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AN ANALOGUE OF OKA'S THEOREM FOR WEAKLY
NORMAL COMPLEX SPACES

WILLIAM A. ADKINS, A L D O ANDREOTTI, J. V. LEAHY

Two well known results concerning normal complex spaces
are the following. First, the singular set of a normal complex
space has codimension at least two. Second, this property
characterizes normality for complex spaces which are local
complete intersections. This second result is a theorem of
Abhyankar [1] which generalizes Oka's theorem. The purpose of
this paper is to prove analogues of these facts for the class of
weakly normal complex spaces, which were introduced by
Andreotti-Norguet [3] in a study of the space of cycles on an
algebraic variety. A weakly normal complex space can have
singularities in codimension one, but it will be shown that an
obvious class of such singularities is generic.

1. P r e l i m i n a r i e s . All complex spaces are assumed to be
reduced. If X is a complex space, there is the sheaf ϋx of holomorphic
functions on X, and the sheaf 0c

x of c -holomorphic functions on X. A
section of 0c

x on an open subset U of X is a continuous function
/: 17—>C such that / is holomorphic on the regular points of U. The
complex space X is said to be weakly normal if Ux = ΰc

x. Examples of
weakly normal spaces are normal spaces and unions of submanifolds of
Cm in general position.

Let Vj={(xu •••,xm)eCm: xk = 0 for n^k<j and j<k^m}
where n^j^m. Then V} is an n-dimensional linear subspace of
Cm. Let

V(n,m)= U V,={(x1, , jc m )GC m 1 X ^ = 0 for n ^ i < j ^ m}

and let S(V ( n m )) be the singular set of V(π,m).

LEMMA. V(nm) is a weakly normal complex space and dim S( V(n,m)) =
n-ί.

Proof. Since S(V(n,m)) = {(JC1? • ,x m )G Cm: xn = = xm = 0},
dim S(V{thm)) = n - 1. Let /: V^)—> C be a continuous function which is
holomorphic on the regular points of V(n,m). To prove weak normality of
V(n,m), w e need to show that / is holomorphic. Let fi = / | Vj. By the
Riemann extension theorem, fi is holomorphic on the n -plane V, and
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298 W. A. ADKINS, A. ANDREOTTI AND J. V. LEAHY

thus fj = fj(x\ Xj) is a convergent power series, where x' = (x1? , xn_2)
and JC, are coordinates on Vy. Since ^|X/=0 = /* Ufc=o for n i / , fc ̂  ra, we
let /o(x') = ̂ (x',O) and set gJ(x\x]) = f}(x\Xj)-fo(x') for n ^ / ^
m. Then f(xu , xm) = fo{x')+ Σ;"Ln g ;(x', JC;) and hence / is holomor-
phic on V(n,w).

If X is a complex space with dimX = n, let Sg(X) =
S(X) U (Uo<κ« Xik)) where S(X) is the singular set of X and X ( k ) is the
analytic subset of X defined by X(k) = {x E X: X has a branch of
dimension k at x}. If C4(X, JC) denotes the fourth Whitney tangent cone
of X at x, then Stutz [6] has shown that W4 =
Sg(X) ΓΊ {x E X : dimC4(X, x)>n} is an analytic subset of X of
codimension at least two.

2. Codimension one singularities of weakly normal
spaces. Let X be a complex space. A point JC E X is said to be an
elementary point of type (n, m), for n ̂  m, if the germ (X, JC) is
isomorphic to the germ (V(n,m), 0). Note that if x E X is an elementary
point of type (π, ra), then the germ (X, JC) is of pure dimension n and the
imbedding dimension of (X, x) is m. The set of elementary points of X
contains the set of regular points of X, i.e. the elementary points of type
(n, n) for some n. In addition, it contains a particularly simple class of
singular points of X. If x is an elementary point of type (n,m) with
n < m, then x is singular and dim (S (X), JC ) = n - 1 = dim (X, JC ) - 1.

If dim X = n, let Y = U 0^ k < n X
(fe) and let Xα = X\ Y. By a theorem

of Remmert, X1 is an analytic set of pure dimension n. Let Xs denote
the set of all elementary points of X of type (nym) for some m with
m ^ n = dim X. Hence Xs C Xi and X5 contains the regular points of X
of maximal dimension.

THEOREM 1. Lei X be a weakly normal complex space. Then
A = Xι\Xs is an analytic subset of Xγ of codimension at least 2.

Proof Let n = dim X. If dim 5 (X) g n - 2 then A =
Xi Π 5(X). Hence A is analytic and codimension A i=2. Now sup-
pose that dimS(X) = n - 1 . We will show that A =
Xλ Π (5g(5g(X)) U W4). Since 5g(5g(X)) U W4 is an analytic set of
codimension at least 2 in X and since dim X = dim Xu this will prove the
theorem.

Let JC 6 X , If JC is a regular point of X, then x£Sg(Sg(X)) U
WA. If x is an elemetary point of type (n, ra) where m > n, then

dim C4(X, JC ) = n. Hence xgi W4. Moreover, 5(X) is a manifold of
dimension n — 1 in a neighborhood of JC. Thus jefZ: 5g(Sg(X)). Hence
XsCXA(Sg(Sg(X)) U W4) and Xί Π (5g(Sg(X)) U W4)CA

Now suppose that JC0 E Xx Π S(X) Π (XΛ(Sg(Sg(X)) U W4)). Thus
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xo£Sg(X)\Sg(Sg(X)) and dim C4(X, x0) = n. Note also that the germ
(X, JCO) is of pure dimension n. Since the result to be proved is local, we
may assume that X C C. By Proposition 4.2 of Stutz [6], there is a
neighborhood N of x0 in X, a polydisc D C Cn, and a choice of
coordinates JCI, , xn in C" and yu , y, in C centered at JC0 with the
following properties.

If Bθ9 —,Br are the global branches of X Π N, then for each /
(0^/ ^ r) there is a holomorphic map f>,: D —> By such that

(a) /; is a homeomorphism;
(b) with respect to the coordinates xu , xn, yl5 , y,, /j(0) = 0 and

where p, is a positive integer for 0 =§/ ̂  r;
( c ) / y ( j C i , - , * „ ) = Σ ^ ^ . / ^ ^ X i , , j c n _ i ) J C * f o r n - f l ^ i ^ ί a n d

Let g;: Bj-^D be the continuous inverse of f} and define a map
f ι : X n N - » C π + r by π, °ft |B, = &• where π, : Cn+r -> C,,,...,*,,^, is the
natural linear projection onto the n -plane with coordinates
JCI, , xn-u χn+p for 0 ^ / ^ r. To see that the map h is well defined, note
first that S(X) is an n - 1 dimensional manifold in a neighborhood of
jc0. Furthermore, B, Π Bfc C S(X)Π N for all /, k. But f}(x',0) =
(x',0, ,0) = fk(x\0) where xf = (jcl5 ,xn_i). Therefore, if N is cho-
sen small enough, then B} Π J3k = S(X) Π iV = {yn = = y, = 0} for
0^/, fc^r. For each (y1? , y,)G S(X)Π N, it follows that g;(y) =
(yb , yn_j, 0) for O g / ^ r . Thus /i is a well defined continuous map.

Since the jacobian matrix dfjdx is given by

/ι is holomorphic on the regular points of X (Ί N. Since X is weakly
normal and h is a homeomorphism onto its image, it follows that h is
biholomorphic. Therefore x0 is an elementary singularity of type (n, n +
r). Hence A C Xi Π (Sg(Sg(X)) U W4) and the theorem is proved.

REMARK. Let X be a weakly normal complex space and suppose
that codim5(X)=l. Theorem 1 shows that there is an elementary
singularity of type (n, m) where m > n. Since such a singular point is
not normal, Theorem 1 implies the well-known theorem that
codimS(X)^2 for a normal complex space X.
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THEOREM 2. Let X be a pure dimensional local complete
intersection. Then X is weakly normal if and only if codim X\X5 ^ 2.

Proof Let A = X \ Xs. If X is weakly normal then codim A ^ 2
by Theorem 1.

Conversely, suppose codim A § 2 . Since X\A=X S , the germ
(X, x) is weakly normal for each x E X\A. Since X is a pure dimen-
sional local complete intersection, pf(OXx) = dimX for each x E X,
where pf = profondeur. From the Hartog theorem for weak normality
[2], we conclude that X is weakly normal.

REMARKS. (1) For the case of curves, the assumption of local
complete intersection is not needed. A curve X is weakly normal if and
only if X \XS = 0. An algebraic proof of this fact was given by Bombieri
[5].

(2) If X is a pure dimensional hypersurface in Cn+1, then Theorem 2
can be proved without the use of the Hartog theorem for weak
normality. This case follows from the result of Becker in [4].

(3) Let X C Cn+1 be a pure dimensional hypersurface. If X is
weakly normal, there is another characterization of X\XS than that
which is given by the proof of Theorem 1. This description is as
follows. There is a holomorphic function / E ϋ(Cn+ί) such that X =
V(f) = {x EC n + 1 : f(x) = 0} and such that there is a sheaf equality
(/) ΰ = $x where $x is the sheaf of ideals of X. Then

At a point xo£Ξ S(X) the Hessian form is defined by

Let μ(jc0) = rankH(f)n and set 52(X) = {x E 5(X): μ(x)^l}.

Claim. If X is weakly normal and dim S(X) = n - 1, then

w4 n (S(X)\sg(5(X))) = s2n (S(x)\sg(S(X))).

Proof From the proof of Theorem 1, X\XS =
Sg(5(X)) U WA. Suppose x E 5(X)\Sg(5(X)) but x£ WA. Then the
proof of Theorem 1 shows that x is an elementary singular point of type
(n, n + 1). A proper choice of local coordinates about x shows that
(X, x) is isomorphic to (V(z1z2), 0). Hence μ(x) = 2 and x£ S2(X).



AN ANALOGUE OF OKA'S THEOREM 301

Now suppose that x G S(X)\Sg(S(X)) but JC£S 2 (X) . Thus
μ(x)^2. If μ(x)>2 then the implicit function theorem shows that
dim(5(X), x) ^ n - 2. Therefore μ (x) - 2 and choosing convenient
local coordinates centered at x gives /(z)^ azιz2 + 0(3) where
α^O. Hence x is an elementary singular point of type (n, n -f
1). Therefore, xg: W4 and the claim is proved.

For weakly normal hypersurfaces this claim gives an easy differential
criterion for computing the portion of the set WA which is contained in
S(X)\Sg(S(X)). This claim is false for hypersurfaces which are not
weakly normal.

EXAMPLE. Let X = {(JC, y, z) E C3: x2 - zy2 = 0} be the Cay ley um-

brella in C3. Then X\X5 ={(0,0,0)} so that X is weakly normal by
Theorem 2. Remark (3) then shows that W4 = {0,0,0)}.
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ON NONSINGULARLY k -PRIMITIVE RINGS

A. K. BOYLE, M. G. DESHPANDE AND E. H. FELLER

A ring R is called k -primitive if it has a faithful cyclic
critical right module C with \C\ = k. We first show that
k -primitive rings with Krull dimension have many properties in
common with prime rings. For the case where JR is a PWD
with a faithful critical right ideal, we obtain an internal charac-
terization.

1. Introduction. Let I? be a ring with Krull dimension. Then
R is prime if and only if R has a faithful compressible right R-
module. In this paper we consider a broader class of rings, those which
have a faithful cyclic critical right R -module. From [2] such a ring is
called a k-primitive ring where k denotes the Krull dimension of the
faithful critical.

In the case where the faithful critical is nonsingular, these rings
exhibit many of the properties of prime rings. Not all k -primitive rings
have this additional property as an example in §4 shows. We call a
k -primitive ring whose faithful critical is nonsingular, a nonsingularly
k-primitive ring. Section 2 is devoted to showing some of the
similarities with prime rings.

In §3 we consider piecewise domains (PWD) which are k-primitive
rings. An internal characterization of PWD's with faithful critical right
ideal is obtained, which is our main result.

All rings will have identity, and the modules are right unital. The
singular submodule of a module MR is denoted Z(M). If X is a subset
of R, then ann X'or Xr denotes the right annihilator of X in R. The
Krull dimension of a module MR is denoted by |M|. A certain
familiarity with the definitions and basic results concerning Krull dimen-
sion is assumed. See [5] for reference.

2. Properties of k -primitive rings. If R is a prime ring
with Krull dimension then R is nonsingular and has a faithful critical C
such that I C\ = | JR |. These conditions are also true for nonsingularly
k-primitive rings.

PROPOSITION 2.1. Let R be a k'primitive ring with faithful cyclic
critical C. Then Z(R) = 0 and \C\ = \R\ if and only if R is nonsingu-
larly k-primitive.

303
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Proof. Suppose Z(C) = 0. This immediately implies Z(R) —
0. Let X be the collection of annihilators of finite subsets of C. By [4,
Theorem 1.24], X satisfies the descending chain condition. Since C is
faithful Π x e c(jc r) = 0 and there exists a finite subset such that Π"=1(x ) =
0. This implies the existence of an JR -monomorphism
R -* ΣΓ-i R Ix J-> C(n). Thus \R\^\ C (n) \ = \C\^\R\.

Conversely if Z(jR) = 0, then Z(C)=C or Z(C) = 0. Suppose
Z(C) = C Then C = R/K where K is a large right ideal. Let L =
{D \ D is a critical right ideal}. Then S = ΣD, D E L is a two sided ideal
of R. Since JR/K is faithful, SjtK. Hence there exists DEL such
that D £ K Since K is large D Π ί ί ^ O and \R/K\ = \D + K/K\ =
\D/D Γ)K\<\D\^\R\. This contradicts the fact that \C\ = \R\, and
therefore Z(C) = 0.

Let C be the faithful fc-critical of a nonsingularly fc-primitive ring
i?. Then P — ass C is a prime ideal. In the remainder of this paper C
and P will be used in this way.

LEMMA 2.2. If R is a nonsingularly k-primitive ring with faithful
critical C, then P = ass C is a nonessential minimal prime and \R\ =
\R/P\.

Proof. That P is a nonessential minimal prime is straightforward.
The module C contains a nonzero submodule C* where ann

C* = P. Since C* is a nonsingular, faithful i?/P-module, then by 2.1
\R\ = \C*\ = \R/P\.

PROPOSITION 2.3. Let R be a nonsingularly k-primitive ring with
faithful, critical C and let P = ass C. Then

(1) P contains all nonessential two sided ideals.
(2) R has exactly one nonessential prime ideal, namely P.
(3) If R is semiprime, then R is prime.
(4) Every uniform right ideal which misses P is compressible.
(5) Every uniform right ideal is critical and subisomorphic to C.

Proof (1) If H is not essential, there exists a right ideal / such that
I (Ί H = 0. Then IH = 0 which implies H C ass C = P by [2, Proposi-
tion 3.2].

(2) This follows from (1).
(3) If 0 = Pi Π ΓΊ Pn is an irredundant intersection of minimal

primes, then Pι is not large and hence F, = P by (2) for each i. Thus
P = 0.

(4) If U is uniform and U Π P = 0, then U=U + P/PC
RIP. Since uniform right ideals of a prime ring are compressible, the
result follows.
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(5) Let U be a uniform right ideal. Then CUV 0. Thus there
exists x EC such that xUέ 0. Since Z(C) = 0, U = xU C C and 17 is
critical.

A ring R with Krull dimension is called very smooth if every right
ideal of R has the same Krull dimension. In a prime ring any two
critical right ideals are subisomorphic and thus the ring is very smooth.

PROPOSITION 2.4. Let R be a nonsingularly k-primitive ring with
faithful critical C

(1) // D is a critical right ideal, then ass D = P.
(2) R is a very smooth ring.
(3) If D is a critical right ideal then D DP = 0 or D CP.
(4) // R is not prime and if C C JR, then CCP.

Proof. (1) Let P o = ass D. Then D has a submodule D * such that
ann D * = Po. Since Z ( D *) = 0, P o is not essential and hence by 2.3(2),
Po = P = ass C.

(2) It suffices to show that if D is critical, \D\ = \R\. By (1) D has
a submodule D * which is nonsingular and faithful as an jR/P-module and
hence | D | = | D * | = |JR/P| = |Λ | .

(3) If D Π Pέ 0 then D / D Π P = D + P/P CRIP. Since JR/P is
very smooth and \R/P\ = \D\ then \D/D ΠP\<\D\ implies D =
D Π P .

(4) If C C i? and C Π P = 0, then CP = 0 contradicting the faithful-
ness of C. Thus CDP^O. Therefore by (3) CCP.

PROPOSITION 2.5. Let R be a nonsingularly k-primitive ring. The
compressible right ideals of R are subisomorphic.

Proof. Since P = ass C is not large, there exists a critical right ideal
D / 0 such that D Π P = 0. By 2.3 (4) D is compressible. Let K / 0 be
any compressible right ideal. Then KD/0 since Df£ P = ass C. Thus
there exists a E K and a monomorphism D —> aD C X. Since K is
compressible, X is subisomorphic to aD and hence to D. Since being
subisomorphic is a transitive property, any two compressible right ideals
are subisomorphic.

COROLLARY 2.6. Let R be a nonsingularly k-primitive ring with the
nonessential prime P / 0 . Then P contains an isomorphic copy of all
uniform right ideals.

3. k -primitive piecewise domains. Let JR be a ring with
Krull dimension and suppose that R is a piecewise domain with a faithful
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critical right ideal. Then R is nonsingularly k -primitive and is, in
general, not prime. We assume these rings have a faithful critical right
ideal. In § 4 we provide an example to show that this need not always be
the case. From [7] we have

DEFINITION 3.1. A ring J? is a piecewise domain (PWD) with
respect to a complete set of orthogonal idempotents eu * ,en if x £
e,Re b y E ekKt} then xy — 0 implies x — 0 or y = 0.

In [7, p. 554] the following criterion is given for R to be a PWD. R
is a PWD with respect to the complete set of orthogonal idempotents {et}
if and only if every nonzero element of HomR(eιR,R) is a
monomorphism.

PROPOSITION 3.2. Let R be a ring with Krull dimension. Then R is
a PWD with faithful critical right ideal if and only if R - Σ 0 eJR where
etR is critical for every i and e,R is faithful and nonsingular for some
/. In this case R is nonsingularly k -primitive.

Proof. Suppose J? is a PWD with faithful critical right
ideal. Then i ? = X 0 ^ j R where eu •••,£„ is a complete set of or-
thogonal idempotents. Since C is faithful, CetR ^ 0 for all i. Hence for
any given i there exists c EC such that cetR^0. We can therefore
define a homomorphism θ of e,R into C using c and by [7, p. 554] the
mapping θ is a monomorphism. Thus etR is critical.

Now RCj^ 0 which implies e}RC/ 0 for some /. By [8, Lemma 1],
Z(R) = 0 and thus the mapping determined by the relation e/CV 0 is a
monomorphism. So C is subisomorphic to at least one e}R and
Z(ejR) = 0.

Conversely suppose R — S 0 e.i? where etR is critical. Since e}R is
faithful and nonsingular by 2.4 we know that R is very smooth. So
consider a mapping f:etR->R. If Ker / y 0 then |/(e,i?)| =
I ezi? /Ker /1 < I e,R \ = | JR |. Thus necessarily / = 0.

The same technique employed in the above proof shows that any
two faithful critical right ideals of a PWD are
subisomorphic. Furthermore the faithful critical right ideal contains an
isomorphic copy of every critical right ideal.

PROPOSITION 3.3. Let R be a ring with Krull dimension. If R is a
PWD with faithful critical right ideal, say R = Σ 0 etR where C = eλR is
faithful, then

(1) P = ass C = Σz e>R, where e,R is not compressible.
(2) If O is a prime ideal not equal to P then \R/Q\<\R\.
(3) // R is not a prime ring, then not all the e,i? are compressible.
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Proof. (1) and (3). If R is prime, then the etR are all compressible
and ass C = P = 0. If R is not prime, then C cannot be compressible
because it is faithful.

Now suppose etR are compressible for / = m + 1, , n and efR are
not compressible for / = 1, , m. Then

C

Conversely if D is critical either D Π P = 0 o r D C P b y 2.4(3).
Since e,R Π P = 0 implies by 2.3(4) that e,i? is compressible, necessarily
etR C P l^i^m and hence P = ΣΓ-i *,-!?.

(2) If Q is a prime ideal not equal to P, then Q is large. Suppose
IR/Q I = I JR |. As in the proof of 2.4(3) if D is critical DCQ. Thus Q
contains all critical right ideals and hence R C O which is impossible.

In [8, Theorem 2] Gordon obtains an internal characterization of
prime right Goldie rings which are PWD's. In the following theorem
we obtain an internal characterization for a nonsingularly k-primitive
ring with a faithful critical right ideal which is a PWD.

THEOREM 3.4. Let R be a PWD with Krull dimension, \R\ =
k. Then R is nonsingularly k-primitive with faithful critical right ideal if
and only if R = (Al})nXn where for some s, m where 1 ̂  s < m < n,

(1) Al} = 0 for i > s and j ^ s or i > m and j ^ m.
(2) A l } 7^0 for i^s or j > m.
(3) An is a domain for 1 ̂  ί' ^ n.
(4) Ifj^mthen |(A,)AJ<fc.
(5) A = {{a,j) G (Λiy)\ atl = 0 ί ^ i ^ m or 1 ̂  j ^ m} is a prime ring

of Krull dimension k and Dt = {(akl)\ αί; =0 1^ j ^
right A-module is k-critical for all i.

, akj = 0 k^ i} as a

An

Asl

Aln

1 A ί + u + i
I *

i A m,s + l

1

! / / / / / / / / / / / / / / / /

• •]_ Amn

l A m + 1 , m + 1

rows are
faithful criticals

rows are
compressible

Prime ring
A
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Proof. By 3.2 and 3.3 R = Σ? = 1 0 Q with Q critical for all i where
Q is faithful for 1 i i ^ 5 and Q is compressible for m + 1 g j ^
n. Then i? is isomorphic to the matrix ring with (i,/) entries in
Ai; = HomR(C;, C), which are monomorphisms or zero. Since Z(i?) =
0 by [7], then Z(C) = 0.

(1) If / > 5, and / ^ s, then Hom(C;, Q) = 0 since these Cf are not
faithful. Similarly, Hom(Q Q) = 0 ί > m, y ^ m, since these Q are not
compressible, and the Q are compressible (using the fact that sub-
modules of compressible modules are compressible). This proves (1).

(2) If Q is faithful, then QQφ 0 for all / and Hom(C7, Q)φO for
all /. If Q is compressible, then QQ φ 0 for any i. Hence
Hom(Q, Q) φ 0. This proves (2).

(3) An is a domain, since R is FWD ring.
(4) For y^ra, let Ki} be an A;7 submodule of AΨ Let K*7 =

{(αr,)| ai} E Xi;, and αrί = 0 otherwise}. Let D* be as in the theorem, then
Dxφ0 by (2) and A is a right ideal of R because of (1). Let Sx =
K*jR + DJA. Then 5, C C/A Then the mapping Ki} -> St is a lattice
isomorphism of the lattice of submodules of Ai} over An into the lattice of
submodules of CJDi over R. Since Cf is critical and since Ό^ 0, then
the Krull dimension of Λiy over A;> must be less than fc.

(5) The first part follows since ass C = P is equal to Cλ 4- + Cm

by 3.3 and A = JR/P. Now each D{ is a submodule of a critical module,
and hence is critical over R. But the lattice of modules of Dt over R is
the same as the lattice of D, over A, and Dt is critical over A, and since
the Krull dimension of Dέ over R is fc, then | D, | over A is also fc.

Conversely, let R be a PWD satisfying these conditions and let Q
denote the ith row of the matrix. We will show that Q is critical, and
that Ch i = 1,2, , s is faithful. Since R is a PWD, and using (2), we
have that C,, for / = 1,2, , 5 is faithful. We now show d is fc-
critical. Let M2 be a nonzero submodule of CΊ over R. Let M1; =
{α E Aiy I α is the (1,/) entry of some member of MJ. Then Miy ̂  0 for
/ > m. Now for / ^ m, M1; is an A/; module. Thus by (4), the Krull
dimension of A^/My over Ay7 is less than k. If N = Σ/

n

=m+1Mί, where
M*i = {{art)\ au E Mu and art = 0 otherwise}, then JV is not zero, and by
(4), the Krull dimension of DJN over A is less than k. Thus with each
submodule of CJMl9 we can associate an A7/ submodule of Ai;/Ml7, one
for each 7 ̂  m, and a factor module Di/N of D1 as an A-module. We
construct a lattice isomorphism from the submodules of CΊ/M1 into the
lattice of submodules of Γ = Λ 1 1/M 1 1φ φ Λ l B / M l M φ A / N over
S = A Π 0 0 A w m 0 A , where in Γs we have scalar multiplication
defined as coordinate multiplication by elements of the ring 5. Now the
Krull dimension of Au/Mu is less than k over A« for 1 g i S m, and
similarly for Di/JV over A. Hence the Krull dimension of T over 5 is
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less than k. Thus | CJMλ \ < k. Since Όx over A has Krull dimension fc,
one can show that Cx has Krull dimension k over R in a similar
fashion. Thus Cλ is k -critical. Since R = Cx φ φ Cn and Ci is
faithful, then each C, is i? isomorphic to a submodule of Cu and hence is
critical of Krull dimension k. Thus R\ = k.

4. Examples and questions. Using the results of §3, one
can easily construct nonsingularly k -primitive rings. Let / a right
Noetherian integral domain, where \I\ = K and I[x] be the polynomial
ring with commuting x. We construct three matrix rings of this type

R =

I I I[χ] I[x] I[χ][y] I[x][y]

0 0 I[χ] A I[x][y] I[x][y]

0 0 B I[χ] I[χ][y] I[x][y]

0 0 0 0 I[x][y] I[x][y]

0 0 0 0 I[x][y] I[x][y]

where (1) A = B = 0, (2) A = I[x], B = 0, (3) A =
J[x]. These are nonsingularly k -primitive rings of Krull dimension
fc+2.

In each of these three rings, with the notation of Theorem 3.4, CΊ is
the faithful critical right ideal and s = 2, m = 4. In the case where
A = B = /, the two nonfaithful, noncompressible modules C3 and C4 are
(sub)isomorphic. Clearly, in all cases, P = CΊ+ C 2 + C 3+ C4.

One can show, in general, that if i? is nonsingularly k-primitive,
then the complete ring of quotients Q is a simple Artinian ring. If JR is
PWD, then by [9], R has an Artinian Classical quotient ring
Qch However, Qcl is never k-primitive unless JR is prime. To illustrate

this consider for a field F the ring, R = \ζ fX* . Then Q(R) =

F(x)
F(x)lF

0 F(x)

Question 1. In general does R have a classical quotient ring Qd?
Does Qd contain a maximal k-primitive subiing which contains RΊ

Question 2. Does N(R) being prime imply R is prime? (True for
PWD's.)

Question 3. If JR has left Krull dimension, is R a prime ring?
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In regard to questions 1 and 2, if our ring R has the regularity
condition (See [6]), and if N is prime, then R is a prime ring.

To give an example of a nonsingularly k -primitive PWD where the
faithful cyclic is hot imbeddable in R consider a field F with a derivation
('). Let M = F[x]®F[x]. Then M is a right F[x] module under
(/> g)h = (fl1* gh), and M is a left F module under α(/, g) = (af + α'g, αg),
a E F. Thus M is a bimodule, and the matrices

„ p f , form a ring.

where N = {(0J(x)\f(x)E F[x]}. Then I is not

large, and contains no two-sided ideals. In addition C = R/I is
critical. In fact, if C 0 ^ 0 is a submodule of C, then C/Co is
Artinian. One can show that C cannot be embedded in JR, and
Z(C) = 0. One can also show that no right ideal of JR is faithful and
critical. Hence R is a nonsingularly 1-primitive ring without a faithful
critical right ideal.

In the case where R is k -primitive but the faithful critical is not
nonsingular, then R may not have the properties established in
§2. Consider the following example.

Let A = F[x, (')][*] where F is a field with derivative (') as in [3, p.
55], and z commutes with x. Let

Ώ_\F AlxAΛR ~ U A J

The first row of R is a faithful cyclic critical C which is not
nonsingular. Now | C | = 1 and \R\ = 2. Thus JR is not very
smooth. In addition, R does not satisfy the regularity
condition. Hence R does not have an Artinian classical right quotient
ring.
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MEASURES INVARIANT UNDER
A GROUP OF TRANSFORMATIONS

ROLANDO B. CHUAQUI

The purpose of this article is to present necessary and
sufficient conditions of an algebraic character for the existence of
a countably additive measure defined on a σ -field of sets
vanishing exactly on a given subset of the field, and invariant
under a group of transformations.

0. Introduction. Most measures of interest defined on fields
of sets are required to be invariant under certain groups of transforma-
tions. For any field F of subsets of a set X, a group of transformations G
of F is a set of one-one functions closed under composition and inverse,
that contains the identity function restricted to X, and such that any
function in G transforms elements of F into elements of F. A measure
on F is invariant under G if any two elements A,BGF, such that A is
the image of B under a function in G, have the same measure.

The problem of finding algebraic conditions for the existence of such
measures has been discussed in several places; in particular, in Tarski's
book [14], p. 231, where necessary and sufficient conditions are given for
the existence of a finitely additive measure invariant under a group of
transformations. To my knowledge, no general solution of this type has
been published, before this paper, for countably additive measures.

Partial solutions to this problem were obtained in [11, 2]. In this
second paper a conjecture was formulated which was proved false in [3].

The proof presented here uses extensively the theory of Cardinal
Algebras developed in [14]. I shall quote theorems and definitions from
this book by their number followed by a T. I also use a representation
theorem for certain types of Cardinal Algebras obtained in [6].

A related problem is the existence of a countably additive measure
on a Boolean σ-algebra when no group of transformations is involved
(for the theory of Boolean algebras see [13]). The interesting problem,
in this case, is to find a strictly positive measure (i.e. a measure that
vanishes only on the zero of the algebra). Necessary and sufficient
conditions were found in [11], and better conditions in [10]. I shall use
these latter requirements for the existence of invariant measures.

The conditions obtained for the existence of an invariant σ-measure
are a combination of Kelley's requirements and the countably additive
version of the main condition of Tarski for the existence of a finitely
additive invariant measure: the nonexistence of paradoxical decomposi-
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tions of the unit set. The main theorem proved (Theorem 5.1) includes
as particular cases results obtained by [7] for a group generated by one
transformation, and by [9] for a continuous group.

Given a σ-field $ of sets and a group of transformations of $, it can
be deduced from the main result in this paper mentioned above (5.1), that
an invariant cr-measure exists iff an ideal in $ of a certain type
exists. This falls short of determining algebraic necessary and sufficient
conditions for the existence of an invariant σ-measure (with no predeter-
mined ideal of null-sets). However, this shortcoming is shared by the
solutions available for the existence of a σ-measure on a σ-field of sets
when no group of transformations is involved: From Kelley's conditions
it can also be deduced that a cr-measure on $ exists iff an ideal in $ of a
certain type exists.

On the other hand, if we are given the ideal on which the measure
vanishes, both Kelley's theorem and mine give algebraic necessary and
sufficient conditions for its existence.

In the first section the general setting of fields of sets and groups of
transformations is discussed. The second section contains some lemmas
about ideals and congruence relations in Boolean Algebras and Cardinal
Algebras. Section three studies the countable chain condiction. The
next section gives the main theorems on invariant measures on Boolean
Algebras. Finally, the fifth section applies these theorems to fields of
sets.

The measure-theoretic results obtained in this paper were an-
nounced without proof in [4], where they were applied to obtain
probability measures.

1. Groups of transformations on fields of sets.
Throughout this paper we employ the usual set-theoretical
terminology. We identify an ordinal number with the set of preceding
ordinals, and a cardinal number with the corresponding initial
ordinal. In particular ω, the set of natural number is the first infinite
ordinal and cardinal; ωγ is the first uncountable ordinal and the next
cardinal after ω. For functions /, g, we use Do/, f~\ /°g, and f*A
respectively for the domain of f the inverse of f the composition of f and
g, and the image of A under f ΛB denotes the set of functions from A
into B. In particular, ωA is the set of all denumerably infinite sequences
with terms in A for n G ω, nA is the set of all n-termed sequences', "A
denotes the set of all finite sequences with terms in A. For arbitrary
relations R, we also use R * A for the image of A under R.

We shall also study measures on Boolean algebras. By a measure
on a Boolean σ-algebra (a σ-BA) 93 = (B, V,Λ, - ,0,1), we understand
a countably additive, nonnegative real function on B that assumes the
value one at the unit of the algebra.
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If x E ωJB, we write V{xt: / E ω) and Λ{JC, : i E ω) for the least upper
bound (l.u.b.) and greatest lower bound (g.l.b.) of the sequence JC. A
σ-field of subsets of a set X, % = (F, U , Π , - , 0 , X), is a particular kind
of σ-BA in which the universe F consists of subsets of X, and the
operations are set-theoretic union, intersection, and complement with
respect to X. L.u.b.'s and g.l.b.'s of denumerable sequences coincide
with countable unions and intersections. A group (or more properly, a
quasi-group) of transformations of the σ-field of sets F is a set G of
one-one functions such that:

(i) If A,BEF, f<ΞG, ACΌof BCΌof~\ then /*A,
f-^BEF.

(ii) The identity function restricted to X belongs to G.
(iii) If /, g E G, then f'1 and / ° g E G.
Notice that functions in G are not supposed to have a common

domain (see [14], p. 221).
A measure μ on $ is said to be invariant under G, or G~ invariant, if

for any A , J 3 E F such that there is an fEG with A C Do/ and
J3 = / * A, we have μ (A) = μ (B ). Our problem, then, is to find neces-
sary and sufficient conditions on $ and G for the existence of such
measures. It is more convenient to work with equivalence relations on
JBA'S thus, we define the equivalence relation ~ G on F:

A ~GB iff there is an / E G such that A C D o / a n d B = /*A. It
is clear that μ is G-invariant iff:

For any A,BEF,A~GB implies μ (A) = μ (B).
In general, for any equivalence relation R on a BA 93 and measure

μ on 93, we say that μ is R-invariant if for any a,bEB, we have

αi?6 implies μ(a) = μ(b).

If a measure μ on F is G-invariant, then it also has to be
—G -invariant for the equivalence relation on F, — G, defined by: A — GB
iff there are sequences of disjoint elements Y,ZEωF, such that A =
U{Yi: i E ω}, B = U{Z,: i E ω}, and Yj ~ G Z , for every i < ω.

It is easy to see, that if μ is G-invariant, then for any A, B E F we
have,

A — J3 implies μ(A) = μ(JB).
G

It is convenient to introduce the disjunctive BA SB associated with a
σ-BA 93. Disjunctive BA's were introduced in Def. 15.14T. For any
σ-BA 93, the disjunctive BA associated with 93 is the partial algebra
93 = (β, + , Σ) where 4- is a binary partial operation and Σ a countable
partial operation defined by:

(a) For any a,b,cEB, a + b = c iff α v i = c and a A b =0.
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(b) For any x E ωB and c E B, Σi<ωXi = c iff V{JC, : / G ω} = c and
Xi Λ xy = 0 for i < j < ω.

This disjunctive BA 58 is a generalized cardinal algebra (GCA) by
15.24T. We shall use GCA's and cardinal algebras (CA) throughout this
paper. The terminology will be taken from [14] with a few exceptions
that will be noted in the appropriate places.

A congruence relation R on a GCA 21 = (A, + , X) is an equivalence
relation that satisfies:

(i) if α, b, c, d, a + b, c + d E A aRc, and bRd, then a + bRc + d;
(ii) if x, y E ωA, Σί<ωjcι? Σ l<ωy/ E B, and X/ity for every i < ω then

Έi<ωXiR Σ ί < ωy, .
Congruence relations are called in [14], infinitely additive equiva-

lence relations (see 6.4T).
A refining relation J? on a GCA 91 is a relation on A such that:

if a, %o? Xu b E A, a = x0 + *i, and αl?ί>, then there
are y0? yi G A such that b = y0 + y1? xo^yo, and

Refining relations are called finitely refining in [14] (see 6.7T).
By 16.6T, — G is a refining congruence relation on the GCA

(disjunctive BA) §\
The main purpose of this paper is to give necessary and sufficient

conditions for the existence of G-invariant measures on $. However, it
is more convenient to work in a more general setting and find measures μ
on a σ-BA, 93 that are R -invariant for R a refining congruence relation
on 93. I shall deal with this problem in the following sections, returning
to % in the last section.

2. Ideals and congruence relations. In this section I shall
prove some lemmas, which will be needed later, about ideals and
congruence relations in σ-BA 's and GCA's. For any σ-BA 93 we have
the corresponding disjunctive BA 93, which is a GCA. The notion of an
ideal in a GCA is defined and discussed in ([14], Chapter 9). I shall call
ideals in a GCA cardinal ideals to distinguish them from ideals in a BA
(see [13] for ideals in BA's). There are, then, two notions of ideals in 93:
cr-ideals in 93 as a BA and cardinal ideals in 93 as a GCA. The first
lemma proves that they coincide.

LEMMA 2.1. Let 93 be a σ-BA, IQB. Then, I is a σ-ideal in 93 iff
I is a cardinal ideal in S3.

Proof. Suppose / is a cardinal ideal in 93. It is clear that the partial
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ordering in 93 coincides with that in 93. Thus, if a E I and b ^ a (in 93),
then b E I. Suppose, now that x E ωI. Define

It is clear that x' E ωI and x \ A X ) = 0 for ιV /. Then,

Thus, / is a σ-ideal in 93.
The converse implication is obvious.

The next lemma proves that the equivalence relation determined by
a σ-ideal / on a σ-BA 93 is the same as the relation determined by J as a
cardinal ideal in 93 (cf. 9.26T).

LEMMA 2.2. Let 93 be a σ-BA, I a σ-ideal in 93. Then:
(1) for any a,bEB, a-bvb-aEliff there are a\ bf E I and

c E B such that a = c + a' and b = c + b'\
(ii) 08/J) = S3/J, i.e. ifxEωB,cEB, then Σl<ω(xJI) = c/I iff there

is an x'EωB such that JC;ΛJC' = Π V / Γ = V ' / Γ ™ Λ y (v ι\) =
(Σι<ωx'i)/I,fori<j<ω.

Proof, (i) (1) Suppose a-b\ι b- a El. Take a' = a-b, b' =
b — a, c = a Λ b.

(2) Suppose a = a' + c, b = b' + c, and b',a'El. Then
a-bvb-a^a'v b'EL

(ii) Suppose Σ i < ω (xt/I) = c/I. Then xdl Λ jcy/ί = 0// and so,
JC, A Xj E I for i < j < ω. Let d = V {x, Λ X} : / < / < ω} and JC = x>, — d
for i < ω. Then d G J , x \ A X Jf = 0, x;// = JC, //, and Σ i < ω (JC ;//) =

for i<j<ω.

We are interested in refining congruence relations on disjunctive
's 93, and how they behave when we pass to 93// for an ideal /. This

is given in the following lemma:

LEMMA 2.3. Let 93 be a σ-BA, I a σ-ideal on 93, and R a refining
congruence relation on 93 such that R * I Ql (i.e. if a E I and aRb, then
b E I). Define R on «// by:

a/IRb/I iff there are a\b'EB such that all = a'II
=b'/I, anda'Rbf.
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Under these conditions, R is a refining congruence relation on SB//.

Proof. It is easy_to see that R is an equivalence relation on B. We
have to prove_that R is refining and preserves Σ. Let

(1) a/IRb/l
(2) a/I = xJI + x2/L

By (2) and 2.2(ii), there are disjoint x ί, x2 such that
(3) Xi/I = x[/I and x2/I = x'2/I.

Also, by (1), there are α', b' such that a/I = a'lh b/I = b'/I, and

a1 Rb'. By (3), a'/I = (x[ + X0//. τ h u s > t h e r e a r e *ΐ> *" suctf that,
(4) a' = x ΐ + x 5, JC,/J = * ?//, and x2// = x 2//.
Since i? is refining^and (4), V - yi_+ y2, x"Ryu and x"Ry2. Then,

b/I = yJI + yJI, yJIRxJI, and yJIRxJl Thus, £ is refining.
Suppose now that x, y E ωB with,
(5) Xi/IRyJI for all i < ω ;
(6) Σ ί < ω (x«//) and Σ ί < ω (y, //) exist in J5/I From (5) we obtain

x',y'eωB such that,
(7) x;// = xjl, y'JI = yJl and x\Ry'h for all / < ω.
From (6) we deduce that x,// Λ xy// = 0// = yjl A yjl for all i,y,

with i <j < ω. Then, the same is true for x', y'. Thus
(8) jc! Λ JC e I, for all i,/ < ω, iV /.
Take c = V {x; Λ x): i < / < ω}. Then cEL Define x'ί =

x - c. Then x ?// = x 'JI = JC, //. Also,
(9) xUxfi = 0 for i<j<ω.
We have, x; = x'ί+ z, where z, = c Λ JCI and z, E I. From (7) we

obtain y " , z ' G ω β such that,
(10) y ;=y ' ;+z; , y ^ x ' ί , and z'^z,.
Since R * I C I , z ! 6 ί and
(11) yVI = y'JI = yt/I.
Similarly as (7) we get,
(12) y' Λy' E l for i<j<ω.
Take d = V{y';Λy;;: / < / < ω } ( E J ) and y7 = yΊ-<i We have,
(13) y 7// = y T// = y, // and y 7 Λ y 7 = 0 for / < / < ω. Also, y',' =

y7+ w, where M, = rf Λ y"E. I. From (9) we obtain,
(14) x'/ = x 7 + M 5, x 7 i? y 7, and M 51? w, for all i < ω. Thus, since

R*ICI, u'iEl and,
(15) JC7// = x?// = xjl for all / < ω.
Since x7^X/, (9) implies:
(16) X 7 Λ X 7 = O for i<j<ω.
Since R is a congruence relation on S3, (13), (14), and (16) imply that

(Σ i < ωx7) R (Σ ι < ω y 7). But then from (15) and (13) we obtain the desired
conclusion; i.e.
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The following lemma relates cardinal ideals in the GCA's 31 and

LEMMA 2.4. Let 31 be a GCA, R a refining congruence relation on
31, ICA, and R*ICI. Then I is a cardinal ideal in 31 iff I/R is a
cardinal ideal in %/R.

Proof. (l)Suppose I is a cardinal ideal in 31. Let a/R E I/R,
a El, and b/R ̂ a/R. Then, there are a', b'E A with b'^a', aRa',
and bRb'. Thus, since R * / C / , we have that a',b'El But, then,

b'lR = b/R El/R.
Let, now, x E ωI and Σ ( < ω (xJR)EA/R, i.e. Σ ( < ω (Xi/R)= b/R for

some b E A. Then, there are x ' ε ωA, and b' E A such that Σ(<ωx = 6 ' ,
xti?x;, and bRb', for all i < ω. Since i? * / C /, * ;E / for / < ω. Then
Σι<ωx\El and, thus ft/i? = b'/R El/R.

(2) Suppose, now, that I/R is a cardinal ideal in %/R. Let α E J,
and b^a. Then α/i? E I/R, and 6/i? ̂  α//?. Thus, b/R E //i?, i.e.
there is a Z>Έ / such that b' R b. But, then from R * / C /, we get 6 E /.

Suppose x EωI with Σ/<ωx, E A. Then JC. /1? E J/Λ for all i < ω,
and Σi<ω(xi/R)<ΞI/R. Thus, Σ ί < ω (χ,/Λ) = (Σ,i<ωXi)/R E //i?. There-
fore, there is a ft E / such that Σi<ωxtRb. But then, from R * / C /, we
get that Σt<ωjc, E l

3. The countable chain condition. Let 31 be a
GCA. We say that a subset B C Λ is bounded if there is an a E A such
that fc ̂  α for every b E B. 91 satisfies the countable chain condition
(ccc) if every bounded subset B QA well ordered by the relation ^ is at
most countable. It is clear that if 33 is a σ-BA, then the GCA 93 satisfies
the ccc if and only if 93 satisfies the countable chain condition in the usual
Boolean sense. [5] calls a GCA that satisfies the ccc, separable. In this
section I shall prove that the ccc is transmitted through several construc-
tions of GCA's.

If a, b E A, we write a Λ b, a v b for the g.l.b. and l.u.b. of a, b; if
x E ωA, ΛieωjCi and VίGωXi stand for the g.l.b. and l.u.b. of the sequence x
(see Defs. 3.IT and 3.2T where slightly different symbols are employed).

THEOREM 3.1. Let 31 be a GCA satisfying the ccc, and R a refining,
congruence relation on 3ί. Then 3ί/i? also satisfies the ccc.

Proof. Suppose the sequence y E ωχ{A/R) is such that for β < a <
ωu we have yβ < ya ̂  a/R for some a E A. Choose a sequence x E
ωiA, such that ya = xa/R and xα ̂  α for every a E ωλ. It is possible to
obtain such an x because R is refining.

We shall first prove:
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(1) For any b,cEA with b,c^a, we have b/R <c/R iff there is a
d E A such that d ^ α , 6 < d, and di? c.

