) Using Lemma 2, we see that

k+1

n . .
(2>, a contradiction.

THEOREM 7. Let € = =60 + ¢, be a unit of the ring Z[6], where
6°—-3P6°+3Q0-R =0. If ¢,+P#0 (mod3) and ci+2¢,P+Q#0
(mod 3), then €" = u + v is impossible for n > 1.
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Proof. Let ¢ =6+ c¢,. Then 6§ =€ —c,. So from
0°-3P6°+3Q060 — R =0,
we get
(e—c¢,)))—3P(e—c,)+3Q(e—c¢;,)-R =0,
or

€*=3(c;+ P)e*=3(c*+2¢,P+ Q)e +(c1+3¢iP +3¢,Q + R).
Now N(e)=ci+3ciP+3c,Q+R = =1.

For convenience we write €’ = 3re’—3se 1. Now by hypothesis
3fr and 34s. Let €e"=u+vf. Then €"=u+uv(e—c)=u,+ vie
say. Suppose n =2 (mod3). Then €°(e’)" =u,+ v,e, where n=
2+3m. Ase’= *1 (mod3), we have *€’>= u,+ v,e (mod 3), which is
impossible. Let n =0 (mod3) and n# 0. Putting n =3m, we get
) (Bre?—3se =1)" = u, + v,e.

But this is impossible by Theorem 1, whether m is a positive or a negative
integer, for 3 ¥ r. Hence if n # 0, the only possibility is n = 1 (mod 3).
Let n =1+ 3m, where m >0. Then
€(3re’—3se 1) = u, + v,
or

(3re*—3se £1)™ = v, = u,(€*— 3re + 3s).
Let (re*— se)' = re’ + se + t, where r, s, t, are rational integers. Then
()" + ('ln) (£1)""3(re* — se) + (’2’2) (£1)"3%(r,e* + 5,6 + 1)
+ -+ 3"(r, €+ s,€ + 1,)= *u€*F 3ruse + (v, £3su,).

On equ: ing coefficients of € and €, we obtain

(10) (: 1)m—13mr +(i 1)m-232 <gl) r2+ (i 1)m~333 <gn> r + .04 3mrm

=tu1,

and
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m

(1) —(x1)" Bms + (1) 3 <m> 5+ (£1)"3° (3

2 >S3‘+‘"'+3msm

= 3ru1.

Multiplying both sides of (10) by 3r and then adding to (11), we obtain
(£1)""Bm@Bri—s)+(x1)"?3* <r;> @rr+s,)
+(x1)"3° (?) @Brsr+s3)+ - +3"@Br,r +5,)=0.

We see from this that 3|m3r’—s). As 34s we have
3|m. Suppose 3*|m. Using Lemma 2, we easily see that all the terms
except the first are divisible by 3**?, while the first is exactly divisible by
3**! which is impossible. Hence m =0, i.e. n = 1.

Soif n is a nonnegative integer and €” = u + v, thenn =0orn = 1.
The proof for e = — 6 + ¢, is completely analogous.

THEOREM 8. If € = b0 + ¢, is a positive unit in Z[0], where 6°—
P>+ Q0 — R =0 with D(0) negative and # —23, then €" =u + v
implies that n = 0.

To prove this theorem we need the following well-known result.

LemMmA 9 (Nagell [8]). If n is a unit, D(n)<0, 0<n <1, then
n" = x + yn implies that n = 0, except in the case when n°+n*—1=0.In
this case n>=1+mn and D(n)= —23.

Proof of Theorem 8. Let e€=b,60+c, be a positive unit in
Z[6]. Then 0<e <1. Since € is contained in Z[6], we get D(e)=
82-D(6). Hence D(e)<0 and # —23.

Let €"=u+ 6. Since € = b,0 + ¢; we have

(blg + Cl)" = u + v6.
Then b,|v when n is a positive integer. In case n is negative, we put

n=—m where m is positive. Let e '=a’'6*+b'6+c’. Then 6°=
P6°— Q6 + R and ee' =1 imply

(12) b,a'’P+ b,b'+ c,a’ =0,

(13) _blalo+b1c’+clbl=0,
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and

(14) ba’'R +c,c'=1.

Since (b;,¢;)=1, € = b;0 + ¢, being a unit, we conclude that b,|a’ and
b,|b’ from (12) and (13) respectively. Then from

(b6 +c)" =(a'0>+ b’ + ¢’y = u+08,

we see that b,|v.
Since € = b,0 + ¢,, we have 6 = (e — ¢,)/b,, and hence €" = u + v can be
written as

€"=u +y-£eb;61)=(u — vcy/by) + ve/b, = x + ye,
1

where x and y are rational integers. Then by Lemma 9, n = 0. For
binorms in fields of degree higher than three, one can see[9]. Recently
Bernstein [1] has shown that units of the form e =1+ xw + yw? x,y € Q
exist for infinitely many algebraic number fields Q (w) of degree n = 4.

Now we solve y>~113 = x’ to show the application of some of the
above theorems. The above equation is a special case of the well-known
Mordell Equation y’— k = x’, which has interested mathematicians for
more than three centuries, and has played an important role in the
development of number theory. In the range 0 <k =100 it is known
that y’— k = x°, k = 17 has the maximum number of solutions. In the
range 100 <k =200 it is found [6] that y*>—k =x? k =113 has the
maximum number of solutions. The complete solution of this equation
is given below. L -

The fundamental unit of Q(V113) is 5 =776+73V113, and
h(QV113)=1. 2 splits into two different prime ideals in the field
Q(\/113). Hence by Theorem 5 of Hemer [4], all the integral solutions
of y>—113 = x’ can be obtained from the following equations:

+bV113\? 2 113h2
+y+ V11 =<9———2—> x=a—4——,

a+bV113

+y + V113 = (776 + 73V113) ( 5

3
) . x = (11367~ a?)/4,

11+ V113> (a +bV113

(iy+\/—ﬁ§)=< > 5

3
), x =(a’—113b?)/2,

DO —
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-21-(iy +VIT3) = (11+ 13 )(776+73\/11 )<M),
x = (113b% - a?)/2,
%(iy+\/1_13) <11+\/11 )(776 VD) <a+b\/113)’

x = (113b* = a?)/2.

On equating irrational parts we have respectively

(15) 3a%h +113b° = 8,

(16) 73(a’+3-113ab?) + 776(3a’b + 113b%) = 8,
17) (a*+3-113ab?)+ 11(3ab + 113b%) = 8,
(18) 1579(a® + 3 - 113ab?) + 16 785(3a’b + 113b°) = 8,
(19) ~27(a’+3 - 113ab?) +287(3a’b + 113b%) = 8.

Clearly (15) has no solution in integers. From (16) it is easily seen that a
and b are both even. Putting a =2u,, b =2v, in (16), we obtain

(20) 73(ui+3-113u,03) + 776(Buiv, + 113v3) = 1.
The substitution u; =21u —52v, v, = —2u + 5v in (20) yields
(21) F(u,v)=u’-33uv’+ 760> = 1.

This corresponds to the ring Z[6], where 6°—336 —76 = 0. In this ring
the fundamental unit is € =46°~ 166 —71. By Theorem1,

(40*—166 ~71)" = u + v6
is only possible for n =0. Then u =1, v =0, and so a =42, b= —4.
Hence x =11, y = £38.
The substitution a = u, — 11v,, b = v, in (17) gives
(22) ui—24u,v7+ 17603} = 8.

Hence u; =0 (mod2). Putting u; =2u, v, =v in (22), we get

(23) F(u,v)=u’—6uv*+22v’=1.
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This corresponds to the ring Z[6}, where 8°—60 —22=0; Z[6] has
fundamental unit € =26 — 7.
Now we consider

(24) 20 -7 = u + vé.

By Theorem 8, n =0 and by Lemma 5, n =1. Therefore (24) has
only the two solutions n =0, n =1. These solutions correspond to
x =2, y= %11 and x =422, y = = 8669 respectively.

Substituting a = —21u,;+ 53v,, b =2u,— 5v, in (18), we get

(25) 8vi+ 12viu, — 2v,ul+27ui = 8.

We put u,=2v, v;=u — v in (25), since u; =0 (mod2). This gives
(26) F(u,v)= u’—24uv*+500° = 1.

This corresponds to the ring Z[8], where 6°—246 —50 =0, with the
fundamental unit € = —360°+ 100 + 41. We see that e =26*+ 1 (mod5)
and €’=1 (mod5) while €’= ~560°+560+6 (mod25). Hence €’=

a,6*+ b,0 + ¢, implies that 5| a,, 5||b,. Hence, by Theorem 1, €" =
u + v is impossible for an even integer n# 0. When n is odd we have

20°+1=u+ v6 (mod5).
This is impossible. So we have n =0. Then u =1, v =0 and hence

x =8, y=*x25.
The substitution a = 111u, + 10v,, b = 11u, + v, in (19) yields

(27) vi—312v,u?~2128ui = 8.

Since (27) implies v, =0 (mod 2), we put v, = 12u + 10v, u; = — u — v and
get

(28) F(u,v)=v*+ 120u’+ 14u’ = 1.

The fundamental unit of the ring Z[6#], where 6°+1260—-14=0, is
€ = 6 — 1, satisfying €’ +3e’+ 15¢ — 1 =0.
Then by Theorems 8 and 6,
€e"=(0-1)"=v+ub

has only two solutions, viz. n =0 and 1.
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Incidentally, we cannot reach this conclusion by using the standard
criterion of Hemer [4], which is as follows:

Let € = = 0 + ¢ be a unit in a cubic ring, and let the odd prime p be
a divisor of N(e'+ €”). Suppose further that €™ = a,.€*+ b,e + c,, is the
least power of € with m >0 such that a, =b, =0 (modp). Then
€" = u + ve has no even solution except n = 0 if a,, #0 (mod p?), and no
odd solution except n =1 if ¢,., Z0 (mod p?).

Now N(e'+ €")= N(—3— €)= —46 has only the odd prime divisor
p =23. Theleast exponent m such that a,, = b,, =0 (mod 23)is m =22,
and a, #0 (mod23%). But unfortunately ¢,,=0 (mod23?).

When n=0,u=0,v=1a=—-11,b=~-1; x=—4,y=*7.
When n=1,u=1,v=-1;, a=20,b=2; x =26,y = +133.

Hence the Diophantine equation y>— 113 = x> has exactly 6 solutions in
integers. They are (x,y)=(11,%=38), (8,+25), (2,*x11), (—4,%7),
(422, + 8669) and (26, + 133).
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TOPOLOGICAL GROUPS WHICH SATISFY
AN OPEN MAPPING THEOREM

DoucgrLass L. GRANT

Let € be a category of Hausdorff topological groups. A
Hausdorff topological group G is called a B(€) group if every
continuous and almost open homomorphism from G onto a
group in ¥ is open. An internal characterization of such
groups is obtained. For certain €, the permanence properties
of B(%) groups and related categories are investigated, with
some positive results pertaining to products and subobjects, and
several counterexamples. Forms of the closed graph theorem
for topological groups are then obtained which generalize results
of T. Husain.

1. Definitions and permanence properties. Given a
topological group G with topology u, we shall denote the filter of
neighbourhoods of the identity by 7' (G) or ¥ (u), and closures by Cl; or
Cl,, depending on the emphasis desired. If u and v are two group
topologies on a group G, then v(u) will denote that group topology on G
having as a fundamental system of unit neighbourhoods the collection
{Cl,U: U € V(u)}. The set of closed normal subgroups of a topological
group G will be denoted by ¥(G). A homomorphism f: G— H of
topological groups is said to be almost open (resp., almost continuous) if
the image (resp., inverse image) of a unit neighbourhood is dense in a
unit neighbourhood. An isomorphism of topological groups is a group
isomorphism which is both continuous and open.