From b/R <c/R we get 6' with fe' < c and bR b'. Thus, we have,
b' < c ^ α, ί? g α, 6R 6', and αi? α. Using 7.13T (vi) we obtain a d with
b^d^a and dRe. Now, if fc = d, we would have c/R = d/i? = fc/i?
contradicting fc/i? < c/R. Thus 6 < d.

The converse implication is proved similarly, and, thus, (1) is
proved. We pass now, to the proof of the theorem:

Define by transfinite recursion the sequence z EωiA satisfying:
(2) yα = xJR = zJR, and if α < β < ω, then zα < zβ ^ α, as fol-

lows:
(a) z0 = x0.
(b) Suppose zα is defined. We have zα/R < xα+JR, and zα, xα+1 g

α. By (1) there is d E A such that zα < d S α, and di?jcα+1. Take
2α + i = d.

(c) Let α be a limit ordinal, α < ωu and zβ defined for all
β E α. Let / E ωα be a strictly increasing sequence of ordinals cofinal in
α. We shall prove that

(3) (Vieωz/(i))/Λ = Vβeβyβ.
It is enough to prove,

v zmuκ = v
/Eω / /Eω

Let zm + Ui = z/(l +i) for every i < ω. Then

z/(l )/l? + Ui/R = Zft+iJR for every i < ω.

Also, V ι<ω z/(I) = z/(o) + Σ,<ω M/. Thus,

( V Zf(i)j/R = Zfφ)/R *+• Σ / < ω (Ui/R)

= vJW«)
So (3) is proved.

Let now, 6 = Vi(Ξωz/(i). Then, since b/R = Vβ(Ξayβ ^ yα, and ί)gα,
by (1) there is a d E A with b ^ d ^ a and dRxa. Let, then, zα = d.

With this, we complete definition (2) and, thus, obtain a S -well-
ordered bounded subset of A of type ωu contradicting the ccc for 21.

We pass now, to show preservation of the ccc under another
important operation on GCA's: the cardinal product (see Def. 6.11T).

THEOREM 3.2. Let 21, be GCA's that satisfy the ccc for every
i E /. Then Π(G/ 2ί, also satisfies the ccc.
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Proof. Suppose y E.ωi(Ui&IAi) and α G Π i e /Ai be such that yβ ^
ya ^ a for β < a < ωx. We then have yβi ̂  yai ̂  at for every i G /.

The sets B, = {yαz: α E ω j C A, are bounded and ^ -well-ordered
for all i G /; then, c a r d ^ ) ^ ω for all i G /.

Since card (2?,)^ ω for every i G /, there is an α G α^ such that
ya, - Jβi for all β ^ a. Define γ( i) as the least such α, i.e.,

γ ( i ) = n { α : y α / = y / 3 ί f o r a l l j 3 ^ α } .

We have, γ(i)£= ω i
Let J = {i\ ai^

:Qι}. From the definition of cardinal product,
card(/) ̂  ω. Also, for every α G ω b yαί = 0t for all i G / - /. Let δ be
the least upper bound of γ(i) for / G / ; i.e.

8=

δ G ω1? and yα = yδ for all a ^ δ. Therefore, card{yα: α G ω j = ω.

COROLLARY 3.3. Let % be a GCA ί/iαί satisfies the ccc. Then ω2I
also satisfies the ccc.

Every GCA 2ί can be closed to obtain a CA Sϊ which preserves most
of the properties of SI. In [14, Ch. 7], these closures are studied. We
prove, now, that closures preserve the ccc.

THEOREM 3.4. Let 3ί be a GCA that satisfies the ccc. Then S, a
closure of ?ί, also satisfies the ccc.

Proof. By 7.7T, 3 is isomorphic to ω2l/jR where R is a refining
congruence relation in Sί. Thus, from 3.1 and 3.3 we obtain 3.4.

COROLLARY 3.4. Let SB be a σ-BΛ that satisfies the ccc, R a
refining congruence relation on 93, and 21 = 93/J? (a closure of
23AR). Then Si is a C A such that for any x EωA we have Λ/GωJt, EA.,

Proof 21 satisfies the ccc by 3.1 and 3.4. Hence applying 3.35T we
obtain the conclusion.

4. Invariant measures in Boolean algebras. In this
section we prove some theorems about the existence of R -invariant
measures on a σ-distributive σ-BA 93 where R is a refining congruence
relation on S. In the next section we apply the theorems to obtain
G-invariant measures on σ-fields of sets.

For some of the following definitions see [10, 13 p.p. 62, 2041.
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Let 33 be a σ-BA and x E nB for some n E ω. We define i(x) =
m/n where m is the largest integer k S n such that

JCJO Λ •• Λ xik_, 7^0 for 0 S io < ii < < 4-1 < n.

Then, if A C JB we define the intersection number of A:

i(A) = inf{/(jc): x EnA for some n E ω).

We say that 33 has the Kelley property if B - {0} is a countable union of
sets with positive intersection number. 33 is σ-distributive if for every
double sequence x E ωXωB we have,

(*) V{Λ{jti, :/ E ω): i E ω) = A { V { J C ^ ( 0 : i G ω } : ( ί ) E ω ω } .

We say that 93 is weakly σ-distributive if (*) is satisfied for every double
sequence JC E ωXωB such that Xi,/+i = JCiy for every /,/ E ω.

Let ί C B and /x a measure on 33. We say that μ is I-positive if we
have,

μ (α) = 0 iff a E /, for every a E B.

Let α E B we say that α is R-negligible if there is a sequence of
disjoint elements of JB, x EωB, such that xtRa for every i E ω. Let
NR={a:a is 1?-negligible}. It is clear that if the measure μ is
i?-invariant, then if a E NΛ, we must have μ(a) = 0.

We need the following lemma about NR:

LEMMA 4.1. Let 33 be a σ-BA, and R a refining congruence relation
on 93. Then NR is a σ-ideal in 33.

Proof. By 2.1 it is enough to prove that NR is a cardinal ideal in
33. Consider Si = $/i? Si is a GCA. Let h = 1/U and

A(/ι) = {cESl: c + h = h}.

Then, by 9.15T, A(h) is a cardinal ideal. It is easy to see that
R*(NR)C NR. Hence by 2.4 it is enough to prove that A (h) = ΛΓ*/JR.

Since c E A (ft) iff ooC g h (by 1.29T) the proof is reduced to:

aENR iff

Suppose, first, that a E NR. Let x E ωB be such that JC, Λ xf = 0 and
JC JR α for every i < j < ω.
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We have, a/R = Xi/R, for every i < ω. But Σi<ωXi^l. Thus,
oo(a/R) = Σi<ω (xJR)^UR = ft.

Suppose, now, that ™(a/R)^h. Since h E 21, oo(α/j?)e2l by
7.4T. Then, oo(α/jR) = b/R for some b G B. From the definition of the
coset algebra (Def. 6.3T), there is a sequence of disjoint elements x E ωB
and a c G B such that Σ ί < ω JC, = c and x,Ra for all i < ω. Thus, α E NR.

We formulate, now, the main theorem of this section:

THEOREM 4.2. Let 95 be a σ-distributive σ-BA, R a refining
congruence relation on 9β, and I a subset of B. The following conditions
are necessary and jointly sufficient for the existence of a countably additive,
I-positive, and R-invariant measure on 93:

(i) / is a proper σ-ideal;
(ϋ) NRCI;
(iii) J R * / C / ;

(iv) 93/1 has the Kelley property and is weakly σ-distributive.

For the proof we need a result of [6]. We have to introduce some
definitions. Let X be the Stone space of a σ-BA and R the nonnegative
real numbers with ». Then ^(X,R) denotes the_set of continuous
functions on X with compact support and values in R. (<ίί(X,R), + , Σ)
is a CA (cf [6], p. 31) where + is pointwise addition, and Σi<ωf is the
continuous limit of the partial sums Σi<nf. This limit differs from the
pointwise limit in a set of first category.

Proof of 4.2. The necessity of the conditions is easy to prove. We
must use Kelley's necessary and sufficient condition for the existence of a
strictly positive measure on a BA (see [10], Th. 9, and [8], Th. 3.7).

We proceed, now, to construct the desired measure. For the rest of
this section let 93, R, and / satisfy (i)-(iv). Define the relation R on 93//
by:

a/IRb/I iff these are a',b'EB such that a/I = a'/I,

b/I = b'/l and a'Rb'.

By 2.3, R is refining congruence relation on SB//. Let Si = (8
i.e. is a CA that is_a closure of the GCA φ/I)/R.

Let h = (1/I)/R. We shall prove that:

LEMMA 4.3. h is finite (Def. 4.10T: h + a = h implies that a = 0
for all a EL A). In fact, we have that h + a- h and a = c/I/R, implies
that c II = 0/1
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Proof. Suppose h + a = h. Then by 1.29T, ooα ^ h. Let a =
(c/I)/R with c E B. By the refining property of R and 2.2 we obtain a
sequence of disjoint elements x E ωB such that c/IRxJI for all i <
ω. From the definition of R we get x',zEωB such that c/I = zJI,
xjl = x \II, and z, 1? x! for every ι < ω. Thus c = w, + uw zf = w, + ί,,
x ^ y . + yί, and x'i=yι + y" with ^ ί j ί j ί G l Let d =
/\{ut: / E ω). Then as 93 is <r-distributive, c = d + e with e E 7. Now,
dR Si with $ ^ JC! for every i < ω. Thus, by 2.4T, $ = s + s" with s'.gyi
and s'ί ̂  y ". Then, s" E I for every i < ω. Therefore, d = r, + r'* with
Γi.Rs; and r;i?5';. Since i ? * / C J , r^GJ for every i < ω. Thus by
cr-distributivity, ίi = Λ {r,: i E ω} + / where / E 7. We have that s' is a
sequence of disjoint elements ofJB. Thus, Λ{r,: i E ω} Rpt ^ s] for
every i < ω; so, Λ {r,: i E ω} is R-negligible and, therefore it belongs to
/. Then d E I and c E I. Therefore, c/I = 0/7 and a = 0. Thus, we
have proved 4.3.

2ϊ, also, has the following two properties:
(1) a Λ b E Ay for every a,b E A.

This is obtained from 3.4, because 93/7 satisfies the ccc.
(2) For every a E Λ, α ̂  o°/ι.
(2) is obtained from 7.IT.
Let (£ be the σ-BA of idemmultiple elements of 21 (α is idemmulti-

ple if a = α + α see Def. 4.IT and 8.3T for this algebra). Let X be the
Stone space of @. 3.11 of Fillmore 1965 implies that Sί is isomorphic to a
subalgebra of (^(X, R), + ,Σ), say by a function F. For each element
a E Λ, F(α) has support E(a), the open-closed set corresponding to
oca. Also, F(h) is the characteristic function of E(h) = X.

There is a strictly positive measure μ on (£ with μ,(o°/ι)= 1. In
order to prove this, we need the following two lemmas:

LEMMA 4.4. If 93/7 /ιαs the Kelley property, then @ α/so /ιαs ί/ie
Kelley property.

Proof. Suppose B/I-{0/7} = U{Bn: nE ω) where each Bn has a
positive intersection number. Let,

En = {a : a E Eand there is a 6 E JBn such that b/R ̂  α}.

In this definition, ^ is the partial ordering of 21.
Let x E Έm and y E "£ m be such that yk/R ^ xk for all k < n. Let

i(x)= m^/n where mx is the largest k such that

xh Λ Λ Xfc.! 7̂  0 for I'O < < 4-i < n /(y) = my/n

where my is defined similarly. We shall prove that mx ̂  my.
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Suppose that k^my. Then, there are yh9 , yik_, such that
Λ Λ yik_;^ 0. Thus,

But

°°(yfe A Λ ylk_λ)IR ^ co(yjR) Λ Λ ™(yikJR)

SO, X t o Λ Λ JClk_, 7 ^ 0 .

Thus, we have proved that i(x) = ί(y). But

Therefore, the lemma is proved.

LEMMA 4.5. // 93// is weakly σ-distributive, then @ is also weakly
σ- distributive.

Proof. In ([13], Th. 30.1 (2)), it is proved that a σ-BA is weakly
σ-distributive iff for every x E ωXωE we have that:

Λ{V{JC,S :s Gω}: t G ω } / 0

implies that there is a function φ from ω into the finite subsets of ω such
that,

Suppose, then, that x E ωXωΈ and

Λ{v{xί5: s E ω}: ί G ω } ^ 0 .

So, there is a c E J B / / , C ^ O , such that,

c/R^ Λ{V{jtίs: s E ω } : t Gω}.

Since the elements xts of ^ are idemmultiple in 21, by 4.7T we get,

c/R S Σ 5 e ωxw, for every ί E ω.

From 2.2T we obtain,

c AR = Σ s G ω yίs, with yί5 ^ xts for every ί , s ^ ω .
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We define, by recursion, for each / E ω, a sequence ztE
ω(B/I) as

follows: We have,

c R Σ s G ω z ',s, with z fJR = yίs, for every ί, 5 E ω.

Then, as R is refining,

c = zt0+ ut0, zt0Rzto, and ut0R Σ s e ω z , j S + i ,

for every t E ω.

Repeat the same procedure to obtain zUs+λ given z,5. We have, since
R is a congruence relation,

(ΣsξΞωzts)R(Σseωz'ts)Rc.

Let d = c - ΣsEωzts. Then c/R + d/R = c/R. Thus, h + d/Λ = ft
by 1.30T. By 4.3 we get that d = 0//._

Therefore, c = Σ s e ω /, s and Zrs/^ = yts for all ί, 5 E ω. Now,
Λ{V{zts: s Eω}: ί E ω} = Λ{c : ί E ω} = c^O. Since 93//is weakly σ-
distributive, there is a function φ from ω into the finite subsets of ω such
that,

Λ{v{zts:sEφ(t)}: ίEω}^0.

So,

Λ{V{zί5: 5 E φ(t)}: t E ω}/Λ ̂  Λ{Σseφ(t)yts: t <Ξ ω}

^ A{ΣsBφiί)xίs: t E ω} = Λ{v{xίs: 5 E φ(ί)}: ί E ω}.

Therefore, the lemma is proved. We now continue with the proof of
4.2:

From (iv), 4.4 and 4.5 we obtain that (5 has the Kelley property and is
weakly σ-distributive. Then using (Th. 9 of [10],), we obtain a strictly
positive measure μ onK.

Let Co(X) be the family of open-closed sets of X. Define the
measure β on Co(X) by β(E(a))= μ(°°α). Since X is compact, β is
countably additive as a measure on the field of sets Co (X). Extend β to
the σ-field B(X) of subsets of X generated by Co(X) (B(X) are the
Borel sets in X). Using normal measure-theoretic procedures, define an
integral Π on all β -measurable bounded functions. All functions in
%(X, R) are bounded β -measurable.

Define A on 31 by, λ(α) = Π(F(α)). λ satisfies the following
properties:
(3) λ(Λ) = l.
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(3) is proved by,

(4) λ(α + 6 ) = λ ( α ) + λ(fc), for all a,b<ΞA.
(4) is proved by,

λ(a + b) = U(F(a) + F{b)) = U(F(a)) + Π(F(b)) = λ(a) + λ(b).

(5) If x E ωA is a nondecreasing sequence, and a = VιEωxh then
lim^oo λ (x,) = λ(α).

o/ (5). Let x E ωA, xι ^ jti+1 for all i < ω, and α =
VI<ωjc,. Then

lim Λ (JC, ) = lim Π (F(xt )) = Π (lim F(x,)), where lim F(x,) = /

is the pointwise limit of the functions F(x t)'s (this limit exists, because
F ( J C , ) ^ F ( J C I + I ) for all i<ω). We have that E(xι) is the support of
F(xt). Thus, if y£ U{E(JC,): i E ω}, then /(y) = 0.

We also have that V ieωF(jc,) = F(α), where the l.u.b. is taken in
(^(X,R), + , Σ ) . The support of F{a) is E(a). Now, μ(ooα) =
limbecμ(ooχ,), because o°α = VίGωoojc/ and oo^ ^ oojci+i for all
Ϊ E ω. Thus, /Z (!£ (α)) = lim^oo β (E (xt)). Also,

β(\J{E(xt)\ ieω}) = limμ(E(xι)). Then

β(E(a)~ U{E(xι):i<Ξω}) = 0, and, thus, λ(α) = Π(F(α)) = Π(/).
Therefore, lim,--** λ (jcf) = λ(α) and (5) is proved.

(6) If α^O. α 6 A , then λ(α)>0.

Proof of (6). λ(α) = Π(F(α)) and F(α) is a continuous nonnegative
function, which is positive somewhere. Then, there is an open-closed
set C such that F(a)^ e > 0 on C for some e > 0. But, as μ is strictly
positive, β(C)>0. Thus, λ(α) = Π(F(a))>0.

Since λ satisfies (3), (4), (5) and (6), we apply 16.1 IT and obtain a
strictly positive measure on 93//. Transfering the measure to 93 we
obtain the desired properties.

5. Invariant measures on fields of sets. In this section,
we apply Theorem 4.2 to measures on σ-fields of sets. Thus, let $ be a
σ-field of sets and G a group of transformations of $. If μ is a
G-invariant measure, μ has to vanish on all —G-negligible sets. We call
these sets G-negligible i.e. A E F is G-negligible if there is a sequence of
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disjoint elements Y E ωF, such that A—GYι for every i < ω. NG is the
set of all G-negligible sets. From 4.2 we obtain immediately:

THEOREM 5.1. Let $ be a σ-field of subsets of a set X, G a group
of transformations of $, and / a subset of F. The following conditions
are necessary and jointly sufficient for the existence of a countably
additive, G-invariant, and /-positive measure on $:

(i) I is a proper σ-ideal in $.
(ii) If A G / and B ~ σ A, then B G ί
(iii) N G C I .
(iv) $// has the Kelley property and is weakly σ-distributive.
It is easy to generalize 5.1 to the case when the measure μ is

required to be equal to one, not on X, but on another set C E
F. Instead of considering G-negligible sets, we have to consider G-
negligible sets relative to C (i.e. A E F is G-negligible relative to C if
there is a sequence of disjoint elements Y£ωF, such that YXQC and
B—GYι for every i < ω). Also, C should not belong to /. The
conjecture that the only necessary and sufficient condition for the
existence of a G-invariant measure is that X is not G-negligible, was
proposed in [2], at least for the case when F is the field of all subsets of
X. However in [3], the following counterexample was indicated:

Let X = ωx and G be the group of all permutations / of X, such that
f{x)?^ x for at most denumerable x in X It is easy to see that G is a
group of transformations on the field of all subsets of X. The ideal of
G-negligible sets contains all sets that are at most denumerable. Thus,
X is not G-negligible. However, the existence of a G-invariant meas-
ure on this field would imply that ωι is a measurable cardinal.

When we want measures on BA 's we are mainly interested in strictly
positive measures. For G-invariant measures jttona σ-field of sets, it is
hardly ever possible to obtain strictly positive measures, since μ must
vanish on the G-negligible sets and, by a result of ([1], p. 194), nonempty
G-negligible sets exist in most cases of interest. In particular, these sets
exist when for every n < q, there are disjoint Yo, , Yn-λ E F such that
X = Σ ί < n Yi and Yt —G Y} for every i, / < n. What we can get are meas-
ures that only vanish at G-negligible sets. We call these measures
G-strictly positive (i.e. μ is G-strictly positive iff μ is No-
positive). Using 4.1 we get as a particular case of 5.1:

THEOREM 5.2. Let $ be a σ-field of subsets of a set X and G a group
of transformations of g. The following conditions are necessary and
jointly sufficient for the existence of countably additive, G-strictly positive,
and G-invariant measure on 5 :

(i) X £ N G ;
(ii) B7NG has the Kelley property and is weakly σ-distributive.
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GAUGE GROUPS AND CLASSIFICATION OF
BUNDLES WITH SIMPLE STRUCTURAL GROUP

W. D. CURTIS AND F. R. MILLER

Suppose 7τ, ϊ = l,2 are principal K-bundles which are
Cr-isomorphic in the sense that there exists a K-equίvariant
Cr-diffeomorphism /:0\—•ί^ If h belongs to the gauge
group H2 of ^ 2 then h °f lies in Hi and we have a group
isomorphism H2-+ Hλ which is C°°. It is the purpose of this
paper to investigate the converse in the case where K is a simple
Lie group. (If K is abelian the gauge group of every K bundle
over X is Cr(X, K) so there is no hope of a converse. However
for simple groups the situation is much better).

0. Introduction. Let K be a compact connected Lie group
with Lie algebra JC. Let π : ^ - ^ X b e a principal IC-bundle of class C00

where X is a compact, connected C°°-manifold.
Throughout this paper r will be a positive integer which is chosen at

this time and remains unchanged from here on.
We denote by H the subgroup of C r (^, K) consisting of all those h

for which h(pk)= k~ιh(p)k for all p in $P and k E K. H is naturally
isomorphic to the group of all Cr-bundle automorphisms of 2P which
cover the identity on X [1, 2]. The group H will be called the gauge
group of π the terminology being motivated by current usage in
theoretical physics. Cr(3P,K) is a Banach Lie group and H is a
sub-manifold and so H is a Banach Lie group [2]. The Lie algebra of H
can be identified as % = {h: 9>-*%\h is Cr and h(pk) = Ad(kι)h(p)
for p E 0>, fee K}.

The bracket in 2£ and the exponential map exp: $f-*H are the
natural pointwise operations.

1. Ideals in S€. Suppose ^C$? is an ideal. For p E &
ep: %-*% is defined by ep(h)=h{p) for h E X. ep is a Lie algebra
epimorphism so ep(J>) is an ideal in JC.

LEMMA 1.1. / /p E <3> and k E K then ep($)= epk($).

Proof. epk(h)= h(pk)= Ad(kι)h(p)= Ad(kι)ep(h). Thus
= Ad(k'1)ep(J). But ep($) is an ideal in % so Ad(fc-

DEFINITION 1.2. If JC E X let 3ίΓx = ep{#) where p E T Γ ^

331
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DEFINITION 1.3. If ^ is an ideal in $f we say 3 has property s if
[f, X] = Λ

We recall that \$, X] is the Lie subalgebra of X generated by all
elements of the form [a, b] where a E 3, b E Sίf. [3, $?] consists exactly
of all finite sums Σ, [α,, bx\ α, £$, ke %.

We denote by ^(X) the algebra of C% real valued functions on
X. X is a module over ^(X) for if / E ^(X) and Λ e 3ff define
fh : 0> -> % by (/fe)(p) = f(π(p))h(p). One easily sees //ι lies in $? so
we have a module.

LEMMA 1.4. // the ideal 3 Cffl has property s then 3 is a 2F{X)-
submodule of dK.

Proof. Let h E J?, φ E ^(X). We show φh E J>. 3 has property
5 so we may write h = Σ, [/*„/] where Λ, E ^ and /t E X. Then <̂/ι =
Σjφf/ii, f] = Σ, [ft,, φ/J E i> where we used the pointwise nature of the
bracket to get the last equation.

LEMMA 1.5. // $?i and ffl2 correspond to bundles πx and π2 and
ψ: ffli —̂  ffl2 is a Lie algebra isomorphism then if $ has property s in %CX then

) has property s in $?2

Before proving the final lemma of this section we make a prelimi-
nary construction. Suppose U is open in X and ξ is a section of π over
U. Suppose h E ^ and h has support in π~\U). Define h: X-»3ίf

by,

r h(ξ(x)) xEC/
h(x) =

I 0 x £ U.

h E Cr(X, X) has support in U. Conversely if we start with h: X-» 9K"
having support in U we can define h E $f as follows. There is a unique
C°°-map 0: T Γ ^ I / ) - * X such that ξ(rr(p))θ(p) = p for p E π ^ t / ) . We
define

p e π

It is easily checked that
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If x0E. X we have:

HXC) = {fGH\f(p) = e for all peπ'^Xo)}.

%Ά) = {h(ΞW\h(p) = 0 for all p 6 ir" 1^)}.

LEMMA 1.6. Assume % is semisimple. Then fflm has property s.

Proof. Let (φ,-),- be a finite partition of unity on X subordinate to an
open cover (£7,),. such that π is trivial over each [/,. Then if h E Sifw we
have ft = Σ, φ,-Λ and each φfft E Sίf̂ . Therefore the problem is reduced
to proving the following: If U CX is open such that π has a local section
ξ defined on U and if h E $?*, has support in ir~\U) then h can be
written aŝ  h = Σ, [#„, </>„] where gv E #f%, <£„ E Sff.

Let ft: X->% correspond to h using the section ξ as above. Let
(£,), be a basis for X Write h = ΣιhΈι where ft' are real valued. Since
X is semisimple we may write E, =Σj[FφGij] where Fih Gί; are in
X. Therefore h =Σwjh

i[Fil9G^ = Σkί[hlFii9Gij] = Σv[gV9φv] where gv

and φj,: X-^3ί are Cr with gi,(x0) = 0. We can easily arrange that gv

and φv have support in U. Then let g^ φv be the corresponding
functions on 9. Then if p E έP with τr(p) = x we have,

= Σ [Ad(θ(pΓ)gv(x),Ad(θ(pΓ)φv(x)]

2. A classif ication t h e o r e m . In this section, in addition to
the assumptions made in the introduction, we assume K is a simple Lie
group with trivial center. We first make some observations.

Given a principal K-bundle π: 2P-* X we construct the associated
fiber bundle si—>X with fiber X where K acts on X via the adjoint
representation of K. Each p E. $P with π(p)=x gives a linear
isomorphism φp: 3Γ—> sέx. Since Ad: If —> Lis(3Γ) actually takes values
in A u t ( ^ ) we see si is a bundle of Lie algebras. Therefore Γ Γ (^), the
space of CΓ-sections of sέ, is a Lie algebra with pointwise
bracket. There is a natural isomorphism %->Γr(sί) given by ft—» ft
where h(x)= φp(h(p)) for each Λ: E AT where p E π " 1 ^ ) [3]. This
isomorphism is an isomorphism of ^(X)-modules and is a homeomor-
phism with respect to the Cr-topologies.

Now suppose πt: ί?,-—>X are principal K-bundles, / = 1,2, with
gauge groups Hi and ̂  the Lie algebra of H{. For x0 E X the ideal $flXo
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is closed. Let ψ: Hλ->H2 be a C^-group isomorphism. There is an
induced Lie algebra isomorphism φ*\ (XX-^<M2 given by

[ψ(cxp(th)))(p)

φ* is a topological isomorphism and so for each J C 0 E X ^*($fiχo) is a
closed ideal having property s in ffl2. If we write 3 = φ*(fflXxo) and refer
to the discussion of section 1 we have ideals 3fCxC3( for each xE
X. There are apparently two possible cases.

Case 1. Xx = % for all x E X.

We argue this cannot occur. Since 3 is an ideal with property s 3 is
an ^(X)-submodule. If 3ίfx = % for all x in X we shall show 3 = $?2

which is impossible since XXxoj^ Xx. To show 3 = #f2 we regard ^ as a
closed ^(X)-submodule of Γ r (^ 2 ) . Then for x E X, D £ ̂ 2 j t there is
Λ E ί for which h{x) = υ. One now uses the ̂ (X)-module structure to
show for any x E X and for any r-jet ξ E /χ^/2 there is an h E ^ for which
jr

xh = £ Since 3 is a closed submodule we conclude 3 =Yr{sd2) by
applying a "global" version of a well-known theorem of Whitney. We
refer to [5], Corollary 1.6, p. 25.

Case 2. Xx = % for some x.

In this case there is some xx for which Xxx = (0) since K is
simple. We claim there cannot be an x2 φ xu for which %X2 = 0. For if
there were then we would have 3 C 3€2x, ΓΊ $f2x2. But the codimension of
3 in 2C2 equals the codimension of ί%Xxo in %x which equals the
codimension of X2xx in %t2 so 3 C 3ίf2χ, Π ̂ f2X2 is not possible. Therefore
in the present case we see there is a unique xx E X for which i1 = ^ 2 x i .

Thus ^ve see that a C 1 isomorphism ψ: HX^H2 gives rise to a
bijection φ: X^>X defined by

\lf %\(/L \χ I — <7L 2ψ(x)

Now let he%uf(Ξ 9(X). We have φ: X -> X and we write ψ *(/) =

LEMMA 2.1. ^

Proof. Let p 2 E 0>2x let λ = ψ*(f)(x). Then

= ψ*(β -λh)(p2)+ψ*(λh)(p2)
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Let x' = φ-'(x) and let p, G 0>,,, Then (/- λ)/ι(p,) = (f(x')- λ)Λ(p,) =
0 by choice of λ. Thus (/- λ)h G #fu. and so ψ*((/- λ)Λ)ε $?2* so

= 0. Thus

as desired.

LEMMA 2.2. The map ψ: X-+X is a C-diffeomorphism.

Proof. We need only show φ~ι is C\ It is enough to show that if
/ E &(X) then /° ψ"1 is Cr. Choose x0 E X, [/a neighborhood of JC() 0>2

trivial over [/. Then let V be a neighborhood of x0 with V C U. Let k
be a section of J^2 over U which in the local trivialization has constant
principal part. We can then cut k down to get a new section, again
called /c, defined on all of X and agreeing with the original k on
V. Then choose h E P ( ^ i ) such that ψ*(h) - k. (We are identifying
^ and Γ(^)). Now by Lemma we have ψ*(flι) = (/°ψ~ι)ψ*(h) =
(f°ψ~ι)k. When we view the Cr-section (f°ψ~ι)k in our local trivializa-
tion we conclude f°ψ~ι is C r on V. So we conclude f°ψ~ι is C r and
hence ψ"1 is CΓ.

We now define a bundle isomorphism ψ such that the following
commutes:

Φ

X—+ X

Let ax E sέλx. Choose a section h E P(jrfi) such that h{x) = α*. Define
ψ(αx) by (/ί(αx)= ψ*(h)(ψ(x)). This is independent of the choice of /ι
for if /ii were another section with hι(x)=ax then h - hλ vanishes at
x. Hence ψ*(h-hλ) vanishes at ψ(x) so ψ*(h)(ψ(x)) =
Ψ*(hi)(ψ(x))- It is clear that the diagram commutes and that ψ map-
ping sΛXx to sέ2ψ(X) is a Lie algebra isomorphism.

LEMMA 2.3. ψ is Cr.

We work locally trivializing sέx. Let t/ be open in X,
VCί/ also open, γ: J 7 x J f ? m ^ ^ i | ί 7 be a trivialization of ^ over
U. Using this we see there are Cr-sections hu - - -,hm E r r ( ^ ) such that
for each x in the subset V, hλ(x), /ιm(x)give a basis for the fiber over x
which corresponds to the standard basis of Rm under γ. We claim
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ψoγ: Vx Rm ->s$2 is given by

If so then ψ is Cr. But given ξ\'-,ξm choose /' 6
f'(x)= ξι. Then by Lemma 2.1 we see

(
m

Σf%

Let p E 0\x. Then φ^: 3Γ—> sίlx is a Lie algebra isomorphism. If
q E ^2^(x) then we have a Lie algebra isomorphism
φ\\ 31 -» jtf2«Kx). (Note the superscripts tell which bundle is being used).

Now (φ2

q)
ι°φ o φl: %-+% lies in Aut(3ίΓ). Let % = {(p, <?)|p E ̂ l x

and q E ^ 2 ^ ) for some x E X}. & is the total space of the fiber product
of 9X and ψ*$P2. We have a map p : »-> Aut(3T), p(p,q) =
(φ2q)~ι°Ψ ° Φp P is continuous and <£ is connected so p takes values in
one of the connected components of Aut (3fC). Since K is a simple group
the identity component of Aut(3Γ) is Aut°(3ί) = Ad(JRΓ). Suppose
σ£Aut(3ίr) and that p(JB)CAut°(3SΓ)σ = Ad{K)σ. Let q E ̂ 2 ,
fcEK T h e n φ 2

q k = φ2

qoAd(k). So p(pyqk) = Ad ( k ι ) op (pyq). W e
conclude that for each p E $PU there is a unique μ(p) in ^2^)_for which
ρ(p, μ(p))= <r. We then have a map μ: <g>

ι-^><g>

2 covering φ. K acts
freely on the right of both &x and £P2- We now show there is an
automorphism σ of Ky induced by σ, such that if a new action of K on Ŝ 2

is defined by q * /c = qσ(k)y (the right side being the original action) then
μ becomes K-equivariant. We have σ 6 A u t ( f ) . τ->στσ~ι is an
automorphism of Aut(3£") and hence restricts to an automorphism of
Aut°(3Γ) = Ad (K). Using the isomorphism Ad: X -»Ad{K) we see a
unique automorphism σ is induced, cr satisfies the equation
Ad(σ(k))= σAd(k)σ~\ Now we show μ(pk)= μ(p)*k for p E 0\,
k E. K. We need only show p(pfe, μ ( p ) * fe) = σ. But

so we are done.
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DEFINITION 2.4. Let π : 3P-+X be a principal K-bundle, r an
automorphism of K. The principal If-bundle π τ : 0>τ —> X is defined by
introducing the new action ^ ^ x K ^ P , ^ ^ Pr(k)> We say τττ is
conjugate to π by r.

Considering the previous discussion we have now proved

THEOREM 2.5. Under the assumptions made above ifφ: Hi-» H2 is
a C1 isomorphism then there is a Cr 'diffeomorphism φ: X—»X and an
automorphism σ of K such that ττx = ψ*(πt).

REMARK. Of course if σ is an inner automorphism we get πf = π2

and σ can be dropped.

3. Classical groups. We apply the results of §2 to the groups
SO(2rc + 1) n ^ 1, U(n) n ^ 2, and SO(2π) n ^ 3. Since the center of
SO(2n 4-1) is trivial and the automorphism group of its Lie algebra is
connected [6, pages 285-6] we get

THEOREM 3.1. Let TΓ,: 0>

I --»X be principal SO(2n + l) bundles
with gauge groups Hh i = 1,2. Suppose φ: Hι-^H2 is a C1 (local)
isomorphism. Then there is a Cr-diffeomorphism ψ:X->X so that

Now let K be SO (2n) n ^ 3 or U(n) n^2, ΊT, : 0> -» X be principal
K bundles with gauge groups Ht and ψ: Hx-^H2 a Cr local
isomorphism. Let Z denote the center of K. Now Φι = ΦX\Z is a
principal K/Z bundle over X. Let H, be the gauge group of Φt. In
both cases (SO(2/t) and U{n)) one can show that the Lie algebra
isomorphism ψ*: $Ί—> ffl2 gives Lie algebra isomorphism ψ*: $Cx-> $2

and also that the center of K/Z is trivial. Thus the results of §2 give a
Cr diffeomorphism φ: X-^X and an automorphism σ of K/Z so that
TΓI = φ*(τ7^). Note that if σ is an inner automorphism π ^ = π2 so that σ
can be dropped. The form of σ not inner is given in [6, page 287]. It
can be seen that σ lifts to σ: K -» K and that (&JZ)σ = ^σ

x/Z. We thus
get

THEOREM 3.2. Let K be SO(2n) n^3 or U(n) n ^ 2, TΓ,: 0>, -»X
fee principal K bundles with gauge groups Hn / = 1,2. Suppose
φ: HX^>H2 is a (local) C r isomorphism. Then there is a Cr diffeomor-
phism φ:X^X and automorphism σ:K^K, so that SPJZ =
φ*($P2\Z)σ = ψ*(&ϊ)/Z where Z is the center of K.

One can show that 0\ is a "tensor product" of $*(&%) with a
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principal Z-bundle over X. One way to see this is to use the classifica-
tion for bundles as given in [4]. We state the result in terms of
associated vector bundles.

THEOREM 3.3. Let TT : ^ - > X be principal SO(2n) n ^ 3 (U(n)
n ^ 2) bundles with gauge groups Hh i = 1,2. Let £ be the real (complex)
vector bundle associated with SPi using the usual representation of
SO(2n)(ί7(n)). Suppose ψ: Hλ-^_H2 is a (local) Cι-isomorphism then
there is a Cr diffeomorphism ψ:X->X, σ an automorphism of
SO(2n)([/(rc)), and η a real (complex) line bundle so that ξ1 is
SO(2n)(U(n)) isomorphic to ψ*(ξϊ)<S>V'

Final remark. We need not have assumed that 0\ and *3>2 were
bundles over the same manifold X. We could have considered
77!: SPί —»X and ττ2: &2-+ Y. If the gauge groups Hj and H2 are (locally)
C 1 isomorphic we get a Cr-diffeomorphism φ\ X—> Y.
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THE ESSENTIAL UNIQUENESS OF
BOUNDED NONOSCILLATORY SOLUTIONS OF

CERTAIN EVEN ORDER DIFFERENTIAL EQUATIONS

G. J. ETGEN AND W. E. TAYLOR, JR.

Let n be a positive integer, let p be a positive continuous
function on [0, <»), and consider the 2nth order linear differential
equation

(1) u(2n)-p(x)u = 0.

It is well known that this equation has a solution w = vv(jc)
satisfying

(2) ( - l )kw ( k ) ( j t )>0, k = 0 , l , , 2 n - l ,

on [0, oo), and it is clear that w is positive and bounded. The
purpose of this paper is to investigate the essential uniqueness of
the solution w, where the statement "w is essentially unique"
means that if y is any other solution of (1) which satisfies (2),
then y = kw for some nonzero constant k.

In addition to having solutions which satisfy (2), it is easy to show
that equation (1) has solutions z — z{x) satisfying

(3) z(k\x)>0, k = 0 , l , , 2 n - l ,

on [a, °°) for some a ^ 0. For some recent results concerning the
behavior of solutions of (1) satisfying either (2) or (3), the reader is
referred to the work of D. L. Lovelady [6], and T. T. Read [7].

A solution of (1) which satisfies (2) is said to be strongly decreasing,
and a solution satisfying (3) is said to be strongly increasing. If y is a
nontrivial solution of (1), then y is oscillatory if it has infinitely many
zeros on [0, oo). Equivalently, y is oscillatory if the set of zeros of y is
not bounded above. The differential equation (1) is oscillatory if it has
at least one nontrivial oscillatory solution. Hereafter, the term "solu-
tion of (1)" shall be interpreted to mean "nontrivial solution." A
solution of (1) which is not oscillatory is called nonoscillatory. Clearly,
any solution satisfying either (2) or (3) is nonoscillatory. We shall say
that equation (1) has property (H) if every nonoscillatory, eventually
positive solution satisfies either (2) or (3).

S. Ahmad [1] has studied (1) in the case n = 2, and he has shown that
(1) is oscillatory if and only if it has property (H). While this result is

339
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not known in general, Lovelady [6, Theorem 2] has shown that property
(H) implies the oscillation of (1). Read [7] and G. W. Johnson [4] have
obtained some results on the asymptotic properties of solutions of
(1). In particular, they have obtained criteria which imply that any
solution w satisfying (2) has the property \imx^xw(x) = 0. Finally, we
refer to the work of G. D. Jones and S. M. Rankin [5] where the problem
of the essential uniqueness of a solution w satisfying (2) was considered
for the case n = 2.

2. Preliminary results. Let if denote the 2M-dimensional
vector space of solutions of equation (1). Our first result is essential in
the work which follows. Since the proof is straightforward, using well
known techniques, it will be omitted.

LEMMA 2.1. If y G ifand y(fc)(α) = 0, k = 0,1, ,2ri - 1, for some
a ^ 0, with at least one inequality being strict, then yik)(x)>0, k =
0,1, , 2n - 1, on (a, °o) and

lim y(k\x) = ™, fc = 0,1, , 2 n - 2 .

Ifz G if and ( - \)kz{k\b) ^ 0, k = 0,1, , In - 1, for some b > 0, with at
least one inequality being strict, then ( - l)kz{k\x)>0 on [0,6).

Let / be the function defined on if x ίf by

(4) J(u,v)(x) = 2Σ (~ l)kv(k)(x)u(2n~k~l)(x)
kQ
k=Q

For any pair of functions w, υ G ίf, it is easy to verify by differentiating
jΓ(w, ι;)that J'{u, v)(x) = Ofor all x G [0,o°). Thus J(u, v) = c, a constant
on [0,oo). The case where /(w, v) = 0 shall be denoted by u JL u. Fix
y G Sf. Following the ideas introduced by J. M. Dolan in [2], we define
the subset $f{y) of if by

Let «i, M2, , M2Λ-I be 2n - 1 solutions of equation (1), and let
W(uχ, u2, - -, u2n-\) denote their Wronskian. It is well known that W is
a solution of (1), and that W is nontrivial if and only if the solutions are
linearly independent. Let y G ίf and let T[y, uu u2, , u2n ι] denote
the Wronskian of the 2/t solutions. Then, by expanding T along its first
column, we get the following relationship between Γ, W and the
function J

(5) T[y, Wi, M2, , uln-λ} = J[y, W(uu u2,' , u2n-ι)]
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THEOREM 2.2. Let y G ^ . Then the following hold.
(i) &{y) is a (2n - 1)-dimensional subspace of ίf and y E 5^(y).
(ii) If z E 5^(y), and y and z are linearly independent, then there

exists a solution u E 5^(y) such that J(u, z)^ 0.
(iii) // {uu w2, , u2n-ι\ is a basis for 5^(y), then

W(uu u2, , uln-\) = fcy /or some nonzero constant k.
(iv) IfvESf, then ^(y)n 9>{υ) has dimension In - 1 if and only if

y and v are linearly dependent; otherwise 5^(y)ΓΊ5^(υ) has dimension
In-2.

Proof. Part (i) is easy to verify using (4) and the definition of S^(y).
(ii) Let z E Sf(y) be independent of y. Suppose z has a zero of

multiplicity k, l ^ f e ^ 2 n - l , at some point c ^ 0. Since S^(y) has
dimension 2n — 1 we can construct a solution w E 5^(y) such that

II (c) = u\c) = = w(2"-fc-2)(c) = 0 = w(2"-k+1)(c) = = M ( 2 n l )(c) = 0,

where γ is some constant. Then, from (4), J(u,z)=z(k)(c)^0. If
z ^ O on [0,o°), then choose a point c such that y ( c ) ^ 0 , and choose
m ^ 0 such that y ( c ) - mz(c) = 0. Let ϋ = y - mz. Then υ E ίf(y)
and uf^O since y and z are independent. Now, we can repeat the
argument above to determine a solution M G % ) such that
J{u,υ)j£ 0. Since/(w,ι;) = /(w,y - mz) = - mJ(w,z),we conclude that

(iii) Let {ui, M2, -, M2n-i} be a basis for 5^(y). Since
y = Σ2"!1 CjMi and thus

0 = Γ[y, Mi, W2, , M2n-l] = /[y, W(Wl, W2, , M2n-l)]

Hence the solution W(uu w2, , W2n-i) is an element of 5^(y). The same
reasoning shows that

J[z, W(uu u2,' , u2n-i)] = 0

for all z £ % ) , and we can conclude, from (ii), that
W(uuu2, , u2n-\)= ky.

Part (iv) is an immediate consequence of either (ii) or (iii). This
completes the proof of the theorem.

We now consider the properties of the subspace Sf{w) in the case
where w satisfies (2).

THEOREM 2.3. Assume that equation (1) has property (//), and
suppose w E if satisfies (2). Then:
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(i) If y E if(w), then either y satisfies (2), or y is oscillatory
(ii) IfyE if{w) andy(k)(a) = 0 for some a^O and some nonnega-

tive integer fc, 0 ^ f c ^ 2 n - l , then y is oscillatory
(iii) If z E if and z £ S^(w), then z is unbounded.

Proof, (i) Let y E if(w) and assume that y is nonoscillatory with
y > 0 on [α, °°), a ^ 0. Suppose y does not satisfy (2). Then y satisfies
(3) and there is a number ft ^ a such that y(k)(x) > 0, fc = 0,1, , 2n - 1,
on [ft,oo). By evaluating /(w, y) at any JC ^ ft, we have that /(w, y)/^ 0,
contradicting the fact that y E 5^(w).

Part (ii) follows immediately from (i).
(iii) Let z E if and suppose z g: if(w). Fix any point α ^

0. Since 5^(w) has dimension In - 1 we can construct a basis for if(w)
consisting of w and 2n - 2 solutions uu u2, , w2π_2 such that uk has a
zero of multiplicity fc at x = α, fc = 1,2, , In - 2. By (ii) every linear
combination of the solutions uu w2, , w2n_2 is oscillatory. Let y be the
solution of (1) determined by the initial conditions y(a) = y'(α) = =
y ( 2 n 2 ) (α) = 0, y ( 2 n " 1 ) ( α ) = l . Then y satisfies (3) on [ft,oo) for every
ft ^ α. Thus y g: 5^(w) and the set {y, w, wl5 w2, , w2n_2} is a basis for
if. Now

2n-2

z = cy + dw + ^ CfMi,

where c ^ 0 . Since w is bounded, and Σ^CjM, is oscillatory, we can
conclude that z is unbounded.

Our next result has appeared in [5, Lemma 4] for the case n -
2. The proof is straightforward and, consequently, it will be omitted.

LEMMA 2.4. Let {uu u2, - , u2n} be a basis for if. Then there exists
a basis {zu z2, , z2n} for if and In nonzero constants ku fc2, , fc2n, such
that

Ui =kiW(zuz2y- ,Zi-uzι+u ,z 2 n ) , i = 1,2, ,2n.

3 . M a i n results . It is easy to see that equation (1) has no
oscillatory solutions when n — 1. Also, it is easy to show that the
nonoscillatory solution w satisfying (2) is essentially unique in this
case. Our first result shows that this situation holds in general.