Let € be a category of Hausdorff topological groups. After [8], we
say that a Hausdorff group G is a B(%) group if every continuous and
almost open homomorphism from G onto a group in € is open, and that
G is a B,(€) group if every homomorphism with these properties which
is also one-to-one is open. We reserve the symbol & for the category of
all Hausdorff topological groups.

Husain [8] showed that locally compact groups and complete
metrizable groups are B (&) groups, while Brown [2, Theorem 4] showed
that any topological group complete in the sense of Cech has the B()
property. A minimal topological group (i.e., one with its coarsest
compatible Hausdorff topology) is easily seen to be a B, ()
group. Other examples will be mentioned later.

Husain also observed [8, Theorem 31.4] that a topological group
(G, u) is a B,(«) group iff, for every Hausdorft group topology v on G
such that v C u and v(u) = v, it follows that u = v. We give analogous
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statements for B,(€) and B(€) groups, where € satisfies a very mild
condition. For a topological group (G,u) and H € N (G), let uH
denote the group topology on G having the collection {UH: U € ¥'(G)}
as a subbasis of unit neighbourhoods, and u/H the quotient topology on
G/H. We require a lemma which follows directly from Proposition 30.3
of [8].

LemmA 1.1. A topological group G is a B(¥) group iff G/H is a
B,(€) group for every H € N (G).

The following definition is adapted from Isbell [10, p. 119]. Let &
be a category, ¥ a subcategory of Z, ¥ a class of morphisms in £ Then
% is said to be right fitting with respectto Fif X€Z, YE ¥, f: Y > X
a morphism in & together imply X € %. Let ¥ denote the class of
isomorphisms of Hausdorff topological groups. (More extensive use of
this notion, involving other classes of maps, will be made in §2.)

THEOREM 1.2. Let € be a subcategory of o which is right fitting with
respect to .

(a) A ropological group (G, u) is a B,(€) group iff, for every group
topology v on G such that (G,v) € €, v C u, and v(u)= v, it follows that
v =u.

(b) A topological group (G,u) is a B(€) group iff, for every
H € N (G) and every group topology v on G such that (G/H,v/H)€E &,
v C uH, and v(uH) = v, it follows that v = uH.

Proof. Part (a) follows in a manner similar to Theorem 31.4 of
[8]. One then obtains (b) by invoking Lemma 1.1, applying (a) to the
quotient groups, and observing that every group topology on a group
G/H coarser than the quotient topology arises from a group topology on
G coarser than uH.

Investigatiorr of some permanence properties of B(#) and B,()
groups was carried out by L. J. Sulley [15], who gave criteria for the
inheritance of these properties by dense subgroups and by completions,
in the Abelian case. His assumption of commutativity can be removed
quite painlessly, however. The proof of the next lemma proceeds in a
fashion nearly identical to that of the corresponding result in [15].

LemMma 1.3. Let E be a Hausdorff group, G a dense subgroup of E,
H € N(E), q: E — E/H the natural map. Then the map r: G — q(G)
obtained by restricting q is continuous and almost open. Furthermore, r is
open iff HN G is dense in H.

THEOREM 1.4. Let G be a Hausdorff group, E its completion with
respect to its two-sided uniformity.
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(a) Gisa B(H) group iff E is a B(£) group and G N H is dense in
H for every H € N(E).

(b) G is a B,(A) group iff E is a B,({) group and G N H is
nontrivial for every nontrivial H € N (E).

Proof. The ‘“‘only if” parts of (a) and (b) follow as in [15], using
Lemma 1.3. For the “if”’ part of (a), let F be any Hausdorff group, F’ its
completion with respect to its two-sided uniformity, f a continuous,
almost open homomorphism of G onto F. By Proposition 5, p. 246 of
[1], f has a unique extension f': E — F’, which can be shown to be almost
open onto its range. The balance follows as in [15], using Lemma
1.3. The proof of the “if” part of (b) is similar, with the additional
observation that the extension f’ of the one-to-one homomorphism f is
also one-to-one.

It follows from this criterion [15, 16] that the group U of complex
roots of unity is a B(«f) group, while, for instance, neither the group Q
of rationals nor the group U, of p-power roots of unity is a B,(s&f) group.

Clearly, if a product of groups has the B(sf) property, then each
factor has this property. Using Theorem 1.4, however, we can show that
neither the class of B(«f) groups nor that of B, (&) groups is closed even
under finite Cartesian products.

ExamMpLE 1. Let R denote the reals with usual topology and T the
circle group, and let U be as above. All of these groups are B(%)
groups, but R X U is not even a B,(«) group. The Hausdorff comple-
tion of this group is R X T, which is locally compact and so a B()
group. Let B represent any irrational number. Then R X T has a
non-trivial subgroup

H = {(n,exp2nwBi): n € Z},

which is discrete and therefore closed, and whose intersection with
R x U is trivial. It follows from Theorem 1.4(b) that R X U is not a
B,(«) group, and perforce not a B(«) group. The same argument,
applied to the product of U with the discrete group of integers, shows
that this product also fails to have the B,(«f) property.

The following example shows that certain special products retain the
property, however.

ExamMpLE 2. We show that any finite power of U is a B(¥)
group. Soundararajan [13] has called a subgroup H of a topological
group G totally dense if H N L is dense in L for every closed subgroup L
of G. For Abelian groups G, this coincides with the property described
in Theorem 1.4(a). Letting (x) denote the subgroup generated by an
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element x € G, he asserts that H is totally dense in G ifft H N Clg (x) is
dense in Cls(x) for all x € G. Since the completion T" of U" is
compact and so a B(&f) group, it is therefore sufficient to show that

4) Cl- (U" N Clp- (x)) = Clz~{x)

for all x = (x1, x5, -+, x,)E T".

We may assume without loss of generality that for some nonnegative
integers r, s, the entries x,, - - -, x, are elements of U, that x,.,, - - -, X,,, are
images under the exponential map of irrational numbers a,,-- -, a;
which, together with 1, form a linearly independent set over Q, and that
the balance of the x, are images of linear combinations over Q of the o;
and 1. By the linear independence of {1, a;, -, a,}, it follows from
Theorem 443 of [5] that H = Cl- (x)= F X T* X C(M), where F is a
finite subgroup of T’ (and hence of U’), M is an (s+1)X(n—r—s)
matrix with rational entries, and

C(M)={(exp)" " *(k(ay, -, a,1)M): k € Z}.

It can be seen that the intersection of H with U" is dense in H, whence
(A)issatisfied. Hence, U" is a B(&) group for any positive integer n.

If G, is totally dense in G and G, C G, C G, then G, is totally dense
in G. It then follows that U" X T™ is totally dense in T"*™ for any
positive integers n and m, and so is a B(&f) group. Since Stephenson
[14, Theorem 2] has shown that totally dense subgroups of compact
groups are minimal, it also follows that U”" is a minimal topological
group. Since the product of a minimal group with a compact group is
minimal [14], if further follows that U" X K is a minimal topological
group, and so a B,(&) group, for any compact group K.

As to subobjects, it does not appear to be true, in general, that our
two properties are inherited by closed or even closed normal
subgroups. However, some partial results of a positive nature have
been obtained. A subgroup H of a topological group G is said to be a
retract of G if there is a continuous homomorphism r: G — H whose
restriction to H is the identity. By [6, p. 59] and [17, pp. 20 and 95], H is
normal and a retract of G iff there exists a subgroup H' of G such that
the multiplication map m: H X H'— G is an isomorphism.

ProrposITION 1.5. Let H be a normal gubgroup of G and a retract
thereof. If G is a B(HA) (resp., B,()) group, then H is a B(H) (resp.,
B,()) group.

Proof. The case for B(sf) groups follows at once, since the
projection map H X H'— H is continuous and open. Now, let G be a
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B.(«) group, A any Hausdorff group, m as above, j the continuous
inverse of m, and f: H—> A a continuous, almost open, bijective
homomorphism. Then h = j(f X idy) is also bijective, and, since f is
almost open and G is a B,(«) group, it follows that h is open. Hence,
mh = f X idy. is open, whence f is open.

The following two lemmas are required to establish the next
permanence property, and will also be used extensively in §2.

DeriNITION.  If f: G— H is a homomorphism (not necessarily
continuous) of topological groups, let V;={V*=
VIIClof (V)]: V € V(H)}.

LemmA 1.6. Letf: (G,u)— (H,v) be a homomorphism. If V;isa
subbasis for the unit neighbourhood filter of a group topology v; and the
graph of fis closed in G X H, then (H, v;) is a Hausdorff topological group.

Husain defined a topology w related to v, in [9], and established a
similar result concerning it. The proof of Lemma 1.6 follows in a
manner parallel to his, with certain simplifications arising from the
elimination of one closure operator from the definition of the sets in the
unit neighbourhood basis.

DEeFINITION.  For a subgroup K of a group G, let CentsK denote the
centralizer of K in G, and S;(K) = K CentgK.

Lemma 1.7. (a) If f(G) is dense in H, then ¥} is a subbasis for the
unit neighbourhood filter of a group topology v, and W;=
{Cluf[Clef (V)] = V: VE V(H)} is also a subbasis of unit neighbour-
hoods for vy.

(b) If K is an open subgroup of a topological group (G, u) such that
Sc(K) is dense in G and w is a group topology on K, then V' (w) is also a
fundamental system of unit neighbourhoods for a group topology on G.

Proof. (a) Clearly VCV* for every VE V(H). Now
flf (V)] = VN f(G), which is dense in V, and so VCV. Now, if
ViC V, then

Vi= Vif[Claf(V)]C ViV, C (V. C V.

Thus, W; generates the same filter as V7.

To show that v; is a group topology, we show that W, satisfies
(GV)-(GVi) of [1, p. 222-3].  The first two follow immediately, since
(VYC (V)" and (V')'=(V)'. As for (GVy), let V,V,E ¥V(H),
a € H, t € G such that V,= V!, ViCV, and a € Vif(t). Then



416 DOUGLASS L. GRANT

alf()*Vif()a™ C Vif(e)- f() " Vif(1)- (1) Vi
= VI‘A/IVIQ(VI)S ;(V?)Ag V

(b) It is necessary only to show ¥ (w) satisfies (GVi,). Let
U UETY(G), x €G, k€K, c €CentsK such that U,= U7', UiC U
and x € U,ck. Then

x(k7'Uk)x ' C Uck(k'Uk)k '¢7'U, = U(cU,c YU, = Ui C U.

ProrosITION 1.8. Let € be a category of Hausdorff groups such that
every B,(€) group isin €. Then every closed central subgroup of a B,(€)
(resp., B(¥€)) group is a B,(€) (resp., B(€)) group.

Proof. Let (G, u)be a B,(%) group, K a closed central subgroup of
G, w any group topology on K such that (K,w)E ¥, w Cu|K and
w(u|K)=w. Since K is central in G, it is routine to show that
V(w)y={UW: U € V(u), We& ¥(w)} is a subbasis for the unit neigh-
bourhood filter of a group topology v on G. The graph of the natural
injection K — G is closed in (K, w) X (K, w), and so in (K, w) X (G, u),
since K is u-closed. From this and the fact that w(u | K) = w, it follows
from Lemma 1.6 that v is Hausdorff. By Proposition 31.8 of [8], one has
v Cv(u). However, if U, U, € ¥ (u) such that UiC U, then CIL,U C
(CLU)ycUCL, (UNK)E ¥(v). Hence, v(u)= v, and the identity
map (G, u)— (G, v) is continuous and almost open. Then (G,v) is a
B,(€) group, and so is in €. Hence, v =u, whence u|K=v|K =
w. Therefore, K is a B,(€) group.