THEOREM 3.1. If equation (1) has no oscillatory solutions, then the
nonoscillatory solution w satisfying (2) is essentially unique.

Proof Suppose that (1) has two linearly independent solutions w
and v satisfying (2). Fix any a ^ 0 and choose fc such that
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w(a)- kυ(a) = 0. Let y be the solution given by y(x) =
vv(jc)- kv(x). Since y is nonoscillatory, we shall assume that y > 0 , and
that Πfj,1 y(fc) ^ 0 on [6, oo)5 6 > a. Then y(2n) = py > 0. Since each of w
and v is bounded on [0, °°), y is bounded and we can conclude that no two
consecutive derivatives y (k\ y(k+1\ 1 ̂  k ^ 2n — 2, can have the same sign
on [/>, °°). But this implies

sgny = sgny" = = sgny(2n) ^ sgny' = sgny'" = = sgny{2n'ι)

on [b,00) and, with Lemma 2.1, contradicts the fact that y(a) = 0.
We now consider the case where equation (1) is oscillatory. The

next result gives a connection between the essential uniqueness of the
solution w satisfying (2) and the maximum number of linearly indepen-
dent oscillatory solutions in Sf.

THEOREM 3.2. Assume that equation (1) has property (H). The
following two statements are equivalent:

(a) The soiution w of (1) satisfying (2) is essentially unique.
(b) Equation (1) has at most In - 1 linearly independent oscillatory

solutions.

Proof. To show that (a) implies (b) we use a simple extension of the
proof of the corresponding result for the case n = 2 in [5, Theorem
4]. In particular, assume that w is essentially unique, and suppose if
has a basis consisiting of In oscillatory solutions uuu2,- -,u2n. Using
Lemma 2.4, let {zuz2, — -,z2n] be a basis for if such that for each ί,
l ^ i ^ 2 t t ,

W(zu , z(_b zI+1, , z2 n) = kM.

Consider the solution ux — k]W(z2, z3, , z2n). Since uλ is oscillatory,
there is an increasing sequence {x, }Γ=i such that l i m ^ x , = °° and ux{xx) =
0 for all /. Therefore, for each positive integer / there are In - 1
constants c2nc3ι, ,c2w>1 such that Σfl2cl= 1 and the solution ι;1(,

ϋi, = Σ c / ^
/ = 2

has a zero of order 2M — 1 at JC = JC,. Because the sequences {cyί},
/ = 2,3, ,2n, are bounded, we can assume, without loss of generality,
that l i m ^ cμ = cp j = 2,3, , 2n, and Σy% c2 = 1. By using an argument
similar to the one used in [1, Theorem 1],

lim υu = vλ = c2z2 + c 3 z 3 + * + c2nz2n
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is a bounded nonoscillatory solution of (1) satisfying (2). Repeating this
process In - 1 more times with the solutions u2, w3, , w2n, we obtain the
bounded nonoscillatory solutions

v2 = d2λzλ + d23z3 + + d2,2nz2n, X d2

2j = 1,
In

X 2 =
In

v3 = d31zλ + d 3 2 z 2 + ^4^4 + + dX2nz2n, Σ d 3 ; = 1,

2 π - l

7 = 1

The solution t^ must be independent of at least one of the other ty's,
because, if not, then it is easy to show that c2 = c3 = = c2n = 0 which
contradicts Σ;

2=2c^ = 1. Thus 5̂  cannot have more than 2rc - 1 linearly
independent oscillatory solutions.

Now assume that if contains at most 2n - 1 linearly independent
oscillatory solutions. Let w E if satisfy (2). As seen in the proof of
Theorem 2.3 (iii), we can construct a solution basis for ίf{w) consisting of
w and 2n — 2 oscillatory solutions uu u2, - , w2n-2 such that uk has a zero
of multiplicity k at x = α, k = 1,2, , 2n - 2, α ^ 0 fixed. Choose a
point Z) > α such that w^ft^O and let m be chosen such that ux(b)-
mw(b) - 0. Then y = uί- mw E 5^(w), y is oscillatory, and
y, uu w2, , w2n_2 are linearly independent. Suppose there exists a solu-
tion υ satisfying (2) such that w and v are linearly independent. Then,
from Theorem 2.2 (iv) 5^(w) ^ 5^(^) and there exists a solution z E 5^(ϋ)
such that z g: 5^(w). Since z E 5^(f) and u satisfies (2), z cannot satisfy
(3). Since z^5^(w), z must be unbounded. Therefore z is an un-
bounded oscillatory solution and it, together with the 2n - 1 independent
oscillatory solutions in 5^(w) found above, constitute a solution basis for
if. This contradicts the hypothesis that &ί has at most 2n - 1 linearly
independent oscillatory solutions, and completes the proof of the
theorem.

COROLLARY 3.3. Assume that equation (1) has property (H). If all
the oscillatory solutions of (1) are bounded, then the solution w of (1)
satisfying (2) is essentially unique.

Proof As seen in the proof of the theorem, if w is not essentially
unique, then there exists an unbounded oscillatory solution z£if(w).

Our final result requires the concept introduced by Dolan and
Klaasen in [3]. In particular, if $t and <S are subsets of if, then 01 is said
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to dominate S, denoted 01 > Ά, if for each y E 01 and z EQ,y + λz E01
for all real numbers λ.

Let °U denote the unbounded nonoscillatory solutions of equation
(1), 0} the set of bounded nonoscillatory solutions, and 0 the set of
oscillatory solutions. When equation (1) has property (Jf), the sets °U
and 0i are easy to describe since z E°U implies either z or - z is
strongly increasing and w E 55 implies either w or - w is strongly
decreasing.

THEOREM 3.4. Assume that equation (1) has property (H). The
following statements are equivalent

(a) °U > 0
(b) ϋ>»
(c) The solution w of (1) satisfying (2) is essentially unique.

Proof. Suppose (a) holds and suppose there is a number k / 0 such
that y 4- kw is nonoscillatory where y Eΰ and w E S3, i.e., w satisfies
(2). It is clear that the solution v = y + kw does not satisfy (3), and so,
by property (//), v satisfies (2). Obviously w and v are linearly
independent. Fix any a ^ 0. Let uu w2, , u2n_2 be the 2n - 2 linearly
independent oscillatory solutions in ίf{w) such that ufc has a zero of
multiplicity fc, fc = 1,2, ,2n - 2, at * = <2. Let z E 5^(υ) such that
z £ y(w). We may assume that z(α) = 0 (which implies z oscillates),
for if z{a)j£ 0, then choose ra ^ 0 such that zx- z - mw has a zero at
a. Clearly zxEif{v) and zλ£if{w). Let y be the solution of (1)
determined by the initial conditions y(α) = y \a) = = y(2n~2)(a) = 0,
y{2n~λ\a) = 1. From Lemma 2.1, y E f The set {M1? M2, , w2n_2, y}
forms a basis for the set of solutions of (1) having a zero at a. Therefore

2n-2

z = Σ c u, 4- cy = M 4- cy.

Since «(α) = 0 and u E Sf(w\ u is oscillatory. Also, since z g- 5^(w),
c^O. Thus z = (l/c)z = y +( l/c)u is oscillatory and contradicts the
fact that °U>0.

Suppose (b) holds and w is not essentially unique. Then there
exists a solution v of (1) satisfying (2) which is independent of w. Let
Mi, w2, , M2n_2 be the In - 2 linearly independent oscillatory solutions in
y(w) such that uk has a zero of multiplicity fc, fc = 1,2, ,2n - 2 , at
x = α, α ^ 0 fixed. Then {w, Mi, w2, , w2n_2} is a basis for 5^(w), and
every linear combination of uu M2, , w2n_2 is oscillatory. Since v is
bounded, we must have v E S (̂vv) by Theorem 2.3 (iii). Thus
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where not all the c, 's are zero, that is, v = u + cw is nonoscillatory where
u E ϋ and w E 39. This contradicts (b).

Finally, assume that (c) holds and suppose that °\l does not dominate
€. Then there exists z E % y E (P and a nonzero number fc such that
z + ky is oscillatory. It follows from Theorem 3.2 that Sf contains at
most In - 1 linearly independent oscillatory solutions. Since 5^(w) has
a basis consisting of In - 1 oscillatory solutions (see the proof of
Theorem 3.2), we can conclude that both y and z + ky are in
5̂ (n>). But this implies z E ίf(w) which is impossible since either z or
- z is strongly increasing. This completes the proof of the theorem.
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ON A REPRESENTATION THEORY
FOR IDEAL SYSTEMS

PAUL EZUST

In widely divergent branches of mathematics, objects
emerge which bear sufficient formal resemblance to the ideals of
rings for them to be called "ideals". In a series of papers, Karl
E. Aubert developed an axiomatic theory of ideal systems which
subsumes most of the existing "ideal" theories. The goal of this
paper is a representation theory for ideal systems in com-
mutative monoids which will allow the formation of a cohomol-
ogy theory for these systems. One of the results is a theorem
which gives at once a monadic (co)homology for each ideal
system. The base category in the monad includes PTOP, the
category of pointed topological spaces and basepoint-preserving
continuous maps, as a full subcategory and, for each ideal
system, the category of algebras associated with the monad
consists of the module systems over the ideal system. It is the
module systems which are the principal objects of this study.

Described below are some of the basic notions of Aubert's theory of
ideal systems. For simplicity in connection with our own work we
assume that 5 is a commutative monoid (written multiplicatively) with an
annihilating zero element (denoted 0).

DEFINITION. A closure operation x on a set W is a function which
assigns to each subset A C W a unique subset Ax C W subject to the
following conditions:

(i) A C Ax for all A C W
(ii) A C Bx φ Ax C Bx for all A, B C W

NOTE. We do not assume that a closure operation x satisfies the
(topological) condition: (A U B)x = Ax U Bx. In general this condition
will not be satisfied.

DEFINITION. A pair (5, x) is an ideal system if S is a commutative
monoid with zero and x is a closure operation on S which satisfies the
following axioms.

x.l {0}x={0}
x.2 ABX C Bx for all A,B CS ["multiplicative ideal property"]
x.3 ABX C (AB)X for all Λ,B C S ["continuity axiom"].

347
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TERMINOLOGY. The sets Ax C S are called the x-ideals of S.
NOTATION. A + B = (A U B)X

A: B ={s<ES I sb<ΞA VfcEB}
a ^b(Ax) iff At + {α} = A, + {/>}.

Several examples of particular ideal systems are discussed in Aubert's
extensive survey paper [2] and the reader is referred to that paper for
definitions, etc.

In a brief note [8], Aubert and Hansen introduced the notion of
"module system" over an ideal system as an ancillary device to the theory
of ideal systems. Despite the pessimism expressed in that paper, it is
our purpose to show that the theory of module systems over ideal systems
yields a representation theory analogous to the theory of modules over
rings.

Throughout this paper the terminology and notations of category
theory have been used as are found in such standard texts as Herrlich and
Strecker [14] and Mitchell [22]. The author originally became in-
terested in the problems discussed herein during a course given by
Professor Karl E. Aubert at Tufts University during the academic year,
1969-70.

2. Axioms for module-systems.

DEFINITION. Let (5, x) be a fixed ideal system. A left S-set is a set
M together with a map S x M -> M, denoted by (s, m) -> sm, satisfying

(i) s{tm) = (st)m Vs, t£S,Vm(ΞM
(ii) Ira = ra Vra E M (where 1 denotes the identity element of the

monoid S).

DEFINITION. A pair (M, y), where M is a (left) S-set and y is a
closure operation on M, is a module-system over (S, x) if the following
are satisfied:

y.l 3Θ(ΞM such that Ora = θ Vra G M, and {θ}y = {θ}. We shall
denote θ = 0.

y.2 AUy CUy VA CS, V[/CM
y.3 AUy C (AU)y VA C S, VC/ C M
y.4 Axί7 C (A[/)y VA C S, Vt/ C M.

NOTATION. Let (M, y) be a module-system, let U, V C M, A C 5,
w, u, w E M, and s E S1. Then,

[/: v = { s e s I sue c/
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U: A = {m E M | am E U Vα E A)

Ann(w) = 0: u ( = {0}: {u}) in S

Ann(α) = 0: α (-{0}: {a}) in M

w = ϋ(f/y)iff £/y+{w} = Uy+{υ}.

OBSERVATION. Frequent use shall be made of the following two
equivalences which were established by Aubert and Hansen [8].
1. Axiom y.3 is equivalent to the following statement:

(Uy: s)y = Uy: s VC/CM, VsES.

2. Axiom y.4 is equivalent to the following statement:

(Uy: v)x = Uy: υ V[/CM, VvEM.

DEFINITION. Let (S, x) be a fixed ideal system. The category MS
consists of objects which are module systems (M,y) over (S, x) and
morphisms ξ: (Ml5yi)—»(M2,y2) which are set functions that satisfy the
following conditions:

(i) ξ(su) - sξ(μ) Vs ES,Vu<Ξ Mλ

(ii)

REMARK. Morphism condition (ii), above, is equivalent to:

EXAMPLES.

1. For any fixed ideal system (S, x), let M = Ax for some A C S ,
and y = x. Thus, for B CM, By = Bx, and (M, y) is an object of MS.

2. Let S be the multiplicative semigroup of a commutative ring
with identity, and let x be the classical ideal closure, Ax = Ad = (A)
VΛ C 5. Then any module M over the ring, with the classical sub-
module closure, Uy = (17), is an object of MS.

3. Let S be a commutative monoid with 0 and for each ACS, let
Ax = SΛ [this closure is called the s-closure]. For any S-set, M, and any
U C M, define [/y = St/ [this closure will be referred to as the s-closure
also]. Then (M, y) is an object of MS.

4. Let (S1, x) be an ideal system and let M be an 5-set. For any
U CM, define Uy = U U {0} [this closure will be referred to as the
discrete closure on M]. Then (M, y) is an object of MS.

5. Let S = {l/n\ n E Z, rc>0}U{0}. For each ACS, define
Ax = {s E S I 5 ^ sup A}; i.e., Λx = [0, α], where α=supA. Then
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(S, JC) is an example of an ideal system for which the inclusion x.3 is
proper.

3. The morphisms of MS.

DEFINITION. An S-set M with 0 is called an (S, x)-set provided
(0: u)x = 0: u for all uEM. A map φ: Mi—>M2 from one S-set to
another is called an S-map if it satisfies (i) above.

PROPOSITION 1. Let M be an (S, x)-set and {f: M-> My | y E /} a
family of S-maps, where {(My, y y ) | jEJ} is a family of objects of
S/. Then there exists a closure operator y such that (M, y) is an object and
f: M —> Mj is a morphism for allj E J. The coarsest such system y is said
to be induced in M by the family {f: M—> My | j E J}.

Proof Let M be an (S, jc)-set and F = {f: M - * Mϊ, | j E J} be a
family of S-maps into objects (My , yy ), for jEJ. Let Q = {f]\Uj

y)\
Ui CMh y'EJ}U{0}. For any VCM define V y = n { W 6 Q |
V C W}.

DEFINITION. Let M be an (S, x)-set and G = {gy: My —> M | y E /}
be a family of S-maps from objects (My, yy) to M. The finest closure
system, y, on M (if one exists) such that (M, y) is an object of MS and
such that each gy is a morphism, will be called the closure system which is
coinduced in M by the family G. Let P = {U C M | (gj\U))yj = gj\U)
for all j E J}. G is called a covering family of S-maps into M if (1) for
each UEP,3jEJ such that g}(gj\U)) = U; and (2) OEP.

PROPOSITION 2. Let M be an (S, x)-set and let G = {gy: Λf, -> Λί |
y E J} be a covering family of S-maps from objects (My, yy) to M. Then
there exists a coinduced closure system y for M (with respect to G).

Proof. Let M and G be as described above and let P be as defined
above. Let Q = {U E P \ (U: m)x = U: m VmEM} and, for each
VCM, define Vy=Γ){UEQ \ VCU}.

DEFINITION. An equivalence relation ~ on an object (M,y) is a
congruence if u ~ v Φ su ~ sυ Vs E S. Let [v] = {u E M \ u ~ v}. A
congruence ~ is admissible if [0]y = [0].

PROPOSITION 3. Let (M, y) be an object of MS and ~ an admissi-
ble congruence on M. 7/ιen (M/ ~ , y) is an object of MS, where Ml ~ is
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the set of ~ classes in M and y is coinduced by the map π: M—> Ml ~
defined by π(u)= [u] Vw E M.

Proof. By Proposition 2, one need only show that for any admissi-
ble congruence ~ on an object (M, y), the set Ml ~ is an (S, x)-set and
the map π : M-+M/~ is a covering 5-map.

PROPOSITION 4. Le/ (M, y) be an object and Uy CM. Then
(a) Uy determines an admissible congruence on Mrgiven by the rule:

u = v (Uy) iff Uy + {u} = Uy +{υ}. Denote the set of congruence classes
"modulo Uy" by M/Uy.

(b) The inclusion map i: £/y —» M induces a system y' on Uy given by
the rule: Vr= VyΠUy = Vy VVCUy. Thus, Uy is a subobject of
M. The prime is generally omitted.

PROPOSITION 5. The Zero object, M = {0}, is both initial and termi-
nal in MS and will be denoted, simply, 0.

THEOREM 6. Let φ: (Mί,y1)^(M2,y2) be a morphism. Then
(a) φ is a monomorphism iff ψ is infective.
(b) φ is an epimorphism iff φ is surjective.
(fc) // φ is monic then (ψ-\U))yι C φ-\Uy2) V [ / C M 2 .

Proof, (a) Suppose φ is a monomorphism such that φ(u) = φ(v) for
some u, v E Mλ. Define (M3, y3) by: M 3 = S v 5, the disjoint union of
two copies of S (labeled with u and v, respectively) with the zero
elements identified, and Uy3 = (U Π Su)x U (17 Π Sv)x V(7 C M3. In fact,
this construction is a special case of the more general construction of the
coproduct of S with itself, which is discussed in §4. Let ψι'. M3-> Mλ be
defined by the rule: ψ1(su)=su and φι(sv)=sv VsEίS. Define
φ2: M3-> Mi by the rule: ψ2(su) = sv and ψ2(sΌ) = su Vs E S. ^ and φ2

are morphisms such that φψι = φψ2. Since φ is monic, it follows that
ψi = ψ2; i.e., u = v.

(b) Suppose φ is an epimorphism. Then φ(M1) is an S-set.
Claim. φ(Mx) = M2. Let M3 = M2/φ(Mι) be the S-set of congru-

ence classes in M2 modulo the S-set ψ(Mι)\ i.e., for u,vEM2, u =
v (φ(M1)) means Su U φ(Mx) = Sv U ^(MΊ). For any U C M3, define
Uy,= SU. Let π:M2^>M3 be the S-map τr(w) = [w] and let M =
{(u,[u])\ uEM2}U{(u,[0])\ uEM2}. For each s E S, φ,[κ]) =
(5W, 5[w]) = (5W, [5w]) and s(u, [0]) = (sw, [0]). Also, for each u E M2,
5(w,[0]) = (0,[0]) iff 5w=0 and S(K,[M]) = (0,[0]) iff 5w = 0, so that
(0,[0]):(u,[0]) = 0: u = (0: u) x. Hence, M is an (S,jc)-set. Define
Γ̂. M2->M by the rule: ^(w) = (u, [u]) Vw E M2. Define ξ2: M2-+ M
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by the rule: ξ2(u) = (w, [0]) Vw G M2. Then {ξu ξ2} is a covering family of
5-maps into M. Let y be coinduced on M by {ξ\,ξ2} and note that
ξiψ = ξi<ρ; hence, & = ξ2. Thus, π(w) = [0] Vw G M2; i.e., φ(Mι) = M2.

(c) Suppose φ is a monomorphism. Then, by (a) above, φ is
injective. Thus, φ((φ'x(U))yί)C Uy2; hence, {φ-\U))yιQφ-\Un).

THEOREM 7. MS /zαs (a) Kernels, (b) Images, (c) Cokernels, and (d)

Proof. Let φ: (Ml9 y^—>(M2, y2) be a morphism. (a) Kerφ =
φ~ι(0). (b) Im<p = (φ(Mί),yφ), where the closure operator yφ is coin-
duced by the (surjective) map φ'\ Mi-> φ{Mx) defined by the rule:
φ\u) = φ(u)Vu G Mλ. (c) Define the congruence ~ by the rule: u ~ u
VUELM2 and, for u^ v, u ~ υ iff {w, f} C (φ(Mi))y2. In forming M2/~ ,
the S-set of ~ classes, (φ (Mι))y2 is compressed down to [0] and the rest of
M2 remains, unchanged. Let τr:M 2 -»M 2 /~ be the projection
u -»[«]. Note that [w] = [0] for w G ̂ (MO)^ and [w] = w for
w^ίφίMi))^. Also note that M2/~ is an (S, x)-set and let y be
coinduced by {π}. Then Coker φ = (M2/~ , y). (d) For each w G M l5

let w = φ~\φ(u)) and let Mi/φ = {U \ u G MJ. Let TΓ: M{-^> MJφ be
the projection, M —> w. For each subset π(t/) C Mi/φ, define (π(U))φy =
^^(^(ίy))^), where φ: MJφ -> M2 is the map, <£(ΰ)=φ(u), for all
w G MJφ. Then Coimφ = (MJφyφy).

REMARKS. (1) <p monic Φ Im<p =Mλ.
(2) In any exact category (e.g., the category of modules over a

commutative ring with unity), for any morphism φ: Mλ-*M2, \mφ =
Coimcp. The following example shows that this is not generally true in
MS.

EXAMPLE. Let M = {0, α, b, c}, S = {0,1}, with the obvious
multiplication. Let (Mx,y{) and (M2, y2) be defined as follows. Mx =
M2 = M. y! is the s-system on M b and y2 is the indiscrete system on M2:
{0}y2 = {0}, and l/^{0}Φ Un = M2. Let φ:Mι-*M2 be the identity
map. Then (M2, y<p) = λv&φΦ Coimφ =(Muφy).

PROPOSITION 8. Let φ: Mv—> M2 be a morphism. If φ{Uy) =

y2 for all U QMλ then Im φ = Coim φ.

OBSERVATION. The example which precedes Proposition 8 also
illustrates the fact that a morphism in MS might be both monic and epic
and yet fail to be an isomorphism; i.e., MS is not balanced. Another
way of characterizing this situation is to note that the forgetful functor
F: MS -» SET does not reflect isomorphisms. It follows (Proposition
32.5 [14]) that MS is not an algebraic category.
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4. Categorical constructions in ΛfS.

THEOREM 9. MS has Products.

Proof. Let {(Mh yy) | j G /} be a family of objects of MS. Let ΠM ;

denote the cartesian product of the sets My (/' G / ) . For each (m;) G ΠM ;

and each 5 E S , define s(m ;) = (sm;). Let 0 denote (0; ) and observe that,
for all (nίj)E. ΠM;, 0: (ra;) = Π {0: m} | / G /}, the latter being an intersec-
tion of x-ideals in S. Thus, ΠMy, is an (S, x)-set. For each k G /, define
TΓ/c: ΠM, —> Mk by the rule, π k ((my)) = mk (this is the canonical projection
map from the cartesian product to its factors). Let Πy; be the system
induced in ΠM, by the family of projections, {τr; | / G /}. Then, for each
U C ΠM, UΠy, = Π WdiΓiiU))*) I / e /} = x {(π,(t/))y/ I / G /}. It is
easy to verify that (ΠM;, Πy,) is the product.

NOTATION. MX X M2 will frequently be used to denote the product,
Tί{Mj I / = 1,2}, of two objects of MS. The corresponding closure
system will be denoted, yx x y2.

THEOREM 10. MS has Coproducts.

Proof. Let {(Mh y}) \ j G /} be a family of objects of MS and let ΣM,
denote the disjoint union, v {M} | / G /} with all zeros identified. For
each k G J, let δfc: Mfc -» SM ; be the natural inclusion map. Let Xyy be
defined on ΣM, as follows. For any U CXMh Uly, = v{(S^iU))^
k G /}. Note that Ulyj = U{(U Γ) Mk)yk \ k <ΞJ} it we identify Mk with
its set-theoretic image, δk(Mk) in ΣM ;. Clearly (ΣΛζ , Σy ;) is an object of
MS and each map δk is a morphism. Note that Σyy is the closure system
coinduced in ΣM, by the family of inclusions, {δ; | j G J}. It is not hard
to verify that (ΣΛfJ ,Σyy ) is the coproduct.

DEFINITION. An object of MS is free if it is of the form ΣMy (/ G /) ,
where for each j G /, (M;, y,) = (S, x). We denote such an object (F(/),
y *) and refer to the index set / as the basis for the free object (F(/), y *).

REMARK. In particular, (S, JC) is free with basis {1}.

PROPOSITION 11. [Universal Mapping Property of Free Objects].
(F([/), y *) is a free object with basis U iff for any object (M, y) and any set
map σ: [/->M, there is a unique morphism φ: F(U)-> M such that
φη = σ, where η: U"-> F(J7) is f/ie inclusion, u —> l u /or α// u E U.

DEFINITION. The morphism φ described above is called the lift
of σ.
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PROPOSITION 12. Let (M, y) be an object of MS and let
φ: F(M)—>M be the epimorphism that lifts the identity morphism
1: M-+M. Then M = Coim(φ).

DEFINITION. An object (M, y) is projective if for any morphism
Θ:M-*M2 and any epimorphism ψ: M1->M2 [where (Muy1) and
(M2, y2) are objects] there exists a morphism ξ: M—> AίΊ such that ψξ = θ.

REMARK. It follows immediately from the above definition that if
(M, y) is projective, then (M, y') is projective for any closure system y'
(on M) which is finer than y. Thus, since the s-system is the finest
possible closure system for M, each projective object in the category
ENS-S of all S-sets determines a family of projective objects of MS and,
conversely, each projective object of MS determines a projective object
of ENS-S,

PROPOSITION 13. Let (M,y) be an object of MS. Then M is
projective iff M is a retract of a free object of MS [In particular, each free
object of MS is projective.]

REMARK. In the category R -Mod, of left R -modules, an object is a
retract of a free iff it is a direct summand of a free. The following
example demonstrates that this is not the case in general in MS.

EXAMPLE. Let S = {0,1, a, b} with multiplication defined as fol-
lows: aa = bb = ab = ba = a. Let M = {0, a) and let 5 and M each
have the 5-system closure. Then (M, y) is a projective object of MS and
M is not a direct summand of S since (S - M)y ^ (S - M) U {0}. Since a
free object of MS must be a coproduct of copies of S it follows that M is
not a direct summand of any free object.

PROPOSITION 14. Let {(Mhy})\ y'E/} be a family of objects of
MS. Then (ΣM,,Σyy) is projective iff (Mh yy) is projective Vy E /.

REMARK. In view of Theorems 9 and 10, it is clear that MS is not
an additive category since finite products are not isomorphic to finite
coproducts.
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5. Completeness and cocompleteness of MS.

PROPOSITION 15. MS is locally and colocally small.

PROPOSITION 16. MS has Intersections.

Proof. Let {α;: (Mh y;)—> (M, y) | / E /}be a family of subobjects of
(M,y). Since αy monic Φ Λf, = I m α ; , for each jEJ we take M' =
Π {Im αy I / E /}, a set-theoretic intersection of subsets of M. For each

/ E/, let βj\ M'-^Imα y be the natural inclusion map. Then M' is an
(S, x)-set and βi is an S-map for each jEJ. Let y1 be the system
induced on M' by the family {β} \ j E /}. Let α: M ' ^ M b e the natural
inclusion map. Then a: (M\ y')—>(M, y) is the intersection of the
subobjects {αy | / E /}.

PROPOSITION 17. MS fiαs Equalizers.

Proof. Let φ,θ:M1->M2 be morphisms, and let JB = {w E M2 |
φ(w)= θ(w)}. Then Equ(φ,θ) - (E,ye), where ye is induced by the
inclusion η: E-^MX.

The following Theorem follows from Theorem 23.8 [14].

THEOREM 18. MS has the following properties:
(a) MS is complete (in particular, MS has inverse limits).
(b) MS has (multiple) pullbacks.
(c) MS has inverse images.

From Theorems 10 and 18 and Proposition 15 we obtain the
hypotheses of Theorem 23.12 [14], and using the dual of Theorem 23.8
[14] we obtain the following

THEOREM 19. MS has the following properties:
(a) MS is cocomplete (in particular, MS has direct limits).
(b) MS has (multiple) pushouts.
(c) MS has direct images.
(d) MS has coequalizers.
(e) MS has cointersections.

6. Properties of the horn functor MS —> MS.

THEOREM 20. For each pair of objects (Mu y^, (M2, y2) of MS,
(homs (Mi, M2), y) is an object of MS, where, for φ E homs (M1? M2) and
s ES, sφ is defined by the rule: (sφ)(u)= s(φ(u)) Vw E M l9 and, for any
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W C h o m s ( M b M 2 ) , W9 = ΓΊ {[m, i y | W C [ m , l/J}, where [m, C/J =
{ξ E horns ( M b M2) \ξ(m)e Un}.

PROPOSITION 21. For any object (M, y) 0/ MS, (M, y) =
(hom s (S, M), y), where (S, x) is considered as an object of MS.

THEOREM 22. MS has an internal Horn functor, Horn: MS o p x
MS -» MS.

Proof. By Theorem 20 it will suffice to verify that
hom5 (φ, θ): hom5 (Mu M2)—> hom 5 (MI, MJ) is a morphism for all φ E
hom s (Af ί, MO and all θ E hom5 (M2, M 2).

hom s (M2, M2)

(,p, (9)

hom s (Mi, Mi)

= homs(φ9θ)(f)

Indeed, it is true in any category that the corresponding construction
yields a well defined set map. Thus, with hom s (φ, θ)(f) = θfφ> we have
the following equations:

hom s (φ, θ)\[u7 t/yJ) = {/ E hom s (M1 ? M2) | θfφ (u) E

= {/e horns (M,,M2)

NOTATION. Since MS has an internal Horn functor, we will follow
the practice of Herrlich and Strecker [14] and others and write it with
a capital H. Also, we will suppress the subscript S when no confusion
will result.

PROPOSITION 23. For any family {{Mh y7) | / E /} of objects of MS,
H o m ( Σ M , , M ) s Π H o m ( M y , M ) for any object (M,y).

PROPOSITION 24. The functor Horn (M, _ ): MS -» MS (for fixed
object (M, y)) preserves products; i.e., for any family {{Mh y;) | / E /} o/
ofe/βcίs, Horn (M, ΠM ;) = ΠHom (M, M7).

PROPOSITION 25. 77ιe .functor Horn (M, _ ): MS -» MS preserves
equalizers.

Proof. Let /, g E Hom(M 1 ? M2).
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I M2
g

— o i

a

Then, by Prop. 1.17, η: E^>MX is the equalizer of / and g, where
E = {u E M1 I /(«) = g(u)} and ye, the closure on E, is induced by the
canonical inclusion, η: E->Mλ.

To prove that Hom(M, ___) preserves equalizers we shall show that
Hom(M, E) = Equ(/, g), where £ = Hom(M,/) and g = Hom(M, g), and
Equtf, g) = {ξ G Hom(M, M1) | /(f) = g(ξ)l

> Horn(M, MO > Horn (MM,)

cr

Let A: Equ(/, g ) ^ Hom(M,Mi) be the canonical inclusion and
ή =Hom(M,η): Hom(M,£)-^Hom(M,M1); i.e., η(k) = ηk. Then
fy ~ 8V1 hence there exists a morphism, σ: Hom(M, £)-^Equ(/, g)
such that rj = λtr. σ is tlie required isomorphism.

The next Proposition follows from Theorem 24.3 [14].

PROPOSITION 26. Horn(M, _ ): MS —> MS preserves pullbacks,
multiple pullbacks, terminal objects, inverse images, finite intersections,
and limits.

THEOREM 27. Hom(M, __ ): MS -> MS has a left adjoint.

Proof. Consider the functor diagram, where G=Hom(M, _ ) ,
U = homs (M, _ ), and V = Forgetful.

G
MS >MS

U V
SET

Clearly this diagram commutes. By Propositions 15, 18, and 19, MS is
complete, cocomplete, locally small, and colocally small. By Proposi-
tion 26, G preserves limits. By Theorem 30.20 [14], U has a left
adjoint. Clearly V is faithful. The result follows from Theorem 28.12
[14].
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7. The tensor product in MS.

DEFINITION. We denote the left adjoint of Hom(M, __): MS -> MS
_ 0 M, and we refer to M'(g)M as the tensor product of M' and
M. The closure system on Λ f ' ® M is denoted y ' 0 y .

REMARKS. The adjoint situation, (η, δ): _$ζ)M -\ Horn (M, __ ),
gives, for each object Mx of MS a morphism
r/Aft: Mι -» Horn (M2, M t (g) M2). Define ι̂ : Mx x M2 ̂ > Mj 0 M 2 by the
rule, ψ((uu u2)) = (T/MI(WI))(M2) and denote φ((uι,u2)) = Wi0w2. Note
that S(MI 0 w2) = swi 0 w2 = Wi 0 sw2, for all 5 E 5. In fact, ι/f is bilinear,
in the sense that both ψ(uu _ ) : M 2 - > M i 0 M 2 and ψ(__,u2):
M ! - > M i 0 M 2 are morphisms (defined in the obvious ways). Indeed,
«A(wi, _ ) = r/ M l (M 1 )GHom(M 2 ,Mj0M 2 ) by definition. To see that
Ψ( _ , W2) G Hom(M 1 ? Mi 0 M2), note that

= {MI G Mλ I ̂ r(Mi, w2)G (7y i 0 )J

= {M! G Mi I (TJM I(WI))(M2)G C/yi(g)y2}

= {MJ G M I I TJAA(MI) G [M2, t/yi(8)y2]}

DEFINITION. Let G: Λ —> B be a functor and let M be an object of
B a pair (μ,, N), where N is an object of A and μ: M —> G(N), is called a
universal map for M with respect to G (or a G-universal map for M)
provided that for each N_' (object of Λ ) and each /: M-> G{N'\ there is
a unique A-morphism / : N^>N' such that the triangle commutes.

NOTATION. Given objects (M,, y;), for / = 1,2,3, let
Bihom(Mj x M2, M3), denote the set of all bilinear maps M^ M2-+ M3.

PROPOSITION 28. The map θ: Bihom (Mi x M2, M 3 ) ^
Horn (M1 ? Horn (M2,M3)) given by, θ(σ)=σ, where (σ(uι))(u2) =
σ(uu u2), is a bijection.

THEOREM 29. Let a G Bihom (Mi x M2, M3). Then there exists a
unique σ G Horn (M1(^)M2,M3) such that σψ = σ [where
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ψ: Mi x M2—>M!<g)M2 is the canonical map, (mu m2)-»mi(g)m2; i.e.,
) = T)MI\-

Proof.

M1 x M2

\
σ
 \ M 3 ^

 σ

To complete the first diagram with a morphism σ, we make use of the fact
that, by Theorem 27.3 [14] (ηMl, M1 (g) M2) is a universal map for M! with
respect to Hom(M 2, _ ).

Λf! — > Horn (M2, M t ® M2) Mι ® M2

σ

Horn (M 2,M 3) M3

Thus, there exists a unicjue σ E Horn (M2_® M2, M3) such that <τ =
Hom(M2, σ)i7Ml i.e., σ = σηMι. Note that σ makes the first diagram
commute.

PROPOSITION 30. Mι (g)M2 = {mi ® m21 m i 6 Mi, m2 E M2} αnrf
yi®y2 is the closure operation coinduced on M i ® M 2 fey ίfie family,

Proof. Let M = {mi(g)m2| m i E M b m2EM2}. Then M C
Mj(g)M2. Although F is not a covering family, we can form the
coinduced closure, y as follows: Let Q1 = {UCM\ (T?MI('WI)"1([7))J)2 =

T Ϊ M I W W ) Vmt G MJ (Ί {£/ C M | {r]Mlm2y\U))yι = ^ ( m ^ ί / )
Vm2EM2}. Let Q = {C/EQi| (C/: (iii® M2))X = 17: (ii!® u2),
Vw!(g)w2EM} and note that Q1 = Q. For each VCM, let Vy =
Π {U E O I V C 17}. Then (M, y) is an object of M5 and y is the finest
closure system on M which permits all the S-maps in F to be morphisms
into M. Define ξ\MxxM2-^M by the rule: ξ(mum2) =
mi(g)m2. Then ξ is bilinear and surjective.

σ
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Let σ\_MιX M2^>M3 be a bilinear maj}. Define σ: M —»M3 by
the rule: σ ( m 1 ® m 2 ) = σ ( m b m 2 ) . _Then σ is a morphism and the
diagram commutes. In fact, σ is the identity morphism,
rrii 0 m2-* mx 0 m2 and, by Theorem 29, its inverse is also a morphism;
hence, Mi 0 M2 = M and yi 0 y2 = y.

PROPOSITION 31. For any objects (Mu yi), (Λί2, y2) MS,

PROPOSITION 32. For any ofe/βcί (M, y) o/ MS, S ® M = M =
M 0 S .

Proo/. Let μ: S ®M—>M be the map given by μ(s 0 m ) =
5m. Note that μ = ^( l)" 1 . μ is the required isomorphism.

PROPOSITION 33. is associative.

Proof. By Theorem 10 [17] it is enough to show that
Horn{MX®M2,M3) = Horn(MbHorn(M2,M3)). By Theorem 27.9 [14],
the adjoint situation, (T/, δ): _ ®MH Horn (M, _ ) , gives a bijection
α: Hom(M! 0 M2, M3)—> Horn (M1? Horn (M2,M3)) defined by the rule,
(α(/)(m1))(m2) = /(m1(g)m2), for all /G Horn(Afj0M2,M3). α is the
required isomorphism since, for all nti 0 m2 E Mx 0 M2 and all U^ C M3,

2, t7y3]].

PROPOSITION 34.

preserves coproducts.
_ (g)M preserves colimits. In particular, _

PROPOSITION 35. Lei <p E Horn (Mi, M2). Then, for any object
(M, y) in MS < p ® M : M 1 ® M ^ M 2 ® M is the map,

Proof.

Mι

φ

M2

Hom(M,(p®JV)

1?M2

> Horn (M,M2(g)M)

The adjoint situation (77, δ): __ 0 M H Horn (M, _ ) makes the diagram
commute for each object M. Thus, for each mx E M1?

Hom(M,<p 0M)(η M l (m 1 ))= ηM2(φ(m1)); i.e., for all m E M,
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NOTATION, φ (g) 1 will sometimes be written instead of φ (g) M in
cases where no confusion will result.

PROPOSITION 36. For any object (M, y), ί/iβ functor _(&M pre-
serves epimorphisms.

DEFINITION. An object (m,y) is Flat if the functor _ ® M pre-
serves monomorphisms.

PROPOSITION 37. S is a flat object of MS.

PROPOSITION 38. Let {{Mh yy ) \ j EJ} be a family of objects of
MS. Then (ΣM,, Σy, ) is flat iff (M,, y, ) is flat for each j € /.

PROPOSITION 39. Every projective object of MS is flat.

8. Restriction and extension of scalars.

REMARKS. Let φ: (S, x)-» (5', JC') be a morphism of ideal systems;
i.e., φ(st)=φ(s)φ(t), for all s,tES, and φ(Ax)C(φ(A))x, for all
A C S . Then any object (M', y') of MS' can be considered as an object
of MS in the following manner: for each s E S, w ' E M ' , define SM' =
<p(s)w'. It is easy to verify that, with this S-set structure, (Λf', y') is an
object of MS (the closure system yf does not change). This process is
usually referred to as restriction of scalars. Let ξ' E Hom s (Mί, M'2). If
we restrict scalars as described above, we can consider both objects M[
and M2 as objects of MS and then ξf becomes an S-morphism with its
S-map structure defined by the rule, ξ'(su') = ξ'(φ(s)u') for all s E S.

PROPOSITION 40. Let φ: (S,x)^>(S',xr) be a morphism of ideal
systems. Then the process of restriction of scalars determines a faithful,
covariant functor, Rφ: MS'^> MS, which preserves monomorphisms and
epimorphisms.

DEFINITION. A functor which preserves monomorphisms and
epimorphisms shall be called exact.

PROPOSITION 41. Let φ: (5, JC)—>(S", x') be a morphism of ideal
systems. Then the functor Rφ: MS'-*MS has a left adjoint
Eφ:MS-+MS' given by the rule, Eφ(M) = M ®RφS' for all objects
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(M, y) of MS [Eφ(M) is given S'-set structure by defining for each s' E S'
and each u ®f' E Eφ(M), s'(u(g)t') = «(g)s7'] and Eφ(δ) = δ®RφS'
for any morphism δ E Homs (Mi, M2).

Proof By Theorem 27.9 [14], it is sufficient to show that the two
set-valued bifunctors, homs (Eφ ___ , _ ) and homs (__ , Rφ _ ) are naturally
isomorphic. Thus, let (M, y) be an object of MS and (M', y') be an
object of MS', and define β: horn(EφM,M')-> horn(M,RφM

f) by the
rule: β(f)(m) = f(m (g)Γ) Vm E M. Then β is a bijection.

REMARK. The functor Eψ: MS->MS' is usually referred to as
extension of scalars.

PROPOSITION 42. Let φ: (S,x)-^(S',xf) fee α morphism of ideal
systems. Then the functor Rφ: MSr'—>MS has a right adjoint
Hφ:MS^MS' given by the rule: Hφ(M) = Homs(RφS',M) V objects
(M,y) of MS [HΨ(M) becomes an object of MS' by defining for each
s' E S' and each σ E Hφ(M), (s'σ)(tf) = σ(s't') \ft' E RφS'] and Hφ(λ) =
Homs (RφS', A) Vλ E Homs (Mu M2).

Proof. By Theorem 27.9 [14], it is sufficient to show that the two
set-valued bifunctors, homs (Rφ __, _ ) and hom s (_ , Hψ _) are naturally
isomorphic. Thus, let (M, y) be an object of MS and (M', y') be an
object of MS', and define γ: hom(i?φM',M)->hom(M/,fίpM) by the
rule: (γ(g)(m'))(s') = g(s'm)Vs'<Ξ S' and Vg Ehorn(RφM\M). Then
γ is a bijection.

REMARK. Let φ: (5, x)—•(£', JC') be a morphism of ideal
systems. Then for any object (M, y) of MS and any object (M', y') of
MS', M (g) i?φM' may be regarded as an object of MS' if it is given S'-set
structure in the following manner: s'(m (g)m')= m (g)s'm' Vs'E S' and

PROPOSITION 43. Ler φ: (5,x)-*(S',x') be a morphism of ideal
systems. Let (M, y) be an object of MS and let (Mf, yf) be an object of
MS'. Then (in MS) M <g) RφM' = Rφ{EφM®' M;) [where (g)' indicates
that the tensor product is formed in MS'].

Proof. Let a: Mx RφM
f-> Rφ{EφM&M') be defined by the rule:

O!(M,M') = ( M 0 Γ ) 0 ' M ' . Then a is 5-bilinear; hence, there exists an
S-morphism ά: M®RφM'^>Rφ(EφM®'M') such that the diagram
commutes; i.e., ά(m 0 m ' ) = a(m,m')=(wi^Γ)0'm' [ψ is the cano-
nical bilinear map]. Note ά(m (g)s'm1) = (m (̂ )



ON A REPRESENTATION THEORY FOR IDEAL SYSTEMS 363

Rφ{EφM®'M')

a

Let ά: M (g) RφM' -> EφM<g)' M' denote a regarded as an S '-
morphism. Now, for each m'Eί RφM\ define m':Mx
RφS'^>M(g)RφM' by the rule: m'(m,s') = m (&s'mf. Then m' is
S-bilinear; hence, there exists an S-morphism m'\ M(g)RφS

f-+
M(g)RφM' such that m'(m (g)s')=m (g)s'm'.

m'

MxRwS'

Actually, rh1 is an S '-morphism with domain EφM and codomain
M(&RφM\ the latter regarded as an object of MS'. Let jS: EφM x
M'-+M®RΨM' be defined by the rule: β(m (g)s',m') =
m ®j 'm' . Note that β is well defined since, for each fixed m' E RφM\
β ( _ > Ή ') = ώ ' and, hence, does not depend upon the choice of represen-
tative of m(g)sf. Since β is 5'-bilinear, it follows that there is an
S'-morphism β: (M 0 KφS')<g>M'-+ M <g> l?φM' such that
/3((m <g>s')®'m')=m ®s'm\

(M($RφS')(g)'M

Ψ

(M®RφS')xMf

β

Thus, we have produced S'-morphisms,
a: M(g)i?,M'-> JS^Af®'M' and /8: £ ^ M ® ' M ' ^ M ® RφM' which are
inverses of one another; i.e., M (g) RΨM' = £φM (g) M' in MS'. It fol-
lows that M®RφM' = Rψ(EφM(g)tMt) in MS.

PROPOSITION 44. Lei φ: (S, x)—»(S', x') fee α morphism of ideal
systems. Then the two MS-valued bifunctors, _ ®RΨ _ MS x
MS'-* MS and Rφ(Eψ _ (g)' _ ) : MSxMS'-^MS are naturally isomor-
phic.

PROPOSITION 45. Let φ: (S, JC)^(S ' , JC ' ) 6e α morphism of ideal
systems. Suppose that RφS' is a flat object of MS. Then RφM' is flat in
MS for all flat objects (M',y') in MS'.
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Proof. The functor _(g)RφM': MS-+MS preserves monomor-
phisms whenever (M',yf) is a flat object of MS'.

PROPOSITION 46. Let φ: (S,jt)—»(S',x') be a morphism of ideal
systems. Suppose that (M, y) is a flat object of MS. Then EφM is flat in
MS'.

Proof Let ξ: MJ—>M2 be an S'-monomorphism. Then by Prop-
osition 40, Rφξ: RφM[—> RφM'2 is an S-monomorphism; hence, since M
is flat in MS, M (g)Rφξ: M <g)RφM'1-+M ®RφM2 is an S-
monomorphism. By Proposition 44, we have that Rφ(EφMζZ)' ξ):
Rφ(fϊφM®' M[)—> Rφ(EφM(&' M'2) is an S-monomorphism; hence,
EφM(&' ξ: EφM(&' M[-> EφM(g)f M'2 is an S'-monomorphism (since Rφ

is faithful).

9. Monads and algebras in Λί{0,1}.

NOTATION. We shall denote the category M{0,1}, simply, 93. For
any ideal system, (S, x), T: {0,1}—>S will denote the map, τ(0) = 0,
τ ( l ) = 1. Clearly τ is a morphism of ideal systems [{0,1} is given the
obvious (s-system) closure system]. In the sequel we will denote RTS,
simply, S.

THEOREM 47. For any ideal system (S,JC), Ks = (Ks,η,μ) is a
monad in 93, where Ks: 93—>93 is the functor, _ ® S, and η: 1®—> Ks is
the natural transformation given by, τ/M(m) = m ® 1, and μ: X siίs ~^ ^s
ί5 ί/ie natural transformation, μM: ( M ® S ) ( g ) S - ^ M ( g ) S g/uerc 6y

Proo/. The "unit," η, and the "multiplication," μ, make the
following diagrams commute:

LLK

^ KsKs

where

(ηKs)M = η M ^ s : M

Ksμ

κsκs

(M(g)S)(g) 5

μ

> Ks

μ

: ((M (g) 5 ) <8) 5 ) <g> S -> (M (g> 5 ) (g) 5
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THEOREM 48. For any ideal system, (S,x), Hs = (Hs,e,δ) is a
comonad in 93, where H s:93^>93 is the functor, Hom(S, _ ) , and
e: Hs —> 1« is the natural transformation, eM: Horn(5, M)-*M, given by,
eM(f) = /(I), and δ: Hs -»HSHS is the natural transformation,
δ M : Hom(S, M)^Horn (S,Horn (S,M)) , given by, (δM(f){s))(t) = (sf)(t)
for all t G S.

• One must verify here that the following diagrams commute:

eHs Hse δHs

- HSHS > Hs HSHSHS < HSHS

where

(eHs)M = eHoMSM}: Horn(5, Horn(5, AT))-* Horn(S, M)

(Hse)M = Horn (5, eM): Horn (5, Horn (5, M))-* Horn (5, M)

(SHS)M = δHomiSM): Horn(5,Horn(5, M))

-» Horn (S, Horn (5, Horn (5, M)))

(H sδ)M = Horn (S, δM): Horn (S, Horn (5, M))

-»• Horn (S, Horn (S, Horn (S, M))).

REMARKS. Let (5, x) be an ideal system and let 93s denote the
category of ^-algebras. Let G: MS—>S8S be defined as follows: For
each object (M, y) of MS, G(M) = (J?TM, h), where /ι: i?τM <g>S -• i?τM
is the S-morphism m (g)s->sm. For each S-morphism /: M-*M',
G(f) = Rτf: RTM-* RM'. Then G(f) is a 23s-morphism and, hence, G
is a (covariant) functor.

Now let F: 93s -> M5 be defined as follows: For each object (M, h)
of 93s (where (M,y) is an object of 53), F((M, h )) = (M,y), where
M = M, equipped with the 5-multiplication, sm = h(s(g)m) for all
s ES, mGM. For any 23s-morphism g: <M,Λ>-*<M',Λ'>, F(g) = g,
where g = g, converted into an 5-map by taking g(sm) = g(h(s(g)m))
for all s G S, m G M.

THEOREM 49. [Monadicity]. For any ideal system, (S,x), 93s is
isomorphic to MS.

Proof. With notation as in the remarks above we need only show
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that FG - 1MS and GF - 1^. To show FG - 1M S: since for any object
(M,y) of MS, FG(M) = F((RτM,h)) = (RτM,y), where RTM= RM,
endowed with an 5-multiplication which is derived from the map h i.e.,
(#τM,y) = (M,y). For each_ object <M,Λ> jof 33s, GF((M,h)) =
G((M,y)) = (RJM,h), where h: RTM<g) S -»1?TM is defined by the rule,
h{m §ϊ)s)=: sm = h(m ®s) . Thus, h — h, and, since it is clear that
#TM = M, it follows that GF({M,h)) = (M, Λ>.

Concluding r e m a r k s . The monads and comonads constructed
above provide the tools with which resolutions and derived functors can
be constructed which, in turn; lead to a (co)homology theory for 93. The
category of pointed topological spaces and basepoint preserving maps,
PTOP, can be found in 93. In fact, the inclusion functor PTOP-» 93 is a
full, faithful embedding.
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THE DEFICIENCY INDEX OF A
THIRD ORDER OPERATOR

RICHARD C. GILBERT

Let L be a formally selfadjoint third order linear ordinary
differential operator defined on [r, x). Using a method of
Fedorjuk, asymptotic formulas are found for the solutions of
Ly = iσy, σ^O. These formulas are used to determine the
deficiency index of L when L has polynomial coefficients. As a
consequence, the deficiency index is determined for values of the
parameters involved for which it has not previously been de-
termined.

1. Introduct ion . The general form of a third order formally
selfadjoint linear ordinary differential operator L can be written

(1) Ly = (ib2y"y + [(2ιibf

2+ α,)yT + ib,y'+ (2'1/fe; + αo)y,

where α0, au bu b2 are real functions of x and b2(x) / 0. (See [4, Ch. 1,
§1.5]. We have assumed sufficient differentiability on the coefficients so
that the Dunford and Schwartz form can be written in the form
(1).) Unsworth [12] considered the case that b2(x) = 2, bx(x) = 2axa,
aι(x)= bxβ, ao(x)= cxΎ, l^x <°°. Using the asymptotic methods of
Devinatz [3], Unsworth deduced the deficiency index of L for various
values of the parameters α, b, c, α, β, γ. Pfeiffer [10] considered the case
b2(x)=l, bλ(x)= axa, α1(x) = 0, ao(x)=cxΎ. The purpose of the pres-
ent article is to obtain by the method of Fedorjuk [6] asymptotic formulas
for the solutions of Ly = iσy, σ^ 0, and to apply these formulas to
finding the deficiency index of L for the case b2(x)=l, bι(x)= axa,
αi( c) = bxβ, ao(x) = cxy. Although Fedorjuk applied his method only to
even order operators, it can be used for odd order operators as
well. Shirikyan [11] applied the Fedorjuk method to a certain class of
odd order operators. It turns out that the Fedorjuk method applied to
the above case yields the deficiency index for values of the parameters
different from Unsworth and Pfeiffer.

It is known that, except for a first order operator, a differential
operator of order n cannot have deficiency index (n,p) or (p, n), where
p < n. (See Atkinson [1] or Kogan and Rofe-Beketov [7], [8].) Further,
for an operator of order n = 2v-l it is known that the deficiency
numbers n+ and n_ satisfy the inequalities v ^ n+^2v — 1, v ~ 1 ̂  n_ ^
2v — 1, or the same inequalities with n+ and n_ interchanged. (See

369
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Everitt [5] or Kogan and Rofe-Beketov [8].) It follows that the defi-
ciency indices (2,1), (1,2), (2,2) and (3,3), obtained in this paper and by
Unsworth and Pfeiffer, are the only possible deficiency indices for a third
order operator.

2. Asymptotic formulas for the solutions of JLy =
iσy. We shall make the following assumptions on the coefficients α0, au

bu b2 of L. The need for the various assumptions will be seen as we go
along.

In all that follows in this article, it will be necessary in various places
to require that x is sufficiently large. We shall therefore assume once
and for all that x0 is chosen so large that if x ̂  x0, then x is sufficiently
large in all places where this is needed. We shall also often omit the
stipulation x ̂  x0 when it is clear from the context that this is needed.

ASSUMPTION I. bλ{x), b2(x) G C3[r, oo). ao(x), aλ{x) E C2[r, oo).
b2(x)/0 for x ̂  r, b2(x) = 1 + o(l) as x-»+oo. αo(x)^O for x^
r. Either ao(x) -» -h oo and a Ό(x) > 0 for x ̂  JC0, or else ao(x) -» - oo and
a'0(x)<0 for x ̂  x0.

ASSUMPTION II. l i m ^ ajaψ = d^ 3/22/3, bλ\af = o(l), b[/a0 =
, b2/aι

0

/3 = o(l).

ASSUMPTION III. Vϊlaψ = o(l), a'Jaψ = o(l), b'Uaf = o(l),

ASSUMPTION IV. b2 and b\laψ are absolutely integrable on [r, oo).
Let

(2) /(A,JC)= -A3+/m(x)fc21(x)λ2-61(jc)ft2-
1(jc)λ + m(jc)&21(x),

where

(3) m(x) = 2-1ib'2(x)+aι(x),

(4) n(jc) = 2-1ίί)ί(x)+α0(jc)-iσ.

Here σ is a real constant, σ?^0.
Let

(5) τ(x) = [a(l(x)b-2

ι(x)]m[l + (b[(x)-2σ)(2a»(x)ΓiYl\

where if z = pelβ, - π < θ ̂  ir, then we take z"3 = p l/3e'β/3. Then,
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τ3 = nbi\ and τ(x)τ* 0 for x ^ r.
Putting

(6) A = iητ(x),

then

(7) /(λ,x) = 0

becomes

(8) h(η,x) = 0,

where

(9) h(η,X)=η3-m(x)[b2(x)τ(x)]-1

V

2-bι(x)[b2(x)r2(x)Y1η + l.

An essential part of the Fedorjuk method is that we should have

(10) \imm(x)[b2(x)τ(x)}-1 = d + ieu
x—*°°

(11) Iimβ1(jc)[62(x)τ2(x)]1 - d2+ ie2,

where d + iex and d2+ie2 are complex constants. Then, as JC —>o°,
h(η,x) approaches a polynomial ho(η) with constant coefficients. We
also want ho(η) = 0 to have distinct roots. For reasons that will appear
later we further want as x-*o° that |αo(x)|->°° and that

(12) T(x)=alf3(x)[l + o(l)].

In I and II we have assumed ao(x)—>±oo9fc2=l + o (1), b[/ao= o (1)
in order that (12) and | ao(x) | -> °° might be true. In order to explain the
remaining assumptions in I and II, let us note that if (10) and (11) are to
be true, we must have

(13)

(14) \im (a1jalli)=d,
X—>oo

(15) lim(bja?)=d2,
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and e2 = 0. But then (13) and our assumptions that |αo|—>°° and
b2 - 1 + o(l) imply that eλ = 0. Further, (15) and the assumptions on α0

in / and the assumption that b'Jaψ is absolutely integrable on [r, oo) in IV
imply that d2 = 0. Thus, we have explained the reasons for all the limit
assumptions in I and II.

From Assumptions I and II we have that

(16) m(x)[b2(x)τ(x)Γ = d^fι(xl

(17) bx{x)[b2{x)τ\xψ = f2{x),

where /i(x) = o(l), f2(x)= o(l), and /I(JC) and f2(x) are continuously
differentiable on [r, oo). It follows that

(18) h(η,x)=ho(η)-η2fί(x)-ηf2(xl

where

(19) ho(η)=η3-dη2+l.

Since we have assumed in II that d^ 3/22/3, hQ(η) = 0 has three distinct
nonzero roots. If d < 3/22/3, then ho(η) = 0 has one real negative root
and two complex conjugate nonreal roots. If d > 'ill212', then ho(η) = 0
has three distinct real roots, one of which is negative and the other two
positive. We denote the roots by 1701, 1702, τ?03, where ηoι < η02 < η03 in
the case of three real roots, and 1701 is real and Im 1702 > 0, Im 1703 < 0 in the
case of one real root. In the case of three real roots, h'(ηoι)>O,
hr(η02)<0y hf(η03)>0. In the case of one real root, h'(ηoι)>O. In
every case, hf(ηOk)^ 0, k = 1,2,3.

According to Bellman [2, p. 26], for x ^ x0, (8) has three distinct
roots ηk(jc), k = 1,2,3 which are given by the formula

(20)

where Ck is a small circle around ηok. r]k(x) is continuously differenti-
able, and

(21) Vk(x)=ηok[l + o(l)].

We have that hv(ηk(x),x)^0, and that ηk(x)^0, for x ̂  χ0. From (6)
one sees that (7) has for x ^ x0, three distinct continuously differentiable
nonzero roots λk(x) given by

(22) λ k (x)=iτ, k (x)τ(x) , fc = 1,2,3,
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and

(23) λk(x)= iaι

o»(x)ηok[l + o(l)].

We have that /A(λ k(jc),x)^O.

ASSUMPTION V. (6ί)2/αJ/3, (&")2/αo, (a[)2/a0, (b[)2/a5

0

β

9 (b'tf/al*,
(a'oYlal13, b\\aψ, b"[\aψ, a'[laψ, &'ί/α0, b"{laA£, a'^aT are all absolutely
integrable on [r, <*>).

ASSUMPTION VI. For each pair /, fc, one of the following is true:
(a) R e ( λ , ( * ) - λ f c ( x ) ) ^ 0 for x ^ xo;
(b) Re (λ, (JC ) - λk (x)) ̂  0 for x ^ JC0, and

f Re(λj(x)-λk(x))dx= -oo;
Jxo

(c) Re(λ ; (x) ~ λk (x)) dx is convergent.

Using Assumptions I-VI, it is now possible to obtain asymptotic
formulas for the solutions of the equation

(24) Ly = iσy.

Let w be the column vector with components HΊ = y, w 2 = y \ w3 =
ίb2y"+ tfiy'. (24) is then equivalent to the system

(25) w' = A(JC)W,

where

/ 0 1 Ox

(26) A ( J C ) = I 0 imb~2

l - ib~2

ι .
\ - n -ibx 0 /

The eigenvalues of A(x) are the roots of (7), i.e., λk(jc), k = 1,2,3.
Let us now make the transformation

(27) w = T0(E + T2)z,

where z is a column vector with components zu z2, z3, and To and T2 are
matrices to be determined, and E is the identity matrix. Then, (25)
becomes
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(28) z' = Λoz + (Λo T2 - T2A0 - To1 T'0)z + B (x )z,

where

B(x) = (E + T2y
ι[(T2

2A0+ T2ToιTo)(E + T 2 ) -

Ao=To1ATo.
and

Λo— i o

We shall show that we can choose To and T2 such that for x ^ JC0, To1 and
(E + T2)~ι exist, a id ToιATo and Λ 0 Γ 2 - T2Λ0- To1 TO are diagonal. To
that end, we choose To to be a matrix whose columns are eigenvectors for
A, namely,

/ I 1 1 x
(30) Γo= I A, λ 2 λ 3

\[ib2λι + m]λι [ib2λ2+m]λ2 [ib2λ3 + m]λ} I

x{λλ,x) -iλ,b2IFk{λux) - l / F A ( λ , , x ) \
(31) 7 V = n/A2Fλ(λ2,x) - ίλ2fc2/Fλ (\2,x) - l /F A (λ 2 ,x) ,

V «/λ3Fλ (A3,JC) - iλ,62/Fλ (λ,,x) - 1/FA (λ3,x) /

where

(32) F ( λ , x ) = ι V ( λ , x ) .

Then, for x ^ x0,

(33) Tό'ΛΓo = Λo = diagonal [λ,].

We note that

(34) lim a 02l\x )Fλ (A, (x), x) = ih ί(η0 j) = p0/ exp [iθOs ],

where - π < θ0, έ π, pOj > 0. Let

(35) aό2'\x)Fλ (λi(x),x)=Pi(x)exp[iθi(x)],

where Pj{x) and θ,{x) are chosen so that limx^pj(x) = pOl, and
limx-*oo #,(#)= ^0;. We choose that branch of log such that for x =ϊ JC0,

(36) logFA (λ,(x),x) = (2/3)Log| ao(x)\ + Logp,(x)+ iθy (x).

Then, for l , i ϊ χ0,
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(38) j* [(d/ds)logF,(λ,(s),s)]ds = log Fκ(λ,(x),x)-log Fκ(λ,(t),t),

(39) exp[(l/2)logFΛ(λ,(x),x)] = [1 + 0

Now we note that the elements (To'Tό)^ of the matrix TV To* are
given for x ^ x0, by

(Γ 0 - 1 Γ^ = (l/2)[FAA(λ ;(αc),x)λXx)+FAx(λ/(jc),x)

or,

(To' To), = (1/2) (d/dx) log FA (A, (x),x)

and

ifcJAtA, + iftί)+ m'λkλ, + n']
( 4 2 ) x[(A t -A ; )F A (A,(x),x)r,

Let

(43) λγ=-(T-o

ιT'o)ih

(44) Λ, = diagonal [A}'>].

We note that the Aj])(x) are continuous for x =Ξ x0. Let the matrix
T2 be defined by the equations

(45)

(46) (T2)jk = - (To1 Γ0)/k (λk - λ; ) \ k ¥• /.

T2 has been defined so that A0T2- T2A0- TQ1TO is a diagonal matrix;
indeed,

(47) ΛoΓ 2-Γ 2Λo-Γo- 1Γί = Λ1.

Thus, To and T2 in the transformation (27) have been chosen so that
for x g jc0, equation (28) is



376 RICHARD C GILBERT

(48) zf = (A0 + A1)z+Bz.

We shall now show that for x ^ x0, B(x) exists and is continuous,
and || 2? (x) || is integrable on [JC0, °°) To do this will require a series of
lemmas whose proofs are mostly straightforward or else contained in
Fedorjuk [6] and are therefore omitted. For x ̂  JC0, let

(49) A(x) = max|A ;(jc)|.

Then,

In the following, the capital letters C and D denote suitably chosen
positive constants.

LEMMA 1. D,|αί/3(Λ;)|g λ(χ)^D2\ai

o

l3(x)\.

LEMMA 2. C,λ(x)^|λ,-(x)- λk(x)\£ C2λ(x), /V k.

Let

(50) α(x)

(51) /3(x)

(52) δ(x) = max{\b'2\,\m'\/\al%\b[\/\aiη,\n'\/\a0\},

(53) y(x)

LEMMA 3. a(x)^Cδ(x).

LEMMA 4. β(x)^Cγ(x).

LEMMA 5. C A ^ x ^ l F ^ O c ) , * ) ! ^ C2λ
2(x).

LEMMA 6. \F,(λ,(x),x)\£Cλ3(x)a(x).

LEMMA 7. | [λt (jt) - A, (x )]FA (A, (x ), x ) ( g Cλ 3(x).

LEMMA 8. | [ λ t ( x ) - λy(x)]2Fλ(λy(x),x)| ^ CA4(x)

LEMMA 9. | FAA (A, (x), x) | g Cλ (x).
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LEMMA 10. |FAx(A;(x),x)|g Cλ\x)a(x).

LEMMA 11. \λ'/(x)\^Ca(x)λ(x).

If A = (Ay(k)")t=i is an n x n matrix, we define the norm ||Λ || by
= nmaxp \A,k\.

LEMMA 12. | Λ , ( J C ) | | ^ Ca(x).

LEMMA 13. tl^O'(Λ;)TO(Λ:)| |^ Ca(x).

LEMMA 14. | |Γ 2 ( j t ) | | ^ Cα(x )/λ(x).

LEMMA 15. \\T'2(x)\\^ C{a2(x)+ β(x)]/λ(x).

LEMMA 16. [E + Γ2(x)]"' exists and is continuous for x S x0, and

LEMMA 17. B(x) exists and is continuous for x g x 0 , and \\B(x)\\^
C[a2(x)+β(x)]/λ(x).

We note that Lemmas 16 and 17 depend on the fact that
limx_ooα(x)/λ(jc) = 0, which follows from Assumptions II and III.

LEMMA 18. | |B(JC) | | is integrable on [xo?°°)

We note that Lemma 18 follows fromLemma 17, and Assumption V.
It is now possible to show that (48) has three linearly independent

solutions which satisfy certain specified boundary conditions at
infinity. To that end, we observe that a fundamental matrix Z0(x0, x) for
the homogeneous equation

(54) z ' = (Λ0 + Aι)z, x^Xo,

is given by

(55) Zo(jto,x)= diagonal [exp Γ (λ,(ί)+λ ;

( I )(/)) * ] .
L J XO J

Putting

(56) Z(x)=U(x)Zo(xo,x),

we find that Z(x) is a matrix solution of (48) for x ^ x0 if U(x) satisfies
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(57) U(x)=C + (KU)(x), x ^ JCO,

where C is an arbitrary constant matrix, and K is a linear operator on
matrices U(x) such that

(58) (KU(x))jk= Γ (Zo(t,x)B(t)U(t)Zo(x,t))ikdt9
Jxjk

xjk being an arbitrary number in the interval [xo?00].
Let M be the Banach space of continuous matrices V(x) on [x0, °°),

with || V\\M = supxsχo|| V(JC)|| < oo. For reasons that will appear in Lem-
mas 19 and 20 below, if Assumption VI (a) or (c) holds, we take xjk = o°; if
Assumption VI (b) holds, we take x]k - x0. Also, we take C = E.

LEMMA 19. If x0 is sufficiently large, then K: M-+M, and | | K | | M =
1/2.

Proof From (58) it follows that if V G M and if x ^ x0, then

\((KV)(x)),k\^

(59)
X

By (41), (43) and (38),

= (1/2) [log FΛ (λy (x), x) - log Fλ (A, (/), ί)]

(60) - (1/2)[log FA (A* (x),x)~ log FΛ (λ t (/), t)}

b[(s){[Fλ(λi(s),s)Γ-[Fκ(λk(S),s)Γ}ds.

It now foΠows from (36), (49), Lemma 1, Lemma 5, and Assumption IV

that I j"X(λ'I)(s)-λi1)(s))ίί5 is bounded for ί, x ^ JC0. Hence, if V G M,

then
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\((KV)(x))jk

(61)

x δ

By our choice of xjk, if Assumption VI (a) or (b) holds, exp Re(λ;(s) -

λk(s))ds^l. If Assumption VI (c) holds, then J Re(λ, ( s ) -

λk(s))ds ^ Ci for ί, x § xOj and therefore exp Re(λ y(s)- λk(s))ds S

expCi. It follows from (61) that

(62) \((KV)(x))ik\^cΓ \\B(t)\\dt\\V\\M, x^x0.
Jxo

Hence,

(63) \\(KV)(x)\\ = 3max\((KV)(x))lk\*3cΓ \\B(t)\\dt\\V\\M.

roc

If we now choose x0 so large that ||JB(f)||A ^ 1/6C, then ||X||M =
Jxo

111. This proves Lemma 19.

LEMMA 20. // x0 is sufficiently large, equation (57) has a unique
solution U(x)EM. It is true that \\(KU)(x)\\ = o(l) as x -»«>. [/(*)
can be written in the form

(64) [ / ( * ) = £ + o(l), jcgjco.

Proo/. The existence and uniqueness of U(x) follows from Lemma
18 and Banach's contraction mapping theorem or successive
approximations. To prove that ||(Kl7)(x)|| = o(l), we observe that if
Assumption VI (a) or (c) holds (so that we take x}k = °o)? then from (61),

\((KU)(x))jk \ ^ c Γ \\B(t)\\ dt \\U\\M = o ( l ) . If Assumption VI (b) holds
J X

(so that we take xjk = x0), then from (61),

+ jj\B(t)\\dt]\\V\\M,

where x ^ xx g xQ. From this inequality it is seen that \{(KU){x))jk \ =
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o(l) also when Assumption VI (b) holds. (64) follows from (57) and the
fact that | | ( J K Ί / ) ( J C ) | | = O{\). This completes the proof of Lemma 20.

THEOREM 1. Under Assumptions I-VI, the equation Ly = iσy, x ^
r, σ/ 0, has three linearly independent solutions yk, k = 1,2,3, of the form

(65) y , = [ l +

vv/iere ί/ιe λ k(ί) are giuen by equation (22).

/. By (56) and (64), there is a solution matrix Z(x) for (48) of

the form

(66) Z(x) = [E + o(l)]Z0(xθ9x% x ^ x0.

If x0 is sufficiently large, det[£ϊ + o(l)] ^ 0 for x ^ x0 and therefore Z(x)
is a fundamental matrix for (48). By (66) and (27) a solution matrix for
(25) is given by

(67) W(x)= T0(x)[E + T2(x)][E + o(l)]Z0(x0,x), x^x0.

Since [E + T2(x)]~1 exists by Lemma 16 and Tόι(x) exists by (31), W(x) is
a fundamental matrix. By Lemma 14 and the fact that
limx_^ooa(x)/A(x) = 0, we see that

(68) W(x) = T0(x)[E + o(l)]Z0(X(h JC), JC ^ JC0.

Let y^(x)= w u (x) , k = 1,2,3, where WU(JC) is the element in the first
row and fcth column of W(x). Then, by the equivalence of (24) and
(25), yk is a solution of (24), and by (68) and (30),

(69) yk = [l + o(l)] e x p Γ [λk(t)+λ

F r o m t h e e q u a t i o n s y k = w f c l , y f = w k 2 , y l = — ( i b 2 ) ι m w k 2 + (ib2)
 ι w 3 , w e

see that W(yl9 y2, y3)(x) = det W(x) έ 0, x ^ χ0, where W(yu y2, y3) is the
Wronskian of yu y2y y3. Hence, yu y2r y3 are linearly independent for
x ^ JCO. By (43), (41), (38), (39), (49), Lemma 5, Lemma 1 and Assump-
tion IV we see that

(70) expΓ λk

1

x ^
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(65) now follows from (69), (70) and the fact that | αo|—>°°, so that
aG(x)>0 or ao(x)<O for x ^ x0. This finishes the proof of Theorem 1.

3. Asymptotic formulas for the λk (x ). In this section we
take the coefficients of the operator L of equation (1) to be the following
on the interval [I, 0 0):

(71) b2(x) = l,

(72) bι(x)=axa, α<2γ/3,

(73) <*!(*)= foe*",

(74) ao(x)=cx\ γ > 0 , c^O.

LEMMA 21. If b/cυ3/ 3/22/3, then the coefficients of L given by
(71)-(74) satisfy Assumptions I-V with

(75) d = b/c 1/3

The proof is straightforward. We note that it is required in (74) that
γ >0 and c^ 0 in order that ao(x)-^ + °° or α()(jc)-> - oo (Assumption
I). The exponent γ/3 occurs in (73) in order that limx^x a J all3 = d
(Assumption II) with the possibility that d^ 0. The inequality a < 2γ/3
is required in (72) in order that bJal/3= o(l) (Assumption II).

LEMMA 22. If b/c1/3 < 3/22/3, the coefficients of L given by (71)-(74)
satisfy Assumptions I-VI.

Proof Since d = b/cυ3 < 3/22/\ hQ(η) = 0 has one real negative root
and two complex conjugate nonreal roots. Suppose 1702 = p + iq, 1703 ~
p - iq, q > 0. Then from (23) one sees that Assumption VI is satisfied;
in fact, (a) or (b) is true for each pair /, k. This proves the lemma.

If d>3/22 / 3, then ho(η) = O has three real roots. In this case in
order to check Assumption VI it is necessary to have asymptotic formulas
for the λk(x) which are more precise than (23). We obtain these by use
of (20).

LEMMA 23. Suppose the coefficients of L are given by (71)—(74) and
that b/cυ3/ 3/22/3. Then the roots λk(x) of (7) are given by
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λk(x) = iaι

o

l3{ηOk +[ηOk - υnd]{6c)-\iD)

+ ac-mvwχ-" + [-(7,0, - vnd) +

- ac~2l3[vl0+ υ2ld\{6cy\iD)χ-v

( 7 6 ) + O(D2χ-

[(5/3)(η0* - vnd)-3v22d
2

O(D2χ-η+

Σ
>=4

wn + 1,o(x)(ac-2 / 3)n + 1x- ("+ 1 )"

where n is an integer, n ^ 4, ίΛe rJS are constants which depend on ηOk and
are real when ηOk is real, wn+lfi(x) and wn+2,o(x) are complex functions
which are bounded as x —*• °°,

(77) v = 2γ/3 - a > 0,

D =

=o(l) as

If ηok is real,

Reλt(jc)= all3{[vnd - ηok](6c)"D

+ ac-2l3[vι0+ dv2ι](6c)-'Dx"

- [(5/3)(vnd - ηok)+ d2(3v22+

+O(D2x")+O(Dx -2v)

Σ ί O(Dsx(is)")+ O(Dxin+2)v)
/=4 s = l

ίr is true that

(80) o11 = ij§k[ΛS(τ,oOΓ.

(81) vnd-Vok=3[h'o(Vok)]-\

(82) ϋ1o=ηo*[/iί(i?o*)Γ1,
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(83) υ2x = η

(84) V22 = 2-1ηl

(85) V33 = 2-'η

Proof. From (5) and (71>-(74) we see that

(86) τ(x)=alβ(x)t(x),

(87)

As x —>oo,

(88) ί ( x ) = l + (6c)-'(iD)-(6c)- 2(iD) 2 + (5/3)(6c)-3(iD)3+ O(D4).

The functions /Ί(x) and f2(x) of (16)—(18) are given for x—>«> by

(89) /,(*) = d[-{6c)-\iD) + 2{βc)-\iDf-{UI3){6c)-\iDf+ O(D%

f2(x) = ac-mχ-"[l - 2(6c)-\iD)

+ 5(6c Y\iD Y - (40/3) (6c y\iD f+

Now, h~ι = /io'[l - (η/Λo)(''?/i + Λ)]"1- Let n be a positive integer. For
η G Ck and for x § x0,

= Λo-'f l + Σ (v/h0y(vfι+f2)1+(v/hor
l(vfl+h

7=1 \5=0

n + 1

Σ
5=0
Σ an+1,s(v)fm+i-^ -

Hence,

ηhηh-ι=ηhΌh?+Σ ΐ bis{η)f\fΓ
7=1 s=0

(92) + f Σ c+I,,(τ/, χ)/ί/r'-+ Σ
Ls=o 5=o

Substituting (92) into (20),
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n + 1

/=1 5=0

n + 1

(93) + Σ
s=0
n+2

where the vjs are constants which are real if ηok is real, and the functions
wn+i,s(jc) and wn+2,s(x) are bounded as JC-* -poo, if we substitute (93)
into (22), we obtain for x ^ JC0,

Γ 3

Λ f c (x)= icio \tηok -f X X VjSttιt
}2

(94)

+ *vn+1,0r/2"
+1 + Σ

5 = 1

n+2

We now use (88), (89), (90) to calculate asymptotic expansions for each of

the terms tηOk, tfif' Γ' We obtain

ίτjOfc = Vok + τjo* (6c Π i D ) - τ,0 t(6c)-2(/D)2 + (5/3)η0fe (6c )"3(ίX> )3

ί/, = d [ - (6c)- ](iD) + (6c)" 2 ( iD) 2 - (5/3)(6c)-3(iD)3+ O(U 4 )],

tf2 = ac'2liχ-"[l - (6c)-'(iD) + .O(D 2)], etc.

Substituting into (94), we obtain (76). (79) follows immediately from
(76). From the way in which (93) was derived, we see that vu =

(2πi)-1 I [η3h^-2η2h0]hό2dη. Hence,
Jck

ϋ11 = (2πi)-' ί [η2h?-(d/dη)(η3hϊι)]dη
Ja

= (27ΠT1 f η2h?dη = ηOk[hό(Vok)Γ.
Jck

This proves (80). (82)-(85) are proved similarly. (81) follows from (80)
and the fact that d = (ηlk+ l)ηόϊ This proves Lemma 23.
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Let

μ = min{^ + 1 + γ/3, γ} if aa/0
(95) .- πv ; = γ if aa = 0.

Then, as x ->co?

(96) D = O(xμ).

In the following we shall consider three cases. Case 1 is the case
that v = 2μ, which occurs if a = -4γ/3. Case 2 is the case v>2μ,
which occurs if a < - 4γ/3. Case 3 is the case v < 2μ, which occurs if
- 4 γ / 3 < α <2γ/3.

LEMMA 24. Suppose the coefficients of L are given by (71)—(74) and
that b/cι/3/ 3/22/3. // ηok is real, Reλfc(x) has the follow/ing asymptotic
expansions:

Case 1. v = 2μ {i.e., a= — 4γ/3). Then,

+ ac~2β[υm+ dv21](6cy'Dχ-2»
( 9 7 ) - [5(h'0(η0k)y> + d2(3v22+ dv33)](6c)'}D3

2. v>2μ (i.e., a < -4γ/3).

λk(x)=alβ{[h^ηm)]-ί(2cϊ1D
( 9 8 )

e >0.

Case 3. i/ < 2μ (i.e., -4γ/3 < a < 2γ/3). ΓΛen,

ReA»(x)=

(99)

where e > 0.
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Proof. (97) and (98) follow directly from (79). If we choose n so
large that nv > μ, then we also see that (99) follows from (79). This
proves Lemma 24.

LEMMA 25. If b/cυ3 > 3/22/\ b/cυ3 ϊ 3/21/3, and σϊ aa/2, then the
coefficients of L given by (71)-(74) satisfy Assumptions I-VΊ.

Proof. Since d = b/c1/3 > 3/22/3, ho(η) = 0 has three real
roots. Because d^ 3/21/3, hΌ(η01), h'0(η02), hό(η03) are all distinct. From
(78) and (95) we see that D = Cxx'μ[l + o(l)], where d ^ O because
σ^ aa/2. By Lemma 24,

From (100) and (74) it follows that Assumption VI is satisfied. This
proves Lemma 25.

LEMMA 26. Suppose the coefficients of L are given by (71)-(74) and
that b/cm = 3/21/3. Γ/ien the roots of ho(η) = 0 are ηm = 2~1/3(1 -3" 2),
η<>2 = 2"1 '3, r/03 = 2- I / 3 (l + 3" 2 ), αnrf

(101) h'0(ηoι)=hί(ηω)μhϊ(ηo2),

(102) ϋIO(i7oi) + dϋ2.(τ?oi) = 3"'2-2/3( - 2 + 3"2),

(103) ϋlo(τ7o,) + dv2l(η03) = 3->2-2/3( - 2 - 31'2),

(104) 3ϋ 2 2 (η 0 1 ) + dΌ33(η01) = 3- 2-2/3[250 - (143)31/2],

(105) 3ϋ 2 2 (η 0 3 ) + dϋ33(ηo3) = 3"'2-2/3[250 + (143)31/2].

The proof follows immediately from (80)-(85) and the fact that

LEMMA 27. Suppose that b/cm = 3/21/3, α < - 4 γ / 3 . Then, the
coefficients of L given by (71)-(74) satisfy Assumptions I-VI.

Proo/. Since α < - 4 γ / 3 , v + l + γβ>y. By (95), μ = γ. By
(78), D= -2σx~Ύ(l + o(l)). From (101) and (98) it follows that
Re[λ 2(x)- λ,(x)] and Re[λ 2(x)- A3(x)] satisfy (a), (b) or (c) of Assump-
tion VI. From (98), (101), (104), (105),

Re[λ3(jc)-
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where d ^ O . Thus, R e [ λ 3 ( x ) - A^JC)] also satisfies (a), (b) or (c) of
Assumption VI. This proves Lemma 27.

LEMMA 28. Suppose that b/clβ = 3/21/3, - 4 γ / 3 < a <2γ/3, σ^
aa/2, a 7^0. Then, the coefficients of L given by (71)-(74) satisfy
Assumptions I-VI.

Proof. It follows from (78) that D = Cλx~μ{l + o(l)), where d ^ 0
because σϊ aa/2. By (101) and (99), Re[A 2 (x)- A2(JC)] and Re[A 2(x)-
A3(JC)] satisfy (a), (b) or (c) of Assumption VI. From (99) and
(101)-(103), R e [ λ 3 ( x ) - λ 1 ( x ) ] = C 2 J c ^ + γ / 3 ( l + o(l)), where d ^ O be-
cause a^ 0. Hence, R e [ λ 3 ( x ) - λx{x)\ satisfies (a), (b)or (c) of Assump-
tion VI. This proves Lemma 28.

LEMMA 29. Suppose that b/clβ = 3/21/3, α = - 4 γ / 3 , σ V
-22/3αc4/3/143. Then, the coefficients of L given by (71)-(74) satisfy
Assumptions I-VI.

Proof Since a = - 4 γ / 3 , μ = γ. Hence, D = - 2 σ x γ ( l + o(l))
by (78). From (101) and (97) it follows that R e [ λ 2 ( x ) - λ^jc)] and
Re[λ2(x) - A3(x)] satisfy (a), (b) or (c) of Assumption VI. From (97) and
(101)-(105), R e [ λ 3 ( x ) - X,(x)] = d*~ 8 γ / 3 ( l + o(ϊ))9 where d ^ 0 because
σ V -22/3αc4/3/143. Hence, Re[λ 3 (jc)- A^JC)] satisfies (a), (b) or (c) of
Assumption VI. This proves Lemma 29.

LEMMA 30. Suppose the coefficients of L are given by (71)-(74) and
that b/cυ3 ^ 'ill213. If ηOk is real, Reλ k (x) has the following asymptotic
expansions:

Case A. Suppose a = 0. Then,

(106) Reλ,(x) = - σ[h'0

Case B. Suppose a^0.
(i) Suppose K2γ/3.
(a) If Ka<2γ/3, then

(107) Re λk (x) = aac ~2i\2h 'o(ηOk )]~ιx - « r / 3 ( 1

(b) If a = 1 and σέ a/2,

(108) Re λk (x) = (α - 2σ) [2Λ Ό(ηOk )Yιcmx ^ / 3(1 + o (1)).
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(c) // a < 1, (106) is valid.
(ii) If a< 2γ/3 ^ 1, (106) is valid.

The proof follows directly from Lemma 24 with calculation of μ and
D in the various cases.

4. The deficiency index of the operator L. In the
following, L2 will denote the space L2[l,°°), i.e., the space of complex-
valued functions on [I,0 0) which have Lebesgue square integrable
absolute values.

LEMMA 31. Suppose the coefficients of L are given by (71)-(74) and
that b/c1/3<3/22/3, so that ηok = uk + ivk, where v2>0 and v3<0. Then

the function /&(*) = #o 1/3(x)exp I λk (t) dt, x ^ JC0, has the following prop-
erties: Jxo

(i) Ifk=2 and c>0orifk=3 and c < 0, then fk EL2forσ>0
and for σ < 0.

(ii) // k = 2 and c < 0 or if k = 3 and c> 0, then fk £L2forσ>0
and for σ < 0.

Proof We shall give an intuitive proof which can be made precise
as in Naimark [9, §23]. We have by (23) that

- \c |- 1 / 3;r γ / 3 exp ί - vkc
lβ Γ Γβdt]

= |c|-1 / 3x"W 3exp[-i;kc

-» +00 if t> kC 1 / 3<0.

This proves (ii). Also,

|/k(jc)|2-|c|-2/3Jc^/3exp[-2z; f cc
1/3JX r»dt]

Γ fx 1
< •> -2/3 v γ/3 ~v»» I % . -1/3 /y/3 J* I

= I C JC ^ X P ~ ZUfcC I t (It \
L Jxo J

= (-2ι;fcc)-1(d/dx)expί-2ι;fcc
1/3Γ r»dtλ.

This proves (i).

LEMMA 32. Suppose the coefficients of L are given by (71)-(74) and
that b/cι/3 έ3/22β. If ηok is real, the function f(x) = αo"

1/3(x)
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exp I λk(t)dt, x =ϊ x0, has the following properties:

ί(ί) If 2γ/3> I andσϊ a/2, then f E L2forσ>0 and forσ <0.
(II) // 2γ/3^1, then f E L2 for σ/h'0(η0k)>0, and f£L2 for

Proof. Case A. Suppose a = 0. By (106),

-χ J*

From this last expression we see that (I) and (II) are true for Case A.

Case B. Suppose a^O. If 1< a <2γ/3, then by (107),

= (aaΓh'0(η0k)(d/dx)exv{aac-2ii[h'0(η0kψj* r "

Since j r-'-2^/3 ^ converges, we see that (I) is true if 1< a < 2γ/3. If
) xo

a = K2γ/3 and σ^ a/2, then by (108),

\f(x)\2~c-2i3χ-2^exp{(a-2σ)c-2l3[h'0(η0k))->jX

= (α-2σ)-1/iί(τ?0/i)

x(ί//ix)exp{(fl -

Since I Γ2y'3 dt converges, we see that (I) is true for α = 1 < 2γ/3 and
J xo

σ / a/2. If a < 1< 2γ/3 or if α < 2γ/3 ̂  1, then by Lemma 30, (106) is
valid and therefore (I) and (II) follow as in Case A. This proves Lemma
32.

Let n+ denote the dimension of the space of solutions of Ly = iσy,
x ^ r, which are in L2[r, oo) for σ > 0. It is known that n+ is independent
of σ. Let n_ denote the same number for σ < 0. We shall call n+ and
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n_ the deficiency numbers of L, and we shall call the pair (n+, n_) the
deficiency index.

THEOREM 2. Suppose that the coefficients ofL are given by (71)-(74)
and that b/cυ3 < 3/22/3. // 2γ/3 > 1, n+=n. = 2. If 2γ/3 S i , n+ = 2,

Proof. By Lemma 22, the coefficients of L satisfy Assumptions
I-VI. By Theorem 1, Ly = iσy, x ^ 1, σ ^ 0, has three linearly indepen-
dent solutions yk given by (65). By Lemma 31, for c >0, y2E L2 and
y3 £: L2 for σ > 0 and for σ < 0; for c < 0, y2 £ L2 and y3 E L2 for cr > 0
and for σ < 0. By Lemma 32, if 2γ/3>l , yx E L2 for σ > 0 and for
σ < 0, σ ^ a 12; if 2γ/3 S i , yi E L2 for σ > 0, and y2 £ L2 for σ < 0,
because hΌ(ηOι) > 0. It follows that if 2γ/3 > 1, then n+- n_ = 2, and if
2γ/3Sl, then n + = 2. It also follows that if 2γ/3Sl, then n_ = 1,
provided we can show that for c > 0 and σ < 0 no nontrivial linear
combination of y1 and y3 is in L2, and for c < 0 and σ < 0 no nontrivial
linear combination of yλ and y2 is in L2. We deal with the case c >0,
σ < 0; the case c < 0 and σ < 0 is similar. It is sufficient to show that
y1 + By3 £ L2 if B^ 0. By Theorem 1, (23), and Lemma 30,

= [l + o(l)]expc1/3ι>3 f tyβ[l + o(l)]dt^>0 as x^+n.
J xo

Hence, for x g xu \yjy3 + B | 2 S K, where K is a constant. Thus

Γ | y i + βy 3 | 2 dx= Γ |y3|
2|yi/y3 + B | 2 Λ c S ί : Γ \y3\

2dx.
J XI J l l Jxi

It follows that y, + By3 fέ L2. This completes the proof of Theorem 2.

THEOREM 3. Suppose that the coefficients of L are given by (71)-(74)
and that b/cm> 3/2213.

Case A. Suppose 6/c'V3/21/). // 2γ/3>l, n+ = n_ = 3. //
g l , n+ = 2, n_ = 1.

Case B. 5κppose 6/c1/3 = 3/21/3 anda^ -4γ/3. //2γ/3 > 1, n+ =
n_ = 3. 7

C. Suppose 6/c1/3 = 3/21/3, -4γ/3< a <2γ/3, a ^ 0 . //
2γ/3 > 1, n+ = n_ = 3. 1/ 4γ/3 - 1 ̂  a < 2γ/3 < 1, ίΛen n+ = 2, n_ = 1.
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Proof. By Lemmas 25-29, the coefficients of L satisfy Assumptions
I-VI in all three cases, provided σ^ aa/2 and σ2 ^ -22/3ac*/3/143.
Hence, if we avoid these values of σ, Ly = iσy, x ^ 1, σ^ 0, has three
linearly independent solutions yk given by (65). By Lemma 32 we have
the following: (I) If 2γ/3 > 1 and σ^ α/2, then yl9 y2, y3 E L2 for σ > 0
and for σ < 0; (II) if 2γ/3 ^ 1, then for σ > 0, y l5 y3 E L2 and y2 £ L2,
while for or < 0, y2 G L2 and y1? y3 fέ L2. By (I) we see that if 2γ/3 > 1,
then n+ = n_ = 3 in all three cases. If 2γ/3 ^ 1, then n+ = 2 and n_ = 1,
provided we can show that no non-trivial linear cΘmbination of yι and y3

is in L2. Using (106), this can be proved for Case A as in the proof of
Theorem 2. In Cases B and C it is necessary to use (97)-(99). The
assumptions in Cases B and C enable one to do this as in the proof of
Theorem 2. This completes the proof of Theorem 3.