The case for B(%) groups is proved in a similar fashion, letting
H € ¥(K), w atopology on K such that (K/H,w/H)E 6, w C (u|K)H
and wl(u|K)H]=w. One can then define vy by ¥(vu)=
{UW: U € ¥ (H), W € ¥(w)} and show that vy = uH, whence uH | K =
vy | K =w, and (K,u | K) is a B(%€) group.

ProproSITION 1.9. Let € be as in Proposition 1.8, (G,u) a B,(€)
group (resp., B(€) group) with equal left and right uniform
structures. Then any closed subgroup K of G such that S;(K) is dense in
G is a B,(€) (resp., B(¥€)) group.

Proof. Let the topologies u|K, w and v be as in Proposition
1.8.  Without loss of generality, we may assume that an element of ¥"(u)
is fixed under all inner automorphisms of G [7, p. 22]. For such a
neighbourhood U and any A C G, we then have AU = UA. Itis then
easy to see that ¥7'(v) satisfies (GV{) and (GVyy) of [1, p. 222-3]. To see
that (GV1,) is also satisfied, let x € G, and UW, U, W, € ¥ (v) such that
U,, W, are symmetric and (U, W,)’C UW. Then there exist elements
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a,b of K and of its centralizer, respectively, such that x €
U,W.ab. Then

xU,(a"Wia)x C U;W,abU,(a"'Wya)(b7'a™ U, W)
= U1W1U1bW1b_1U1“/1 = (U1W1)3g UW

As in Proposition 1.8, it follows that v is Hausdorff and that
v(u)= v, whence (G, v) is a B,(€) group and so is in €. Then v = u,
and so u|K=v|K=w. Hence, (K,u|K) is a B,(€) group.

Now let (G, u) be a B(€) group, then choose H and w and construct
vy as in the analogous case of Proposition 1.8. Since (G, u) has equal
uniformities and H is normal in K, for UW € ¥ (vy), U,U7'C U,
W, Wi'C W, we have (U,W))(U,W,)'C UW. The continuity of the
conjugation maps follows in a manner similar to the B,(€) case. It then
follows that vy = uH, as in Proposition 1.8.

REMARKS. (i) A closed subgroup K of G such that S;(K) is dense
in G is necessarily normal in G, since S;(K) is a subgroup of the
normalizer of K in G, and the normalizer is closed [4].

(i) The condition that G have equal uniformities can be replaced
by the slightly weaker condition that G has a fundamental system of unit
neighbourhoods fixed under all conjugations by elements of K.

(iii) Clearly, & satisfies the condition imposed on € in Proposi-
tions 1.8 and 1.9. Indeed, this condition is satisfied by any category right
fitting with respect to isomorphisms, if one were to modify the definition
of B(€) (resp., B,(€)) groups to require the existence of at least one
continuous, almost open (resp., and one-to-one) homomorphism onto a
group in 4, thus precluding a vacuous satisfaction of the definition from
[8].

Let € denote the class of morphisms in & which are almost open.

PrRoOPOSITION 1.10. Let € be such that either (i) every B,(€) group is
in €, or (i) € is right fitting with respect to €. Then any open subgroup K
of a B,(€) (resp., B(%)) group G such that S;(K) is dense in G is a B,(€)
(resp., B(¥€)) group.

Proof. Under either condition, let w be a group topology on K
such that (K,w)E €, w Cu|K and w(u|K)=w. Let v be the topol-
ogy on G having as its unit neighbourhood filter ¥ (v)=
{UW: U€ V(u), We ¥ (w)}. Let j: (K, w)— (G, u) be the natural
injection. By our assumptions on w, it follows that v induces the v,
topology on K, and, by Lemma 1.7 (a) and (b), ¥'(v) generates a group
topology on G. As in Proposition 1.8, we have v Cu and v(u) = v.

Now, if € satisfies (i), we observe that the identity map
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(G, u)— (G, v) is continuous and almost open, whence (G, v) is a B,(6)
group and so in €. If € satisfies (ii), we observe that the natural
injection (K, w)— (G, v) is continuous and almost open, so (G, v) € €.

It then follows that v = u, since (G, u) is a B,(€) group, and so
u|K=v|K=w. Therefore, (K,u|K)is a B,(%) group.

The analogous statement for the B (%) case is proved by first letting
He N(K) and w be a group topology such that (K/H,w/H)E &,
w C(u|K)H and w[(u | K)H] = w, and proceeding as above.

To demonstrate some more perverse properties of these categories,
we now display counterexamples, concerned with join topologies, direct
limits and quotients.

ExamprLE 3. Let (R, u) denote the reals with the usual topology, g
a discontinuous automorphism of the reals, and (R, g(u)) the reals
endowed with the topology consisting of images under g of u-open
sets. Then g is a homeomorphism from (R, u) to (R, g(u)), whence
(R, g(u)) is locally compact and so a B(«) group.

The identity map j: (R, u v g(u))— (R, u) is clearly continuous, and
is also almost open, since the image under g of any u-open set is u-dense
in R [7, p. 49]. However, j is plainly not open. Hence, (R, u v g(u))is
not even a B,(«f) group. This example also shows, of course, that the
join of two locally compact group topologies is not necessarily locally
compact. Thanks are due to E. Dubinsky for suggesting the above
example in the latter context.

ExampLE 4. Let (R, d) denote the reals with discrete topology,
(R, u) as in Example 3. Let G,=(R,u)X(R,d), G,=(R,d)*x (R, u),
and let f: G,— G, be defined by (x,y)+ (y, x), and let this system be
ordered by 1<2. Its inductive limit in the category of topological
spaces is then R? endowed with the topology (u X d)A(d X u). It is
proved in [12], however, that this is not even a group topology, although
the groups involved are locally compact and hence B(«) groups.

ExampLE 5. Let T be as in Example 1, G the subgroup of T
consisting of those elements of squarefree order. It is shown in [15] that
G is a B,(«) group which is not a B(&f) group. It then follows from
Lemma 1.1 that not all quotients of G can be B,(«) groups. This
counterexample shows that the B,(sf) property is not divisible, and thus
that the portion of Proposition 31.7 of [8] which refers to B,(€) groups is
false. Gaps are thereby created in the proofs of Theorems 32.8 and 32.9
of [8]. A corrected version of the former appears in §2.

A sixth example, which follows, shows that, for the class €, of first
countable Hausdorff groups, the B(&f) groups form a proper subclass of
the B(¥€,) groups. We first observe.that, since a countably compact
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subspace of a first countable space is closed [3, p. 230], it follows that a
continuous, almost open homomorphism of a locally countably compact
group into a first countable group is open. Therefore, every locally
countably compact group, and hence every countably compact Hausdorft
group, is a B(%,) group.

ExAaMpPLE 6. Let S be any uncountable set, and let G be any
compact Hausdorff group with nontrivial centre. Let B = G? and
define

P ={(x,): x,# e for at most countably many a € S}.

By [11, p. 127], P is countably compact and a proper dense subgroup of
the group B, which is compact and so a B,(%) group. For each g € G,
let (g) denote the element (x,) of B such that x, = g foralla €S. 1tis
easy to see that H ={(g): g € Cent G} is a nontrivial closed normal
subgroup of B, and that H N P ={(e)}. By Theorem 1.4(b), it follows
that P is not a B,(«), and perforce not a B(s), group.

2. Closed graph theorems. In [8], Husain announced a
quite general form of the closed graph theorem for topological groups
(Theorem 32.5), and drew an extensive list of corollaries
therefrom. However, the proof of this theorem contained a serious
flaw, acknowledged by Husain in [9], where he salvaged some of the
results from [8]. In this section, we salvage more results from [8] by
weakening the assumption of commutativity of the codomain imposed by
Husain in [9].

Let us recall the definition of ‘“‘right fitting” from §1, and agree to
denote the graph of a mapping f by R(f) throughout the balance of the

paper.

THEOREM 2.1. Let € be a category of Hausdorff groups which is
right fitting with respect to €. Let (G,u)€ €, (H,v) be a B,(€) group,
f: G — H an almost continuous, almost open homomorphism with closed
graph such that f(G) is dense in H. Then f is continuous.

Proof. By Lemmas 1.7(a) and 1.6, v; is a Hausdorff group
topology. Since v, Cwv, the identity map j:(H,v)—(H,v) is
continuous. By Proposition 31.8 of [8], we have that v; C v,(v)C
v. Letting U, V € ¥(H) such that V>C U, we proceed as in Theorem
32.5 of [8] to show that V* C Cl, U, and conclude that v;(v) = v, whence j
is almost open. Then g = jf is almost open, and also continuous, since
g ()2 g '(fICIf(U))2Clsf(U), which is in ¥ (G). Thus, g€
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€, (H,v)E€ %, and j is open, since (H,v) is a B,(€) group. Hence,
v, =v, g =f, and f is continuous.

COROLLARY 2.2. Let € be as in Theorem 2.1. Let (G,u)€ &,
(H,v) be a B,(€) group, f: G— H an almost continuous, almost open
homomorphism with closed graph such that Sy[Clyf(G)] is dense in
H. Then f is continuous.

Proof. By Proposition 1.10, K = Cly f(G) is a B,(€) group, and it
follows that the corestriction of f to K is continuous, by Theorem
2.1. Hence, f is continuous.

THEOREM 2.3. Let € be any category of Hausdorff groups such that
every B,(€) group isin €. Let (G,u)€ €, (H,v) be a B,(€) group and
f: G — H an almost continuous, almost open homomorphism with closed
graph such that f(G) is dense in H. Then f is continuous.

Proof. This proof parallels that of Theorem 2.1, except that the fact
that (H, v;) is in € is deduced by observing that j: (H,v)— (H, v;)
continuous and almost open implies (H, v;) is a B,(%) group.

The next corollary follows in a manner similar to Corollary 2.2.

COROLLARY 2.4. Let € be as in Theorem 23. Let (G,u)€ €%,
(H,v) be a B,(¥) group, f: G— H an almost continuous, almost open
homomorphism with closed graph such that Su[Clyf(G)] is dense in
H. Then f is continuous.

For categories € of groups which satisfy the condition of Theorem
2.3, we can remove the ‘“almost open” hypothesis on the map at the cost
of adding certain qther hypotheses. A preliminary lemma is required.

LemMma 2.5. Ifeither (i) f(G)C Cent H, or (ii) H has equal unifor-
mities and Sy[f(G)] is dense in H, then v; is a group topology.

Proof. The proof in case (i) is obvious. For (ii), we once again use
(GVD)~(GVw) of [1, p. 222-3], obtaining the first two in a manner
parallel to that of Proposition 1.8. To obtain (GViy), let V* € ¥, and
select W* € 7 such that W is symmetric and invariant under conjuga-
tions, and (W*)’C V*. Let x € H, t€ G and b € Centy [f(G)] such
that x € f(¢)bW*. Then

xW*x™ C (b (Wb f() = [f()W*f())'].
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But f(1)f[Clof " (W)If(6)™" = f(Cla[f(f(t) Wf (1) )]) = FIClef '(W)]. By

virtue of this and the invariance of W under conjugations, it follows that
xWEx T Cf(O)WHf(@) P = (W*)yc V™.

THEOREM 2.6. Let € be as in Theorem 2.3. Let (G,u)€ %, (H,v)
be a B,(€) group f: G— H an almost continuous homomorphism with
closed graph such that either (i) f(G)C Cent H, or (ii) H has equal
uniformities and Sy(f(G)] is dense in H. Then f is continuous.

Proof. By Lemma 2.5, v; is a group topology in either case. Asin
Theorem 2.1, it follows that v;(v) = v, and as in Theorem 2.3, (H, v;) is a
B,(€) group and so in €. Thus, vy = v, and f is continuous.

As with previous results, we point out that Theorem 2.6 holds, in
particular, for € = /. The conditions on the homomorphism can be
further relaxed if additional topological conditions are imposed on the
groups involved.

DEFINITION. A group G is called weakly separable [2] if, for every
V € ¥(G), there exists a countable subset X, of G such that VX, =
G. (This property clearly generalizes both separability and the Lindelof
property.)

The proof of the next lemma parallels that of Proposition 32.11(b) of
[8], which this result generalizes.

LEmMMA 2.7. Any homomorphism from a Hausdorff group with the
Baire property to a weakly separable group is almost continuous.

THEOREM 2.8. Let € be as in Theorem 2.3. Let G be a group in €
with the Baire property, H a weakly separable B,(€) group. Then a
homomorphism f: G — H with closed graph is continuous if either (i)
f(G)C Cent H, or (ii) H has equal uniformities and Sy[Cly f(G)] is dense
in H.

Proof. By Lemma 2.7, f is almost continuous. Then f is continu-
ous by Theorem 2.6.

These considerations also allow us to prove a form of the open
mapping theorem which corrects and extends Theorem 32.8 of [8].

THEOREM 2.9. Let € be as in Theorem 2.3. Let G be a B(%€) group
with equal uniformities, H any Hausdorff group. Then any almost open
homomorphism g of G onto H with closed graph is open.
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Proof. Let K be the kernel of g and n: G— G/K the quotient
map. Let g = fn. Since R(g) is closed and contains K X {e;}, which is
normal in G X H, it follows by Corollary 24.4 of [8] that R(f) is closed.

By Proposition 30.3 of [8], f is almost open, whence f™' is almost
continuous, ™' also has closed graph, clearly. Now G/K is a B(%€)
group, by Proposition 31.7 of [8], so f' is continuous, by Theorem
2.6. Hence, f is open and so is g, by Proposition 30.3 of [8].

Finally, let 2 denote the class of morphisms in & which have image
dense in the codomain.

THEOREM 2.10. Let € be a category of Hausdorff groups which is
right fitting with respect to 9, G € €, (H,v) a B,(€) group. Then an
almost continuous homomorphism f: G — (H, v) with closed graph is in &
if f(G) is dense in H.

Proof. As before, we form the v; topology and observe, by Lemmas
1.6 and 1.7(a) that v, is a Hausdorff group topology. Letting
j: (H,v)— (H, v) be the identity map, we further observe that g = jf is
continuous, as in Theorem 2.1.  Since v; C v, g(G) is dense in (H, vy), so
g€ 9, and (H,v)E 4. Also as in Theorem 2.1, it follows that j is
continuous and almost open, whence j is open, since (H, v) is a B,(€)
group. Therefore, vy = v, f is continuous, and f € 9.

In closing, we note that the ‘“right fitting” properties mentioned
above are by no means exotic. Among the categories of Hausdorff
groups which are right fitting with respect to 9 are the compact,
precompact, Abelian, connected and separable groups, and-among those
right fitting with respect to € are the locally compact, locally precompact,
metrizable and locally connected groups. Groups with equal unifor-
mities, second countable groups and Abelian profinite groups are right
fitting with respect to € N %.
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A CHARACTERIZATION OF SOLENOIDS
CHARLES L. HAGOPIAN

Suppose M is a homogeneous continbum and every proper
subcontinuum of M is an arc. Using a theorem of E. G. Effros
involving topological transformation groups, we prove that M is
circle-like. This answers in the affirmative a question raised by
R. H. Bing. It follows from this result and a theorem of Bing
that M is a solenoid. Hence a continuum is a solenoid if and
only if it is homogeneous and all of its proper subcontinua are
arcs. The group G of homeomorphisms of M onto M with the
topology of uniform convergence has an unusual property. For
each point w of M, let G, be the isotropy subgroup of w in
G. Although G, is not a normal subgroup of G, it follows from
Effros’ theorem and Theorem 2 of this paper that the coset space
G/G, is a solenoid homeomorphic to M and, therefore, a
topological group.

1. Introduction. Let & be the class of all homogeneous
continua M such that every proper subcontinuum of M is an arc. It is
known that every solenoid belongs to &. It is also known that every
circle-like element of & is a solenoid. In fact, in 1960 R. H. Bing [4,
Theorem 9, p. 228] proved that each homogeneous circle-like continuum
that contains an arc is a solenoid. At that time Bing [4, p. 219] asked
whether every element of & is a solenoid. In this paper we answer
Bing’s question in the affirmative by proving that every element of & is
circle-like.

2. Definitions and related results. We call a nondegen-
erate compact connected metric space a continuum.

A chain is a finite sequence L,, L,,---, L, of open sets such that
L NL#J if and only if |[i—j|=1. If L, also intersects L, the
sequence is called a circular chain. Each L, is called a link. A chain
(circular chain) is called an e-chain (e-circular chain) if each of its links
has diameter less than e. A continuum is said to be arc-like (circle-like)
if for each € >0, it can be covered by an e-chain (e-circular chain).

A space is homogeneous if for each pair p, q of its points there exists
a homeomorphism of the space onto itself that takes p to q. Bing [2] [3]
proved that a continuum is a pseudo-arc if and only if it is homogeneous
and arc-like. L. Fearnley [9] and J. T. Rogers, Jr. [20] independently
showed that every homogeneous, hereditarily indecomposable, circle-like
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continuum is a pseudo-arc [11]. However, there are many topologically
different homogeneous circle-like continua that have decomposable
subcontinua [24] [25].

Let n,, n,, - - - be a sequence of positive integers. For each positive
integer i, let G, be the unit circle {z € R*:| z | = 1}, and let f, be the map
of G,., onto G, defined by f,(z)=z". The inverse limit space of the
sequence {G, f.} is called a solenoid. Since each G, is a topological
group and each f, is a homomorphism, every solenoid is a topological
group [13, Theorem 6.14, p. 56] and therefore homogeneous. Each
solenoid is circle-like since it is an inverse limit of circles with surjective
bonding maps [17, Lemma 1, p. 147].

A solenoid can be described as the intersection of a sequence of solid
tori M,, M,, - - - such that M,., runs smoothly around inside M, exactly n,
times longitudinally without folding back and M, has cross diameter of
less than i™'. The sequence n,, n,, - - - determines the topology of the
solenoid. Ifitis 1,1, - - after some place, the solenoid is a simple closed
curve. Ifitis 2,2, -, the solenoid is the dyadic solenoid defined by D.
van Dantzig [7] and L. Vietoris [23]. Other properties involving the
sequence n,, n,, --- are given in [4, p. 210]. From this description we
see that every proper subcontinuum of a solenoid is an arc.

Solenoids appear as invariant sets in the qualitative theory of
differential equations. In [21] E. S. Thomas proved that every compact
1-dimensional metric space that is minimal under some flow and contains
an almost periodic point is a solenoid.

Every homogeneous plane continuum that contains an arc is a simple
closed curve [4] [10] [15]. Hence each planar solenoid is a simple closed
curve.

Each of the three known examples of homogeneous plane continua
(a circle, a pseudo-arc [2] [18], and a circle of pseudo-arcs [S]) is
circle-like. If one could show that every homogeneous plane continuum
is circle-like, it would follow that there does not exist a fourth example [6]
[12] [14, p. 49] and a long outstanding problem would be solved.

A topological transformation group (G, M) is a topological group G
together with a topological space M and a continuous mapping
(g,w)—gw of G X M into M such that ew = w (e denotes the identity
of G) and (gh)w = g(hw) for all elements g, h of G and w of M.

For each point w of M, let G, be the isotropy subgroup of w in G
(that is, the set of all elements g of G such that gw = w). Let G/G, be
the left coset space with the quotient topology. The mapping ¢, of
G/G, onto Gw that sends gG, to gw is one-to-one and
continuous. The set Gw is called the orbit of w.

Assume M is a continuum and G is the topological group of
homeomorphisms of M onto M with the topology of uniform con-
vergence [16, p. 88]. E. G. Effros [8, Theorem 2.1] proved that each
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orbit is a set of the type G; in M if and only if for each point w of M, the
mapping ¢, is a homeomorphism.

Suppose M is a homogeneous continuum. Then the orbit of each
point of M is M, a G,-set. According to Effros’ theorem, for each point
w of M, the coset space G/G, is homeomorphic to M. By Theorem 2 of
84, if M has the additional property that all of its proper subcontinua are
arcs, then G/G,, is a solenoid and, therefore, a topological group. Note
that G, is not a normal subgroup of G.

Throughout this paper R? is the Cartesian plane. For each real
number r, we shall denote the horizontal line y = r and the vertical line
x =r in R? by H(r) and V(r) respectively.

Let P and Q be subsets of R>. The set P is said to project
horizontally into Q if every horizontal line in R? that meets P also meets
Q.

We shall denote the boundary and the closure of a given set Z by
Bd Z and C1Z respectively.

3. Preliminary results. In thissection M is a homogeneous
continuum (with metric p) having only arcs for proper subcontinua.

Let p and g be two points of the same arc component of M. The
union of all arcs in M that have p as an endpoint and contain q is called a
ray starting at p.

The following two lemmas are easy to verify.

LeEmMA 1. Each ray is dense in M.

LemMMA 2. If an open subset Z of M is not dense in M, then each
component of Z is an arc segment with both endpoints in Bd Z.

Let € be a positive number. A homeomorphism h of M onto M is
called an e-homeomorphism if p(v, h(v))<e€ for each point v of M.

LEMMA 3. Suppose € is a given positive number and w is a point of
M. Then w belongs to an open subset W of M with the following
property. For each pair p, q of points of W, there exists an e-
homeomorphism h of M onto M such that h(p) = gq.

Proof. Define G, G,, and ¢, as in §2. Since M is homogeneous,
the orbit of each point of M is M. Therefore ¢,, is a homeomorphism of
G/G, onto M [8, Theorem 2.1}.

Let 7, be the natural open mapping of G onto G/G, that sends g to
gG,. Define T, to be the mapping of G onto M that sends g to
g(w). Since T,=¢,m,, it follows that T, is an open mapping [22,
Theorem 3.1]. Note that the following diagram commutes.
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T.
G M

G/G,

Let U be the open subset of G consisting of all €/2-
homeomorphisms of M onto M. Define W to be the open set
T.,[U]. Since the identity e belongs to U and T,(e)= w, the set W
contains w.

Assume p and g are points of W. Let f and g be elements of U
such that T,(f)=p and T.(g)=4gq. Since f(w)=p and g(w)=gq, the
mapping h = gf' of M onto M is an e-homeomorphism with the

property that h(p)=gq.

For each positive integer i, let A; be an arc with endpoints p; and
q. Thesequence A,, A,, ---1ssaid to be folded if it converges to an arc
A and the sequence p,, qi, P2, g», -+ converges to an endpoint of A.

LEmMMmA 4. (Bing [4, Theorem 6, p. 220]). There does not exist a
folded sequence of arcs in M.

Lemma 4 follows from a simple argument (shorter than Bing’s)
involving Lemma 3 and the fact that M does not contain a triod.

A chain L, L,, ---, L, in M is said to be free if CIL, N CIL, =
and Bd U{L,:1=i=n}is a subset of CI(L, U L,).

Lemma 5. (Bing [4, Property 17, p. 219]). Let A be an arc in M with
endpoints p and q. For each positive number e, there exists a free e-chain
L, L, - -, L,in M covering A such that p and q belong to L, and L,
respectively.

A continuum is decomposable if it is the union of two proper
subcontinua; otherwise, it is indecomposable.

LEMMA 6. If M is decomposable, then M is a simple closed curve.

Proof. Since M is the union of two proper subcontinua (arcs), M is
locally connected. Since M is homogeneous, it does not have a separat-
ing point. Hence M contains a simple closed curve [19, Theorem 13, p.
91]. It follows that M is a simple closed curve.
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4. Principal results.