THEOREM 4. Suppose that the coefficients of L are given by (71-74)
(without the requirements that a<2y/3, γ > 0 ) . Then the deficiency
index of L is as follows for the indicated values ofthe parameters γ, a:

I. γ > 3 / 2 , α < 2 γ / 3 : (2,2) if b/cυ3< 3/22/3; (3,3) if b/cυ3> 3/22/\
6/c1 /V3/2V 3.

II. 0 < γ ^3/2, a < 2 γ / 3 : (2,1) ifb/cmέ 3/22/3 andb/cι/3/ 3/21/3.
III. γ^O, α ^ 0 : (2,1).
IV. 0 < α ^ l , α>2γ/3: (2,1).
V. 1< α, α > 2γ/3: (3,3) // α > 0; (2,2) i/ a < 0.

The statements for regions I and II follow from Theorems 2
and 3. Ill follows from the fact that n+ + n_ = 3 by Dunford and
Schwartz [4, XIII. 10. E.Π(5)] and from the fact that 2 ^ n+ and 1 ̂  n_ by
Everitt [5] or Kogan and Rofe-Beketov [8]. IV and V follow from
Unsworth [12]. This proves Theorem 4.

REMARK 1. Note that a = 2γ/3, γ > 0 , is the only portion of the
(γ, α)-plane not included in Theorem 4.

REMARK 2. The results of §7 of Pfeiffer [5] are included in
Theorem 4 except for the case c = 0.
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S -SPACES IN COUNTABLY COMPACT SPACES
USING OSTASZEWSKΓS METHOD

JOHN GINSBURG

A method adapted from that used by A. J. Ostaszewski is
used to construct 5- spaces as subspaces of given
spaces. Assuming the set-theoretic principle O, it is shown that
every countably compact space containing no nontrivial con-
vergent sequences contains a perfect 5-space. As a corollary,
assuming O, if X is a countably compact F-space, then X
contains a hereditarily extremally disconnected, hereditarily
normal, perfect 5-space.

1. Introduction. The set-theoretic principle O, due to Jen-
sen [3], has found many interesting applications in topology, particularly
the construction of Souslin lines and various S-spaces. The basic
technique for constructing S-spaces from O is due to A. J. Ostaszewski
[6], and has been modified and applied in constructing other interesting
topological spaces, notably in [5] and [8]. Roughly speaking, the
method involves constructing a space having desired properties by
defining its topology inductively over more and more of the space (and in
some cases refining a given topology) using some principle of enumera-
tion.

Here we will show how the method can be used to construct
S-spaces as subspaces of given spaces. That is, rather than building up a
space by inductively defining its topology, the desired examples will be
obtained by working within a given topological space and extracting a
subspace.

Our principal topological references are [2], [7] and [10]. For
set-theoretic notions we refer to [4].

For the reader's convenience we now recall a few notions from
topology which we will employ.

A space X is an S-space if X is regular, hereditarily separable and
not Lindelόf.

X is countably compact if every countable covering of X by open
sets has a finite subcover.

For a completely regular space X, βX denotes the Stone-Cech
compactification of X.

A subset J\ of X is C*-embedded in X if every bounded, continuous
real-valued function on A admits a continuous extension to X. A
cozero-set in X is a set of the form {p G X: /(p)τ^ 0} where / is a
continuous real-valued function on X. X is an F-space if X is com-
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pletely regular and every cozero-set in X is C*-embedded in X. A
completely regular space X is extremally disconnected if the closure of
every open subset of X is open.

For the basic information on F-spaces and extremally disconnected
spaces, the reader is referred to [2] and [10]. We will make use of the
following two facts, established in 1.62 and 1.64 of [10].

1.1. If X is σ-compact and locally compact, then βX - X is.a
compact F-space.

1.2. If X is an F-space then every countable subspace of X is
C*-embedded in X.

For the consistency of O with the axioms of set theory the reader is
referred to [3]. We will not need a precise statement of O, rather we
will use the following consequence of O derived in [6].

1.3. Let limωj denote the set of limit ordinals less than ωx. Then
there is a family {SΎ: γ E limωi} of subsets of ωλ such that each Sγ is a
cofinal subset of γ arid such that for every uncountable subset S of ωx

there is a γ E limα>i with Sy C 5.
It is clear we may assume that each Sγ is a simple ω -sequence

increasing to y in 1.3. This is the form in which we will apply 1.3. (the
conclusion of 1.3 is often referred to as "club"; see [7])

2. S-subspaces of countably compact spaces. We now
assume the conclusion of 1.3. This assumption will enable us to
construct S-spaces in certain countably compact spaces. It is apparently
not yet known whether 1.3 is equivalent to O or whether it is strictly
weaker. It is known that O is equivalent to the conjunction of 1.3 and
the continuum hypothesis, and so this question amounts to whether or
not 1.3 implies the continuum hypothesis, (see [7])

All hypothesized spaces are assumed to be infinite.

2.1. THEOREM. If X is a regular, countably compact Hausdorff
space containing no nontriυial convergent sequences, then X contains a
perfect S-space.

Proof. Let {Sy: γElimωi} satisfy 1.3 where each Sy is an ω-
sequence increasing to γ. Let X satisfy the hypotheses of the
theorem. We inductively select points (xξ: ξ E ωλ) in X, and open sets
(Gξ: ξE ω2) in X so that

(i) for all ξ, xξ E Gξ

(ii) ξ<η-+Xil£Gξ

(iii) for all limit ordinals γ and all n E ω, xΎ+n Ec\{xξ: ξ E Sγ}.
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To get the desired sequences (xξ: ξ E ω^ and (Gξ:ξEωι) we
construct (xξ: ξ < γ ) and (Gξ: ξ < y) by induction on the limit ordinal
y. To start the construction, we choose a countable discrete subset
(xn: n E ω) of X, (X is assumed infinite), and a sequence of open sets
(Gn: n E ω) in X such that jcn E Gn and m^ n-^xm^ Gj

Now suppose σ E limω! and for every limit ordinal γ < σ we have
chosen the sequences (xξ: ξ < γ) and (Gξ: ξ < y) satisfying (i), (ii), and
(iii). If σ is a limit of limits, we simply gather together all the xξ 's and
Gξ's previously constructed to form (xξ: ξ < σ) and (Gξ: ξ < σ), clearly
satisfying (i), (ii), and (iii). So we need only consider the case where
σ = γ + ω for some limit ordinal γ. Thus, having the sequences (xξ: ξ <
y) and (Gξ: ξ < γ) we must define the points (xy+n: n E ω) and the open
sets (Gy+n: n E ω). Consider the infinite set Rγ = {xξ: ξ E Sγ}. Since
X is countably compact, every countable subset of X has a limit point in
X. But since X contains no nontrivial convergent sequences, every
countable set has infinitely many (in fact uncountably many) limit
points. Thus c\Ry - Ry is infinite, and so contains a countable discrete
subspace (x r+π: n E α>). Choose a sequence of open sets (Gγ+n: n E ω)
which witnesses this discreteness, that is, with xγ+n E Gγ+n and such that
m^n^>xy+m<£ GΎ+n.

We now check (i), (ii), and (iii) for (xξ: ξ < y + ω) and (Gξ: ξ < γ +
ω). (i) is clear, as is (iii), by virtue of the induction hypothesis and the
selection of the points xy+n in clRy. To verify (ii), because of the
induction hypothesis and the choice of (xy+n: n E ω) and (Gy+n: n E ω),
it is sufficient to check the following:

If ξ < y and n E ω, then jc γ + n£ Gξ. But Sγ is an ω-sequence
increasing to γ, and so there are at most finitely many ordinals in Sy

which are less than ξ. By property (ii) of the induction hypothesis, this
means there are at most finitely many xη with η E Sy which lie in
Gξ. But xy+n is a limit point of Ry, so every neighborhood of xy+n

contains infinitely many xη with η E SΎ. In particular, xy+n fέ Gξ.
This completes the inductive construction, and results in sequences

(xξ: ξ E ωi) and (Gξ: ξ E ωi) satisfying (i), (ii), and (iii).
We now claim that Y = {jĉ r ξ E ω j is a perfect 5-space. The

verification of this is essentially identical with the argument given in [6],
so we will be content to sketch that argument here. That Y is not
Lindelδf is immediate from (ii) and (i). Any countable subspace of Y is
separable, and if {xξ: ξ E S} is an uncountable subspace of Y, there is, by
1.3, a y E limω! such that Sy C S. Using (iii) we see that {xξ: ξES and
£ < γ } is a countable dense subset of {xξ: ξ E 5}. This proves Y is
hereditarily separable. Since γ < η -» xη E cl{Xf: £ E Sγ}, the same ar-

1 The fact that every infinite Hausdorff space contains a countably infinite discrete subspace is

well-known and easy to prove. A proof may be found in 0.13 of [2].
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gument shows that every closed subset of Y is either countable or
co-countable, from which it is immediate that every closed subset of Y is
a Gδ in Y, that is, Y is perfect.

2.2. COROLLARY. // X is a countably compact F-space then X
contains a hereditarily extremally disconnected, hereditarily normal, perfect
S-space.

Proof. Using 1.2 it is easy to see there are no nontrivial convergent
sequences in an F-space, so the hypotheses of 2.1 apply. We show that
the S-space Y obtained in 2.1 is hereditarily extremally disconnected and
hereditarily normal under the present assumptions on X. Now, as is
well-known, a space is extremally disconnected if and only if each of its
open subsets is C*-embedded (see 1H in [2]), and a space is normal if and
only if each of its closed subsets is C*-embedded (see 3D in [2]). So to
verify that Y is normal and extremally disconnected hereditarily, it is
sufficient to prove that every subspace of Y is C*-embedded in Y. So,
let Z C Y, and let / be a bounded, continuous real-valued function on
Z. Since Y is hereditarily separable, Z contains a countable dense
subset D. By 1.2, D is C*-embedded in X, and so the function f\D
admits a continuous extension F to all of X. Clearly F\ Y is the desired
extension of /.

REMARK. 2.3. There is a large number of spaces to which these
results can be applied. One class of such spaces is furnished by 1.1. So
assuming 1.3 we see for example that /3R-R and βN - N contain
interesting 5-spaces.

REMARK. 2.4. The fact that O implies the existence of 5-spaces
which are extremally disconnected was previously observed by M. Wage
[9]. Wage's construction, like Ostaszewski's original method, involves
inductively defining a topology to get the desired example.

One significant difference between the S-spaces obtained in 2.2 and
the original S-space described in [6] is countable compactness. The
S-space in [6] is, in addition, countably compact, while the S-spaces in
2.2 are never countably compact. If CH is true this follows from the
results in [11] which imply that, assuming CH, every countably compact,
separable normal F-space is compact, and therefore Lindelόf. If CH is
false, we argue as follows: A slight modification of the argument in [1]
shows that a countably compact space of cardinality < c is sequentially
compact. Since our 5-spaces have cardinality ωi and contain no con-
vergent sequences, they cannot be countably compact if CH fails
either. Thus our 5-spaces constructed using 1.3 are not countably
compact.
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AND SOME RELATED RESULTS

B. GORDON AND S. P. MOHANTY

Dedicated to the memory of Professor T. S. Motzkin

Delaunay has proved that if e = apφ2 + bpφ + c is a unit in
the ring Z[θ], where θ'- Pθ2 + Qθ - R = 0, p is an odd prime,
φ = p'θ, ί = 0 and p X a, then no power em (m positive) can be
a binorm, i.e. em = u + vθ is impossible for m a positive integer.
Hemer has pointed out that in the above situation, em = u + vθ
is also impossible for m a negative integer.

In this paper the above result is extended as follows.

THEOREM 1. // e = aθ2 + bθ + c is a unit in Z[θ], where

θλ = dθ2 + eθ + / and pa || a, pβ || b, p being a prime, then en =
u + vθ is impossible for n^ 0 in the following cases:

(i) When 1 ̂  a ^ β and p is odd,
(ii) W/ien 2 ̂  α ^ β and p = 2,
(iii) W/zeπ β ^a <2β and p is odd,
(iv) W/zen β^a <2β-\ and p - 2.

As an application of this and some other similar theorems,
all integer solutions of the equation y2 = x 1 + 1 1 3 are de-
termined.

First we prove two simple lemmas.

LEMMA 2. // pa \\ ί q) then pa \ I . ), w/iβre ί/iβ prime p satisfies

pq<i<pq+ι and p a ~ ι a ( ^ . Λ Furthermore if p\n and p X i then

Proof. Let i = p" + r. Then 0< r <pq+ι-p". Hence

/ = 1

Since ΐlr

}=ι(pq + j)/rl is an integer not divisible by p and p α | | ί q ), we

have p°

If p\n and p X i then p /f r for / = p g 4- r. Then

r - 1
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is divisible by p. Hence pa+1\ ί . ).

Again from

n\( n-p" \ s\ (pq+ι-p"

w h e r e s=pq+1 — p q — l, w e s e e t h a t p a ~ ι \ ( q + ι ) , a n d t h e l e m m a is

p r o v e d .

LEMMA 3. Let e = aθ2+bθ + c be a unit in Z[θ]> where θ3 =
dθ2+eθ+f, ande~λ = a'θ2+b'θ + c'. Ifpa | |α, pβ\\b, where p is a prime
and aβ^ 0, then pa\\af and pβ\\br in the following cases:

(i) a^β<2a
(ii) /3^α<2)β

For a ^ β we have pa\\ar and pa \ b'.

Proof Since (aθ2+bθ + c)(a'θ2+b'θ + c')=Λ, we have,

(1) aa'd2+ ab'd + a'bd + aa'e + ac' + ca'+bb' = 0,

(2) aa'f+aa'de + ab'e + a'be + bc' + b'c = 0,

and

(3) aa'df + ab'f + a'bf + cc' = 1.

From (3) it follows that p Jf c'.

Case (i). From (1) we have cα' = 0 (modp α ) as α ^ β. Since
/? )( c we get α' = 0 (modp α ) . From (2) we obtain b'c = 0 (mod/;") for
α S β, whence ft' = 0 (modp α ) . If jS<2α, then (2) gives b'c=0
(modp β ) ? or b' = 0 (modp β ) . If p α + 1 | α ' , t h e n from (1) we have ac' = 0
(modpα + 1). Since p X c' we get a = 0 (modpα + 1), a contradiction. Hence
p α | | α r . Similarly if pβ+ι\b\ then from (2) we get k:' = 0 (modpβ + 1)
when β <2a. Again we arrive at a contradiction since p X c' and
pβ\\b. Hence p*31| b'.

(ii). Since 0 ^ a, (2) yields 6'c = 0 (modpβ). Then we have
ft' = 0(modpβ) for p Jf c. Using α<2/3, we get α'(6d + c) =
0(modpα) from (1). Then α' = 0(modpα) as pX{bd + c). If b1 =
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0(mod/?β+1), then from (2) we see that ί>c' = 0 (modpβ + 1), a
contradiction. Hence pβ\\b'. If a' = 0 (modpα + 1) we have from (1)

ac'+ bbf = O (mod/?α+1). We get a contradiction for a<2β. Hence
p«Wa>.

Proof of Theorem 1. Let n > 0. Case (i) and (ii). Let 1 ̂  a ^ β.
Since e is a unit, p X c. Moreover e = aθ2+ bθ + c =

p α (r0 2 + 50) + c where p J" r. Let (r02 + 5(9)' = afi2 + &,0 + c, , with αt, 6f

and Cι rational integers. Then

en = (aθ2+bθ + c)n = [c+pa(rθ2+sθ)]n = cn 4- ( ^ cn-χpa(rθ2+ sθ)

+ (2) cn-2p2a{a2θ
2+b2θ + c 2)+ + pna{anθ

2+bnθ + cn) = u + vθ.

Comparing the coefficients of 02, we have

(4) n c ^ p - r + W c " ' 2 p 2 α α 2 + + p^fln = 0.

If /? is an odd prime, we see using Lemma 2 that the first term of (4) is
divisible by a lower power of p than the others. If p = 2 and a ^ 2 the
same conclusion holds. Hence (4) can never be satisfied. So e" can
never be of the form u + υθ in these cases.

Cases (iii) and (iv). Now e = pβ(rθ2+ sθ)+ c, where p a~β | |r.
Then the coefficient of θ2 in e" = [c + p β ( r 0 2 + s0)]π is

(5) ncn-ιpβr+ (£j cn~2p2βa2+ + p n β a n ,

where (rθ2 + sθ)1 = afi2 + bβ + cι with ai5 fcf- and ct rational integers.
Again using Lemma 2 and the fact that a < 2/3, we see that the first
term of (5) is divisible by a lower power of p than the others if p is an odd
prime.

In case p = 2 and α < 2/3 - 1 the same conclusion holds. Hence (5)
can never be zero, i.e. en = u + vθ is impossible. This proves the
theorem for n > 0 .

We next consider en = u + v for n < 0.
Let n=-m and e"1 = α ' 0 2 + b'θ + c\ Then we have en =

(e-1)"1 = {arθ2+b'θ + c')m where m > 0 . From Lemma 3, we see that
p β | | α ' , pa\bf for α ^ j S , a n d p α | | α ' , p β ||ft' for β ^ α < 2β - 1, a ^ j8 <
2a and β g a < 2/3. Hence (α r 0 2 + b'θ + c')m = u + υθ is impossible
for m > 0. Combining these results we see that en = u + υθ is impossi-
ble for n ^ 0 , and the theorem is proved.
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We note that if the conditions of Theorem 1 are not fulfilled, then

en = u 4 υθ is possible for n > 3 ; examples are given in [2, page 417].

Very often the following theorem is useful.

T H E O R E M 4. Let e = aιθ
2+ bxθ + cλ be a unit in Z[θ], where Θ3~

pxθ -qx = 0. If pι=0 ( m o d 3 ) , then

(6) en = u + vθ

is impossible for n ̂  0 provided a{ψ^0 (mod 3), b\ 4 2aλcλ ψ^ 0 (mod 3), and

b2cx + axc
2

x + a2

xbxqx^0 (mod3).

Proof. Let en = α n 0 2 4 6n0 + cπ. Then we have

an+λ = ^ ( α ^ j + cO+fe^! !- c n α b

and

cn + 1 = απfei(?i + bna1qί 4- QCJ.

Hence we get α2 = a?/?! + b\ + 2fliC1? fe2

 = o\q\ + 26^1 + 2axbλpu and c2 =

c? + 2axbxqx. Then α 3 = a\p\ + 3axb\px

Jr 3a2

xcxpx + 3b2

xcx + 3axc\ +

3a2

xbλqu b3 = 2a\pλqx + 1>axb\qλ + *ia\cιqλ + 3a\bxp\ + fe?p! 4- 6axbxcxpx +

3&iC?, and c3 = 3a2bxpxqx + b\qx 4- 6axbxcxqx + a3

xq
2

x + c\. Suppose pi = 0

(mod3). Then α3 = 0 (mod3), fe3 = 0(mod3), and c3 = bxqx + axq
2

x + cx

(mod 3).

Since e3 is a unit, c 3 ^ 0 (mod 3) as α3 = b3 = 0 (mod 3).

Hence we have c3 = 1 or 2 (mod 3).

Suppose n = 1 (mod 3), and put n = 1 4- 3m in (6). We get

or

(α1(924-&1(9 4 c 1 ) ( ± l ) m =u + vθ (mod 3).

This congruence is impossible unless ^ = 0 (mod 3). Hence if ax^

(mod3), then nψ^l (mod3). Suppose n = 2 (mod3), and let n

2 4 3m. Then (6) gives

( α 2 θ 2 4- b2θ + c2) ( ± l ) m Ξ ii 4- υθ (mod 3).

This is impossible unless a2 = 0 (mod 3), i.e. b2

x + 2axcx =
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(mod3). Hence if b\-\-2aγcλ^^ (mod3), then n=2 (mod3) is

impossible. Finally suppose n = 3m in (6). Then we get

(7) (a3θ
2 + b3θ + c3)

m = u + υθ.

Now α3 = &3 = 0 (mod3), and a3 = 3b\cι + 3a1c\ + 3a\bιqι (mod9). If
b\cλ + axc\+ a\bλqλ^Q (mod3), then α 3 ^ 0 (mod9) and hence by
Theorem 1, (7) is impossible for m an integer, positive or negative.

Therefore n ~ 0 is the only solution to (6).

LEMMA 5 (Delaunay [2, page 385]). Ifbθ + c, where b^ 0, ± 1, is
a positive unit ofZ[θ] where θ3 - Pθ2 + Qθ - R = 0, then no power > 1 of
bθ + c can be a binomial unit. (In other words all the positive powers of
the positive unit bθ + c are of the form LΘ2 + Mθ + N, where L/ 0).

We prove two theorems which are useful when b = ± 1 .

THEOREM 6. Let e = ±θ + c be a unit in Z[0], where Θ3-PΘ2 +
Qθ - R = 0. 1/ 03 = O (modp2), w/tere p is α prime, then p )( c and
en = u + υθ is impossible for n> 1.

Proof. We have (e - cf = 0 (modp2). If p | c then e3 = 0 (modp)
where p3 |iV(e3)= ± 1 . Hence p Jί c. Let en = u + υθ, n > 1. Then

(c ± 0)" = cn + (") cn~\±θ)+ (") cn~202+ (3) cn'\± 0)3+

+ (± 0)" = w + ^0

Let 0" = rn0
2 + snθ + ίn. Then

(8)

As 03 = O (modp2), we have r ,=0 (modp2[l/3]). Since p ^ c,

). Suppose p M l Q I f P = 2 t h e n ^ l l Q I f P ^ 2 t h e n

P I ( ? ) ' ( ^ ) *# v - 1 ) a n ( ^ Pkl\ ( ) ' U s i n g L e m m a 2, w e s e e t h a t

II \£ J \3' \p -»-/ II \p /
each term of (8) except the first is divisible by at least pk+\ Hence

Λk + 1 , a contradiction.

THEOREM 7. Lei e = ±Θ + Cι be a unit of the ring Z[θ], where
Θ3-3PΘ2 + 3QΘ-R=O. If d + P^0 (mod3) and c2 + 2dP
(mod3), then en = u + υθ is impossible for n>\.
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Proof. Let ε = θ + cx. Then θ = β - cx. So from

Θ3-3PΘ2 + 3QΘ-R = 0,

we get

(6 - c 1 ) 3 - 3 P ( e - c 1 ) 2 + 3 O ( € - C l ) - l ? = 0 ,

or

β3 = 3(d + P)e2 - 3(c2 + 2dP + Q)e + (c\ + 3c?P + 3dQ + Λ).

Now N(e) = c3 + 3cjP+ 3dQ + R = ± 1.
For convenience we write e3 = 3re2-3se ± 1 . Now by hypothesis

3 | r and 3^5. Let e" = M + vθ. Then en = u + υ(e - cι) = uλ + u2e,
say. Suppose n = 2 (mod3). Then €2(€3)m =«!+ i^e, where n =
2 +3m. As€ 3 = ±1 (mod3), we have ± β 2 = MI + UI€ (mod3), which is
impossible. Let n = 0 (mod 3) and n^O. Putting n = 3m, we get

(9) (3re2- 356 ± l)m = uί+υ1€.

But this is impossible by Theorem 1, whether m is a positive or a negative
integer, for 3 )( r. Hence if n ̂  0, the only possibility is n = 1 (mod 3).

Let n = 1 + 3m, where m > 0. Then

β(3re2 - 3^6 ± l ) m = uλ + Uiβ,

or

(3r62 - 356 ± l)m = v,± uλ{e2 - 3r6 + 3s).

Let (re2 - sej = r,62 + 5,6 + ί, where rh sh tx are rational integers. Then

± ir- !3(r6 2 - 56) + (£} (± ir"232(r26
2 + 526 + ί2)

+ + 3m (rm€2 + 5m6 + ίm) = ± MJ62 + 3ΓM!6 + (ϋ! ± 35M0.

On equ< ing coefficients of 62 and 6, we obtain

(10) ( ± i r

and
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(11) - (± iy-^ms + (± l)m"232 (£j s2 + (± l)"-333 (™) s3 + + 3msm

Multiplying both sides of (10) by 3r and then adding to (11), we obtain

( ± l)m~l3m (3r2 - s) + ( ± l) m ~ 2 3 2 (™) (3r2r + 52)

(3r3r + s3) + . . . + 3- (3rmr + sm) = 0.

We see from this that 3 |ra(3r 2 -s). As 3Jίs, we have
31 m. Suppose 3k \\m. Using Lemma 2, we easily see that all the terms
except the first are divisible by 3fe+2, while the first is exactly divisible by
3k+1, which is impossible. Hence ra = 0, i.e. n = 1.

So if n is a nonnegative integer and en = u + υθ, then n - 0 or n = 1.
The proof for e = - 0 4- c, is completely analogous.

THEOREM 8. // 6 = fejfl + cx is a positive unit in Z[θ], where θ3-
PΘ2+QΘ-R=0 with D(θ) negative and έ -23, then en = u + vθ
implies that n ^ 0.

To prove this theorem we need the following well-known result.

LEMMA 9 (Nagell [8]). // η is a unit, D(τj)<0, 0 < 77 <l,then
ηn = x + yη implies that n ^ 0, except in the case when η3 + η2 - 1 = 0. In
this case η~2 = 1 4- η and D(η)= - 23.

Proof of Theorem 8. Let e = bγθ + Ci be a positive unit in
Z[θ]. Then 0 < e < 1. Since β is contained in Z[0], we get D(β) =
S2-D(θ). Hence D ( e ) < 0 and / -23.

Let en = w + 0. Since e = Z>!0 + Ci we have

( M + d) n = u + vθ.

Then ί>! 11? when n is a positive integer. In case n is negative, we put
n= -m where m is positive. Let e~ι = a'θ2+b'θ + c'. Then 03 =
PΘ2-QΘ + JR and ββ"1 = 1 imply

(12)

(13)
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and

(14) M ' £ + C i c ' = l .

Since (buc{)= 1, e = bλθ + cι being a unit, we conclude that bλ\a' and
bι\bf from (12) and (13) respectively. Then from

(bxθ + cx)
n = (afθ2+b'θ + c')m =>u+υθ,

we see that bλ \ υ.
Since e = b{θ + Ci, we have 0 = (e - cx)/fei, and hence en = u + υθ can be
written as

ye,

where JC and y are rational integers. Then by Lemma 9, n ̂  0. For
binorms in fields of degree higher than three, one can see [9]. Recently
Bernstein [1] has shown that units of the form e = l + xw + y w 2 , x , y G θ
exist for infinitely many algebraic number fields Q(w) of degree n ̂  4.

Now we solve y 2 - 113 = x3 to show the application of some of the
above theorems. The above equation is a special case of the well-known
Mordell Equation y 2 - k = x3, which has interested mathematicians for
more than three centuries, and has played an important role in the
development of number theory. In the range 0 < k ̂  100 it is known
that y 2 - f c = j c 3 , fc = 17 has the maximum number of solutions. In the
range 100<fc^200 it is found [6] that y2-k=x\ fc = 113 has the
maximum number of solutions. The complete solution of this equation
is given below.

Thejfundamental unit of Q ( V l l 3 ) is η = 776+ 73V113, and
Λ ( Q V l l 3 ) = l . 2 splits into two different prime ideals in the field
O(Vl l3) . Hence by Theorem 5 of Hemer [4], all the integral solutions
of y2— 113 = jc3 can be obtained from the following equations:

± y +

V I Ϊ 3 = (776 + 73Vll3) I ^ ) > x =

χ=(a2-ll3b2)/2,



ON A THEOREM OF DELAUNAY AND SOME RELATED RESULTS 407

ΊΪ3N1 , /11 +V113\ , la

2 (± y + VTΪ3) = [ j (776 + 73VTΪ3) (— 2
x = (113ft2-α2)/2,

1 , /11 + VΪΪ3\ , /α + ftVΪDy
2 (±y + VTΪ3)= ( 2 ) (776-73V113) ( ) ,

x = (113ft2-α2)/2.

On equating irrational parts we have respectively

(15) 3α2ft

(16) 73(α3 + 3 113αft2) + 776(3a2b + U3b3) = 8,

(17) (α3 + 3 113αfe2) + ll(3α2ί> + 11363) = 8,

(18) 1579(α3 + 3 113α62)+ 16785(3α26 + 113ft3) = 8,

(19) - 27(α3 + 3 U3ab2) + 287(3a2b + 113ft3) = 8.

Clearly (15) has no solution in integers. From (16) it is easily seen that a
and b are both even. Putting a = 2uu ft = 2υ, in (16), we obtain

(20) 73(M3 + 3 113u,υ2) + 776(3«2u, + 113υ3) = 1.

The substitution uί = 2\u- 52υ, υι= -2u+5v in (20) yields

(21) F ( κ , u ) = u 3

This corresponds to the ring Z[θ], where θ3 - 330 - 76 = 0. In this ring
the fundamental unit is e = 4 0 2 - 160 - 71. By Theorem 1,

(40 2-160-71) n = u + vθ

is only possible for n = 0. Then w = 1, v = 0, and so a = 42, ft = - 4.
Hence x = 11, y = ±38.

The substitution a = uγ- l l ϋ b ft = vx in (17) gives

(22) u\

Hence ux = 0 (mod 2). Putting «j = 2M, D, = υ in (22), we get

(23) F(u,t;)= w3-
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This corresponds to the ring Z[0], where 0 3 - 60 -22 = 0; Z[0] has
fundamental unit 6 = 2 0 - 7 .

Now we consider

(24) (20-7)n = u + υθ.

By Theorem 8, n S 0 and by Lemma 5, n ^ 1. Therefore (24) has
only the two solutions n = 0, rc = 1. These solutions correspond to
x = 2, y = ± 11 and JC = 422, y = ±8669 respectively.

Substituting α = — 21i*i + 53ϋi, 6 = 2^-5^1 in (18), we get

(25) 8t>?

We put Uι = 2υ9 υλ = u - υ in (25), since Mi = 0 (mod2). This gives

(26) F(w, ϋ) = u3- 24uv2 + 501>3 = 1.

This corresponds to the ring Z[0] , where 0 3 - 2 4 0 - 5 0 = 0, with the
fundamental unit e = - 302 + 100 + 41. We see that € = 202 + 1 (mod 5)
and e2 = l (mod5) while e 2 = - 5 0 2 + 50 + 6 (mod25). Hence e2 =
α10

2+fei0 + c1 implies that 5||αi, 51|Z>!- Hence, by Theorem 1, en =
w + ι?0 is impossible for an even integer n ^ 0. When n is odd we have

2 0 2 + l ^ w + u0 (mod5).

This is impossible. So we have n = 0. Then « = 1, t? = 0 and hence
x = 8 , y = ±25.

The substitution a = 111MX+ lOi^, b = 1 1 M I + t>i in (19) yields

(27) I ; ? - 3 1 2 U 1 W 2 - 2 1 2 8 M ? = 8.

Since (27) implies vx = 0 (mod 2), we put υλ = 12w + 10ϋ, ux = - w - ϋ and
get

(28) F ( u , ι ; ) = ι > 3 + 1 2 ι ; u 2 + 1 4 w 3 = l .

The fundamental unit of the ring Z[0] , where 0 3 +120 - 1 4 = 0, is
e = 0 - l , satisfying 63 + 3e2 + 156 - 1 = 0.

Then by Theorems 8 and 6,

has only two solutions, viz. n = 0 and 1.
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Incidentally, we cannot reach this conclusion by using the standard
criterion of Hemer [4], which is as follows:

Let € = ± 0 + c b e a unit in a cubic ring, and let the odd prime p be
a divisor of ΛΓ(e' + e"). Suppose further that em = ame2 + bme + cm is the
least power of e with m > 0 such that am =bm = 0 (mod/?). Then
en = u + ϋ6 has no even solution except n = 0 if am Φ 0 (modp2), and no
odd solution except n = 1 if c m + 2 ^ 0 (mod/?2).

Now JV(β' + β") = N ( - 3 - e) = - 46 has only the odd prime divisor
p = 23. The least exponent m such that am=bm=0 (mod 23)ls m = 22,
and am^0 (mod232). But unfortunately c24 = 0 (mod232).

When n = 0, ii = 0 , 0 = 1; α = - 1 1 , 6 = - 1 ; x = - 4 , y = ± 7 .

When n = 1, M = 1, ι> = - 1; α = 20, 6 = 2; JC = 26, y = ± 133.

Hence the Diophantine equation y 2 - 113 = x3 has exactly 6 solutions in
integers. They are (jc,y) = ( l l ,±38) , (8, ±25), (2, ±11), ( - 4 , ± 7 ) ,
(422, ±8669) and (26, ±133).
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TOPOLOGICAL GROUPS WHICH SATISFY
AN OPEN MAPPING THEOREM

DOUGLASS L. GRANT

Let € be a category of Hausdorff topological groups. A
Hausdorff topological group G is called a B ( ^ ) group if every
continuous and almost open homomorphism from G onto a
group in C4 is open. An internal characterization of such
groups is obtained. For certain % the permanence properties
of B(^) groups and related categories are investigated, with
some positive results pertaining to products and subobjects, and
several counterexamples. Forms of the closed graph theorem
for topological groups are then obtained which generalize results
of T. Husain.

1. Definitions and permanence properties. Given a
topological group G with topology u, we shall denote the filter of
neighbourhoods of the identity by V(G) or V(u), and closures by C1G or
Clu, depending on the emphasis desired. If u and v are two group
topologies on a group G, then υ(u) will denote that group topology on G
having as a fundamental system of unit neighbourhoods the collection
{C\v U. U EL T(U)}. The set of closed normal subgroups of a topological
group G will be denoted by Jί(G). A homomorphism /: G-»H of
topological groups is said to be almost open (resp., almost continuous) if
the image (resp., inverse image) of a unit neighbourhood is dense in a
unit neighbourhood. An isomorphism of topological groups is a group
isomorphism which is both continuous and open.

Let ^ be a category of Hausdorff topological groups. After [8], we
say that a Hausdorff group G is a B(%!) group if every continuous and
almost open homomorphism from G onto a group in % is open, and that
G is a Bri^) group if every homomorphism with these properties which
is also one-to-one is open. We reserve the symbol sέ for the category of
all Hausdorff topological groups.

Husain [8] showed that locally compact groups and complete
metrizable groups are B(s£) groups, while Brown [2, Theorem 4] showed
that any topological group complete in the sense of Cech has the B(sί)
property. A minimal topological group (i.e., one with its coarsest
compatible Hausdorff topology) is easily seen to be a Br($t)
group. Other examples will be mentioned later.

Husain also observed [8, Theorem 31.4] that a topological group
(G, u) is a Br(sd) group iff, for every Hausdorff group topology D O Π G

such that D C M and v(u) - v, it follows that w = v. We give analogous

411
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statements for Br(^) and B(%!) groups, where <# satisfies a very mild
condition. For a topological group (G,u) and HEJf(G), let uH
denote the group topology on G having the collection {UH: U E Ύ(G)}
as a subbasis of unit neighbourhoods, and u/H the quotient topology on
G/H. We require a lemma which follows directly from Proposition 30.3
of [8].

LEMMA 1.1. A topological group G is a B^) group iff G/H is a
group for every H E

The following definition is adapted from Isbell [10, p. 119]. Let 2β
be a category, /2/ a subcategory of 9£, 3F a class of morphisms in #?. Then
<& is said to be right fitting with respect to & if X E #f, Y E <3f, /: Y-» X
a morphism in & together imply X E ® . Let 3ίf denote the class of
isomorphisms of Hausdorff topological groups. (More extensive use of
this notion, involving other classes of maps, will be made in §2.)

THEOREM 1.2. Let % be a subcategory of sέ which is right fitting with
respect to ffl.

(a) A topological group (G,u) is a Br(^) group iff, for every group
topology v on G such that (G, v) E <#, v C u, and v(u) = υ, it follows that
v = u.

(b) A topological group (G,u) is a B(^) group iff, for every
H E N(G) and every group topology v on G such that (G/H, v/H) E %
v C uH, and v(uH) = v, it follows that v = w//.

Proof. Part (a) follows in a manner similar to Theorem 31.4 of
[8]. One then obtains (b) by invoking Lemma 1.1, applying (a) to the
quotient groups, and observing that every group topology on a group
G/H coarser than the quotient topology arises from a group topology on
G coarser than uH.

Investigation* of some permanence properties of B(sd) and Br(sέ)
groups was carried out by L. J. Sulley [15], who gave criteria for the
inheritance of these properties by dense subgroups and by completions,
in the Abelian case. His assumption of commutativity can be removed
quite painlessly, however. The proof of the next lemma proceeds in a
fashion nearly identical to that of the corresponding result in [15].

LEMMA 1.3. Let E be a Hausdorff group, G a dense subgroup of E,
HE. N(E), q: E-^E/H the natural map. Then the map r: G-*q(G)
obtained by restricting q is continuous and almost open. Furthermore, r is
open iff H Π G is dense in H.

THEOREM 1.4. Let G be a Hausdorff group, E its completion with
respect to its two-sided uniformity.



TOPOLOGICAL GROUPS WHICH SATISFY AN OPEN MAPPING THEOREM 413

(a) G is a B(sέ) group iff E is a B{sέ) group and G Π H is dense in
H for every H<ΞJf(E).

(b) G is a Br{s£) group iff E is a Br(sέ) group and G (Ί H is
nontrivial for every nontrivial H

Proof. The "only if" parts of (a) and (b) follow as in [15], using
Lemma 1.3. For the "if" part of (a), let F be any Hausdorff group, F' its
completion with respect to its two-sided uniformity, / a continuous,
almost open homomorphism of G onto F. By Proposition 5, p. 246 of
[1], / has a unique extension /': E —> F\ which can be shown to be almost
open onto its range. The balance follows as in [15], using Lemma
1.3. The proof of the "if" part of (b) is similar, with the additional
observation that the extension /' of the one-to-one homomorphism / is
also one-to-one.

It follows from this criterion [15, 16] that the group U of complex
roots of unity is a B{sέ) group, while, for instance, neither the group Q
of rationals nor the group Up of p-power roots of unity is a Br(s£) group.

Clearly, if a product of groups has the B{sέ) property, then each
factor has this property. Using Theorem 1.4, however, we can show that
neither the class of B{sέ) groups nor that of Br{sέ) groups is closed even
under finite Cartesian products.

EXAMPLE 1. Let R denote the reals with usual topology and T the
circle group, and let U be as above. All of these groups are B(sί)
groups, but R x U is not even a Br{sέ) group. The Hausdorff comple-
tion of this group is JR x Γ, which is locally compact and so a B{sέ)
group. Let β represent any irrational number. Then JR x Γ has a
non-trivial subgroup

H = {(n, exp2nπβi): n E Z},

which is discrete and therefore closed, and whose intersection with
R[x U is trivial. It follows from Theorem 1.4(b) that R x U is not a
Br{sέ) group, and perforce not a B{si) group. The same argument,
applied to the product of U with the discrete group of integers, shows
that this product also fails to have the Br{s£) property.

The following example shows that certain special products retain the
property, however.

EXAMPLE 2. We show that any finite power of [/is a B(sέ)
group. Soundararajan [13] has called a subgroup H of a topological
group G totally dense if H Π L is dense in L for every closed subgroup L
of G. For Abelian groups G, this coincides with the property described
in Theorem 1.4(a). Letting (x) denote the subgroup generated by an
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element x E G, he asserts that H is totally dense in G iff H Π ClG (JC) is
dense in C1G(JC) for all x E G. Since the completion Tn of Un is
compact and so a B ( ^ ) group, it is therefore sufficient to show that

(Δ) Clr (Un Π C1Γ« (x» = C1Γ« (x)

for all x = (xi, JC2, * * , xn) £ Tn.
We may assume without loss of generality that for some nonnegative

integers r, 5, the entries xu , xr are elements of U9 that xr+u , xΓ+s are
images under the exponential map of irrational numbers au , as

which, together with 1, form a linearly independent set over Q, and that
the balance of the xt are images of linear combinations over Q of the α;

and 1. By the linear independence of {l,α l5 ,α,}, it follows from
Theorem 443 of [5] that H = C1Γ» (x) = F x Ts x C(M), where F is a
finite subgroup of ΓΓ (and hence of Ur), M is an (s + 1) x (n - r - 5)
matrix with rational entries, and

C(M) = {(expr-'-(k(al9 - , αβ 1)M): fc E Z}.

It can be seen that the intersection of H with Un is dense in H, whence
(Δ) is satisfied. Hence, Un is a B {sέ) group for any positive integer n.

If Gi is totally dense in G and Gλ C G2 C G, then G2 is totally dense
in G. It then follows that Un x Γm is totally dense in Tn + m for any
positive integers n and m, and so is a B{sί) group. Since Stephenson
[14, Theorem 2] has shown that totally dense subgroups of compact
groups are minimal, it also follows that Un is a minimal topological
group. Since the product of a minimal group with a compact group is
minimal [14], if further follows that Un x K is a minimal topological
group, and so a Br(sd) group, for any compact group K.

As to subobjects, it does not appear to be true, in general, that our
two properties are inherited by closed or even closed normal
subgroups. However, some partial results of a positive nature have
been obtained. A subgroup H of a topological group G is said to be a
retract of G if there is a continuous homomorphism r: G-+H whose
restriction to H is the identity. By [6, p. 59] and [17, pp. 20 and 95], H is
normal and a retract of G iff there exists a subgroup H' of G such that
the multiplication map m : H x f f - ^ G is an isomorphism.

PROPOSITION 1.5. Let H be a normal subgroup of G and a retract
thereof. If G is a B(sέ) (resp., Br($ί)) group, then H is a B($t) (resp.,
Br{s£)) group.

Proof. The case for B(sέ) groups follows at once, since the
projection map H x ίΓ—> H is continuous and open. Now, let G be a
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Br{sέ) group, A any Hausdorff group, m as above, / the continuous
inverse of m, and f:H—>A a continuous, almost open, bijective
homomorphism. Then h = / ( / x idH) is also bijective, and, since / is
almost open and G is a Br(s£) group, it follows that h is open. Hence,
mh = / x idH> is open, whence / is open.

The following two lemmas are required to establish the next
permanence property, and will also be used extensively in §2.

DEFINITION. // /: G—»H is a homomorphism (not necessarily
continuous) of topological groups, let Vf = {V* =
Vf[ClaΓ\V)]: V

LEMMA 1.6. Let f: (G, w)—> (H, υ) be a homomorphism. If Ύf is a
subbasis for the unit neighbourhood filter of a group topology vf and the
graph offis closed in G x H, then (H, vf) is a Hausdorff topological group.

Husain defined a topology w related to vf in [9], and established a
similar result concerning it. The proof of Lemma 1.6 follows in a
manner parallel to his, with certain simplifications arising from the
elimination of one closure operator from the definition of the sets in the
unit neighbourhood basis.

DEFINITION. For a subgroup K of a group G, let CentGK denote the
centralizer of K in G, and SG(K) = K Cent G K

LEMMA 1.7. (a) If f(G) is dense in H, then Vf is a subbasis for the
unit neighbourhood filter of a group topology vf, and Wf =
{ClπfiClcf-'i V)] = V: V G V(H)} is also a subbasis of unit neighbour-
hoods for vf.

(b) If K is an open subgroup of a topological group (G, u) such that
SG(K) is dense in G and w is a group topology on K, then V(w) is also a
fundamental system of unit neighbourhoods for a group topology on G.

Proof (a) Clearly VCV*, for every V<ΞΨ(H). NOW
/ [ Γ W 1 = vnf(G)> w h i c h is dense in V, and so VCV. Now, if
V\ C V, then

V?= Vxf\C\Gf-\Vx)\Q VxVxQ(y$Q V.

Thus, Wf generates the same filter as Yf.
To show that υf is a group topology, we show that Wf satisfies

(GVΪ)-(GV'm) of [1, p. 222-3J. The first two follow immediately, since
(V)2C(V2)Λ and (V'Y^iV)-1. As for (GV'm), let V,V^r{H\
a EH, t<ΞG such that Vx = V\\ V\C V, and a E VJ(t). Then
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a[f{tVVJiOYa-1 £ Vyfit) f(tΓV1f(t) f(tΓV,

= v1v1vιc(vιγc(vιycv.
(b) It is necessary only to show V(w) satisfies (GV'IΠ). Let

17, Ux E Ύ{G\ xEG, k E K, c <Ξ CentGK such that Ux = t/Γ1, 1/|CI/
and JC E f/icfc. Then

x(kίU1k)χ-1CUιck(k-1Uίk)k1c-1Uι= Ui(cUlC
l)Ul= U\QU.

PROPOSITION 1.8. Let % be a category of Hausdorff groups such that
every Br(^) group is in <€. Then every closed central subgroup ofaB
(resp., B(<g)) group is a Br(<i) (resp., J5(^)) group.

Proof Let (G, u) be a Br(^) group, K a closed central subgroup of
G, w any group topology on K such that (K, w)Eζ€, w Cu\K and
w(u\K)= w. Since K is central in G, it is routine to show that
T(v) = {UW: U<Ξ V(u),WeV(w)} is a subbasis for the unit neigh-
bourhood filter of a group topology v on G. The graph of the natural
injection K-> G is closed in (X, w) x (X, w), and so in (K, w) x (G, M),
since K is w -closed. From this and the fact that w(u\K)= w, it follows
from Lemma 1.6 that v is Hausdorff. By Proposition 31.8 of [8], one has
υ C v{u). However, if U, U, E Y{μ) such that U\Q 17, then C1B [7 C
( C l ^ O ' C ^ C U ί ^ ΠJK ) e r ( ϋ ) . Hence, υ(u)=υ, and the identity
map (G, w)-^(G, ϋ) is continuous and almost open. Then (G,v) is a
Br(^) group, and so is in %. Hence, v = u, whence u \ K — v | K =
w. Therefore, K is a Br(^) group.