THEOREM 1. If M is a homogeneous continuum and every proper
subcontinuum of M is an arc, then M is circle-like.

Proof. According to Lemma 6, if M is decomposable, then M is a
simple closed curve and therefore circle-like. Hence we assume that M
is indecomposable.

By Lemmas 4 and S, there exists a free chain L,, L,, - -+, L, (a >5)
in M such that N=Cl U {L;:1=i = a} is a proper subset of M and
N-ClU{L;:3=i = a — 2} contains every arc in N that has both of its
endpoints in CIL, or ClIL,. (This chain is formed from another free
chain by unioning links to make L, and L., sufficiently long and
narrow.) Let B be the union of all components of N that meet
Cl(L; U L,-,). By Lemma 2, each component of B is an arc with one
endpoint in Bd L, and the other endpoint in BdL,. Note that B is a
closed set. Since M is indecomposable, each component of B is a
continuum of condensation.

Since B contains no folded sequence of arcs, we can assume that B
is the intersection of M and the plane R? and that the following
conditions are satisfied:

I. A component C of B is {(x,y):0=x =6 and y =0}.

II. Each component of B — C is a horizontal interval above H(0)
(the x-axis) and below H(1) that crosses both V(1) and V(5).

III. The sets CI(L, UL, UL, UL,) and {(x,y):1=x =5} are
disjoint.
(Bing’s theorem [2, Theorem 11], involving sequences of refining covers
that induce a homeomorphism, can be used to define this embedding of B
in R? Each cover of B consists of finitely many free chains that
correspond to disjoint straight horizontal chains with rectangular links in
R?) Note that B N {(x,y):1<x <5} is an open subset of M.

Let p be a metric on M whose restriction to B agrees with the
Euclidean metric on R? [1, Theorems 4 and 5].

There exists a positive number d less than 1 such that M N H(d) =
0 and the following condition is satisfied:

Property 1. Every arc in M that has its endpoints in {(x,y):x =3
and 0=y < d} meets both {(x,y):x =1land 0=y <d}and {(x,y):x =5
and 0=y <d}.

To see this we assume Property 1 does not hold for any positive
number d. For each positive integer i, let W, be an open set in
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M N {(x,y):1<x <5} that contains (3,0) such that for each pair p, q of
points of W, there exists an i '-homeomorphism of M onto M that takes
p to q (Lemma 3). For each i, there exists an arc A, in M with
endpoints p; and g, in W, N V(3) such that the horizontal interval I'; from
p: to V(1) isin A, if and only if the horizontal interval A, from g; to V(1)
isin A,

For each i, let h; be an i~'-homeomorphism of M onto M such that
h.(p;) = q. Since each h, maps I'; approximately onto A, for each i, there
exists a point a, of A; such that h;(a;) = a.

For each i, let B; be the arc in A, from p; to a. Note that for each i,
the diameter of B; is greater than 1 and B; N h;[B,] consists of the point
a.

Let a be a limit point of the sequence {a;}. Assume without loss of
generality that {a,} is a convergent sequence in E ={v € M:p(v,a)<
1/2}. '

For each i, let E; be an arc in B; N Cl E that goes from a point b, of
BdE to a. Assume without loss of generality that {b,} converges to a
point of Bd E and {E,} converges to an arc F in C1E. Since each h, is an
i~'-homeomorphism, {E, U h,[E;]} is a folded sequence of arcs conver-
ging to F. This contradiction of Lemma 4 completes our argument for
Property 1.

For i =1 and 2, let

Di=MN{xy)ri=x=6—i and 0=sy<d}.

Let € be a given positive number less than p(D,,M — D;). We
shall complete this proof by defining an e-circular chain that covers M.

By Lemma 1, there exists an arc A in M that is irreducible with
respect to the property that it contains {(5,0),(6,0)} and intersects
{(x,y): x=5 and 0<y <d}. According to Property 1, A intersects
{(x,y):x=4and 0<y <d}.

Let W be an open set in D, — A containing (4,0) such that for each
pair p, q of points of W, there exists an €/50-homeomorphism of M onto
M that takes p to g (Lemma 3).

Let ¢ be a number (0<c < ¢€/50) such that M N H(c)=(J and
M N{(x,y):x=4and0=y <c}isin W. Since W and A are disjoint,
¢ is less than d.

For i =1 and 2, let

C=MnN{xy)ri=sx=6-i and 0=y<c}.
Let & be the minimum of € and p(C,, M — C,). Let U be an open

subset of C, containing (2,0) such that for each point q of U, there exists a
&6-homeomorphism of M onto M that takes (2,0) to g (Lemma 3).
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Define S to be the ray in M that starts at (2,0) and contains A. Let
{s;} be the sequence consisting of all points of $ N {(x,y):x =3 and
0 = y < d} and having the property that for each i, the points s; precedes
s,.; with respect to the linear order on S.

Define T, to be an arc containing A in S that starts at the point
t,=(2,0) and ends at a point t, of U N V(2). Let h be a &-
homeomorphism of M onto M that takes ¢, to &.

We proceed inductively. Assume an arc T, is defined in § with
endpoints ¢, and t,,; in C,N V(2). Let y be the number such that
h(t..,) belongs to H(y). Define T,., to be the arc in S with endpoints
t.s; and t,.,=(2,y). Since h is a §-homeomorphism, ., belongs to
C,. Note that since each T, has diameter greater than 1, the ray S is the
union of {T,:n=1,2,---}.

Define B to be the largest integer such that {s;: 1 =i = B} is a subset
of T,. The &-homeomorphism h maps each T, approximately onto
T,... Hence, for each n, the arc T, contains {s;:(n—1)B<i=
nB}. Furthermore, B has the following property:

Property 2. For each positive integer i, the point s; belongs to C, if
and only if 5., belongs to C..

Define y to be the least positive integer that has Property 2. Note
that since s, does not belong to C,, the integer y is greater than 1.

Let K be {s:i=jy+1 and j=0,1,2,---}, and let L be
(SND,NnV@A3)-K

Property 3. The sets C1K and CIL are disjoint.

To establish Property 3, we assume there is a point z in CIK N
CIL. Let Z be an open subset of M containing z such that for each pair
p, q of points of Z, there exists a §-homeomorphism of M onto M that
takes p to g (Lemma 3).

Let s; and s, be points of Z N K and Z N L, respectively, and let f
be a 8-homeomorphism of M onto M such that f(s;)=s, Let 6 be the
smallest positive integer such that s,_, belongs to K. The existence of f
implies that 6 has Property 2. Since 6 is less than 7y, this is a
contradiction and Property 3 is established.

Note that since M = Cl1S (Lemma 1), CI(K U L)= D, N V(3).

Let I be the arc in S that goes from s, to s,.,. By an argument
similar to Bing’s [4, Property 17, p. 219], there exists a free €/50-chain
P, P, ---, P,in M covering I such that

(i) s, and s,.; belong to P, and P, respectively,

(i) P, UP isin G,
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(i) each component of H = U {P;:1=j = A} that meets CI P, also
meets P, and V(5), and

(iv)". each component of H that meets Cl P, meets P, and V(1).

From Property 1 we get the following:
Property 4. Each component of H meets both P, and P,.

Let P, be an element of P, P, ---, P, that contains the point
(4,0). Since W intersects each component of C,, there exists a finite
sequence g, &2, ** °, 8- of €/50-homeomorphisms of M onto M such that
CI K projects horizontally into U {g[P.]:1=i=0}. Assume without
loss of generality that no proper subsequence of g, g», - - -, g has this
horizontal projection property.

Note that each g[P,] is a subset of D,.

From Properties 1 and 4 we get the following:

Property 5. Foreach i (1=i=o0),if T is a component of g[H],
then T N g [Cl P,] is a nonempty set that projects horizontally to a point
of D, N V(3).

For each i (1 =i =o0), let X, be the set consisting of all points in
g [P.] that project horizontally into Cl1K, and let Y; be the union of all
components of g [H] that meet X.

Foreach i (1=i=o0), theset Y,is open in M. To see this assume
that for some i, a point u of Y,isin CI(M — Y)). According to Property
3, u does not belong to g;[P,]. By Property 5, there exists a sequence
{J.} of arcs in g,[H] that meet g[P,] such that the limit superior J of {J,}
is an arc in g;[H] that contains u and for each n, the set J, N g[P,]
projects horizontally to a point of C1 L. It follows that J N g[ClP,] is a
nonempty set that projects horizontally to a point of CIL. Since J is in
the u-component of Y, this is a contradiction of Property 5. Hence Y;is
an open subset of M.

Foreach i (1=i=o)and j (1=j=A), let Q,=Y. Ng[P]. It
follows from an argument similar to the one given in the preceding
paragraph that for each i, the set C1(Q,, U Q,,) contains Bd U {Q,;:1=
j = A}. Hence, for each i, the sequence Q,;, Q,,, - -, Q,, is a free chain
in M.

Property 6. For each i (1=i=o0), the set Q, U Q,, projects
horizontally into Cl1 K.

Obviously, Q;, projects horizontally into CI K. Therefore, to estab-
lish Property 6, we assume there is a point ¢ of Q,, that projects
horizontally into C1L. By Property 3, there exists a positive number 7
less than € such that Q ={v € M :p(v,t) < n} projects horizontally in
CIL.
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Let T denote the t-component of Y;, and let wbe a pointof T N Q;
(Property 4). Since g; is an €/50-homeomorphism, T crosses D; N V(1)
exactly y times (Property 1). Since w belongs to Q,;, it projects
horizontally into Cl1 K.

By Lemma 3, there exists an n-homeomorphism g of M onto M
such that g(w) belongs to Q,, and projects horizontally into K. Since
the g(w)-component of Y, is an arc segment in S that crosses D, N V(1)
exactly y times and is mapped approximately onto T by g, the point
g(t) of Q projects horizontally into K. This contradiction of the
definition of Q completes our argument for Property 6.

Let 7 be an integer (5 < < pu) such that P, contains the point
(3+€/10,0). Let @ be an integer (4 < w < A — 4) such that P, contains
the point of V(3 —€/10) that projects horizontally to s,.,.

Property 7. For each n (1=n = o), the set Q,,; U Q,, does not
intersect U{Q,,:1=i=0c and 7 =] = w}.

To see this assume there exist integers i, j, and n suchthat 7 = j S w
and a point p belongs to Q;; N (Q,, Y Q,,). According to Property 6,
{p}U Q.,; U Q., projects horizontally into CIK. By Property 3, there
exists a positive number y less than e such that {v E M :p(v,p) <y}
projects horizontally into CIK.

Let P be the p-component of Y. Let Y be an arc in P that goes
from a point q of Q,; to p. Since g and g, are €/50-homeomorphisms
and 7 =j = o, the set Q;,; U Q,, and the p-component of PN D, are
disjoint. Hence Y crosses D, N V(1) exactly ¢ times where ¢ is a
positive integer less than 7.

By Lemma 3, there exists a y-homeomorphism k of M onto M such
that k(q) belongs to Q,; and projects horizontally into K. The arc k[Y]
crosses D; N V(1) exactly « times. Since k[Y]isin S and p(p, k(p)) <
X, the point k(p) projects horizontally into K. It follows from the
definition of K that ¢ is a multiple of 7y, and this is a
contradiction. Hence Property 7 holds.

Foreachi (l1=si=c)andj (1=j=A),let P,=Q,;—-ClU{Y,:1=
n <i}. By Property 7, for each i, the subchain of P,,, P,,, - - -, P,, that
has P,, and P,, as end links is free in M.

Foreachj(1=j=A),let U = U{P;:1=i=0}. Thesubchain €
of U,, U,, - -+, U, that has U, and U, as end links is a free €/16-chain in
M.

Let D be the union of all components of C, N {(x,y):3—€/5<x <
3+ €/5} that meet C1 K. According to Property 3, D isopenin M. The
diameter of D is less than €/2. Each point of U, U U, is within €/5 of
V(3). By Property 6, U, U U, projects horizontally into C1K. Hence
U,U U, isin D.

Let 7 be the largest integer less than w such that U, intersects
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D. Let ¢ be the smallest integer greater than u such that U, intersects
D. For each j (1=j<y¢—-7), let Z=U,. Note that
Z, 2, -+ Zy,, is a free e-chain in M.

Define Z,_, to be the union of D and all elements of & ={U, : 7w =
j=Erory =j=w} SinceCIK projects horizontally into U, and € isa
free chain in M, each element of & intersects D. Thus Z,_. is an open
set in M of diameter less than e. Note that Z,. meets both Z, and
Zyry.

Since € is free and U, U U, isin D, the boundary of U {Z;:1=j <
¢ —r}isin Z, ., Since CIK projects horizontally into U,, the set Z,
contains every boundary point of Z,_, that is to the right of V(3) in R’.

Furthermore, each point of Bd Z,_, that is to the left of V(3) is in
Z, .-, To see this let s be such a.point. Let X be the arc in M that
intersects V(1) and is irreducible between s and Cl1U, (Lemma 1). By
Property 1, X does not meet U, U U,. Since U, is an interior link in
the free chain €, the arc X is covered by € and s belongs to Z,_._;.

It follows that BdZ,., is in Z,UZ,,,. Therefore
Z, 2, % Z, . is an e-circular chain that covers M. Hence M is

circle-like.

Since every homogeneous circle-like continuum that contains an arc
is a solenoid [4, Theorem 9, p. 228}, Theorem 1 implies the following:

THEOREM 2. A continuum M is a solenoid if and only if M is
homogeneous and every proper subcontinuum of M is an arc.
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ON COMPLETENESS OF THE BERGMAN METRIC
AND ITS SUBORDINATE METRICS, 11

Kyong T. HAHN

Let M be a complex manifold of dimension n furnished
with both the Bergman metric and the Carathéodory
distance. The main result of the present paper is to prove that
the Bergman metric is always greater than or equal to the
Carathéodory distance on M. The case where M is a bounded
domain in the space C" was already considered by the author in
Proc. Nat. Acad. Sci. (U.S.A.), 73 (1976), 4294.

1. Imtroduction. The main purpose of the present paper is to
prove the following

THEOREM A. Let M be a complex manifold which admits both the
Bergman metric sy and the Carathéodory differential metric ay.  For each
z € M and each holomorphic tangent vector ¢,

(1) aM(Z’ §)§ SM(Z’ f)

Let py and dy denote the integrated metrics on M which are
induced from ay, and sy, respectively. Then the Carathéodory distance
cu ([2]) satisfies

(2) CM é pM é dM

and there are cases when p,, differs from ¢, and d,,.
From this observation and Theorem A, we obtain

THEOREM B. Let M be a complex manifold given as in Theorem
A. Then the Bergman metric is complete in M whenever the
Carathéodory distance is complete.

If in particular M is a bounded domain in the complex Euclidean
space C" (n=1), M always admits the Bergman metric and the
Carathéodory differential metric.

Theorems A and B have a number of interesting consequences.

In [4], C. Earle has proved the completeness of the Carathéodory
distance in the Teichmiiller space T'(g) of a compact Riemann surface of
genus g = 2. Therefore, Theorem B immediately implies the following

437



438 KYONG T. HAHN

THEOREM C. In the Teichmiiller space T(g) of any compact
Riemann surface of genus g =2, the Bergman metric is complete.

Recently, S. Wolpert [11] and T. Chu have independently proved
that the Weil-Petersson metric is not complete in T(g). Therefore, we
have the following

THEOREM D. In the Teichmiiller space T(g) of any compact
Riemann surface of genus g =2, the Weil—Petersson metric is not uni-
formly equivalent to the Bergman metric.

Finally we have

THEOREM E. Let G be a bounded open connected subset of a
separable complex Hilbert space X of finite or infinite dimension, and let M
be a complex manifold of finite dimension which admits sy. If G is

homogeneous, then there exists a constant, depending only on G, such that
for any holomorphic mapping f: M — G

(€) ac(f(2), Df(2)§) = k(G)su(z,6) (zEM, £€C),
where Df(z) denotes the Frechét derivative of f at z € M.

If in particular G is a ball, B, in X, then
(4) ap(f(2), Df(2)€) = su(z, £).

Theorem E contains Theorem A as a special case when B is the unit
disc in the complex plane C.

2. The Kkernel form and invariant metric of
Bergman. The theory of the Bergman kernel function and invariant
metric on a bounded domain in the space C" has been extended to a

complex manifold by S. Kobayashi [7] and also by A. Lichnerowicz [8].
Let #(M) be the set of holomorphic n-forms

a=adz,n - rdz,

on M such that

(1) UM oG

Then %(M) is a separable complex Hilbert space with an inner product

<o,




ON COMPLETENESS OF THE BERGMAN METRIC 439

given by
@ @p)=i"[ anB  (@BEFM).
Let {¢o, ¢1, - - -} be an orthonormal basis for ¥. Then every a € ¥ may

be represented uniquely by the convergent series

(32) a(z)=3 an@), o =(ae)
or
(3b) a(z)= 2, 6@ (2),

where ¢, = (®,)ydz, A - - - A dz,, in a local coordinate neighborhood U of
ZEM.
Moreover,

o

(4) (q,0)=|alf=2

v=0

¢ %

Let V be a local coordinate neighborhood of {&€ M in which
@,(0)=(®,)v({)d{ A+ - AdL.. Then the series

) "3 e e

‘i (@,)0(z) (@) ()dz, A+ ndz, ndli A nd,

converges absolutely and uniformly on every compact subset of M X M,
where M is the complex manifold conjugate to M, and hence, represents
a holomorphic 2n-form on M X M. Moreover, the sum (5) is indepen-
dent of choice of orthonormal basis. The Bergman kernel form is
defined by the sum (5) and written as

(Ga)  k(z,0)=x(2)=i"k(z,{)dz, A - Adz, AdE A A dL,

with a locally defined Bergman kernel function:
(5b) k(z,0)= Z} (®.)u(@)P.)v(), (ZHEUXV.

Further we define the reduced kernel form by
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(6) K (z)=k(z,{)dz,n-- - rdz,.

As in the classical case, see [1], the reduced kernel form has the
reproducing property of n-forms in &% More precisely,

Lemma 1. For any o € F with a(z)= ay(z)dz,An -+ rdz,,
) aU(z)=(a,Kz)=i"2J aAK(zT) (2 €M),
M

Proof. First we observe that for each fixed z€ M, K,(¢) is a

holomorphic n-form in M. From the uniform convergence of the series
(3a) and (5),

@k)=(2 con 38 )

=3 of¢. SBG0)

= EV: C"% (Du(z)((pw @u)z 2 CVCDV(Z): au(Z).

Setting in Lemma 1 a = K,, { € M, we have

®) ki(z) = (K, K.) = (K., K;) = k.({).

In particular, k,(z)=0. k,(z)>0 holds whenever M satisfies
(A1) Forany z in M, thereisan a« € #(M)such that (z)#0. In
this case,

©  sze= 3 LekEID 2 ey cecn

afot 02,02

is a well-defined positive semidefinite hermitian form which is invariant
under biholomorphic mappings of M. In fact s°(z, ) is positive definite
if and only if M satisfies

(A2) For every holomorphic tangent vector £ at z € M, there is an
a € F(M) such that a(z)=0 and

#0,

da - ¢ = iaz

where a = adz, A+ --rdz,.



ON COMPLETENESS OF THE BERGMAN METRIC 441

Therefore, any complex manifold M with properties (A1) and (A2)
is entitled to an invariant Kihler metric sy of Bergman.

3. An extension of Schwarz inequality. Let #({2) be
the set of square integrable n-forms defined on a measurable subset (2 of
a complex manifold M of dimension n. Then ({)) is a separable
complex Hilbert space with respect to the inner product:

) @Bn=i"[ and  (xpeu@)

We need the following extension of the Schwarz inequality.

LEMMA 2. Let {a,} and {B.} be two sequences (finite or infinite)
from M(Q) such that

)] Z (,, @,)q <, 2 (B Ba<.
Then
3) M*MéN-Z (a,, @,)a

where *“ =’ denotes the matrix inequality, i.e., A = Bifandonly if B— A
is positive semidefinite, M and N the matrices whose entries are M,, =
(e, B.)a and N,, = (Bu, B.)a (1, v =0,1,2, - - ), respectively, and M* the
adjoint of M.

Proof. It is enough to prove the case where {a,} and {B,} are infinite
sequences. The other cases can be proved in the same way. Let
u = (ug, uy, - - ) be any non-zero constant vector in €*(C). Then

@ T
-3 | (e 3 pa),

By the Schwarz inequality in #({2), (4) becomes
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u*M*Mu g 2 (a#, a”')Q(zo Bvav’ 2) BTlZT)Q
n=0 v= T=

&) -
=u*Nu 2 (e, @, )a
n=0

from which (3) follows, since u was arbitrary.

In the case where M = C" and () is a measurable subset of C", we
define () to be the set of square integrable functionson ). Lemma 2
then holds in this case. We shall state it separately for the future use.

CorOLLARY 1. Let {a,} and {b,} be two sequences (finite or
infinite) from M(2), Q CC", such that

(6) > (a., a,)a <, 2 (b,, b,)a <
Then
(7 M*M =N -3 (a,a,)a,

where M and N are matrices whose entries are (a,,b,)a and (b,, b,)a
(n,v=0,1,2,-- ), respectively.

4. The main theorems.
THEOREM 1. Let f = (fy, fi, - - ) be a holomorphic mapping from a

complex manifold M satisfying properties (Al) and (A2) of §2 into a
separable complex Hilbert space X of finite or infinite dimension such that

€)) lf)llx =Q for some Q >0.
Then
2 IDf(2)¢llx = Qsu(z,€)  (zE€M, ¢€EC),

where || ||x denotes the usual norm in X.

Proof. For each z € M, let

(3) au(t)zf#(t)KZ(t):fu(t)k (t)dtl/\"'/\dt (M:O’Lz"“)
@ B.0=3(0) = (o - k0 %)
(r=1,2,---,n)

2(Z)
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where

o KRGy, g,

In view of the reproducing property of the kernel form, see Lemma
1, we obtain

© 3 (@na)=3 GK.LK) = (S fRK.K)= 0(K.K)
= Q%(z, 2),

(B B) = ey (K0 (55557 ) - e @ T2 (G2 k)
(72) —k.(z )-"—@( 53z, ) MM(K,,K)}

0z

From Lemma 1, we also have

dK, K.\ _ 9’ _9%k(z,2)
(8a) (az 6z, ) =920z, Ko K== %

oK. K3 R
(8b) (5 K) =3 KuK) = 55 k(= 2).

Therefore, (7a) becomes

(B, B) = k3(.1, z) [k(z’ z) aj’;";(azéf)— 3k§§:f) ak(gzi;f)]
7
" (z1 Z) 9z, az 92,03, 08 k(2 2).
(@ 8) = (2 7 (155)
9
=5 ( "’kI(<;)) <5£&>(z)

From Lemma 2 applied to (M), together with (6), (7b), (9) and (9) of §2,
Theorem 1 follows.

Let #(M, B™) be the set of all holomorphic mappings f of a complex
manifold M into the unit ball B™ in the space C" (1=m = w).
Following H. Reiffen [10] we define

(10) aii(z, €)= sup{| Df(2)&]l.: f € %M, B™)}
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for (z,£) € M X C™, where B“ denotes the unit ball in the Hilbert space
C* = ¢*(C) with the usual #*norm.