The case for B(^) groups is proved in a similar fashion, letting
H E Jΐ(K)7 w a topology on K such that (K/H, w/H)<Ξ%wC(u\ K)H
and w[(u\K)H] = w. One can then define vH by V(vH) =
{UW: (7 E T(/f), W E T(w)} and show that vH = w//, whence uH\K =
vH\K = n>, and (K, w | X) is a β ( ^ ) group.

PROPOSITION 1.9. Let % be as in Proposition 1.8, (G, u) a
(resp., B(^) group) with equal left and right uniform

structures. Then any closed subgroup K of G such that SG(K) is dense in
G is a BX'β) (resp., B(«)) group.

Proof. Let the topologies u \ K, w and υ be as in Proposition
1.8. Without loss of generality, we may assume that an element of V(u)
is fixed under all inner automorphisms of G [7, p. 22]. For such a
neighbourhood U and any A C G, we then have AU = UA. It is then
easy to see that V(υ) satisfies (GV[) and (GV'n) of [1, p. 222-3]. To see
that (GV'm) is also satisfied, let x E G, and UW, U1WιET(v) such that
C7i, Wι are symmetric and ( f / i ^ C UW. Then there exist elements
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α, b of K and of its centralizer, respectively, such that x E
UλWxab. Then

C U1W1abUι(a1W1a)(b1a1U1Wι)

= UιWιU1bW1b~ιU1W1 = (U1W1)
3C UW.

As in Proposition 1.8, it follows that v is Hausdorff and that
v(u) = υ, whence (G, υ) is a £,(*#) group and so is in <€. Then υ = u,
and so u \ K = v \ K = w. Hence, (X, u\K) is a B r(^) group.

Now let (G, w) be a β( (iί) group, then choose H and w and construct
υH as in the analogous case of Proposition 1.8. Since (G, u) has equal
uniformities and H is normal in K, for LWeT(i; H ) , UxU~x

lQU,
WiW^C W, we have (lAWiXlAWi^C LW. The continuity of the
conjugation maps follows in a manner similar to the B^) case. It then
follows that υH = uH, as in Proposition 1.8.

REMARKS, (i) A closed subgroup K of G such that SG(K) is dense
in G is necessarily normal in G, since SG(X) is a subgroup of the
normalizer of K in G, and the normalizer is closed [4].

(ii) The condition that G have equal uniformities can be replaced
by the slightly weaker condition that G has a fundamental system of unit
neighbourhoods fixed under all conjugations by elements of K.

(iii) Clearly, sέ satisfies the condition imposed on ^ in Proposi-
tions 1.8 and 1.9. Indeed, this condition is satisfied by any category right
fitting with respect to isomorphisms, if one were to modify the definition
of B^) (resp., Br(^)) groups to require the existence of at least one
continuous, almost open (resp., and one-to-one) homomorphism onto a
group in % thus precluding a vacuous satisfaction of the definition from
[8].

Let % denote the class of morphisms in si which are almost open.

PROPOSITION 1.10. Let <€ be such that either (i) every Br(^) group is
in <S9 or (ii) ^ is right fitting with respect to %. Then any open subgroup K
of a Br(^) (resp., £(<£)) group G such that SG(K) is dense in G is a
(resp., BW)) group.

Proof. Under either condition, let w be a group topology on K
such that (K, w)^^, w C u \ K and w(u | K) = w. Let v be the topol-
ogy on G having as its unit neighbourhood filter V(v) =
{UW: UeV(u\ WEV(w)}. Let / : (K, w)^(G,w) be the natural
injection. By our assumptions on w, it follows that v induces the υs

topology on K, and, by Lemma 1.7 (a) and (b), V(v) generates a group
topology on G. As in Proposition 1.8, we have υ C u and υ(u)- υ.

Now, if ^ satisfies (i), we observe that the identity map
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(G, w)-» (G, υ) is continuous and almost open, whence (G, υ) is a
group and so in ^. If # satisfies (ii), we observe that the natural
injection (K, w)->(G, υ) is continuous and almost open, so (G, υ) E ^.

It then follows that υ = w, since (G, u) is a JB,^) group, and so
w IK = v I X = w. Therefore, (K, w | K) is a £,(<£) group.

The analogous statement for the B(^) case is proved by first letting
HEJί(K) and w be a group topology such that (K/H,w/H)G%
w C (w I K)// and w[(w | X)iτΓ] = w, and proceeding as above.

To demonstrate some more perverse properties of these categories,
we now display counterexamples, concerned with join topologies, direct
limits and quotients.

EXAMPLE 3. Let (R, u) denote the reals with the usual topology, g
a discontinuous automorphism of the reals, and (R,g(u)) the reals
endowed with the topology consisting of images under g of w-open
sets. Then g is a homeomorphism from (R, u) to (i?, g(w)), whence
(/?, g(w)) i s locally compact and so a B{sέ) group.

The identity map /: (i?, u v g(w))—» (i?, u) is clearly continuous, and
is also almost open, since the image under g of any w-open set is u-dense
in R [7, p. 49]. However, / is plainly not open. Hence, (R, u v g(u)) is
not even a Br{sέ) group. This example also shows, of course, that the
join of two locally compact group topologies is not necessarily locally
compact. Thanks are due to E. Dubinsky for suggesting the above
example in the latter context.

EXAMPLE 4. Let (JR, d) denote the reals with discrete topology,
(R, u) as in Example 3. Let Gλ = (JR, U) X (R, d\ G2 = (R, d) x (R, «),
and let /: Gλ->G2 be defined by (JC, y)*+ (y, JC), and let this system be
ordered by 1 < 2. Its inductive limit in the category of topological
spaces is then R2 endowed with the topology (u x d) Λ (d x u). It is
proved in [12], however, that this is not even a group topology, although
the groups involved are locally compact and hence B(sί) groups.

EXAMPLE 5. Let T be as in Example 1, G the subgroup of T
consisting of those elements of squarefree order. It is shown in [15] that
G is a Br(s£) group which is not a J B ( ^ ) group. It then follows from
Lemma 1.1 that not all quotients of G can be Br(M) groups. This
counterexample shows that the Bτ(sέ) property is not divisible, and thus
that the portion of Proposition 31.7 of [8] which refers to B^) groups is
false. Gaps are thereby created in the proofs of Theorems 32.8 and 32.9
of [8]. A corrected version of the former appears in §2.

A sixth example, which follows, shows that, for the class (Sι of first
countable Hausdorff groups, the B{s£) groups form a proper subclass of
the B(^i) groups. We first observe that, since a countably compact
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subspace of a first countable space is closed [3, p. 230], it follows that a
continuous, almost open homomorphism of a locally countably compact
group into a first countable group is open. Therefore, every locally
countably compact group, and hence every countably compact Hausdorff
group, is a 5 ( ^ 0 group.

EXAMPLE 6. Let 5 be any uncountable set, and let G be any
compact Hausdorff group with nontrivial centre. Let B = G5, and
define

P = {(χa)- xa7^ e for at most countably many a E 5}.

By [11, p. 127], P is countably compact and a proper dense subgroup of
the group B, which is compact and so a Br(s£) group. For each g E G,
let (g) denote the element (xα) of B such that xa = g for all a E S. It is
easy to see that H = {(g): g E Cent G} is a nontrivial closed normal
subgroup of B, and that H DP = {(e)}. By Theorem 1.4(b) , it follows
that P is not a Br{sέ), and perforce not a B{sέ), group.

2. Closed graph t h e o r e m s . In [8], Husain announced a
quite general form of the closed graph theorem for topological groups
(Theorem 32.5), and drew an extensive list of corollaries
therefrom. However, the proof of this theorem contained a serious
flaw, acknowledged by Husain in [9], where he salvaged some of the
results from [8]. In this section, we salvage more results from [8] by
weakening the assumption of commutativity of the codomain imposed by
Husain in [9].

Let us recall the definition of "right fitting" from §1, and agree to
denote the graph of a mapping / by R(f) throughout the balance of the
paper.

THEOREM 2.1. Let % be a category of Hausdorff groups which is
right fitting with respect to %. Let (G,w) E <g, (H, v) be a BT{$) group,
f: G->H an almost continuous, almost open homomorphism with closed
graph such that f(G) is dense in H. Then f is continuous.

Proof. By Lemmas 1.7(a) and 1.6, υf is a Hausdorff group
topology. Since vfCυ, the identity map /: (AT, t>)—>(ίf, vf) is
continuous. By Proposition 31.8 of [81, we have that vfCvf(v)C
v. Letting ί/,V£ V(H) such that V2C £/, we proceed as in Theorem
32.5 of [8] to show that V* C ClVfU, and conclude that υf(υ) = υf, whence /
is almost open. Then g = // is almost open, and also continuous, since
g-\U)D g-ι(jf[C\GΓ(U)])Ώ C\GΓ(U), which is in Y(G). Thus, g E
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(H,υf)E % and / is open, since (H,v) is a B^) group. Hence,
f = υi g = f a n d / is continuous.

COROLLARY 2.2. Let % be as in Theorem 2.1. Let (G,u)G%
(H,v) be a Br^) group, f: G->H an almost continuous, almost open
homomorphism with closed graph such that SH[C\Hf(G)] is dense in
H. Then f is continuous.

Proof. By Proposition 1.10, K = C\Hf{G) is a Br{$) group, and it
follows that the corestriction of / to K is continuous, by Theorem
2.1. Hence, / is continuous.

THEOREM 2.3. Let <β be any category of Hausdorff groups such that
every Br(<€) group is in <€. Let (G, u) G % (H, υ) be a Br(%) group and
f: G-> H an almost continuous, almost open homomorphism with closed
graph such that f(G) is dense in H. Then f is continuous.

Proof. This proof parallels that of Theorem 2.1, except that the fact
that (H,vf) is in <£ is deduced by observing that j : (H,υ)-*(H9υf)
continuous and almost open implies (H,vf) is a Br(%l) group.

The next corollary follows in a manner similar to Corollary 2.2.

COROLLARY 2.4. Let <β be as in Theorem 2.3. Let (G,u)G%
(H, υ) be a Br(^) group, f: G-^H an almost continuous, almost open
homomorphism with closed graph such that 5H[C1H/(G)] is dense in
H. Then f is continuous.

For categories % of groups which satisfy the condition of Theorem
2.3, we can remove the "almost open" hypothesis on the map at the cost
of adding certain Qther hypotheses. A preliminary lemma is required.

LEMMA 2.5. If either (i) f(G) C Cent H, or (ii) H has equal unifor-
mities and SH[f(G)] is dense in H, then vf is a group topology.

Proof. The proof in case (i) is obvious. For (ii), we once again use
(GVi)-(GVni) of [1, p. 222-3], obtaining the first two in a manner
parallel to that of Proposition 1.8. To obtain (GV'uι), let V* ε Tf, and
select W* E Yf such that W is symmetric and invariant under conjuga-
tions, and (W*)3C V*. Let x E H, t G G and b G CentH[/(G)] such
that xEf(t)bW*. Then
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But f(t)f[CloΓ(W)]f(tr = f(C\c[Γ(f(tWf(tΓ)]) = f[ClGΓ(W)]. By
virtue of this and the invariance of W under conjugations, it follows that

xw*xι c [f(t) W7(0~T = (w*)3 Q v*'

THEOREM 2.6. Let % be as in Theorem 2.3. Let (G, u)E % (ϋ, υ)
be a Br{%) group f: G-^H an almost continuous homomorphism with
closed graph such that either (i) /(G) C Cent ii, or (ii) H has equal
uniformities and SH[f(G)] is dense in H. Then f is continuous.

Proof By Lemma 2.5, vf is a group topology in either case. As in
Theorem 2.1, it follows that vf(v) = υ, and as in Theorem 2.3, (H, υf) is a
B ( ^ ) group and so in c€. Thus, t?; = υ, and / is continuous.

As with previous results, we point out that Theorem 2.6 holds, in
particular, for % = sέ. The conditions on the homomorphism can be
further relaxed if additional topological conditions are imposed on the
groups involved.

DEFINITION. A group G is called weakly separable [2] if, for every
VG V(G), there exists a countable subset Xv of G such that VXV =
G. (This property clearly generalizes both separability and the Lindelόf
property.)

The proof of the next lemma parallels that of Proposition 32.11(b) of
[8], which this result generalizes.

LEMMA 2.7. Any homomorphism from a Hausdorff group with the
Baire property to a weakly separable group is almost continuous.

THEOREM 2.8. Let % be as in Theorem 2.3. Let G be a group in <€
with the Baire property, H a weakly separable Br(%!) group. Then a
homomorphism f: G —» H with closed graph is continuous if either (i)
f(G) C Cent H, or (ii) H has equal uniformities and 5H[C1H/(G)] is dense
inH.

Proof By Lemma 2.7, / is almost continuous. Then / is continu-
ous by Theorem 2.6.

These considerations also allow us to prove a form of the open
mapping theorem which corrects and extends Theorem 32.8 of [8].

THEOREM 2.9. Let <β be as in Theorem 2.3. Let G be aB(^) group
with equal uniformities, H any Hausdorff group. Then any almost open
homomorphism g of G onto H with closed graph is open.



422 DOUGLASS L. GRANT

Proof. Let K be the kernel of g and n: G-^G/K the quotient
map. Let g = fn. Since R (g) is closed and contains K x {eH}, which is
normal i n G x / ί , it follows by Corollary 24.4 of [8] that R (/) is closed.

By Proposition 30.3 of [8], / is almost open, whence f~ι is almost
continuous, f~ι also has closed graph, clearly. Now G/K is a B(%!)
group, by Proposition 31.7 of [8], so f~λ is continuous, by Theorem
2.6. Hence, / is open and so is g, by Proposition 30.3 of [8].

Finally, let Q) denote the class of morphisms in si which have image
dense in the codomain.

THEOREM 2.10. Let Ή be a category of Hausdorff groups which is
right fitting with respect to % GE <£, (//, υ) a Br(^) group. Then an
almost continuous homomorphism f: G —> (H, υ) with closed graph is in 2)
if f(G) is dense in K

Proof As before, we form the vf topology and observe, by Lemmas
1.6 and 1.7(a) that vf is a Hausdorff group topology. Letting
/: (//, v)-+ (H9 υf) be the identity map, we further observe that g = // is
continuous, as in Theorem 2.1. Since vf C u, g(G) is dense in (//, vf)9 so
g G ®, and (H,vf)G^. Also as in Theorem 2.1, it follows that j is
continuous and almost open, whence / is open, since (fί, υ) is a B^)
group. Therefore, vf = υ, f is continuous, and / E 3).

In closing, we note that the "right fitting" properties mentioned
above are by no means exotic. Among the categories of Hausdorff
groups which are right fitting with respect to 3} are the compact,
precompact, Abelian, connected and separable groups, and among those
right fitting with respect to % are the locally compact, locally precompact,
metrizable and locally connected groups. Groups with equal unifor-
mities, second countable groups and Abelian profinite groups are right
fitting with respect to % Π 3).
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A CHARACTERIZATION OF SOLENOIDS

CHARLES L. HAGOPIAN

Suppose M is a homogeneous continuum and every proper
subcontinuum of M is an arc. Using a theorem of E. G. Effros
involving topological transformation groups, we prove that M is
circle-like. This answers in the affirmative a question raised by
R. H. Bing. It follows from this result and a theorem of Bing
that M is a solenoid. Hence a continuum is a solenoid if and
only if it is homogeneous and all of its proper subcontinua are
arcs. The group G of homeomorphisms of M onto M with the
topology of uniform convergence has an unusual property. For
each point w of M, let Gw be the isotropy subgroup of w in
G. Although Gw is not a normal subgroup of G, it follows from
Effros' theorem and Theorem 2 of this paper that the coset space
G/Gw is a solenoid homeomorphic to M and, therefore, a
topological group.

1. Introduction. Let if be the class of all homogeneous
continua M such that every proper subcontinuum of M is an arc. It is
known that every solenoid belongs to if. It is also known that every
circle-like element of 5̂  is a solenoid. In fact, in 1960 R. H. Bing [4,
Theorem 9, p. 228] proved that each homogeneous circle-like continuum
that contains an arc is a solenoid. At that time Bing [4, p. 219] asked
whether every element of 5̂  is a solenoid. In this paper we answer
Bing's question in the affirmative by proving that every element of if is
circle-like.

2. Definitions and related results. We call a nondegen-
erate compact connected metric space a continuum.

A chain is a finite sequence Lu L2, ,Ln of open sets such that
L, Π L ; / 0 if and only if | i - / | ^ l . If Lx also intersects Ln, the
sequence is called a circular chain. Each L, is called a link. A chain
(circular chain) is called an e-chain (e-circular chain) if each of its links
has diameter less than e. A continuum is said to be arc-like (circle-like)
if for each e >0, it can be covered by an e-chain (e-circular chain).

A space is homogeneous if for each pair p, q of its points there exists
a homeomorphism of the space onto itself that takes p to q. Bing [2] [3]
proved that a continuum is a pseudo-arc if and only if it is homogeneous
and arc-like. L. Fearnley [9] and J. T. Rogers, Jr. [20] independently
showed that every homogeneous, hereditarily indecomposable, circle-like
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continuum is a pseudo-arc [11]. However, there are many topologically
different homogeneous circle-like continua that have decomposable
subcontinua [24] [25].

Let nu n2, be a sequence of positive integers. For each positive
integer /, let G, be the unit circle {z E R2: | z | = 1}, and let / be the map
of Gι+ι onto Gι defined by ft(z) = zn\ The inverse limit space of the
sequence {G,,/} is called a solenoid. Since each G, is a topological
group and each / is a homomorphism, every solenoid is a topological
group [13, Theorem 6.14, p. 56] and therefore homogeneous. Each
solenoid is circle-like since it is an inverse limit of circles with surjective
bonding maps [17, Lemma 1, p. 147].

A solenoid can be described as the intersection of a sequence of solid
tori Mi, M2, such that MI+1 runs smoothly around inside M, exactly n,
times longitudinally without folding back and Mf has cross diameter of
less than i~\ The sequence nu n2, determines the topology of the
solenoid. If it is 1,1, after some place, the solenoid is a simple closed
curve. If it is 2, 2, , the solenoid is the dyadic solenoid defined by D.
van Dantzig [7] and L. Vietoris [23]. Other properties involving the
sequence nu n2, are given in [4, p. 210]. From this description we
see that every proper subcontinuum of a solenoid is an arc.

Solenoids appear as invariant sets in the qualitative theory of
differential equations. In [21] E. S. Thomas proved that every compact
1-dimensional metric space that is minimal under some flow and contains
an almost periodic point is a solenoid.

Every homogeneous plane continuum that contains an arc is a simple
closed curve [4] [10] [15]. Hence each planar solenoid is a simple closed
curve.

Each of the three known examples of homogeneous plane continua
(a circle, a pseudo-arc [2] [18], and a circle of pseudo-arcs [5]) is
circle-like. If one could show that every homogeneous plane continuum
is circle-like, it would follow that there does not exist a fourth example [6]
[12] [14, p. 49] and a long outstanding problem would be solved.

A topological transformation group (G,M) is a topological group G
together with a topological space M and a continuous mapping
(g,w)-*gw of G x M into M such that ew = w (e denotes the identity
of G) and (gh)w = g(hw) for all elements g, ft of G and w of M.

For each point w of M, let Gw be the isotropy subgroup of w in G
(that is, the set of all elements g of G such that gw = w). Let G/Gw be
the left coset space with the quotient topology. The mapping φw of
G/Gw onto Gw that sends gGw to gw is one-to-one and
continuous. The set Gw is called the orbit of w.

Assume M is a continuum and G is the topological group of
homeomorphisms of M onto M with the topology of uniform con-
vergence [16, p. 88]. E. G. Effros [8, Theorem 2.1] proved that each
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orbit is a set of the type Gδ in M if and only if for each point w of M, the
mapping φw is a homeomorphism.

Suppose M is a homogeneous continuum. Then the orbit of each
point of M is M, a Gδ-set. According to Effros' theorem, for each point
w of M, the coset space G/Gw is homeomorphic to M. By Theorem 2 of
§4, if M has the additional property that all of its proper subcontinua are
arcs, then G/Gw is a solenoid and, therefore, a topological group. Note
that Gw is not a normal subgroup of G.

Throughout this paper R2 is the Cartesian plane. For each real
number r, we shall denote the horizontal line y = r and the vertical line
x = r in R2 by H(r) and V(r) respectively.

Let P and Q be subsets of R2. The set P is said to project
horizontally into Q if every horizontal line in R2 that meets P also meets
0.

We shall denote the boundary and the closure of a given set Z by
BdZ and C1Z respectively.

3. Preliminary results. In this section M is a homogeneous
continuum (with metric p) having only arcs for proper subcontinua.

Let p and q be two points of the same arc component of M. The
union of all arcs in M that have p as an endpoint and contain q is called a
ray starting at p.

The following two lemmas are easy to verify.

LEMMA 1. Each ray is dense in M.

LEMMA 2. // an open subset Z of M is not dense in M, then each
component, of Z is an arc segment with both endpoints in BdZ.

Let 6 be a positive number. A homeomorphism h of M onto M is
called an e-homeomorphism if p{v,h{v))<e for each point v of M.

LEMMA 3. Suppose e is a given positive number and w is a point of
M. Then w belongs to an open subset W of M with the following
property. For each pair p, q of points of W9 there exists an e-
homeomorphism h of M onto M such that h{p) = q.

Proof Define G, Gw, and φw as in §2. Since M is homogeneous,
the orbit of each point of M is M. Therefore φw is a homeomorphism of
G/Gw onto M [8, Theorem 2.1].

Let πw be the natural open mapping of G onto G/Gw that sends g to
gGw. Define Tw to be the mapping of G onto M that sends g to
g(w). Since Tw = φwπw, it follows that Tw is an open mapping [22,
Theorem 3.1]. Note that the following diagram commutes.
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Let U be the open subset of G consisting of all e/2-
homeomorphisms of M onto M. Define W to be the open set
TJ[U], Since the identity e belongs to U and Tw(e)= w, the set W
contains w.

Assume p and q are points of W. Let / and g be elements of U
such that Tw(f) = p and Tw(g) = q. Since /(w) = p and g(w) = q, the
mapping h = gf'1 of M onto M is an e-homeomorphism with the
property that h(p) = q.

For each positive integer i, let At be an arc with endpoints p{ and
qιm The sequence A1? A2, is said to be folded if it converges to an arc
A and the sequence pu qu p2, qi, * * * converges to an endpoint of A.

LEMMA 4. (Bing [4, Theorem 6, p. 220]). There does not exist a
folded sequence of arcs in M.

Lemma 4 follows from a simple argument (shorter than Bing's)
involving Lemma 3 and the fact that M does not contain a triod.

A chain Lu L2, , Ln in M is said to be free if C\Lλ Π C\Ln=0
and Bd U {L,: 1 ̂  ί ^ n) is a subset of C\{Lλ U Ln).

LEMMA 5. (Bing [4, Property 17, p. 219]). Let A be an arc in M with
endpoints p and q. For each positive number e, there exists a free e-chain
Lu L2, * , Ln in M covering A such that p and q belong to Lλ and Ln

respectively.

A continuum is decomposable if it is the union of two proper
subcontinua; otherwise, it is indecomposable.

LEMMA 6. IfM is decomposable, then M is a simple closed curve.

Proof Since M is the union of two proper subcontinua (arcs), M is
locally connected. Since M is homogeneous, it does not have a separat-
ing point. Hence M contains a simple closed curve [19, Theorem 13, p.
91]. It follows that M is a simple closed curve.
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4. Principal results.

THEOREM 1. If M is a homogeneous continuum and every proper
subcontinuum of M is an arc, then M is circle-like.

Proof. According to Lemma 6, if M is decomposable, then M is a
simple closed curve and therefore circle-like. Hence we assume that M
is indecomposable.

By Lemmas 4 and 5, there exists a free chain Lu L2, , La (α > 5)
in M such that N = Cl U { L , : l g i g α } is a proper subset of M and
N - Cl U {L,: 3 ̂  i S α - 2} contains every arc in N that has both of its
endpoints in C\LX or ClLa. (This chain is formed from another free
chain by unioning links to make L2 and La-X sufficiently long and
narrow.) Let B be the union of all components of N that meet
C1(L3 U Lα_2). By Lemma 2, each component of B is an arc with one
endpoint in BdLj and the other endpoint in BdLα. Note that B is a
closed set. Since M is indecomposable, each component of B is a
continuum of condensation.

Since B contains no folded sequence of arcs, we can assume that B
is the intersection of M and the plane JR2 and that the following
conditions are satisfied:

I. A component C of B is {(JC, y):0 ^ x ̂  6 and y = 0}.

II. Each component of B - C is a horizontal interval above H(0)
(the jc-axis) and below H(l) that crosses both V(l) and V(5).

III. The sets Cl(L x U L2 U La-λ U La) and {(JC, y): 1 ̂  x ̂  5} are
disjoint.

(Bing's theorem [2, Theorem 11], involving sequences of refining covers
that induce a homeomorphism, can be used to define this embedding of B
in R2. Each covef of B consists of finitely many free chains that
correspond to disjoint straight horizontal chains with rectangular links in
R2.) Note that B Π {(JC, y) : 1 < x < 5} is an open subset of M.

Let p be a metric on M whose restriction to B agrees with the
Euclidean metric on R2 [1, Theorems 4 and 5].

There exists a positive number d less than 1 such that M Π H(d) =
0 and the following condition is satisfied:

Property 1. Every arc in M that has its endpoints in {(JC, y):x = 3
a n d O ^ y < d} meets both {(JC, y) :x = 1 a n d O ^ y < d) and {(x, y):jc = 5
and O^y <d}.

To see this we assume Property 1 does not hold for any positive
number d. For each positive integer i, let Wt be an open set in
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M Π {(*, y): 1< x < 5} that contains (3,0) such that for each pair p, q of
points of Wh there exists an i^-homeomorphism of M onto M that takes
p to q (Lemma 3). For each i, there exists an arc A, in M with
endpoints px and g, in Wt Π V(3) such that the horizontal interval Γ, from
pi to V(l) is in A, if and only if the horizontal interval Δ, from qx to V(ί)
is in A,.

For each /, let hx be an /"Miomeomorphism of M onto M such that
ht(Pi) = <7i Since each hx maps Γj approximately onto Δ, , for each ί, there
exists a point α, of A, such that Λi(α/)= #*•

For each i, let J3, be the arc in A, from p{ to α,-. Note that for each i,
the diameter of B, is greater than 1 and B, Π h\Bx\ consists of the point
α, .

Let α be a limit point of the sequence {αj. Assume without loss of
generality that {a,} is a convergent sequence in E = {v E M:p(v, a)<
1/2}.

For each i, let £* be an arc in B, Π CIE that goes from a point ^ of
BdJB to ah Assume without loss of generality that {£>,} converges to a
point of BdE and {Et} converges to an arc F in Cl E. Since each hx is an
Γ^homeomorphism, {Et U ft, [£,-]} is a folded sequence of arcs conver-
ging to F. This contradiction of Lemma 4 completes our argument for
Property 1.

For i = 1 and 2, let

Di= M Π { ( jc ,y) : i^x^6- i and Ogy < d}.

Let 6 be a given positive number less than p (D2, M - D^. We
shall complete this proof by defining an e-circular chain that covers M.

By Lemma 1, there exists an arc A in M that is irreducible with
respect to the property that it contains {(5,0), (6,0)} and intersects
{(x, y): x = 5 and 0 < y <d). According to Property 1, A intersects
{(x,y): x = 4 and 0 < y <d}.

Let W be an open set in Di - A containing (4,0) such that for each
pair p, q of points of W, there exists an 6/50-homeomorphism of M onto
M that takes p to q (Lemma 3).

Let c be a number (0<c < e/50) such that M Π H(c) = 0 and
M Π {(JC, y): x = 4 and 0 ^ y < c} is in W. Since W and A are disjoint,
c is less than d.

For / = 1 and 2, let

C = M Π {(jc,y):/gjc S 6 - i and 0 § y < c } .

Let δ be the minimum of e and p(C2, M - d ) . Let (7 be an open
subset of d containing (2,0) such that for each point q of (7, there exists a
δ-homeomorphism of M onto M that takes (2,0) to q (Lemma 3).
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Define S to be the ray in M that starts at (2,0) and contains A. Let
{Si} be the sequence consisting of all points of S Π {(*, y):x = 3 and
0 ̂  y < d) and having the property that for each i, the points s, precedes
5I+1 with respect to the linear order on S.

Define Tλ to be an arc containing A in S that starts at the point
ίi = (2,0) and ends at a point t2 of UΓ) V(2). Let h be a δ-
homeomorphism of M onto M that takes fi to ί2.

We proceed inductively. Assume an arc Tn is defined in S with
endpoints tn and ίπ+1 in C2 Π V(2). Let y be the number such that
h(tn+ι) belongs to H(y) . Define Tn+ι to be the arc in 5 with endpoints
tn+1 and ίn+2 = (2,y). Since h is a δ -homeomorphism, tn+2 belongs to
C2. Note that since each Tn has diameter greater than 1, the ray 5 is the
union of {Tn: n = 1, 2, }.

Define β to be the largest integer such that {$•: 1 ̂  i g β} is a subset
of Γi. The δ-homeomorphism ft maps each Γn approximately onto
Γn+1. Hence, for each n, the arc Tn contains {s, :(n - l)β < i ^
Mjβ}. Furthermore, β has the following property:

Property 2. For each positive integer i, the point s, belongs to C 2 if
and only if sι+β belongs to C2.

Define γ to be the least positive integer that has Property 2. Note
that since s2 does not belong to C2, the integer γ is greater than 1.

Let X be { 5 l : i = / γ + l and / = 0, 1, 2, •}, and let L be

(s n D2n v(3))-κ.

Property 3. The sets C1X and C1L are disjoint.

To establish Property 3, we assume there is a point z in C\K Π
Cl L. Let Z be an open subset of M containing z such that for each pair
/?, g of points of Z, there exists a δ-homeomorphism of Λί onto M that
takes p to q (Lemma 3).

Let Si and sn be points oί Z Π K and Z ΓΊ L, respectively, and let /
be a δ-homeomorphism of M onto M such that /($) = sn. Let 0 be the
smallest positive integer such that sn-θ belongs to K. The existence of /
implies that θ has Property 2. Since θ is less than γ, this is a
contradiction and Property 3 is established.

Note that since M = C\S (Lemma 1), C1(X U L) = D2 Π V(3).
Let / be the arc in S that goes from sλ to sr+1. By an argument

similar to Bing's [4, Property 17, p. 219], there exists a free e/50-chain
P h P2, , Pλ in M covering ί such that

(i) 5! and sγ+i belong to Pλ and P λ respectively,

ίii) Pr U PΛ is in C2,



432 CHARLES L. HAGOPIAN

(iii) each component of H = U {P}: 1 ^ j ^ A} that meets Cl Px also
meets Pλ and V(5), and

(iv) each component of H that meets ClP λ meets Pλ and V(l).

From Property 1 we get the following:

Property 4. Each component of H meets both P} and Pλ.

Let Pμ be an element of Pu P2, , P λ that contains the point
(4,0). Since W intersects each component of C2, there exists a finite
sequence gu g2, * , gσ of β/50-homeomorphisms of M onto M such that
Cl K projects horizontally into U {g»[Fμ]: 1 = i = σ}. Assume without
loss of generality that no proper subsequence of gu g2, * , gσ has this
horizontal projection property.

Note that each gt[Pμ] is a subset of Dλ.
From Properties 1 and 4 we get the following:

Property 5. For each i (1 ^ i g or), if T is a component of g,[H],
then T Π g ^ O P J is a nonempty set that projects horizontally to a point
of D2 Π V(3).

For each i (1 ^ i: ^ σ), let X, be the set consisting of all points in
gt[Pμ] that project horizontally into C1K, and let Y) be the union of all
components of gt[H] that meet Xt.

For each i (1 ^ / ^ σ), the set Y, is open in M. To see this assume
that for some i, a point M of Yx is in Cl (M - Y,). According to Property
3, u does not belong to g, [P,J. By Property 5, there exists a sequence
{/„} of arcs in gt[H] that meet gi[Pμ] such that the limit superior / of {/„}
is an arc in g, [H] that contains u and for each n, the set Jn Π gi[Pμ]
projects horizontally to a point of Cl L. It follows that J Π g/[Cl Pμ] is a
nonempty set that projects horizontally to a point of C1L. Since / is in
the u -component of Yn this is a contradiction of Property 5. Hence Y, is
an open subset of M.

For each i (1 ^ i ^ σ) and y (1 ^ / g λ), let Q^ = Zn gt[P]. It
follows from an argument similar to the one given in the preceding
paragraph that for each i, the set Cl(Qu U O i λ ) contains Bd U {Qhj: 1 S
j ^ λ}. Hence, for each i, the sequence O u , O i 2, * , O/,λ is a free chain
in M.

Property 6. For each / (1 ^ i! g cr), the set O u U O u projects
horizontally into C1K

Obviously, Q u projects horizontally into Cl K. Therefore, to estab-
lish Property 6, we assume there is a point t of Qiλ that projects
horizontally into Cl L. By Property 3, there exists a positive number η
less than e such that Q = {υ E M:p(v, t)< η} projects horizontally in
C1L.
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Let T denote the ί-component of Yh and let w be a point of T Π QiΛ

(Property 4). Since g, is an e/50-homeomorphism, T crosses Dx Π V(l)
exactly γ times (Property 1). Since w belongs to Qu, it projects
horizontally into C1K

By Lemma 3, there exists an η -homeomorphism g of M onto M
such that g(w) belongs to Q u and projects horizontally into K. Since
the g(w)-component of Y, is an arc segment in S that crosses Dλ Π V(l)
exactly γ times and is mapped approximately onto T by g~\ the point
g(t) of Q projects horizontally into K. This contradiction of the
definition of Q completes our argument for Property 6.

Let 77 be an integer (5 < π < μ) such that Pπ contains the point
(3 + e/10,0). Let ω be an integer (μ < ω < λ - 4) such that Pω contains
the point of V(3-6/10) that projects horizontally to sy+1.

Property 7. For each n (1 ̂  n ^ σ), the set Qnl U Qnλ does not
intersect U {Q,,y : 1 ̂  ί: ^ σ and π ^ / ^ ω}.

To see this assume there exist integers ΐ, /, and n such that π ^j ^ ω
and a point p belongs to QUj Π (On l U On,λ). According to Property 6,
{p}uOuU0,,λ projects horizontally into C1K By Property 3, there
exists a positive number χ less than e such that {υ E M : p(ι; ?p)<^}
projects horizontally into O K

Let P be the p -component of Yt. Let Y be an arc in P that goes
from a point g of QιΛ to p. Since g, and gn are 6/50-homeomorphisms
and π ^j ^ ω, the set Q u U Qiλ and the p-component of P Γ) Dλ are
disjoint. Hence Y crosses D1Π V(l) exactly i times where t is a
positive integer less than γ.

By Lemma 3, there exists a ^-homeomorphism k of M onto M such
that k(q) belongs to QιΛ and projects horizontally into K. The arc k[Y]
crosses Dλ Π V(l) exactly i times. Since k[Y] is in S and p(p, fc(p))<
^, the point fc(p) projects horizontally into K. It follows from the
definition of K that i is a multiple of γ, and this is a
contradiction. Hence Property 7 holds.

For each i (1 ̂  i: ^ cr) and / (1 ̂ / ^ λ), let P^ = Oij - Cl U {Yn: 1 ^
n < /}. By Property 7, for each i, the subchain of P u , P l2, , Aλ that
has Pi7T and F i ω as end links is free in M.

For each / (1 g / ^ λ), let l/; = U {Py: 1 ̂  i '^ or}. The subchain <€
of [7i, U2j '' , fΛ that has [Λ, and ί7ω as end links is a free e/16-chain in
M

Let D be the union of all components of C2 Π {(x, y) :3-e/5<x <
3 + 6/5} that meet Cl if. According to Property 3, D is open in M The
diameter of D is less than e/2. Each point of Uw U C/ω is within e/5 of
V(3). By Property 6, (7, U C/ω projects horizontally into C1K Hence
Uπ U Uω is in D.

Let T be the largest integer less than μ such that Uτ intersects
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D. Let ψ be the smallest integer greater than μ such that Uφ intersects
D. For each / (l^j <ψ- r), let Z] = L/τ+;, Note that
Zu Z2, , Z^_τ_! is a free 6-chain in M

Define Zψ_τ to be the union of D and all elements of @ = {U,: π S
/ ^ r o r ψ ^ / g ω } . Since Cl K projects horizontally into ί/μ and % is a
free chain in M, each element of 3) intersects D. Thus Z ,̂_τ is an open
set in M of diameter less than e. Note that Z^_τ meets both Zx and

Since % is free and Uw U [/«, is in D, the boundary of̂  U {Z;: 1 ̂  / <
ι/f - r} is in Zψ_τ. Since C\K projects horizontally into'Uμ9 the set Zx

contains every boundary point of Zφ-r that is to the right of V(3) in R2.
Furthermore, each point of BdZ^_T that is to the left of V(3) is in

Zφ-τ-ι. To see this let s be such a.point. Let X be the arc in M that
intersects V(l) and is irreducible between s and Cl Uμ (Lemma 1). By
Property 1, X does not meet Uπ U Uω. Since Uμ is an interior link in
the free chain % the arc X is covered by ^ and s belongs to Z^_τ_i.

It follows that BdZ^_τ is in ^ U Z ^ - H . Therefore
Z1 ? Z2,

 :, Zφ-T is an e-circular chain that covers M. Hence M is
circle-like.

Since every homogeneous circle-like continuum that contains an arc
is a solenoid [4, Theorem 9, p. 228], Theorem 1 implies the following:

THEOREM 2. A continuum M is a solenoid if and only if M is
homogeneous and every proper subcontinuum of M is an arc.
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ON COMPLETENESS OF THE BERGMAN METRIC
AND ITS SUBORDINATE METRICS, II

KYONG T. H A H N

Let M be a complex manifold of dimension n furnished
with both the Bergman metric and the Caratheodory
distance. The main result of the present paper is to prove that
the Bergman metric is always greater than or equal to the
Caratheodory distance on M. The case where M is a bounded
domain in the space Cn was already considered by the author in
Proc. Nat. Acad. Sci. (U.S.A.), 73 (1976), 4294.

1. Introduction. The main purpose of the present paper is to
prove the following

THEOREM A. Let M be a complex manifold which admits both the

Bergman metric sM and the Caratheodory differential metric aM. For each

z E M and each holomorphic tangent vector ξ,

(1) aM(z,ξ)^sM(z,ξ).

Let ρM and dM denote the integrated metrics on M which are
induced from aM and sM, respectively. Then the Caratheodory distance
cM ([2]) satisfies

(2) cM^pM^ dM

and there are cases when ρM differs from cM and dM.
From this observation and Theorem A, we obtain

THEOREM B. Let M be a complex manifold given as in Theorem
A. Then the Bergman metric is complete in M whenever the
Caratheodory distance is complete.

If in particular M is a bounded domain in the complex Euclidean
space Cn (n ̂  1), M always admits the Bergman metric and the
Caratheodory differential metric.

Theorems A and B have a number of interesting consequences.
In [4], C. Earle has proved the completeness of the Caratheodory

distance in the Teichmuller space T(g) of a compact Riemann surface of
genus g = 2. Therefore, Theorem B immediately implies the following

437
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THEOREM C. In the Teichmύller space T(g) of any compact
Riemann surface of genus g § 2 , the Bergman metric is complete.

Recently, S. Wolpert [11] and T. Chu have independently proved
that the Weil-Petersson metric is not complete in T(g). Therefore, we
have the following

THEOREM D. In the Teichmύller space T(g) of any compact
Riemann surface of genus g = 2, the Weil-Petersson metric is not uni-
formly equivalent to the Bergman metric.

Finally we have

THEOREM E. Let G be a bounded open connected subset of a
separable complex Hilbert space X of finite or infinite dimension, and let M
be a complex manifold of finite dimension which admits sM. If G is
homogeneous, then there exists a constant, depending only on G, such that
for any holomorphic mapping f: M—> G

(3) aG(f(z),Df(z)ξ)^k(G)sM(z,ξ) (z ε M, ξEC"),

where Df{z) denotes the Frechet derivative of f at z E M.

If in particular G is a ball, B, in X, then

(4) aB(f(z),Df(z)ξ)^sM(z,ξ).

Theorem E contains Theorem A as a special case when B is the unit
disc in the complex plane C.

2. The kernel form and invariant metric of
B e r g m a n . The theory of the Bergman kernel function and invariant
metric on a bounded domain in the space C" has been extended to a
complex manifold by S. Kobayashi [7] and also by A. Lichnerowicz [8].

Let ZF(M) be the set of holomorphic n -forms

a = adzλ Λ Λ dzn

on M such that

(1) α Λ ά <oo.
I JM

Then 2F(M) is a separable complex Hilbert space with an inner product
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given by

(2) (a,β)=in2l a
JM

Let {cpo, φu - •} be an orthonormal basis for SF. Then every a G SF may
be represented uniquely by the convergent series

(3a) oί(z)= X cvφv{z), cv

or

(3b)

where φv = (Φ^udzi Λ Λ dzn, in a local coordinate neighborhood U of
z6Aί.

Moreover,

(4) (α,α) = l l « U 2 = Σ k l 2

Let V be a local coordinate neighborhood of ζ E M in which
φv{ζ) = {Φv)v{ζ)dζι Λ Λdζn. Then the series

(5) in2

ί"2 Σ (Φ,)l/(Z) (Φ,)v(O dz, Λ Λ dzn Λ dί, Λ Λ dζn
0

converges absolutely and uniformly on every compact subset of M x M,
where M is the complex manifold_conjugate to M, and hence, represents
a holomorphic 2n-form on M x M Moreover, the sum (5) is indepen-
dent of choice of orthonormal basis. The Bergman kernel form is
defined by the sum (5) and written as

(5a) K (z, ξ) = κζ(z) = i"2k(z, ζ)dzx A Λ dzn A dζλ A Λ dζn

with a locally defined Bergman kernel function:

(5b) fc(z, 0 = Σ (Φ,)α(

Further we define the reduced kernel form by
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(6) Kζ(z)=k(z,ζ)dzίΛ'-Λdzn.

As in the classical case, see [1], the reduced kernel form has the
reproducing property of n-forms in 2F. More precisely,

LEMMA 1. For any a E 3* with a(z)= av(z)dzιA * Λ dzn,

(7) au(z ) = (a,Kz)=i"7ί a(t)ΛK(z,ϊ) (zEM).
J

Proof. First we observe that for each fixed z E M, Kz{t) is a
holomorphic n-form in M. From the uniform convergence of the series
(3a) and (5),

= Σ C -Σ Φμ(z)(φπφμ) = Σ cvΦp(z)= av(z).
v μ v

Setting in Lemma 1 a = Kζ7 ζ E M, we have

In particular, kz(z)^O. kz(z)>0 holds whenever M satisfies
(Al) For any z in M, there is an a E 3^{M) such that α (z) ^ 0. In

this case,

(9) S2(z £)= y ί

is a well-defined positive semidefinite hermitian form which is invariant
under biholomorphic mappings of M. In fact s2(z, ξ) is positive definite
if and only if M satisfies

(A2) For every holomorphic tangent vector ξ at z E M, there is an
α E &(M) such that α(z) = 0 and

where a — adzλ Λ Λ dzn.
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Therefore, any complex manifold M with properties (Al) and (A2)
is entitled to an invariant Kahler metric sM of Bergman.

3. An extension of Schwarz inequality. Let M{Ω) be
the set of square integrable n -forms defined on a measurable subset Ω of
a complex manifold M of dimension n. Then M{Ω) is a separable
complex Hubert space with respect to the inner product:

(1) ( α , / 3 ) Ω = ; " 2 ί aΛβ (a,βGM(Ω)).
J

We need the following extension of the Schwarz inequality.

LEMMA 2. Let {av} and {βv} be two sequences (finite or infinite)
from Jl(Ω) such that

(2)

Then

(3)

where " S " denotes the matrix inequality, i.e., A g B if and only ifB - A
is positive semidefinite, M and N the matrices whose entries are Mμv =
(αμ, βv)a and Nμv = (βμ, βv)n (μ, v = 0,1,2, •), respectively, and M* the
adjoint of M.

Proof. It is enough to prove the case where {av} and {βv} are infinite
sequences. The other cases can be proved in the same way. Let
u = (u0, Mi, •) be any non-zero constant vector in £\C). Then

M * M * M M = 2
μ=0 \ v = 0 / \v=0

( 4 ) - / - Λ >
μ=0 \ v = 0 1 Ω

By the Schwarz inequality in M(Ω), (4) becomes
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u*M*Mu si Σ («M»«/.)n(Σ 0Λ, Σ ft*
μ=0 \i/ = 0 τ=0

(5)

/x=0

from which (3) follows, since u was arbitrary.
In the case where M = Cn and Ω is a measurable subset of C", we

define M(Ω) to be the set of square integrable functions on Ω. Lemma 2
then holds in this case. We shall state it separately for the future use.