It is easy to see that a{;’ is a pseudo differential metric in the sense of
Grauert and Reckziegel [5], and that a{;’ becomes a differential metric
whenever M satisfies the properties (Al) and (A2) of §2 by bounded
mappings in the class #(M,B™). We note that a${= ay is the
Carathéodory differential metric of H. Reiffen [10]. However, it turns
out that for all m, 1 = m = o, a{y’ coincide with a,, as it is seen in the
following.

LemMA 3. Let M be a complex manifold of dimension n.  For each
z EM and each £ € C",

(11) al(z,&)=alP(z,&) for al m=1.

Proof. Suppose that f=(f,fs " f.)E #(M,B™). Then f=
#0)=(f,, ", fn 0,0, - - -) is a holomorphic mapping of M into B“. Let

FM,B*)={f: f=(£,0), f€ #(M,B")}.

Then
F(M,B*)C¥#(M,B*) and |[Df(z)é|n =|Df(z)¢[..
Therefore,
a(i(z, €)= sup{|| Df(2)&|ln: f € (M, B™)}
(12) = sup{|| Df(2)¢].: f € #(M, B*)}

ai(z, ).

The opposite inequality follows from the following observation.

IDf(z)- £l = sup{| £(Df(z)- £)|: £ € €2(C)*, || €] = 1}
(13) =sup{{D(¢-f)(z)- £]: €€ €X(C), €] =1}
éaM(z’ §)a

where ¢*(C)* denotes the dual of ¢*(C).

The second half of Lemma 3 is due to Clifford Earle (by communica-
tion) to whom the author is indebted.

It should be pointed out that the method of the proof of Theorem 1
is essentially due to K. H. Look [9]. In fact, he has proved Theorem 1
for the case when M is a bounded domain in C" and X = C". However,
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K. H. Look did not seem to realize Lemma 3 which enabled us to relate
Theorem 1 to the Carathéodory distance.

Theorem A is now an immediate corollary of Theorem 1, or rather a
special case of Theorem 1.

Proof of Theorem A. Set X = C and Q =1 in Theorem 1. Then
(2) becomes

(14) |Df(z)é|=5(2,§)  (z€M, (£€C)
for all f € % (M, B'), and Theorem A follows.

Proof of Theorem E. Let x, be any fixed point in G and let
v: G— G be a holomorphic automorphism of G such that y(x)= x,,
where x = f(z), z € M. Then v - f is a holomorphic mapping of M into
G such that (y - f)(z) = x,. Let Q be the radius of the smallest ball in X
which contains G. We may assume that the center of this ball lies at the
origin. By Theorem 1,

(15a) ID(y-(2)éllx=Qs(z,¢), (ZEM, §€C).

It is known [3] that if G is bounded then there are two positive
continuous functions A and A in G such that

(16) A €lx = ac(x, €)= A(x)] €]l (x € G),
for each ¢ € X. Set n = Df(z)¢  Then (15a) becomes
(15b) IDy(x)nllx = Os(z, &),  x=f(z).

By the invariant property of the Carathéodory differential metric ag
under biholomorphic mappings of G, see [3],

17) ag(x,m) = asly(x), Dy(x)n) = ac(xo, Dy(x)n).
From the second half of (16), (17), and (15b),
(15¢) a(f(2), Df(2)€) = A(x0)Qs(z, £).

The first half of Theorem E follows from (15¢) when we set

(18) k(G)= QinfA(x).
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If in particular G is a ball, say B ={x € X: ||x|x <R}, R >0, then
Q = R and inequalities (16) may be reduced to

X <= <_B_”_‘ﬂ.IX_.
) JrRopR=e®O=g_y g (GE€B {€X)

see [3]. Therefore, k(G)=1 in (18) which proves the rest of Theorem
E.
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ABSTRACTLY SPLIT GROUP EXTENSIONS
G. HocHscHILD AND D. WIGNER

1. Introductory survey. Consider a group extension
1- A— E—= G—1 in some category of groups with super-
structure (topological, analytic, algebraic). Suppose it is split in
the category of abstract groups, i.e., there is a homomorphism
a: G — E of abstract groups such that 7 - o is the identity map
on G. We are concerned with the question of when it is possible
to conclude that the extension is split as an extension in the given
category.

The most surprising known result in this connection is due to C.
Moore [2, Th. 2.3]. It says that if the given category is that of locally
compact separable topological groups, if A lies in the center of G and G
coincides with its commutator group [G, G|, then every o as above is
necessarily continuous.

A more transparent situation in which our question has a positive
answer is the following. Suppose the given extension is in the category
of locally compact separable topological groups, that A is a finite-
dimensional real vector group and that G has a discrete subgroup K such
that the coset space G/K is compact. Then, if an abstract split o exists,
it follows that there is also a continuous split. In fact, our assumptions
on A and the topology of G imply that the given extension has a
continuous cross-section [3, Th. 12.2], and [0, Th. 4.2]. This yields a
continuous 2-cocycle f for G in A such that the extension is split if and
only if f is the coboundary of a continuous map from G to A. By a
well-known result due to van Est [4, §4], the restriction map from the
continuous cohomology of G in A to that of K in A is injective. Our
assumption that the extension has an abstract split evidently implies that
the cohomology class of f is in the kernel of the restriction
map. Therefore, it must be the 0-class, so that our extension has a
continuous split.

Another positive case is that of an extension in the category of
connected (real or complex) Lie groups in which the image G is simply
connected and the kernel A is a central vector group. The existence of
an abstract split o evidently implies that A N [E, E] = 1, so that the given
extension yields the extension

1—- A — E/[E,E]—- G/[G,G]—1

in the natural way. Since G is simply connected, [G, G] is closed in G,
and G/[G, G] is simply connected [1, Ch. XII, Th. 1.2]. As before, we
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have from [3, Th. 12.2] that the given extension has a continuous
cross-section, whence we find that E is simply connected. As just now,
it follows that [E,E] is closed in E, and E/[E,E] is simply
connected. Thus, the above extension is simply an extension of vector
groups and therefore has a continuous (linear)  split
7: G/[G,G]— E/[E,E]. Let P denote the inverse image of
7(G/[G, G)) in E, so that P is a closed subgroup of E containing [E, E],
and P/[E,E]=1(G/[G,G]). Now it is easy to check that E is the
direct product A X P, which shows that the given group extension is split
in the category of connected Lie groups.

The simplest example of an abstractly split extension of topological
groups that is not continuously split, which must be known to many, is the
following. Let R, 2, ¥ denote the additive groups of real numbers,
rational numbers, integers, respectively. Let m: R X(2/Z)—> R/Z be
defined by #(x,y)=(x+%)+y. Clearly, = is a continuous open
homomorphism. The only compact subgroups of R X (2/%) are the
finite subgroups of 2/%, whence it is clear that the group extension given
by 7 has no continuous split. However, from a 2-space decomposition
R =S P 2, we obtain the group decomposition R/% = S X (2/%), and
hence an abstract group split o: R/Z — R X (2/%).

This example is not satisfactory, because of the lack of
connectedness. In the categories of connected Lie groups and con-
nected affine algebraic groups, our question leads to interesting subques-
tions by various further specialisations. In the positive direction, we
shall make some progress for unipotent affine algebraic groups over fields
of characteristic 0. In the negative direction, we shall see how ab-
stractly, but not continuously, split extensions of connected Lie groups
arise from the fundamental group of the image group. The question of
the existence of such examples, with simply connected image group,
remains unresolved.

With regard to the above and to what follows, it is a pleasure to
acknowledge the benefits we had from exploratory discussions with Brian
Peterson and Chih-Han Sah.

2. Deflated extensions. A source of examples of the kind
alluded to just above is the following construction. Let H be a
topological group, and let K be a discrete central subgroup of H. Let 7
be a homomorphism from K to an abelian topological group A. Let C
be the subgroup of the direct product A X H consisting of the elements
(7(k), k), with k in K. Clearly, C is a discrete central subgroup of
A X H. Write E for (A X H)/C, and let n: H— H/K be the canonical
homomorphism. The composite with n of the projection A Xx H—> H
induces a continuous, open and surjective homomorphism 7: E — H/K
whose kernel may be identified with A in the evident way. It is easy to
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verify that the group extension determined by 7 has an abstract split
H/K — E if and only if 7 is the restriction to K of an abstract group
homomorphism H — A, and that it has a continuous split if and only if 7
is the restriction of a continuous group homomorphism H — A.

Here is the simplest specific example arising in this way. Let M be
the group of real matrices

1 0 0
e, B, ¥]= (a 1 0).
y B 1

Put H= % x M. Now fix an irrational real number u, and let K be the
discrete central subgroup oft H consisting of the elements
(a + ub,[0,0,b]), where a and b range over &. Finally, let A = R, and
define the homomorphism r: K — % by

7(a + ub,[0,0,b])=a+b
We claim that the resulting extension of topological groups
0>R—>E-—H/K—>1

has an abstract split, but does not have a continuous split. It is evident
that r can be extended to an abstract group homomorphism H — R
(annihilating M). Therefore, our group extension has an abstract split.
Now suppose that, contrary to our claim, there is a continuous split
of our group extension. As stated above, this yields a continuous
homomorphism f: H — & whose restriction to K coincides with 7. We
have K CR X [M, M]. Now note that f annihilates [M, M] and is linear
on the factor R. It follows that there is a real number p such that

a+b=r1(a+ ub[0,0,b])= pa+ pub.
This gives the contradiction u =1, so that our claim is established.

3. Unipotent groups. We consider the category of unipotent
affine algebraic F-groups, where F is a field of characteristic 0. Our
results will automatically hold also in the category of simply connected
nilpotent real or complex analytic groups. We denote the Lie algebra of
a group G by £(G). Recall that there are mutually inverse polynomial
maps expg: £(G)— G and logs: G — £(G), through which the
categories of unipotent affine algebraic F-groups and of finite-
dimensional nilpotent F-Lie algebras are equivalent. Our question can
be transferred to the category of nilpotent Lie algebras by virtue of the
following proposition.
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ProproSITION. Let G and H be unipotent affine algebraic F-groups,
with F of characteristic 0. Let y: G—>H be an abstract group
homoriorphism, and define the map vy': £(G)—>¥(H) by y'=
loguoycexps. Then y' is a morphism of 2-Lie algebras. In this way,
the abstract group homomorphisms G — H are in bijective correspondence
with the morphisms of 2-Lie algebras £(G)— ¥(H).

Proof. If u and v are Lie algebra elements such that [u, v] = 0 then
exp(u)exp(v)=exp(u +v). Using this with exps; and expy, we find
that if n is an integer and x an element of #(G) then expy(y'(nx))=
expu(ny'(x)). Hence y'(nx)= ny'(x). It follows that y'(gx)=qy'(x)
for every rational number gq.

Since £(G) and £(H) are nilpotent, we can express products of
exponentials in G and H by means of the Campbell-Hausdorft
formula. This formula provides a set of rational numbers, indexed by
finite sequences of 0’s and 1’s, such that the following holds. If u and v
are given elements of £(G) or ¥(H), one attaches to each finite
sequence of 0’s and 1’s a certain multiple commutator of u and v,
according to the following recipe. To the sequence 0 we attach u, to the
sequence 1 we attach v. Generally, if [s] denotes the commutator
attached to the sequence s, then [0s] = [u, [s]] and [1s] = [v,[s]]. Since
our Lie algebras are nilpotent, we have [s] = 0 whenever the length of s
exceeds a certain bound. Therefore, if g(s) is the rational number
corresponding to s in the Campbell-Hausdorff formula, the sum
2.q(s)[s] is defined as an element of the Lie algebra. Denoting this by
n(u, v), we have exp(u)exp(v)=exp(n(u, v)). We recall that if 7, is
the part of n coming from the sequences of length n, then 7,(u, v) =
u+v and n,(u, v) =i[u, v].

There is a sequence

0)= Z,C ---CZ, = £(G)

of ideals of £(G) such that [£(G), Z,.,]CZ, fork =0,---,n—1. Now
suppose we have already shown that y'(u+v)=7y'(u)+y'(v) and
yY'([u, v])=[v'(u), y'(v)] whenever u is in £(G) and v is in Z,. Let g
be a rational number, v an element of Z,,, and u any element of
Z(G). From the definitions, we have

y'(n(qu, qv)) = n(y'(qu), y'(qv))

This may be written

Y (Zeq (U, 0)) = Ziq ni (y' (1), v'(v))
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Since, for k>1, n(u,v) lies in Z, we may apply our inductive
hypothesis to expand the left side, and we obtain

20q Y (m (4, v)) = Ziq i (y'(u), v'(v))

Since this holds for all rational numbers ¢, the coefficients of g* on the
two sides must be equal. In particular, taking k =1 and k =2, we
obtain y'(u+v)=vy'(u)+y'(v) and y'((u,v])=[y'(u),y'(v)]. This
proves, inductively, that y' is 2 morphism of 2-Lie algebras.

Conversely, suppose that §: £L(G)— £(H) is a morphism of 2-Lie
algebras. Put y =expyodclogs. Applying the Campbell-Hausdorft
formula and noting that n has rational coefficients, one verifies directly
that y: G — H is a homomorphism of abstract groups. Clearly, y'=
8. This completes the proof of the proposition.

If L is an F-Lie algebra, K a finite algebraic extension field of 2
contained in F and M a K-Lie algebra such that L = M@F, then we
call M an absolutely algebraic form of L.

THEOREM. Let F be a field of characteristic 0, and let G be a
unipotent affine algebraic F-group. Suppose that £(G) has an absolutely
algebraic form. Let 1—- A — E — G — 1 be a group extension of unipo-
tent affine algebraic F-groups having an abstract split. Then this group
extension is split in the category of affine algebraic F-groups.

Proof. Write $(G)=L = MQF, as above. Viewing M as a
9-Lie algebra, consider the extension of K-Lie algebras

0-P-o>MRK,K—M-—0

coming from the K-space structure of M. Write U for MQ), K, and
note that U is a two-sided K-module, with

c-(mMPk)=(m)Q®k and (M K@k)-c=m & (kc)

for c and k in K and m in M. The kernel P of  is clearly the two-sided
K-submodule consisting of all sums of elements of the form ¢ -u —u - ¢,
with u in U and ¢ in K. Now K is a finite-dimensional separable
9-algebra, so that K, K is a finite-dimensional semisimple 2-algebra,
whence every two-sided K-module is semisimple. Let S be a two-sided
K-module complement of P in U. Clearly,c-s =s-c forevery sin S
and every ¢ in K. Let T denote the two-sided K-submodule of U
consisting of all elements u for which ¢c-u =u-c for all ¢ in K. We
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claim that S=T. In order to prove this, it suffices to show that
PNT=(0). By the semisimplicity, P is a direct two-sided K-module
sum (PN T)@ R. Since U = P + T, it follows from the definition of P
that every element of P is a sum of elements ¢ - p — p - ¢ with ¢ in K and
p in P (not only in U), and the above decomposition of P shows that we
may even take the elements p to be in R. But this gives P = R, so that
PNT=(0).

Thus, U =P& T. Evidently, T is an ideal of U, so that,this is a
direct K-Lie algebra decomposition. The restriction of 7 to T is an
isomorphism of- K-Lie algebras T—>M. Let u: M—T be its
inverse. By tensoring with F and evident identifications, u yields a
morphism of F-Lie algebras

w*  L=MQRxF—->TQxFCURXxF=MR,FCLK,F

If 7: L@, F— L is the morphism of F-Lie algebras coming from the
F-space structure of L, it follows from the definition of u * that 7ou * is
the identity map on L.

Now let 1 A—>E—G—1 be as in the statement of the
]

theorem. This yields the extension of F-Lie algebras
0> ZL(A)>Z(E)— Z£(G)—0
P

By our above proposition, an abstract split of the given group extension
yields a morphism of 2-Lie algebras

o: $(G)—> L(E)

such that p’c o is the identity map on £(G). By tensoring with F, we
obtain the morphism of F-Lie algebras

o*: P(G)RoF— L(E)Rs F

Let y: Z(E)QqF— £(E) be the morphism of F-Lie algebras coming
from the F-space structure of £(E). Then, if 4 * is the morphism of
F-Lie algebras obtained above, the composite

yeorou®: £(G)— ZL(E)
is a split of our above extension of F-Lie algebras. Vialog; and expg,

this yields a split of the given group extension in the category of affine
algebraic F-groups, so that our theorem is established.



ABSTRACTLY SPLIT GROUP EXTENSIONS 453

REFERENCES

0. A.M. Gleason, Spaces with a compact Lie group of transformations, Proc. Am. Math. Soc., vol. 1
(1950), pp. 35-43.

1. G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco, 1965.

2. C. C. Moore, Group extensions of p-adic and adelic linear groups, 1. H.E.S., No. 35 (1968).

3. N. Steenrod, The topology of fibre bundles, Princeton University Press, 1951.

4. W.T.van Est, A generalization of the Cartan—Leray spectral sequence, 11, Indag. Math. 20, No. 4
(1958).

Received December 16, 1976.

UNIVERSITY OF CALIFORNIA
BERKELEY, CA 94720

AND

UNIVERSITY OF MICHIGAN
ANN ARBOR, MI 48104






PACIFIC JOURNAL OF MATHEMATICS
Vol 68, No. 2, 1977

INNER INVARIANT SUBSPACES
GARY S. ITzrkowitZ

We single out a special subclass of the invariant subspaces
which we call the inner invariant (i.i.) subspaces. A closed
subspace K of a Hilbert space H is said to be i.i. for a linear
operator T (with domain D) if: (1) T(KND)CK,
Q) {T(KND)+(KND) =K, and 3) xED\K > TxZK.
This generalizes subspaces invariant for both T and T~' when
the latter exists.

Some of the results in this paper are:

1. LetA&C. If|A]|<1then K isi.i for U — A where U
is the shift on Hardy space H” iff K = gH” where g is inner and
g(A)#0. If|A|=1,then K is i.i. for U — A iff K = gH” where
g is inner. 2. There is an isometry J from H’ onto L’(0, )

such that the i.i. subspaces of V + 1 (where Vf(x)= J; f(y)dy)

are precisely the subspaces J(gH®) for g an inner
function. 3. Any skew-symmetric simple operator with defect
indices (0, 1) is isomorphic with V and V™',

1. Introduction. In §2 below we present the definitions of
invariance and inner invariance for (not necessarily bounded)
operators. Then their fundamental properties are analyzed.

In §3 we calculate the inner invariant subspaces of the shift operator
in several settings. In one setting we describe the inner invariant
subspaces of the shift on the Hardy space H?. Then we generalize this
result.

In §4 we consider the unbounded Volterra operator V. We first
characterize this operator abstractly and then use this to get the result
that on L*(0,») integration and differentiation (i.e., V and V') are
isometrically isomorphic.

Finally, in §5, we describe the inner invariant subspace structure of
the unbounded operator V + 1.,

2. Definitions and basic properties. We make the fol-
lowing conventions. We work in a Hilbert space H and closed linear
subspaces K. A linear, though not necessarily bounded, operator on H
will be denoted by T with linear domain D = D(T). If T exists, we
write D' for D(T")= T(D(T)).

If R and S are linear subspaces of H then R + S is the linear
subspace generated by the elements of R and S. The closure of R in H
is denoted by R or {R}".
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DerFiNiTION 2.1. A closed subspace K of H is invariant for T if:
() T(KND)CK;
@) {T(KND)+(KND)} =K

This definition allows for the extreme that neither T(K N D) nor
K N D alone is dense in K yet K is still an invariant subspace for T.

DEeriNITION 2.2. A closed subspace K is inner invariant for T if it
is invariant for T and in addition it satisfies the following property:
(i) x€ED\K > Txg K.

The following example shows that an invariant subspace is not
necessarily inner invariant and hence that invariance and inner in-
variance are different.

ExampLE 2.3. Consider the shift operator s on [* where
s([ao, a1, a3, - - *]) = [0, ay, a1, a4, - ]. Let K ={[a,]i-0| a, = 0}; then it is a
straightforward matter to show that K is an invariant subspace for s but
is not inner invariant for s.

Lemma 2.4. If a subspace K is inner invariant for T then
T(KND)=KNT(D).

Proof. By the invariance of K we get trivially that T(K N D)C
KNT(D). Toshow KNT(D)CT(KND)lety € KN T(D) so that
y=Tx for some x in D. If x€D\K and Tx € K then we are
contradicting (iii) in Definition 2.2.

THEOREM 2.5. If T is one-to-one then the following are equivalent :
(i) K is inner invariant for T,

(i) K is inner invariant for T,

(iii) K is invariant for both T and T'.

Proof. We will just prove (i) = (ii), the other cases being
clear. Since K is invariant, Lemma 2.4 implies that T(K N D)=
KNT(D). Since T is one-to-one, T exists and D~'=T(D). Also
D =T7(D™).

Thus we have the following equalities:

¢)) T(KND)=KNTD)=KND™
and

) KND=TYKNTD)=TYKND
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and
3) KNTY(DH)=TYKnND™).

Now, by the inner invariance of K with respect to T we have, by
using (1) and (2), that

K ={T(KND)+(KND)}
@ ={(KND™")+ T(KN D} .

Hence condition (ii) in the definition of inner invariance (for T7") is
satisfied.

We now use (3) and (4) to show K is inner invariant for T~'. First,
from (4) we get (automatically)

T(KND)CK

so that (i) of the definition of invariance is satisfied for T

Assume x € D' and T 'x € K. In order for condition (iii) in the
definition of inner invariance to hold for T~' we must show x € K. If x
did not belong to K, then this, with the assumptions that x € D' and
T 'x € K, would be a contradiction to condition (iii) and therefore to
inner invariance.

Now T'x €K and T 'x € T(D") since x € D"'. Therefore
T'xeKNTY(D)=T(KND™) by (3). The operator T™' is one-
to-one so that x must belong to K N D' and hence is in K. Thus K is
inner invariant for T

The next two examples exhibit (1) operators, all of whose invariant
subspaces are inner invariant and (2) operators without inner invariant
subspaces. The latter settles the inner invariant subspace problem
easily in contradistinction with the long standing but recently solved
problem concerning the existence of invariant subspaces of bounded
operators. (At the August, 1976 meeting of the American Mathemati-
cal Society in Toronto, Per Enflo announced that he had solved the
invariant subspace problem.)

ExaMPLE 2.6. Consider the bounded Volterra operator V on

L*0,1) defined by Vf(x)= f ’ f(y)dy. Kalisch [10] proved that the
0

proper invariant subspaces of this operator are of the form L*(a, 1) for
0<a<1. We show that these subspaces are also inner invariant for
V. Since L*a,1) is invariant, we need only demonstrate the last
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condition in the definition of inner invariance. Thus let a be fixed and
assume that 0# f€ L[*0,1) with f& L[*(a,1). We must show that
Vf & L*(a, 1) but this is obvious since f must have some of its support on

(0,a) and therefore Vf(x)=fxf(y)dy must also have support on
0
(0,a). Thus Vf& [*(a,1).

ExampLE 2.7. Consider the Hardy space H” in the unit disk (i.e.,
{z€C|]|z|<1}). On thisspace we will be concerned with the 