COROLLARY 1. Let {av} and {bv} be two sequences (finite or
infinite) from M(Ω), ΩCC", such that

Then

(7) M*M^N Σ (av,av)n,
v

where M and N are matrices whose entries are (aμy fev)Ω and (bμ,bv)n

(μ, v = 0,1,2, •), respectively.

4. The main theorems.

THEOREM 1. Let f = (/o?/i, * * *) be a holomorphic mapping from a
complex manifold M satisfying properties (Al) and (A2) of §2 into a
separable complex Hilbert space X of finite or infinite dimension such that

(1) | | / ( z ) | | χ ^ O for some Q >0.

Then

(2) \\Df(z)ξ\\x^QsM(z,ξ) (2 6Af, f 6 C " ) ,

vv/zere || | | x denotes the usual norm in X.

Proof. For each z E. M, let

(3) aμ(t) = fμ(t)Kz(t) = fμ{t)kz{t)dt^ - Λ dtn ( μ = 0 , l , 2 , )

dzv
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where

(5)
dKz(t)= dk(t,z)

dzv dzv

ti Λ Λ dtn.

In view of the reproducing property of the kernel form, see Lemma
1, we obtain

(6) <**) = Σ (f.Kz,fμKz)=(Σ fJμKz,Kz)^Q2(Kz,Kz)
μ \ μ * /

= Q2k(z,z),

(7a)
kz{z) dzμ>dzJ KΛZ) dzv

^ ( z ) / dKΛ dkz(z) dkz(z)
KΛZ) dzμ \K"dzJ+ dzμ dzv

From Lemma 1, we also have

(dKz dKΛ_ d2 d2k(z,z)
\dz/dzj~ dzpdzμ

{ " z)~ dzvdzμ

Therefore, (7a) becomes

dzvdzμ

dk{z,z)dk{z,z)
dzv

dzμ

(7b) 1

k(z,z) dzvdz
— logic (z,z).

(9)

From Lemma 2 applied to ^(M), together with (6), (7b), (9) and (9) of §2,
Theorem 1 follows.

Let X(M, B m) be the set of all holomorphic mappings / of a complex
manifold M into the unit ball Bm in the space Cm ( l ^ m S ω ) .
Following H. Reiffen [10] we define

(10)
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for (z, ξ)G M x Cm, where Bω denotes the unit ball in the Hubert space
Cω = €2(C) with the usual ί2-noτm.

It is easy to see that a^ is a pseudo differential metric in the sense of
Grauert and Reckziegel [5], and that α ^ } becomes a differential metric
whenever M satisfies the properties (Al) and (A2) of §2 by bounded
mappings in the class %!(M,Bm). We note that a$=aM is the
Caratheodory differential metric of H. Reiffen [10]. However, it turns
out that for all m, 1 g m § ω, a^ coincide with αM, as it is seen in the
following.

LEMMA 3. Let M be a complex manifold of dimension n. For each
z EM and each ξ G Cn,

(11) aW(z,ξ)=aW(z,ξ) for all m g 1.

Proof Suppose that / = (fuf2, , / m ) e W(M,Bm). Then / =
(/, 0) = (/i, , /m, 0,0, •) is a holomorphic mapping of M into Bω. Let

") = {/: / = (/,0), /

Then

^ ( M , β ω ) C ^ f ( M , β ω ) and \\Df(z)ξ\\m =\\Df(z)ξ\\ω.

Therefore,

(12) = sup{||D/(z)ί||.: /

The opposite inequality follows from the following observation.

(13)

where (\CY denotes the dual of t\C).
The second half of Lemma 3 is due to Clifford Earle (by communica-

tion) to whom the author is indebted.
It should be pointed out that the method of the proof of Theorem 1

is essentially due to K. H. Look [9]. In fact, he has proved Theorem 1
for the case when M is a bounded domain in Cn and X = C". However,
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K. H. Look did not seem to realize Lemma 3 which enabled us to relate
Theorem 1 to the Caratheodory distance.

Theorem A is now an immediate corollary of Theorem 1, or rather a
special case of Theorem 1.

Proof of Theorem A. Set X = C and Q = 1 in Theorem 1. Then
(2) becomes

(14) \Df(z)ξ\^s(z,ξ) (z6Af, ξeC)

for all fe W{M,BX), and Theorem A follows.

Proof of Theorem E. Let x0 be any fixed point in G and let
γ : G - > G b e a holomorphic automorphism of G such that y(x) — x0,
where x = /(z), z EM. Then y / is a holomorphic mapping of M into
G such that (γ f)(z) = x0. Let Q be the radius of the smallest ball in X
which contains G. We may assume that the center of this ball lies at the
origin. By Theorem 1,

(15a) \\D(γ f)(z)ξ\\x^Qs(z,ξ), (zGM, ίεC").

It is known [3] that if G is bounded then there are two positive
continuous functions A and Λ in G such that

(16) λ(x)\\ξ\\x^aG(x,ξ)^A(x)\\ξ\\x (xeG),

for each ξ G X. Set η = Df(z)ξ. Then (15a)"becomes

(15b) \\Dy(x)η\\x*ίQs(z,ξ), x=f(z).

By the invariant property of the Caratheodory differential metric aG

under biholomorphic mappings of G, see [3],

(17) aG(x,η)= aG(γ(x),Dy(x)η)= aG(x0,Dy(x)η).

From the second half of (16), (17), and (15b),

(15c) aG(f(z),Df(z)ξ)^A(x0)Qs(z,ξ).

The first half of Theorem E follows from (15c) when we set

(18) fc(G)=(?infΛ(jc).
xGG
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If in particular G is a ball, say B ={x E X : ||JC||X < JR}, R >0, then
Q = R and inequalities (16) may be reduced to

(19)

see [3]. Therefore, k(G) = 1 in (18) which proves the rest of Theorem
E.
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ABSTRACTLY SPLIT GROUP EXTENSIONS

G. HOCHSCHILD AND D . WlGNER

1. Introductory survey. Consider a group extension
1 —> A —• E —^ G —> 1 in some category of groups with super-
structure (topological, analytic, algebraic). Suppose it is split in
the category of abstract groups, i.e., there is a homomorphism
σ: G —> E of abstract groups such that TΓ ° σ is the identity map
on G. We are concerned with the question of when it is possible
to conclude that the extension is split as an extension in the given
category.

The most surprising known result in this connection is due to C.
Moore [2, Th. 2.3]. It says that if the given category is that of locally
compact separable topological groups, if A lies in the center of G and G
coincides with its commutator group [G, G], then every σ as above is
necessarily continuous.

A more transparent situation in which our question has a positive
answer is the following. Suppose the given extension is in the category
of locally compact separable topological groups, that A is a finite-
dimensional real vector group and that G has a discrete subgroup K such
that the coset space G/K is compact. Then, if an abstract split σ exists,
it follows that there is also a continuous split. In fact, our assumptions
on A and the topology of G imply that the given extension has a
continuous cross-section [3, Th. 12.2], and [0, Th. 4.2]. This yields a
continuous 2-cocycle / for G in A such that the extension is split if and
only if / is the coboundary of a continuous map from G to A. By a
well-known result due to van Est [4, §4], the restriction map from the
continuous cohomology of G in A to that of K in A is injective. Our
assumption that the extension has an abstract split evidently implies that
the cohomology class of / is in the kernel of the restriction
map. Therefore, it must be the 0-class, so that our extension has a
continuous split.

Another positive case is that of an extension in the category of
connected (real or complex) Lie groups in which the image G is simply
connected and the kernel A is a central vector group. The existence of
an abstract split σ evidently implies that A ΓΊ [£, E] = 1, so that the given
extension yields the extension

1 -> A -* E/[E, E] -> G/[G, G] -> 1

in the natural way. Since G is simply connected, [G, G] is closed in G,
and G/[G, G] is simply connected [1, Ch. XII, Th. 1.2]. As before, we

447
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have from [3, Th. 12.2] that the given extension has a continuous
cross-section, whence we find that E is simply connected. As just now,
it follows that [E, E] is closed in E, and JB/[£, E] is simply
connected. Thus, the above extension is simply an extension of vector
groups and therefore has a continuous (linear) split
T: G/[G, G]—> E/[E,E]. Let P denote the inverse image of
τ(G/[G, G]) in E, so that P is a closed subgroup of E containing [E, E],
and P/[E,E] = τ(G/[G,G]). Now it is easy to check that E is the
direct product A x ? , which shows that the given group extension is split
in the category of connected Lie groups.

The simplest example of an abstractly split extension of topological
groups that is not continuously split, which must be known to many, is the
following. Let ί%, Ά, 3f denote the additive groups of real numbers,
rational numbers, integers, respectively. Let rr\ &l x (i£/3Γ)-» 9Ϊ/3Γ be
defined by TΓ(JC, y)= (x +3f) + y. Clearly, π is a continuous open
homomorphism. The only compact subgroups of 91 x (.2/3?) are the
finite subgroups of Ά/3ζ, whence it is clear that the group extension given
by π has no continuous split. However, from a Ά-space decomposition
a = S φ 3 , w e obtain the group decomposition 9t/2£ = S x (.2/3?), and
hence an abstract group split σ\ 91I2£->01 x (,2/3?).

This example is not satisfactory, because of the lack of
connectedness. In the categories of connected Lie groups and con-
nected affine algebraic groups, our question leads to interesting subques-
tions by various further specialisations. In the positive direction, we
shall make some progress for unipotent affine algebraic groups over fields
of characteristic 0. In the negative direction, we shall see how ab-
stractly, but not continuously, split extensions of connected Lie groups
arise from the fundamental group of the image group. The question of
the existence of such examples, with simply connected image group,
remains unresolved.

With regard to the above and to what follows, it is a pleasure to
acknowledge the benefits we had from exploratory discussions with Brian
Peterson and Chih-Han Sah.

2. Deflated extensions. A source of examples of the kind
alluded to just above is the following construction. Let H be a
topological group, and let K be a discrete central subgroup of H. Let r
be a homomorphism from K to an abelian topological group A. Let C
be the subgroup of the direct product A x H consisting of the elements
(τ(fc), k), with k in K. Clearly, C is a discrete central subgroup of
A x H. Write E for (A x H)/Q and let η: H-+H/K be the canonical
homomorphism. The composite with η of the projection A x H —> H
induces a continuous, open and surjective homomorphism π: E-+ H/K
whose kernel may be identified with A in the evident way. It is easy to
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verify that the group extension determined by π has an abstract split
H/K —> E if and only if r is the restriction to K of an abstract group
homomorphism H —» A, and that it has a continuous split if and only if r
is the restriction of a continuous group homomorphism ff—> A

Here is the simplest specific example arising in this way. Let Λf be
the group of real matrices

/ I 0 Ox
[α,fty]= α 1 0 .

\ y j3 1/

Put H = ffl, x M. Now fix an irrational real number μ, and let K be the
discrete central subgroup of' H consisting of the elements
(a + μb, [0,0, Z>]), where α and b range over 3Γ. Finally, let A - &t, and
define the homomorphism r\K-*9ί by

τ(α + μi>, [0,0, 6])= α + fc

We claim that the resulting extension of topological groups

has an abstract split, but does not have a continuous split. It is evident
that T can be extended to an abstract group homomorphism H—*<31
(annihilating M). Therefore, our group extension has an abstract split.

Now suppose that, contrary to our claim, there is a continuous split
of our group extension. As stated above, this yields a continuous
homomorphism /: H-+&1 whose restriction to K coincides with r. We
have K C 01 x [M, Λf ]. Now note that / annihilates [M, M] and is linear
on the factor $1. It follows that there is a real number p such that

a + b = τ(a + μb, [0,0, b]) = pa + pμfe.

This gives the contradiction μ = 1, so that our claim is established.

3. Unipotent groups. We consider the category of unipotent
affine algebraic F-groups, where F is a field of characteristic 0. Our
results will automatically hold also in the category of simply connected
nilpotent real or complex analytic groups. We denote the Lie algebra of
a group G by «S?(G). Recall that there are mutually inverse polynomial
maps expc: S£(G)-*G and logG: G -»i?(G), through which the
categories of unipotent affine algebraic F-groups and of finite-
dimensional nilpotent F-Lie algebras are equivalent. Our question can
be transferred to the category of nilpotent Lie algebras by virtue of the
following proposition.
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PROPOSITION. Let G and H be unipotent affine algebraic F-groups,
with F of characteristic 0. Let y: G-+H be an abstract group
homornorphism, and define the map y': ££{G)-> 5£{H) by γ' =
l°gH °y °expG. Then yf is a morphism of Q-Lie algebras. In this way,
the abstract group homomorphisms G —> if are in bijective correspondence
with the morphisms of Ά-Lie algebras ϊ£{G)

Proof. If u and v are Lie algebra elements such that [w, v] = 0 then
exp(w)exp(ϋ) = exp(w + v). Using this with expG and expH, we find
that if n is an integer and x an element of ££(G) then expH(y'(nx)) =
expH(ny'(x)). Hence y\nx) = ny\x). It follows that y'(qx) = qy'(x)
for every rational number q.

Since £{G) and £(H) are nilpotent, we can express products of
exponentials in G and H by means of the Campbell-Hausdorff
formula. This formula provides a set of rational numbers, indexed by
finite sequences of 0's and Γs, such that the following holds. If u and υ
are given elements of ££{G) or =S?(iτΓ), one attaches to each finite
sequence of 0's and Γs a certain multiple commutator of u and u,
according to the following recipe. To the sequence 0 we attach w, to the
sequence 1 we attach v. Generally, if [s] denotes the commutator
attached to the sequence 5, then [0s] = [w, [s]] and [is] = [v, [s]]. Since
our Lie algebras are nilpotent, we have [s] = 0 whenever the length of s
exceeds a certain bound. Therefore, if q(s) is the rational number
corresponding to s in the Campbell-Hausdorfϊ formula, the sum
Σ5g(s)[s] is defined as an element of the Lie algebra. Denoting this by
η(u, V), we have exp(u)exp(ι>) = exp(η(u, υ)). We recall that if ηn is
the part of η coming from the sequences of length n, then T/^M, V) =
u + υ and r/2(w, v) = \[u, v].

There is a sequence

of ideals of Ϊ£{G) such that [i?(G), Zfc+1] CZk for k = 0, , n - 1. Now
suppose we have already shown that y'(u + υ)= y'(u)+ y\v) and
γ ([u, v]) = [γ'(w)> Ύ(V)] whenever u is in ££(G) and v is in Zk. Let q
be a rational number, v an element of Zk+ι and u any element of
i?(G). From the definitions, we have

y'(η(qu, qυ))=η(γ\qu), γ\qv))

This may be written

y'(lkq
kηk(u, v)) = ϊkq

kηk(Ύ'(u), Ύ'(υ))
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Since, for fc>l, ηk(u,v) lies in Zk we may apply our inductive
hypothesis to expand the left side, and we obtain

Σ*ί V(ifc(κ, v)) = ϊkq
kηk(y'(u), y\υ))

Since this holds for all rational numbers g, the coefficients of qk on the
two sides must be equal. In particular, taking k = 1 and k = 2, we
obtain y\u + v)= γ'(w)+ y\υ) and γ'([u, v]) = [y'(w), y'(v)]. This
proves, inductively, that yf is a morphism of .2-Lie algebras.

Conversely, suppose that δ: t£{G)-> ££{H) is a morphism of <2-Lie
algebras. Put γ = expH°δ °logG. Applying the Campbell-Hausdorff
formula and noting that η has rational coefficients, one verifies directly
that y: G—>H is a homomorphism of abstract groups. Clearly, γ ' =
δ. This completes the proof of the proposition.

If L is an F-Lie algebra, K a finite algebraic extension field of Ά
contained in F and M a K-Lie algebra such that L = M(g)κF, then we
call M an absolutely algebraic form of L.

THEOREM. Lei F be a field of characteristic 0, and let G be a
unipotent affine algebraic F-group. Suppose that ££{G) has an absolutely
algebraic form. Let 1-^A-^E—>G—»1 be a group extension of unipo-
tent affine algebraic F-groups having an abstract split. Then this group
extension is split in the category of affine algebraic F-groups.

Proof. Write «S?(G) = L = M®KF9 as above. Viewing M as a
Ά -Lie algebra, consider the extension of K-Lie algebras

coming from the K-space structure of M. Write U for M® aK, and
note that U is a two-sided /^-module, with

c *(m 0fc) = (cm)(g)fc and (m ®fc) • c = m ®(kc)

for c and /c in 1C and m in M. The kernel P of π is clearly the two-sided
iC-submodule consisting of all sums of elements of the form c u - u - c,
with w in U and c in K Now K is a finite-dimensional separable
2,-algebra, so that K^^K is a finite-dimensional semisimple Ά-algebra,
whence every two-sided K-module is semisimple. Let 5 be a two-sided
i£-module complement of P in U. Clearly, c s = s c for every 5 in 5
and every c in K Let T denote the two-sided X-submodule of U
consisting of all elements u for which c u = u c for all c in K We
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claim that S = T. In order to prove this, it suffices to show that
P Π T = (0). By the semisimplicity, P is a direct two-sided K-module
sum (P n Γ ) 0 R . Since (7 = P + T, it follows from the definition of P
that every element of P is a sum of elements c p - p c with c in K and
p in P (not only in 17), and the above decomposition of P shows that we
may even take the elements p to be in R. But this gives P = R, so that
P (Ί Γ = (0).

Thus, [/ = P 0 Γ. Evidently, T is an ideal of 17, so thaMhis is a
direct X-Lie algebra decomposition. The restriction of π to T is an
isomorphism of' K-Lie algebras T^>M. Let μ:M->T be its
inverse. By tensoring with F and evident identifications, μ yields a
morphism of F-Lie algebras

μ*: L = M<g>κF-> T<g)κFCU(g)κF = M®%FCL®ΆF

If T: L^^F-^L is the morphism of F-Lie algebras coming from the
F-space structure of L, it follows from the definition of μ * that r ° μ * is
the identity map on L.

Now let 1 —> A —• E —> G —> 1 be as in the statement of the
P

theorem. This yields the extension of F-Lie algebras

> 0

By our above proposition, an abstract split of the given group extension
yields a morphism of <2-Lie algebras

such that p'°σ is the identity map on ££{G). By tensoring with F, we
obtain the morphism of F-Lie algebras

Let γ: e2
>(E)(g)2F-^ ££{E) be the morphism of F-Lie algebras coming

from the F-space structure of ££{E). Then, if μ* is the morphism of
F-Lie algebras obtained above, the composite

is a split of our above extension of F-Lie algebras. Via logG and expE,
this yields a split of the given group extension in the category of affine
algebraic F-groups, so that our theorem is established.
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INNER INVARIANT SUBSPACES

GARY S. ITZKOWITZ

We single out a special subclass of the invariant subspaces
which we call the inner invariant (i.i.) subspaces. A closed
subspace K of a Hubert space H is said to be /./. for a linear
operator T (with domain D) if: (1) T(KΠD)CK,
(2) {T(K ΠD) + (KΠ D)}- = K, and (3) JC G D\K φ Tx £ K.
This generalizes subspaces invariant for both T and T~ι when
the latter exists.

Some of the results in this paper are:
1. Let λ E C. If IΛ I < 1 then K is i.i. for U - λ where U

is the shift on Hardy space Hp iff K = gHp where g is inner and
g(Λ) ^ 0. If I λ I ^ 1, then K is LL for U - Λ iff K = gHp where
g is inner. 2. There is an isometry J from H2 onto L2(0, °°)

such that the i.i. subspaces of V + 1 (where Vf(x) = f(y)dy)
Jo

are precisely the subspaces J(gH2) for g an inner
function. 3. Any skew-symmetric simple operator with defect
indices (0,1) is isomorphic with V and V~\

1. Introduction. In §2 below we present the definitions of
invariance and inner invariance for (not necessarily bounded)
operators. Then their fundamental properties are analyzed.

In §3 we calculate the inner invariant subspaces of the shift operator
in several settings. In one setting we describe the inner invariant
subspaces of the shift on the Hardy space Hp. Then we generalize this
result.

In §4 we consider the unbounded Volterra operator V. We first
characterize this operator abstractly and then use this to get the result
that on L2(0, oo) integration and differentiation (i.e., V and V"1) are
isometrically isomorphic.

Finally, in §5, we describe the inner invariant subspace structure of
the unbounded operator V + l..

2. Definitions and basic properties. We make the fol-
lowing conventions. We work in a Hubert space H and closed linear
subspaces K. A linear, though not necessarily bounded, operator on H
will be denoted by T with linear domain D = D(T). If T~ι exists, we
write D'1 for D{T1)^ T(D(T)).

If R and S are linear subspaces of H then R + S is the linear
subspace generated by the elements of JR and S. The closure of R in H
is denoted by .R or {R}~.

455
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DEFINITION 2.1. A closed subspace K of H is invariant for T if:
(i) T(KΠD)CK;
(ii) {T(K ΠD) + (K

This definition allows for the extreme that neither T(K Π D) nor
K ΠD alone is dense in K yet K is still an invariant subspace for Γ.

DEFINITION 2.2. A closed subspace K is inner invariant for T if it
is invariant for T and in addition it satisfies the following property:

(iii) x<ΞD\Kd> TxfέK.

The following example shows that an invariant subspace is not
necessarily inner invariant and hence that invariance and inner in-
variance are different.

EXAMPLE 2.3. Consider the shift operator s on I2 where
s([ao9aι,a2> -]) = [O,ao,aua2,- ]. Let K = { [ α n ] : = 0 | ao = 0}; then it is a

straightforward matter to show that K is an invariant subspace for s but
is not inner invariant for s.

LEMMA 2.4. If a subspace K is inner invariant for T then
T(KΠD) = KΠT(D).

Proof. By the invariance of K we get trivially that T(KΠD)C
K IΊ T(D). To show K Π T(D) C T(K Π D) let y G K Π T(D) so that
y = Tx for some x in D. If x E D\K and Tx E K then we are
contradicting (iii) in Definition 2.2.

THEOREM 2.5. IfTis one-to-one then the following are equivalent:

(i) K is inner invariant for T;

(ii) K is inner invariant for T'ι\

(iii) K is invariant for both T and T1.

Proof. We will just prove (i) φ (ii), the other cases being
clear. Since K is invariant, Lemma 2.4 implies that T(K Π D) =
K Π Γ(D). Since T is one-to-one, T1 exists and D~ι= T(D). Also
D = T-'φ1).

Thus we have the following equalities:

(1) T(K Γ)D) = KΠ T(D) = KΓ)Dι

and

(2) KΠD = τ\κ n r(D)) = τ\κ n D 1 )
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and

(3) K Π T\D -1) = Tι(K ΠD'1).

Now, by the inner invariance of K with respect to T we have, by
using (1) and (2), that

K = {τ(κ n D) + (K n D)}-

W = {(K Π D " 1 ) ! Tι(K Π D"1)}-.

Hence condition (ii) in the definition of inner invariance (for T~ι) is
satisfied.

We now use (3) and (4) to show K is inner invariant for T~\ First,
from (4) we get (automatically)

T\KΠDι)QK

so that (i) of the definition of invariance is satisfied for T~\
Assume x E D1 and T~ιx E K. In order for condition (iii) in the

definition of inner invariance to hold for T~λ we must show x E K. If x
did not belong to K, then this, with the assumptions that x E D"1 and
T~ιx E X, would be a contradiction to condition (iii) and therefore to
inner invariance.

Now T'xEK and T'ιx E T\Dι) since xED'\ Therefore
Tιx EKΠ T~ι{Dι) = T\K Π Dι) by (3). The operator T1 is one-
to-one so that x must belong to K Π D1 and hence is in K. Thus K is
inner invariant for T~\

The next two examples exhibit (1) operators, all of whose invariant
subspaces are inner invariant and (2) operators without inner invariant
subspaces. The latter settles the inner invariant subspace problem
easily in contradistinction with the long standing but recently solved
problem concerning the existence of invariant subspaces of bounded
operators. (At the August, 1976 meeting of the American Mathemati-
cal Society in Toronto, Per Enflo announced that he had solved the
invariant subspace problem.)

EXAMPLE 2.6. Consider the bounded Volterra operator V on

L2(0,l) defined by Vf(x)= Γ/(y)dy. Kalisch [10] proved that the
Jo

proper invariant subspaces of this operator are of the form L2(α, 1) for
0< a < 1. We show that these subspaces are also inner invariant for
V. Since L2(a, 1) is invariant, we need only demonstrate the last
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condition in the definition of inner invariance. Thus let a be fixed and
assume that 0^/EL 2 (0,1) with f£L2(a,l). We must show that
Vf& L2(a, 1) but this is obvious since / must have some of its support on

(0, a) and therefore Vf(x)= I f(y)dy must also have support on

(0,α). Thus V/£L2(α,l).

EXAMPLE 2.7. Consider the Hardy space H2 in the unit disk (i.e.,
{z E C I I z I < 1}). On this space we will be concerned with the weighted
shift operator 5 defined by Sf{z) = zf(z/2) for fe H2. Donoghue [3]
showed that the proper invariant subspaces of 5 are of the form z nH2 for
n = 1,2,3, . It is then trivial to show that none of these subspaces is
inner invariant.

DEFINITION 2.8. The closed subspace K of H is said to be reducing
for T if:

(i) D(T) = (DΠ K)φ(D Π K1-);
(ii) T(KΠD)CK and T(KLΠD)CKL;
(iii) {T(KnD) + (KΠD)}- = K or {T^Π D) + (K±Π D)}~ =

K\
This definition is a natural extension of the definition of invariance

(Definition 2.1) to the concept of reducing, but it is not the standard
definition used for unbounded operators. In Akhiezer and Glazman [1],
page 82, a closed subspace K is said to reduce a linear operator T if only
conditions (i) and (ii) of Definition 2.8 hold. In this case we will say that
K is A-reducing for T.

PROPOSITION 2.9. Let D(T)=H. Then K reduces T iff it A-
reduces T.

Proof. Straightforward.

REMARK. In general, A-reducing (in the absence of the density
assumption) does not imply reducing.

PROPOSITION 2.10. Let The one-to-one with D(T) = H. Then ifK
reduces Γ, both K and K1 are inner invariant for T

Proof. Since D(T) = H we get trivially that {K ΓΊ D}~ = K and
{K1 Π D}~ = K±. Hence both statements in condition (iii) of the defini-
tion of reducing are true so that we can conclude that both K and KL are
invariant for T. To prove inner invariance, let XELD\K SO that
x = k + k1 with k(ΞKΠD and k1EK±ΠD. Then Tx = Tk + TkL

where Tk E K and Tk1EK± since K reduces Γ. We know x & K so
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that kL ϊ 0. If Tx G K then we must have Tk1 = 0 which would imply
k1 = 0, a contradiction. Hence ΓJC £ 1C A similar argument works for
K\

REM ARK. If D(T) were not dense in H then only one of the two
conditions in (iii) of Definition 2.8 might hold, in which case only one of
K or K1 would be inner invariant.

PROPOSITION 2.11. Let The one-to-one with D{T) = H. Then ifK
reduces T, K is inner invariant for T and so is invariant for
T Furthermore, in general, these implications do not hold in the other
direction.

Proof Proposition 2.10 states that the first implication is true and
the second one is a simple consequence of the definition of inner
invariance. To see that the implications do not hold in the other
direction, consider Examples 2.6 and 2.3. In Example 2.6 we saw that
the subspaces L2(a, 1) for 0 < a < 1 are inner invariant for the Volterra
operator V, but they do not reduce it since L2(α, I) 1 = L2(0, α) is not
invariant for V. In Example 2.3, we exhibited an operator with an
invariant subspace that was not inner invariant.

EXAMPLE 2.12. We show that if T is not one-to-one then Proposi-
tions 2.10 and 2.11 may actually be false. Let TΊ be a linear operator on
a finite dimensional Hilbert space Hλ with nonzero kernel. Let T2 be a
nonsingular linear operator on a finite dimensional Hilbert space
H2. Form the Hilbert space H = HλQ)H2 and the operator Γ =
7^0 T2. The operator T is not one-to-one since Tλ is singular. The
subspace H2 clearly reduces T but is not inner invariant for Γ. To see
this consider x = hλ + h2 with hλ G Hu h2 G H2 and 0 ̂  hx G kernel of Ύx\
then x <£ H2 but Tx = Tλhx + T2h2 = T2h2 G H2 so that H2 is invariant but
not inner invariant for T

EXAMPLE 2.13. We show several things here. First we exhibit an
operator that has inner invariant and (non inner) invariant
subspaces. Second, the inner invariant subspaces will be totally
ordered. Third, the (non inner) invariant subspaces are examples of
subspaces for which condition (ii) in the definition of invariance holds
nontrivially. This example extends Example 2.6 and so we use the same
notation.

Since the point spectrum of V is empty, V~ι exists. We write L2 for
L2(0,l). Since D(V) = L2 we conclude that D(Vι) = {/G L21 / is
absolutely continuous, f'E L2, and /(0) = 0} and V~1f(x) =
d/dxf(x). The operator V'1 is a closed unbounded operator (Stone
[15], Theorem 10.7, Page 428).
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As was shown in Example 2.6, the inner invariant subspaces of V
and V'1 are the subspaces L2(a, 1) for 0 < a < 1 and they are totally
ordered. These do not constitute all the invariant subspaces for
V"1. It is straightforward to show that the spaces Pn, where Pn is the set
of all polynomials of degree less than or equal to the positive integer n,
are invariant. As a matter of fact Pn ΠD^'1) which is the linear
subspace generated by {x, x2, , JC"} is properly contained in Pn, and
V1(PnΠD(V1)) = Pn.1 is also properly contained in Pn but {(Pn Π
D J ) + V\Pn ΠD'1)} = Pn so that condition (ii) in the definition of
invariance is indeed satisfied nontrivially.

We close this section with some propositions giving us certain
conditions under which some or all of the concepts of invariance, inner
invariance, and reducing coincide. In the following propositions the
linear operator A is assumed to be a bounded operator defined
everywhere on the Hubert space H.

PROPOSITION 2.14. If A is self-adjoint and one-to-one then the
following three conditions are equivalent:

(i) K is inner invariant for A
(ii) K is reducing for A
(iii) K is invariant for A.

Proof By Proposition 2.11 all we need do is show that K being
invariant for A implies K is reducing for A.

If x E K and y E K1 then 0 = (Ax, y) since K is invariant. But
(Ax, y) = (JC, Ay) since A = A*. Thus Ay is perpendicular to x. Since
x is arbitrary in K we conclude that Ay E K1 so that K1 is also invariant
for A and thus reduces A.

PROPOSITION 2.15. Let A be a unitary operator on H. Then K is
inner invariant for A iff K is reducing for A.

Proof ( Φ ). Trivial.

( Φ ). Theorem 2.5 tells us that if K is inner invariant for A then it
is invariant for both A and A"1 and conversely. Let x E K and
y E K1. Then since K is invariant for A ~\ and A is unitary, we get the
following:

Thus Ay is perpendicular to K, i.e., Ay E K1 so that KL is invariant for
A. Since both K and K1 are invariant for A, the subspace K reduces A.
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PROPOSITION 2.16. If A is bounded and A -I is generalized nilpo-
tent then A and A ~ι have the same closed invariant subspaces. Thus the
inner invariant subspaces of A (and A'1) coincide with the invariant
subspaces of A.

Proof Consider the infinite series Σ^ = 0 ( l -A) n ; this series con-
verges if Σ* = 0 | | ( l- A)n\\ converges and this series does converge since
A - 1 is generalized nilpotent. Since Σ~=o (1 — A)n = (1 - (1 - A))'1 =
A'1 we conclude that A'1 exists and is bounded.

Hence if K is invariant for A then it is invariant for 1 - A and
therefore for (1 - A)n for all positive integers n. Thus K is invariant for

In the other direction we have

A = (A -1)"1 = (1 - (1 - A -1))'1 = Σ (1 - Λ -1)".
n=0

This is a valid expression for A since

(1 - A -1)" = [A ~\A - l)]n = A "" (A - iγ

and thus the generalized nilpotency of A - 1 insures the convergence of

Thus, if K is invariant for A - 1 then K is invariant for (1 - A "1)n for all n,
so that K is invariant for A.

3. The shift operator. In this section we describe the inner
invariant subspace structure of the shift operator in several settings. In
the first setting, the spaces considered are the Hardy spaces Hp for
1 ^ p ^ oo. For background on Hardy spaces, the reader is referrred to
Hoffman [9].

Briefly, the Hardy spaces are the Banach spaces of p-integrable
analytic functions in the unit disk {z \ \ z \ < 1}, or equivalently, the
subspace of If of the unit circumference with no negative Fourier
coefficients.

DEFINITION 3.1. The shift operator U on Hp is defined by Uf{z) =
zf{z) for f(ΞHp.

LEMMA 3.2. The function z - a (a E C) is an outer function for all a
of modulus 1.

Proof. We show that z - a is outer by showing that log | eiθ - a \ is
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integrable and that

- α | = ™ Γ log\eiθ-a\dθ.

It is clear that z - a belongs to Hι since it is bounded and analytic in
the unit disk. Thus log|e'* - a \ must be integrable.

Let a = 1 and set F{z) = z - 1 so that log |F(0)| = 0. With a little
calculation we get

=±f^ log[2(l-cos0)]d0

= 0 = log|F(0)|.

Thus z - 1 is outer. The case F(z)= z - a ( |α| = l) may then be
reduced to the case a = 1 by a simple change of variable and thus yields
the same result.

We now describe the inner invariant subspaces of translates of the
shift, i.e., inner invariant subspaces of U- a for a EC.

THEOREM 3.3. The nonzero closed inner invariant subspaces S of
U - a on Hp (1 ̂  p ̂  oo) are the following:

(i) If \a\<l then S is inner invariant for U' — a iff S = gHp where g
is an inner function and g ( α ) ^ 0.

(ii) // I a I g 1 then S is inner invariant forU-aiffS- gHp where g
is an inner function; i.e., S is inner invariant iff S is invariant.

Proof. Since Beurling [2] showed that the invariant subspaces of U
(and therefore of U - a) are of the form gHp for g inner, all we need do
is test which of these satisfy condition (iii) in the definition of inner
invariance. We divide this into several cases.

Case 1. Let | a | < 1 and assume g(a) / 0. Given / in Hp\gHp we
must show that (U - a)f& gHp in order for gHp to be inner invariant for
U - a. Equivalently, if (U - a)f E gHp we must show that / E
gHp. Thus assume that there is a function h EHP such that
(U-a)f(z) = g(z)h(z), i.e.,

(5) (z-a)f(z) = g(z)h(z).
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Therefore

(6) = g(z)h(z)/z-a.

Now the left hand side of (5) is zero when z = a so that g(a)h(a) =
0, but g ( α ) ^ 0 by assumption, hence h(a) = 0. In other words
h(z)/z - a is analytic. Then, by using (6), in order for / to belong to
gHp we need only show

limΓ h(reiβ)
reiβ-a dθ

Now, the inequality

re1 a\ r- a

implies that

and therefore

. - \a\

1

since ft EHP. From this we conclude that h/z - a is in //p so that
/ = gh is in g/F. This means g ίP is inner invariant for U - a provided

Case 2. Let | a | < l and assume g(α) = 0. Since g(α) = 0 and
g E JFfp, the proof in Case 1 above (with Λ replaced by g) shows that
g/z - a is in Hp. At the same time g/z - a is not in gHp since 1/z - α
is not in Hp. Thus g/z - a is in Hp\gHp and (1/ - a)g(z)/z -a = g(z)
is in g//p which contradicts the definition of inner
invariance. Therefore gHp cannot be inner invariant for U - a when
g(α) = 0.

These first two cases prove part (i).

Case 3. Let | α | > l . In this case it is obvious that all invariant
§ubspaces of U - a are inner invariant.
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Case 4. Let | a \ = 1. We assume that (z - a)f E gHp or

(7) (z-a)f(z) = g(z)h(z)

for some h in //p. Since / and h are in /fp which is contained in H\ we
know that there is a decomposition of / and h unique up to constants of
modulus 1 such that

(8) / = g1F1 and h = g2F2

where g1 and g2 are inner functions and F1 and F2 are outer functions
in Hp.

Substituting (8) into (7) we get

(9) (z - a)gιF1 = gg2F2.

Then since z - a is outer (Lemma 3.2) and bounded we can
conclude that (z - a)F1 is outer. Since the decomposition of an Hp

function is unique up to constants of modulus 1, we can conclude from (9)
that gi = cgg2 and (z - a)Fλ = bF2 for some c, b in C with \c | = 1 =
ft |. Therefore F2 = ftF2/z - α G / P and this implies that F2/z - a E

JF/P. Hence h/z — a = g2F2/z - a E // p so that f = gh/z - a is in
g//p. This means that g/P is inner invariant for U - a.

PROPOSITION 3.4. (i) // | a \ < 1 Λβn {(z - a)H2}^H2.
(ii) // I α I = 1 then {(z - α)/ί2}" = H2.
(iii) // I α j > 1 ίΛen (z - a)H2 = H 2 .

Proo/. If I α I > 1 then 1/z - a is in H 2 so that / = (z - α)//z - α is
in (z - a)H2, i.e., (z - α)/f2 = H2. If | α | = 1 then z - a is an outer
function (Lemma 3.2). We know that (z - a)H2D {(z - α)z"}:= 0 but it
is also true that this sequence spans H2 since z - α is outer. Therefore
{(z - a)H2Y = H2, If I a | < 1 then the function

is an inner function and

a z — a
\a\'\-az

1-αz

is analytic in the unit disk. Therefore (z - a)H2 = g(z)H2 and g(z)H2

is a closed proper subspace of /ί2.
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So far we have discussed the unilateral shift operator, i.e., the shift
on Hp. Now we investigate the inner invariant subspace structure of the
bilateral shift on L\K) where K is itself a Hubert space.

We start by considering the special case where K = C so that
L2(K) = L2 of the unit circumference, which we will abbreviate simply as
L\ Then the bilateral shift U on either V or L\K) is defined by
Uf(θ) = eiθf(θ). We use χA to denote the characteristic function of a
subset A of the unit circumference.

First, we present the following lemma.

LEMMA 3.5. Let 1 ̂  p % o°, let c > 0 and let g E Hp. A necessary

and sufficient condition that the function

(with \a\ = 1) be in Hp is that h (eiθ) belong to Lp of the unit circumference.

Proof This is a slight generalization of a well known result and we
leave the straightforward calculation to the interested reader.

THEOREM 3.6. The closed nonzero inner invariant subspaces S of
U- a (a EC) on L2 are of the following form:

(i) // I a I < 1, then S is inner invariant for U — a iff S = χAV where
A is a Baire set of the unit circumference.

(ii) // I a I ̂  1, then S is inner invariant for U - a iff S = χAV (for A
a Baire set) or S = FH2 (for F a measurable function on the unit
circumference with modulus 1); i.e., iff S is invariant for U.

Proof. It is well known that the invariant subspaces of U are either
of the form FH2 or χAL

2. We now divide the proof into several cases.

Case 1. Let | α | < l . It is clear that invariant subspaces of the
form FH2 are not inner invariant for U - a since l/(eiβ - a)E L2 but not
t o / / 2 .

Now consider subspaces of the form χAL
2 but these subspaces are

always inner invariant since l/(eiθ - a) is bounded in V (for | a \ > 1 too).

Case 2. Let \a \ > 1. Here l/(ei$ - a) belongs not only to L2 but
also to H2 (since it is analytic). Thus all invariant subspaces of the form
FH2 (for F with modulus 1) are inner invariant for U - a. The space
χAL

2 is inner invariant for U-a when | α | > l , as was mentioned
previously.
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Case 3. Let | a \ = 1. In this case l/(eiθ - a)£U. We consider,
for / in V and g in H2, the following:

(10) f(θ) = F(θ)g(θ)/(e«-a).

Since / E V and | F(θ)\ = 1, equation (10) implies that g(θ)/(eιθ -a) EL2

with g in /ί2. Lemma 3.5 then tells us that g(θ)/(eιθ - a) is in H2 so that
/ E FH2 and thus F//2 is inner invariant.

Lastly, for some / and g in L2 we consider /(#) =
XA(e)g(e)/(e« - α) = ̂ (θ)(^(0)g(f l )/β w - β) = X*(0)/(0) so that
/ E ΛΆ̂ 2 and thus ^J-2 is inner invariant when | a | = 1.

For background material on L2(K) the reader is referred to Fillmore
[5], pages 31-44. We will use theorems from that wofk. Loosely
speaking L2(K), for K a Hubert space, consists of all measurable
functions / from the unit circumference into K such that

Our goal is to describe the inner invariant subspaces of U - a on
L2(K). We will write M for a reducing subspace of U on L\K). It is
known that M has the form M = {/ | /(0)E M(0) a.e.} where M(θ) =
P(Θ)K and P is the projection operator from L\K) onto M. If 5 is an
invariant subspace of £/, it is known that S = MφN where M reduces
U, the space N is invariant for U and Π^=o U

k(N) = {0}. More
specifically, we can state that N = VH2(R) where R is a closed subspace
of K and V is a partial isometry on L2(X), with initial space L2(R), that
commutes with U.

We now prove the following series of lemmas.

LEMMA 3.7. // g /s in H2(K) and \ a \ = 1 ί/ierc α necessary and
sufficient condition for h(θ)= g(θ)/(eiθ - a) to belong to L\K) isthath(θ)
be in H2(K).

Proof. This is clearly a further extension of Lemma 3.5. If h is in
H2(K) then it automatically belongs to L2(K); so assume g is in H2(K)
and g/(eιθ - a) is in V(K). Let {£n}n=o be an orthonormal basis for K
and let gn(0) = (g(#), &n); i e , the inner product of g with bn. Then it is
known that g(θ) = Σngn(θ)bn (convergence of this sum being in the norm
of K) and that gn is in H2. Since {bn}^=0 is an orthonormal basis for K
we get ||g(0)||κ= Σ^=o |gn(0)|2. From this we get (using Fatou's Lemma)
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that

β-a)\\h(K) = ̂ -\ \\g(θ)/(e'β-a)fκdθ

Since g/(eiθ - a) is in L2(K) we can conclude that gn/(eiθ - a) is in L2 for
all n. Thus we now have gn in JF/2 with gn/(eiθ - α) in L2 (for | α | = 1) and
so we can conclude, by Lemma 3.5, that gn/(eiθ -a) is in H2 for all
n. From this we get finally that g/(eiθ - a) is in H2(K).

LEMMA 3.8. (i) If \a\< 1, then N is never inner invariant for
U - a. (ii) If I a | g 1, ί/ien N is always inner invariant for U - a.

Proof. We are assuming N = V7/2(JR) with V and i? as described
above.

Case 1. Let | α | < l and x be in JR. Then x/(eiθ-a) is in
L2(R)\H2(R). Now V maps L2(R) into L2(iC) so that V(x/ew - α) is in
L\K). Thus

I β - α ) = Vx

since V commutes with U and hence with U - a. Since x is in i? and JR
is contained in H\R) we get Vx in H2(R). This contradicts the inner
invariance of N.

Case 2. Let \a \ > 1. Assume there is an / in L\K) such that

(11) (eiθ-a)f(θ)=V(θ)g(θ)

for some g in H2(R). Since | α | > 1, the function l/(eιθ - a) is analytic
and bounded in the unit disk so that g/(eiθ - a) is in H2(R). Thus (11)
implies that
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since V commutes with U-a on L2(R). We already know that
g(θ)/(eιθ-a) is in H2(R) so that / is in VH2(R). Thus N is inner
invariant for U — a when | a \ > 1.

Case 3. Let | Λ | = 1. Assume / is in L\K) and g is in
H\R). We must show

(12)

but

^ —L
L(K)~2πJ0

2τr)a

VIP(R),

1

e'° -a

1

\\V(θ)g(θ)\\2

κdθ

)\g(θ)\\ldθ

since V(θ) is a partial isometry a.e. from R into K
Thus

'e - a)fRdθ

= \\g/(e"-a)tfL>w.

Since / is in L2(K) this means g/(elθ - a) is in L2(JR). Since V commutes
with U - a on L2(K) we can rewrite (12) as

Since g is in H2(R) and g/(eιθ - a) is in L2(R), an application of Lemma
3.7 tells us that g/(V* - α) is in H2(R) so that / must be in VH\R).

These lemmas now allow us to completely describe the inner
invariant subspaces of the bilateral shift.

THEOREM 3.9. The closed nonzero inner invariant subspaces S of
U-a on L\K) are:

(i) // I a I < 1 then S is inner invariant for U — a iff S — M where M
is a reducing subspace for U, i.e., iff S is reducing for U-a.

(ii) // j a I ̂  1 then S is inner invariant for U - a iff S = M φ N with
N = VH2(R), i.e., iff S is invariant for U-a.
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Proof. Lemma 3.8 (i) tells us N is not inner invariant for U-a
when |α I < 1, but M being a reducing subspace for U is clearly also a
reducing subspace for U-a. Since U-a is one-to-one, Proposition
2.10 tells us M is inner invariant for U-a. The question is, can M φ N
be inner invariant in these circumstances?

Since N is not inner invariant, there is an x in L2(K)\N such that
(U-a)xEN. We know L2(K) = MφM± with NCM1. Thus we
can write x = m ^ m2 where mi E M and m2GMλ, and (l/-α)jc =
([/ - a)mλ + (t/ - α)m2 E N. We know ((/ - a)mλ is in M since M is
reducing for U-a. Since N is orthogonal to M this means
(£/ - a)mλ = 0 which in turn means rri\ = 0 since £/ — α is one-to-one.
Thusx = m2E Mλ\N so that x 0 φ N yet {U - a)x E M φ N so that
M φ N cannot be inner invariant.

If I α I ̂  1 then Lemma 3.8 (ii) tells us N is inner invariant. It is also
clear that M is inner invariant. We will now show that M φ N must
also be inner invariant.

Assume x E L2(K) and

The element JC can be expressed as x ~ mx+ m2 as before, so that
(U - a)x is again equal to (U — a)nii + (U — a)m2. Since M reduces
U-a, we know

( ί 7 - α ) m 2 E M 1 and {U-a)m^M,

so that (U-a)m2 = (U-a)x-(U-a)mίGM^N. Therefore
(U - a)m2 E ML Π ( M φ N ) = N. Since N is inner invariant for U - a
we can conclude that m2 is in N.

Let us look a bit more closely at part (ii) of the previous
theorem. The subspace S has the form M φ N . If K were one
dimensional, i.e., K = C then this theorem should reduce to Theorem 3.6
(ii). It is not difficult to show that in this case the subspace M reduces to
χAU (for A a Baire set) and N reduces to FH2 (for F a measurable
function of modulus 1). At this point there seems to be an
inconsistency. In Theorem 3.6 we have S = FH2 or S = χAL

2 (but not
both together) while in Theorem 3.9 we seem to allow the possibility that
S = FH2φχAL

2. That there is no inconsistency follows from the
following:

Assume S = FH2($χAL
2. This means FH2 is contained in the

orthogonal complement of χAV, i.e., if B is the complement of A on the
unit circumference, then FH2 C χBL

2. If A has measure zero then there
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is no problem since, in this case, χAV = {0} and S = FH2. Thus, let us
assume that the measure of A is positive. Let / = Fg E FH2 with g in
H2. Then since FH2 C χBL

2 we must necessarily conclude that / = 0 on
A, i.e., / = 0 on a set of positive measure. Since F has modulus 1 a.e., it
is necessary that g = 0 on a set of positive measure. This is impossible if
g is not identically zero.

Since g E /f2, g ELH1 and the log of an if1 function is
integrable. But log | g | = — °° on a set of positive measure which
contradicts the integrability of log|g|. Hence g must be identically
zero. This implies FH2 = {0} so that 5 = χAV. Thus when K = C it
cannot happen that S = M φ N nontrivially.

Lastly, there is a question that still remains open, namely, what are
the inner invariant subspaces of the unilateral shift and its translates on
H2{K)Ί The invariant subspaces we know: they are of the form
N = VH\R) where V is a partial isometry on H\K) commuting with
the unilateral shift and JR is a closed subspace of K. The argument used
in Lemma 3.8, Cases 2 and 3, with minor modification, suffices to tell us
that all invariant subspaces of U are inner invariant for U - a when
I a I ^ 1, but what happens when | a \ < 1 ? Things are not too clear in
this case. In the one-dimensional case S = FH2 and 5 is inner invariant
for U-a iff F(a)^0. What condition on the partial isometry V on
H2(R) reduces to V(a)/0 when K is one-dimensional?

4. A characterization of the Volterra operator. We
characterize integration abstractly on an arbitrary Hubert space. Then
we apply the work of the previous section to obtain the inner invariant
subspace structure for a translate of the integration operation.

For the sake of convenience we will write A ~ B to mean A is
unitarily equivalent to B.

Jo

DEFINITION 4.1. The Volterra operator V is defined by V/(x) =

f(y)dy for £ in D(V) where D{V) = {f E L2(0, oo) | VfE L2(0, «>)}.
o

A straightforward application of the Fubini Theorem tells us that

for a in C - {0} where / is in D( V - a)"1. It is then not difficult to show
that ( V - α ) 1 is bounded and defined everywhere in L2(0,oo) for
Re(α)<0.

PROPOSITION 4.2. The Volterra operator V is a closed densely de-
fined unbounded operator.
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Proof. Since (V + l)"1 is bounded and defined everywhere, it is
closed. Therefore V + l and V are also closed.

Sarason [13] showed that (V + I)"1 on L2(0, oo) was unitarily equival-
ent to (1 + U)/2 on H2 where (7 is the shift operator. Since (V + I ) 1 ~
((7 + l)/2 we get V + 1 ~ 2(1/ + I)"1. Therefore V + 1 (and hence V) is
densely defined if (1/ + 1)"1 is, but D( l/ +1)"1 = (1/ + l)D(t/) =
(z + I)// 2 and Proposition 3.4 (ii) assures us that (z + ΐ)H2 is dense in H 2 .

To show V is unbounded, define /α(x) to be 1 if O^x^a and
- a(a + l)/(x + I)2 if JC > α where 1< α < «. Then || V/fl || > a \\fa \\ for
a = 2,3,4, so that V is indeed unbounded.

In order to characterize the Volterra operator it will be useful to
generalize the concept of a symmetric operator and its Cayley transform.

DEFINITION 4.3. A linear operator A on a Hubert space H is
called b-symmetric if eibA CΛ* where b is real. If b = π then Λ is
called skew-symmetric.

We now note that virtually all results about symmetric operators and
their Cayley transforms also hold for b -symmetric operators. Simply
substitute b-symmetric for symmetric in their proofs. A good reference
for symmetric operators is Akhiezer and Glazman [1].

Recall that if B is a symmetric operator then its Cayley transform C
is defined by C = (B - z)(B - z)"1 where I m ( z ) > 0 and C is a partial
isometry.

We now define a Cayley transform for a b-symmetric operator. If
A is fe-symmetric then B = eib/2A is symmetric and has a Cayley
transform C where (for Im(z)>0)

C = (B-z)(B-zΓ

= (eibl2A - z)(eihl2A - f)"'

= {A-e-ibl2z){A-e'imz)-\

Now let w = e'ibl2z so that

(13) C=C(A) = (A-w)(A-e-ibw)-1

iorlm(e""2w)>0.

DEFINITION 4.4. We call the partial isometry C— C(A), i.e., (13)
above, the Cayley transform of the b-symmetric operator A. The
domain D(C) = (A - e'ibw)D{A) and the range R(C) = (A - w)D(A)
where Im(e ί ί > / 2w)>0.
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DEFINITION 4.5. If A is a b -symmetric operator, we define the
defect spaces Ht and H~ by

Ht=D(Cy = {(A - e-ibw)D{A)Y-

y = {(A - W)D(A)}1

where Im(eib/2w)>0.

DEFINITION 4.6. The defect indices of a b-symmetric operator A
are (/?, q) where p- dimension Ht and q = dimension H~w. From
Definition 4.6 it is clear that (p, q) are also the defect indices of the
Cayley transform C(A).

PROPOSITION 4.7. Let A be b-symmetric and lm(eιb/2w)>
0. Then HI = {x E H | A *JC = e'W}, H ; = {x G H | A *JC = WJC} and

D(A) n H ; = D(A) n H; = H ; n H; = {0}.

THEOREM 4.8. Lei A fee b-symmetric, then A is closed iff D(A *) =
D(A)®Ht®H- where lm(eib/2w)>0. The algebraic direct sum above
is not necessarily orthogonal.

Proof ( Φ ) This direction is well known and its proof can be
found in Akhiezer and Glazman [1], Volume II, Page 98.

( φ ) This part is new and its proof is due to Robert
Waterman. We assume that A is not closed and that C = C(A) is the
Cayley transform of A. We will also make use of the following
equivalent statements:

A is not closed <£> C(A) is not closed <=> D(C) is not closed <£>
R(C) is not closed.

Since C is not closed we can get a smallest closed extension C of C
by considering the naturally induced partial isometry on D(C) that
extends C. It is then clear that ( C - 1)D(C) = D(A) and D(A) is
dense in H. Thus (C - l)D(C) is also dense in H since (C - l)D(C) =
(C - ί)D(C) D(C- l)D(C). In this case A = (e~ώwC - w)(C - I)"1 is
a closed 6-symmetric operator. We know A^A since C^C (see [1],
Volume II, page 96). Since A is a closed b -symmetric operator, the first
half of this theorem tells us D(A*) = D(A)(BH+

W(A)0HW(A). From
Definition 4.5 we get H+

W(A) = D(C)1 = D{C)L = D(C)L = Ht(A) and
HW(A ) = R(CY = R (C)1 = R(cy = HW(A ). Therefore

(14)
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since A g A. But A g A implies A *g A * so that D (A *)gD (A *). This
completes the proof since by (14) D(A *)^D(A * ) 5 D ( Λ ) φ H ; φ H ; .

DEFINITION 4.9. A 6-symmetric (or partial isometry) A is simple if
there does not exist a closed subspace K oί H invariant under A such
that A restricted to l£ is b-adjoint (or unitary). An operator F is
b-adjoint if eibF = F*.

REMARK. A b-symmetric operator A is simple iff C(A) is simple.

Let /f be a separable Hubert space and let {e,}Γ=i be an orthonormal
basis for H. We define an operator C* by

C*ek = ek+ι for /c = 1,2,3, .

It is clear that C # is a partial isometry with defect indices (0,1). As a
matter of fact C # is the shift operator. A short calculation then shows
that {C#- l)D(C#) is dense in H so that

for lm(eib/2w)>0 is a fe-symmetric operator.

THEOREM 4.10. (J. von Neumann) // a simple b-symmetric
operator A on H has defect indices (0,1) then H is separable and A is
unitarily equivalent to A# .

REMARK. This important theorem was originally proved for sym-
metric operators. Its present form is a direct generalization of this and
its proof is similar.

THEOREM 4.11. The Volterra operator V on L2(0,°o) is a simple
skew-symmetric operator with defect indices (0,1).

Proof. In Sarason [13], the following was shown: If U is the shift
operator on H2 then (V+ I ) " 1 - ([/ + l)/2. A little calculation then
gives U ~ (1 - V)(l + V)"1 = - C( V). Therefore V is simple with de-
fect indices (0,1) since U is, and V is skew-symmetric since it is the
"anti"-Cayley transform of U (i.e., b = π and w = 1 in (13) above).

As a corollary of the last two theorems we now have the abstract
characterization of the Volterra operator.

COROLLARY 4.12. Any skew-symmetric operator A, defined on a
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Hubert space H, that has defect indices (0,1) is unitarily equivalent to the
Volterra operator V on L2(0, oo).

Proof. By Theorems 4.11 and 4.10 we have V ~ A* and A ~ A* so
that V-A.

Since Vf(x)= Γ f(y)dy for / in D(V) = {fEL2\ VfEL2}, we

easily get that V'ιg{x) = d/dxg(x) for g in D( V"1) = {/ in V \ f G L2,
/ E A C and /(0) = 0} where f'(x)= d/dxf(x) and A.C is the set of
absolutely continuous functions on L2 = L2(0, °°).

THEOREM 4.13. The operator V is unitarily equivalent to V~\

Proof In the proof of Theorem 4.11 we showed that C(V)~-
- U. Thus since U ~ eibU for real 6 we get that

= (1+U)(l-Uyι if

= {(l-l/)(l+t/)-1}-1

}-χ= V"1.

We finish this section with some remarks about the nature of the

adjoint V* of the Volterra operator V. On L2(0,l), Vf = Γ f(y)dy
r\ Jo

and V*f = I f(y)dy. At a first glance it might seem natural to suppose
J X

that V* on L2(0,oo) would be similarly defined, .that is, V*f =

I f{y)dy. This is not the case.

Since by Theorems 4.11 and 4.2, V is a closed skew-symmetric
operator, we can use Theorem 4.8 to deduce that D(V*) =
D ( V ) φ H ί φ H r . The defect indices of V are (0,1) so that H\ =
{0}. We now need to describe the defect space Hΐ. The function e~ι in
L2(0, oo) is not in D( V) since V(e~') = 1 - e~' and the constant 1 does not
belong to L2(0, oo). On the other hand e~x does belong to D( V*) since

= Γ
Jo
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for / in D( V). Thus e"' is in D( V*) and V*e"' = <Γ' so that e~' is in
Hi". Since Hΐ is one dimensional, we conclude H\ = [e~'].

PROPOSITION 4.17. 77ιe adjoint V* can be described by V*f(x) =

lim Γ f{y)dy for f in D{V*) = D( V)Θ[e"].

f*Proof. From above we know V*e x = e x = lim e fώ. If / is in

D(V) then (using integration by parts) we have (Vf,/) =
lim^oc I V/(ft)|2 - (/, Vf) which implies that l i m ^ Vf(b) = 0 for otherwise
|| V/ll = oo which contradicts / being in D( V). Hence

0 = lim £ /(0 A = £ /(O A + lim £ /(*) A

so that

since V is skew-symmetric.

We can actually describe D(V*) in slightly different terms, namely
D(V*) = {/EL 2 (0^) | y * / E L 2 ( 0 , 4 It is obvious that D(V*) is
contained in this set, which we will call D*. We need only show
D* CD( V*). To do this consider / in D(V) and g in D*. Then

and

lim I f{x) I g(y)dydx = I f(x)Wg(x)dx
" - " J o Jx Jo

where W = V* with D(W) = D, so that

for/ in D(V) and g in D*.



476 GARY S. ITZKOWITZ

5. Inner invariant subspaces for Volterra type
operators. We are now ready to apply the results of the past few
sections to the unbounded Volterra operator.

THEOREM 5.1. There exists a surjectiυe isometry (i.e., a unitary
map) / from H2 to L2(0, oo) such that the closed nonzero inner invariant
subspaces of V + 1 are precisely {I(gH2) | g is an inner function}. The
same result holds for V~ι + 1 in place of V + 1.

Proof Recall that V is a skew-symmetric simple operator with
defect indices (0,1). Thus ( 1 - V)(l + V)"1 is the shift operator since
this is the Cayley transform of V. Therefore there is a unitary map /
from H2 onto L2(0, oo) such that IU = (1 - V)(l + V)Ί where U is the
shift operator on H2. Thus IU + 7 = 2(1+ V)'ιI so that J|(t/ + 1) =
(1 + V) 7. Thus K is an inner invariant subspace of \{U + 1) iff I(K) is
an inner invariant subspace of (14- V)"1, and \{U + 1) has the same inner
invariant subspaces as U + 1. Theorem 3.3 then tells us that K must
equal gH2 with g an inner function. Thus {I(gH2) | g inner} is the set of
inner invariant subspaces for (V + I)"1, and by Theorem 2.5 for V + l
too.

To get the second part of this theorem, notice that by Theorem 4.13
we have V ~ V"1 so that V + 1 ~ V'1 + 1.

REMARK. It should be pointed out that while the unitary maps from
H2 onto L2(0, oo) may be different for V + 1 and V"1 +1 it happens that it
is also possible to pick a single unitary map / in such a way that the spaces
I(gH2) are inner invariant for both V + l and V"1 +1
simultaneously. For an example of such a unitary map see Sarason [13].

If we now look back at Example 2.6 we will notice that the spaces
L2(a, 1) for 0 ̂  a S 1 are inner invariant for the Volterra operator V on
L2(0,1). Since our Volterra operator V on L2(0, oo) is a natural extension
of this it seems appropriate to inquire if the spaces L\a^) are inner
invariant for V.

PROPOSITION 5.2. The subspaces L2(a, <*>), for 0 < a < oo, o/L2(0, oo)
are inner invariant for V + l .

Proof We will show that L2(a, oo) is invariant for both V + l and
(V+l)" 1 . Then an application of Theorem 2.5 shows that L2(α,oo) is
inner invariant.

Since (V+ I)"1 is bounded and defined everywhere, we need only
show that (V + l)\L2{a, oo)) c L2(a, oo) but (V + l)~lf(x) =

f{x)- Γ eι~xfit) dt for / in L2(α, oo). Since Γ eι'xfit) dt has its support
Jo Jo
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in [a, °°) if / does, we can conclude that (V + I)"1/ is indeed in L\a, °°).
To show L\a,<χ>) is invariant for V + 1, we have

D(V + 1) Π L2(α, a) = D(V) Π L2(α,«)

= {/ G L2(0,«) £ /(y) dy G L2(0, oo) J n L\a, oo)

= {/ e L2(α, cc) I |J/(y) ί / y εL 2 (α, oo) j

and it is clear that this is dense, in L2(a,™) if D(V) is dense in
L2(0, oo). Thus condition (ii) in the definition of invariance is satisfied.

As in the first part of the proof, I f(y) dy has its support in [a, oo) if f
Jo

does. Thus if / is in D (V) Π L2(a, oo) then (V +1)/ must be in L2(α, oo).

REMARK. From Theorem 5.1, there must be an inner function ga

such that I(gaH
2) = U(a, oo). Using the isometry / given by Sarason [13]

we see that ga(z) = exp(α(z + l)/(z - 1)) is precisely the inner function
we want.

PROPOSITION 5.3. The inner invariant subspaces of V + l are all
inner invariant for V.

Proof In Proposition 4.2 we showed that (V + I)"1 - (1 + J7)/2 so
that V + 1 - 2 ( 1 + t/)-1 or V- 2(1 + t/)"1 - 1. Thus /(gH2) is inner
invariant for V iff g//2 is inner invariant for 2(1 + U)~ι - 1. Since gH2 is
inner invariant for (1 + U)/2 it is inner invariant for 2(1 + J7)"1 and
therefore necessarily invariant for 2(1 + U)~\ We must now show that
gH2 is also invariant for 2(1 + U)~ι- 1.

Clearly D(2(l + (7) 1 - 1) = D(l + t/)"1 = (z + l)f/2. By Proposi-
tion 3.4 we know that (z + I)//2 is dense in H2. Also since gH2 is inner
invariant for U -hi we get (z + I)// 2 Π gίf2 = (z + l)gH2 (we leave the
proof of this fact to the interested reader). Now condition (ii) in the
definition of invariance tells us that we must show {((z + ΐ)H2 Π gH2) +
[2( ί/ + I)"1 - 1] ((z 4- l)H2 Π g/f 2)}~ = g//2. Since (z + I)//2 Π gH2 =
g(z + I)//2 we know that this subspace is dense in gH2 because (z + ί)H2

is dense in H2. Thus condition (ii) will be satisfied if we can show
[2(U + I)"1 - l](g(z + l)/f2) C g/ί2 (this is condition (i) of the definition
of invariance) but this is true iff 2(17 + l)~ιg(z + 1)H2C gH2 which is
clearly true. Thus I(gH2) is invariant for V.

To complete this proof we now show that I(gH2) is also invariant for
V'1 and then call on Theorem 2.5. We do this by showing V'1 + 1 ~
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2( ί/- l ) " 1 so that V r-1~2(t/-l)"~1-l. Then we use the argument
given above to show that gH2 is indeed invariant for 2(U — I ) ' 1 - 1.

To show V-J + 1 - 2 ( 1 7 - I ) " 1 , consider the fact that (1 + V)"1 =

1 - K where Kg(x)= I etxg{t)dt. We then consider the differential
Jo

equation {ιV~ι + /)/ = g, that is, if'(x)+if(x) = g(x). The solution of
this equation is/(jc) = iKg(x). Ύhusf(x) = (iVι + i)~ιg(x) = iKg(x) or

-K = (V-1+iγι. Since 1 + V~ 2(1 + U)~λ we have 1 - K =
(1 + V)-1 ~ (1/ + l)/2 or - K ~ (U - l)/2. Since (V"1 + I)"1 = - K we
conclude (V"1* 1)~ 2(17- I)"1.

We now examine one difference between the bounded Volterra
operator on L2(0,1) and the unbounded Volterra operator on
L2(0,°o). In reference [10], Kalisch showed that V on L2(0,1) is a
unicellular operator. For the unbounded Volterra operator, it is not.

It is not difficult to show this. We need only show that the spaces
I(gH2) for g an inner function are not totally ordered. This is true iff
the spaces gH2 are themselves not totally ordered. Consider two
subspaces gλH

2 and g2H
2 of H2 with

z v a a — z , / x b b — z
gi(z) = γ—{'- — and (z)

I I 1
γ { a n d g2(z) Γ

I a I 1 - az \b\ ί-bz

where a and b are nonzero complex numbers such that a^ b. It is then
a routine calculation to show that neither gιH

2Qg2H
2 nor g2H

2C
giH2. Thus the unbounded Volterra operator is not unicellular.

We do know all of the inner invariant subspaces for V + 1 but do we
know all of them for VΊ The answer at present is no, though we can
(and will) exhibit a rather large set of inner invariant subspaces of V that
are not inner invariant for V + 1.

EXAMPLE 5.4. Let Pn be the set of functions of the form p(t)e'{

where p(t) is a polynomial of degree at most n for n a positive
integer. Thus Pn is an n + 1 dimensional subspace of L2(0, oo). We will
show that Pn is inner invariant for V'1 and therefore also for V. Now

with D ( V 1 ) = {/EL 2 (0,^) |/EΛ.C, /ΈL2(0,<*) and

Claim 1. PnnD(Vr-1) = {p(ί)e"f | p(0) = 0 and/? is a polynomial of
degree at most n}.

Proof of claim. Straightforward.

Claim 2. V\Pn(ΛD{Vι))QPn.
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Proof of claim. We have V"1p(ί)e~ί = (p'(t) — p(t))e"' which is in
Pn whether or not p(0) = 0.

Claim 3. Pn={(P l lnD(V-1))+ V ^ n D ί V - 1 ) ) } .

Proof o/ claim. Straightforward.

These three claims taken together tell us that Pn is invariant for
V~\ We now show that Pn is inner invariant.

If V~ιf = f is in Pn then /'(ί) = piήe'* with p a polynomial of degree
at most n. Therefore

f(0= P P(y)e~ydy
Jo

p'(0)+ + p

Since / is in L2(0,oo) we conclude Σ^0p
( lς)(0) = 0; hence f(t) =

-Σ"k=op
(k}(t)e~'. Thus f(t) = g(t)e-' where g(ί) is a polynomial of

degree at most n, and so / belongs to Pn and Pn is inner invariant for V"1

and also for V.
We will show that the subspaces Pn (for n = 1,2, •) are invariant for

V + 1 and V"1 + 1 but not inner invariant for either. Keep in mind that
D(V-1 + 1) = D(V-1) so that D ( V ' + 1 ) ,Ί PB = {p(/)e-'| p(0) = 0},
where p is understood to be a polynomial of degree at most n.

Let / be in D ( Γ ' + l ) n P , so that f(t) = p(t)e" with p(0) =
0. Then

=p'(t)e->

Thus, because of (15) we have {V~ι + 1)(D(V"1) n Pn) = ?„_,. Further

(v-1 +1) (D (v-1) n pn) + (p (v-1) n pn)

since t"e" e {p(ί)e"' | p(0) = 0} and Pn_, + [tne'] = Pπ. Thus (15) and
(16) imply that Pn is invariant for V~ι + 1. On the other hand tn+ιe~' is in
D(Vι + ΐ)\Pn while ( V"1 + \){tn+ιe-') = (n + ΐ)tne" belongs to Pn so that
Pn is not inner invariant for V'x + 1.

We will use V for L2(0,») below. Consider D{ V + 1) = D{ V) =
{fEL2\ VfEL2}. We look at D(V)ΠPΠ. Let / be in Pn. Thus
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fit) = p(t)e~'. If / is to belong to D( V) then I p(y)e'ydy must belong
Jo

L2; but (' p(y)e->dy = - e-(ΣUp*Xt)) + ΣUp*\O). If this is to
JoJo

belong to L2 then ΣUop
(k)Φ) = 0 in which case ( V + l ) ( p ( ί ) O =

-e-'(Σ;.op<t)(0) + p(Oe"=-β- | (Σ;. 1 p ( t ) (ί)). Thus (V + l)
(Pn ΠD(V))CPn and PnΠD(V) = {p{t)e" \Σ"k=0p

{k)(0) = 0}.

Claim 4. For fc = 1,2, , n, (tn - ktk~ι)e- E PnΠD(V).
\

Proof 0/ Claim. A simple calculation gives us

k

i=0

Therefore Σf=op'(O) = 0k = 0.

Claim. 5. Pn.1C(V+ l)(PnΠD(V)).

Proof of Claim. If we do some more calculation we get

(17) (V+l)(tk - ktk-ι)e-1 = -e-ι(ktk-χ)

for k = 1,2, « ,n. Therefore (V + l)(PnΠD(V)) contains the space
generated by e~\ te~\ t2e~\ % tn'xe~l which is Pn-X.

Now let p(ί) =tn-nl then clearly Σ£=op*(0) = - n ! + n ! = 0 s o
that (Γ - n !)*?"' belongs to PnΠD(V). From Claim 5 we get n \e~ι in
(V+ l)(PnΓ)D(V)). Thus r"e~r = (ίn - n \)e~' + n\e-' and this belongs
to (PnnD(V)) + (V+l)(P n nD(V)) so that Pn = (PnΠD(V)) +
(V + 1) (Pn Π D (V)). This means Pn is invariant for V 4-1. From Claim
4 we know that ( r + 1 - ( n + I)*")*"1 belongs to D(V)\PΠ but ( V + l )
(Γ+1 - (n + l)ίn)e" f = - (n + l ) r e ^ by (17) above, which is in Pn. Thus
Pn is not inner invariant for V + 1.

A few comments about the inner invariant subspaces I(gH2) are now
in order. We have shown that these subspaces fill out the set of inner
invariant subspaces for V+ 1. We can also show that these subspaces
are inner invariant for V - a where a is in the resolvent set of V. Since
- 1 belongs to the resolvent set and we do know all of the inner invariant
subspaces for V - (.- 1) = V + 1, is it possible that the spaces I(gH2) also
fill out the inner invariant subspace structure of V - aΊ If not, what
other inner invariant subspaces are there?
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PROPOSITION 5.5. The operators V - a and V~ι - a, for a EC, have

no nontriυial reducing subspaces.

Proof. It is well known that the shift operator on H2 has no
nontrivial reducing subspaces (see Hoffman [9], Page 110). Also, for a
fc-symmetric operator A, a subspace K reduces A iff it reduces C(A)
(see Akhiezer and Glazman [1]). Since C(V)= - U where V is the
Volterra operator and U is the shift, we can conclude that V has no
nontrivial reducing subspaces. Since V ~ V~\ we also know that V"1

has no nontrivial reducing subspaces. We know

(18) D(V-a) = D(V) and D(V) = L2(0,oo).

Let us assume that K is a reducing subspace for V - a where a is a
nonzero complex number. Therefore

D{V- a) = (D( V) Π X ) 0 ( D ( V ) Π K1)

by Definition 2.8 and (18) above. We therefore conclude
that {KΠD(V)}- = K and {KλΠ D(V)}~ = K±. In this case
(V-a)(KΠD(V))CK iff V(KΠD(V))CK, and
( V - a)(KLΠ D(V))QKL iff V ( i r Π D ( V ) ) C Γ so that K must also
reduce V. Thus K = {0} or K = L2(0,^). Since V'1 ~ V we get the
same result for V~ι - a.

6. Some applications. As in Goldberg's book, "Unbounded
Linear Operators", it is possible to define a natural induced linear
operator on a quotient space. To do this consider a linear operator T
with domain D contained in a Hubert space H. If K is a closed
subspace of H we can consider the quotient space H/K. The elements
of HIK are equivalence classes of the form x + K for x in H. We will
denote this equivalence class by [jc]k, or simply [x] when no ambiguity
results.

DEFINITION 6.1. We define the induced operator t: H/K -» H/K
by t[x]k=[Tx]k where D(ί*) = {[*]* I 3JC0G[JC], with x0ED(T)}.
When no ambiguity results we will use f for fk.

PROPOSITION 6.2. A closed invariant subspace K of T is inner
invariant for T iff tk is 1-1.

Proof
( φ ) Assume t[x] = f [y]. From Definition 6.1 we know Tx =
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Ty + k for some k in K. Since k = T(x - y) we conclude
fe G T(D) Π K, but the inner invariance of K then implies k G T(K Π D)
so that there is a ίC] in ί ( Ί D such that Tkι = fc. This tells us
Γ(x - y - kγ) = 0 so that n = x - y - kλ is in the null space of T. But for
an inner invariant subspace K, we always have the null space contained in
K Π D. Therefore nGK ΠD so that JC = y 4- (n + fc^ with
n -f fc, G K. This means [JC] = [y].

( φ ) Clear.

Let G be a subspace of H that contains K. We will let G denote
the subspace G/K of H/K. Let qk be the natural homomorphism from
H onto H/K. Then G = qk(G). It is clear that qk:G^G is
1-1. Denote D ( f ) by D.

THEOREM 6.3. Let K be a closed invariant subspace of T. Let G be
closed with G D K. Then G is {inner) invariant for T iff qk{G) = G is
(inner) invariant for Tk.

Proof
( Φ ) Suppose [g]GG Γ)D = (G Γ\D)/K. We can assume

g E G Π Zλ Since G is invariant for Γ, we get Tg G G. Thus Γ[gJ =
[Γg] isin G, that is, f(G C\D)CG. We must now show that G =
{(G Π D)+ t(G Π D)}~ but through elementary calculations we get

G = G/K = {(G Π D ) + Γ(G Π

= {[(G n D ) + τ(G n D)]/κ

= {(G n D)/x + τ(G n

= {(G n D)/κ + f [(G n

= {(GnD)+f(GΠD)}-.

( Φ ) Since qk is 1-1 and onto from the subspaces of H containing
K to the subspaces of H/K, we know that given G a subspace of H/K,
there must exist a subspace G containing K such that qk(G)= G. We
will assume G is invariant for f and show that G must then be invariant
for T.

Let JC G G Π D so that [JC] G G Π D. Thus f [x] G G since G is
invariant for Γ. Therefore there is a y G [TJC] such that y G G. This
means Tx - y = k E K or that Tx = y + k E G + K CG. Thus
Γ(GΠD)CG.
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Since G is invariant for t we know

G/K = G = {(G Π D) + f (G Π D)}-

= {(G n D ) / κ + Γ(G n D )/*:}-

= {[(GΠD)+Γ(GnD)]/X}-

= {(GnD)+T(GΠD)}-/K.

Since ^ is 1-1 we can conclude that G = {(G Γ)D)+ T(G Π D)}" as
soon as we know that {(G ΠD) + T(G nD)}~D K. This is true since K
being invariant for Γ implies

K = {(K n D) + Γ(κ n D)}- C {(G n D) + τ(G n D)}-.

For inner invariance, assume G is not inner invariant for T. Then
there is an x in D\G with Tx in G. This says [x]6 0 \ G with f[x]EG
which contradicts the inner invariance of G.

In the other direction we assume G not inner invariant for t. Thus
there is an [x] in D\G with Γ[JC] E G. This means there is a y in [x]
with y E £>\G. Now Γy E [Ty] = t[y] = f[x] E G. Thus there is a
z E [Γy] with z in G. Hence Γy - z = k for some k in K so that
Γy = z + fc E G. Since y E D\G this contradicts the inner invariance
of G.

REMARK. Since g* is 1-1 and onto, this theorem established a 1-1
correspondence between the (inner) invariant subspaces of Γ containing
K and the (inner) invariant subspaces of tk.

We state the following straightforward result.

COROLLARY 6.4. Let K be inner invariant for T and let G be a
subspace containing K. Then the following conditions are equivalent:

(i) G is inner invariant for T
(ii) G is inner invariant for tk

(iii) G is inner invariant for t~k

ι

(iv) G is invariant for both tk and TV-
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A COMMUTATIVITY THEOREM FOR
NON-ASSOCIATIVE ALGEBRAS OVER A

PRINCIPAL IDEAL DOMAIN

JIANG LUH AND MOHAN S. PUTCHA

Let A be an algebra (not necessarily associative) over a
principal ideal domain R such that for all a, b E A, there exist
α, β E R such that (α, β) = 1 and αα/> = βfcα. It is shown that
A is commutative.

Throughout this paper N will denote the set of natural numbers and
Z+ the set of positive integers. A will denote an algebra with identity 1
over a Principal Ideal Domain R. If a, b E A then [α, b] = ab - ba. If
α, jβ E i?, then (α, β) denotes the greatest common divisor of a and
β. If a E A, then the order of α, o(α) is the generator of the ideal
/ = {a I a E R, aa = 0} of R. o(a) is unique up to associates. As a
generalization of concepts in [1], [2], [3], [4], [5] we consider the
following:

(*) For all α, b E A, there exist α, β E JR such that (a, β) = 1 and
ααft = βbα.

We will show that if A satisfies (*), then A is commutative. This
generalizes [3; Theorem 3.5].

LEMMA 1. Let p be a prime in R, m E Z + such that pmA = (0). //
A satisfies (*), ί/ien A /s commutative.

Proof. Let C denote the center of A. Let x G A , O(JC) = /?\
k E N. We prove by induction on fc that x E C. If fc = 0, then
JC = 0. So let k > 0 . Let y E A. First we show

(1) [*,y]^0 implies [yx,y] = 0.

If yx = 0, this is trivial. So let yx/ 0. Now for some α,, α 2 E i?,

So αiβi(jc + l)y = axβ2y{x + 1). Thus substituting the above, we get

(3) (α2j3, - α,j32)yx = (α,j82 - α,/3,)y.

485
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We claim that {a2βx- aφ2)yx^ 0. For otherwise {aφ2-axβx)y-
0. Since y ψ 0, we get p | aφ2 - aφλ.

Also (aφ2 - aφjyx = 0. Since (a2β{ - aφ2)yx = 0, we get
(a2 - a^β^x = 0. Since yx / 0, p\ βλ(a2 - αi). So

p\aι(β2-βι),p\βι(a2-a1).

Case \. p )( ax. Then since ax{β2 - βλ)y = 0, we get (β2 - β,)y =
0. So by (2), βι[x,y] = 0=β2[x,y]. Since [x,y]^0, we get pl/3,,
p I β2, contradicting (2).

Case 2. p\aλ. Then p /̂  α2 and so p Jί a2- ax. Th\isp\βx. So
p X βi, p X βi ~ βi. Since ctι(β2 - βx)y = 0 we get axy = 0. So axxy =
0. By (2), a2yx =0. Since yx^O, we get p\a2, a contradiction.

Hence by (3)

(α2j81-α1)82)yjc/0.

In particular

So

a2βι-a1β2 = p'δ, t<ΞN, δ E R, (δ,p)=l .

If ί ^ fc, then (a2βι - aφ2)yx = 0, a contradiction. So t < k. Hence

pk"(aιβ2 - aφι)y = p'-p'δyx = 0.

Let o(y) = p\ i E N. If i < fe, then y G C, a contradiction. So i ^
k. Hence

pk\pt\pk-(a1β2-aιβι).

So p'\a2β2- aφλ and aφ2-aφx = p*y, y E R, Then p'δyx =
p'γy. Hence p'(δyx - γy) = 0. By induction hypothesis, δyx - γy E
C So[δyjc-γy,y] = 0. Thus δ[yx, y] = 0. Since (δ,p) = 1, [yx, y] =
0. This establishes (1).

Now let uEA and suppose [JC, U]^0. Then also
[x,M + l ] ^ 0 . By (1), [WX,W] = 0 = [(M + 1)JC,M]. SO [JC,W] = 0, a

contradiction. So x E C and the lemma is proved.

LEMMA 2. Suppose A satisfies (*). Let α,tEA,o(/)) = 0. //
ba = 0, then ab = 0.
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Proof. Suppose ab^O. Then there exist βu β2, yu γ 2E R such
that

β2b(a + l), (βuβ2)=l,

So

(5) βλab = (β2-β0b and ( γ 2 - Ύί)a = yλab.

If β2 = βu then βu β2 are units and by (5) ab = ba = 0, a
contradiction. So β2-βι/0. Similarly γ 2 - γ i τ ^ 0 . Since 0(6) = 0,
we get by (5) that o(ab) = 0. So o(α) = 0. Hence by (5), j8, ̂  0,
γ ^ O . Also by (5) [jS1α6,6] = 0.

So

b = yφx{ab)b

= yφλb{ab)

= 0.

So o(αb)τ^0, a contradiction. This proves the lemma.

LEMMA 3. Suppose A satisfies (*). Ler ftGΛ, 0(6) = 0.
b E: C, the center of A.

Proof Let α E A . There exist α b α2, jS^ β2 E i? such that

, (au a2) = 1,

Multiplying the second equation by aλ and substituting the first we obtain

b [(a2βγ - aφ2)a - (aφ2 - aφx) 1] = 0.

By Lemma 2,

! - ttlj82)α - (α tβ 2 - aφx) 1]6 = 0.

Let μ = a2j8j - aφ2. Then αi(j82 ~ βι)b = μab = μba. By (6) axμab =
a2μba — a2μab. So
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(a2-ai)aι(β2-βι)b = 0.

Since o{b) = 0, we obtain by (6) that either a{ = a2 is a unit, βι = β2

is a unit or else a{ = 0. The first two cases imply by (6) that ab =
ba. So let aλ = 0. Then a2ba = 0 and a2 is a unit by (6). So ba =
0. By Lemma 2, α/> = 0. Thus in any case ab = 6α and we are done.

THEOREM 4. Suppose A satisfies (*). Then Λ is commutative.

Proof. Suppose Λ is not commutative. We will obtain a
contradiction. There exists x E A such that JtjZ- C, the center of A. So
jt + l g C . By Lemma 3 O ( J C ) ^ 0 and O(JC + 1 ) ^ 0 . Hence
o(l)τ^0. Let o(l)=d^0. Then d is not a unit and hence d =
pΐ1 — p? for some primes pu* -,ptE A and some positive integers
au - - -, at. Let At = {a\a E A,p?a = 0}. Then each A, is a nonzero
subalgebra of A and A = A j 0 0 A,. Being subalgebras of A, the
A,'s also satisfy (*). Being homomorphic images of A, all the A.'s have
identity elements. By Lemma 1 each A, and hence A is commutative, a
contradiction. This proves the theorem.
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ADDENDUM TO "RATIONAL APPROXIMATION OF ex

ON THE POSITIVE REAL AXIS"

D. J. NEWMAN AND A. R. REDDY

Our aim in this addendum is to improve Theorem 3 of Newman
and Reddy (Pacific J. Math., 64 (1976), 227-232). We also take this
opportunity to correct some misprints occurring in Theorem 6 of the
above paper. For convenience we refer the above note to [1]. We
follow here notation and numbering as in [1].

THEOREM 3*. λ%M(ex)^An-\n g 1.

Proof. It is easy to verify that 1 + x + x2/2\ + x3/3! + x4/4! has
zeros only in the left hand plane. As far as we know this is the
largest partial sum of ex which has zeros only in the left half
plane. Now using this in the proof of Theorem 3 of [1] instead of
1 + JC + JC2/2!, and by following the same approach we can get the
required result.

We would like to point out now that the cases n = 1,2,3 of
Theorem 5 follows from (12) and (14).

In the proof of Theorem 6 of [1], the following changes are
necessary.

_ v\ υ2 1 1.9 , n (1.9)n
Change — to , to , and —7= to N J- .

5 2 2.25 βm\ ,- βm\ ' Vm Vm
Vm Vm

\mI \m )

Then we get for all n g 8, e ^ e~5n2/\ By choosing A = 3n2/3, m = [n2 / 3],
we get for 1 ̂  n S 7, e ̂  e~5n2'\
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ON THE DISTRIBUTION
OF a -POINTS OF A STRONGLY

ANNULAR FUNCTION

AKIO O S A D A

This paper gives an example of a strongly annular function
which omits 0 near an arc / on the unit circle C and which
omits 1 near the complementary arc C-L This example
affirmatively answers the following question of Bonar: Does
there exist any annular function for which we can find two or
more complex numbers w such that the limiting set of its
w- points does not cover C?

1. Introduction. The purpose of this paper is to study the distribu-
tion of a -points of annular functions. We recall that a holomorphic
function in the open unit disk D : | z \ < 1 is said to be annular [1] if there
is a sequence {/„} of closed Jordan curves about the origin in D,
converging out to the unit circle C : | z | = l, such that the minimum
modulus of f(z) on /„ increases to infinity as n increases. When the Jn

can be taken as circles concentric with C, f(z) will be called strongly
annular. Given a finite complex number α, the minimum modulus
principle guarantees that every annular function / has infinitely many
a -points in D and hence their limit points form a nonempty closed
subset, say Z'(f,a), of C. On the other hand, by virtue of the
Koebe-Gross theorem concerning meromorphic functions omitting three
points, it follows from the annularity of / that open sets C - Z'(f, a) and
C - Z'(f, b) on the circle can not overlap if a φ b and consequently that
the set of all values a for which Z'(/, a) ^ C must be at most countable.
Therefore we may well say such a to be singular for /.

For this reason we will be concerned with the set 5(/) =
{a : Z'(/, a) ^ C} in this paper. We denote by \S(f)\ the cardinality of
5(/) and then, from the simple fact observed above, we have that
0 g 15(/)| ^ Ho, which in turn conversely tempt us to raise the following
question: Given a cardinality JV(0^JV^N0), can we find any annular
function / for which |5(/) | = ΛΓ? ([1], [2]).

We know many examples of strongly annular functions such that
|5(/)| = 0 [4]. In particular if an annular function / belongs to the
MacLane class, i.e., the family of all nonconstant holomorphic functions
in D which have asymptotic values at each point of everywhere dense
subsets of C, the set S(f) becomes necessarily empty. As for N = 1,
Barth and Schneider [3] constructed an example of an annular function /
for which |S(/)| = 1. The example involved in their construction,

491



492 AKIO OSADA

however, did not appear to be strongly annular. An example of a
strongly annular / with |5(/) | = 1 was constructed independently by
Barth, Bonar and Carroll [2] and the author [5]. The aim of this paper is
to give an example of a strongly annular function / for which | S(f) | = 2.

2. For this purpose we consider a class of functions holomorphic in
D. Let /0 and Iλ be a pair of complementary open arcs on the unit circle
C and choose a Jordan arc /, connecting the end points of Jy, which is
contained, except for its end points, in the open sector

Further denote by Gy the Jordan domain surrounded by Jy and J} and
consider

S(G0, Gx) = {g E H(D):g is bounded away from 0 (or 1) in Go (or G,)}

where H(D) denotes the set of all functions holomorphic in D. In terms
of this notation our purpose is in amount to find a strongly annular
function which is locally a uniform limit of a sequence in 5(G0, Gι). To
construct such a function, we make essential use of the approximation
theorem of Runge, which asserts that if K is a compact set with
connected complement relative to the plane and a function g is
holomorphic in an open set containing K, for any p > 0, there is a
polynomial P such that

\P(z)-g(z)\<p (zEK).

We call such P an approximating polynomial with respect to the triple
(K,g,ρ). In our arguments to follow we may restrict ourselves to the
special pair of Go and Gλ such that

G o = {z = x + iy : | z | < 1, 2x + | y | > 1} a n d Gλ = {z:- z <Ξ Go}

with no loss of generality, which serves to simplify the geometric
formulation. Then the Runge theorem, in cooperation with our previ-
ous lemma, yields the following:

LEMMA. Let there be given positive numbers e and fc, numbers a and
b with 0 < a < b < 1, and a function f in S(G0, Gi) (simply S), which is
bounded in Gλ. Then there exists a function g in 5, which is also bounded
in Gu such that

(1) | g ( z ) | > f c (\z\ = b)
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and

(2)

Proof. We first divide the circle \z\ = b into 4 closed arcs as
follows:

Λo =[-bieu, bieu],

Bo = [bie~", bie% Bo}.

Here t( > 0) should be chosen so small that we may apply our lemma [5]
to an appropriately small open annular sector Rθ9 which is contained in

, \z \ >a,2\x | + \y

and contains the arc Bo. Set Rι = {z : z G Ro}.

Next, to make use of the Runge theorem, we prepare two triples, which
are defined, except for q and ph by the following:
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(3)

K"; = G, U A , U A w U D α , Da={z:\z\^a}

g,(z) = 0 ( z e G , UA, UDα)

g,(z)=c,(>0) (zEA1.l)

As for c, (or p,) we shall later choose positive numbers large (or small)
enough to satisfy our requirements. Obviously these definitions allow us
to apply the Runge theorem to (Kh gp p,){j = 0,1) and hence we can find
an approximating polynomial Pr On the other hand, if necessary,
adding a small vector we may assume that /(z)^0,1 on the circle
I z I = b. Combining these functions, define a function F holomorphic in
D by

F(z) = {(/(z) - 1) exp (P0(z)) + 1} exp (P,(z)).

Then carefully observing (3) and suitably choosing values of cy and py, we
can conclude that the function F is a member of S, bounded in Gλ and has
the following properties:

(4) \F(z)\>2k (zE{z:\z\ = b}-B0-Bί)

(5) | F ( z ) - / ( z ) | < 6 / 2 (zGDa).

In addition it may be supposed that F does not vanish on BQUB^

Thus the last step in our construction of g is to make | F(z) | large on
the remaining arcs Bo and Bλ without losing the properties described
above of F. Given c 2 >0 and p 2 >0, applying our lemma [5] to the
annular sectors Ro and R{ previously chosen, and successively using the
standard "pole sweeping" method for the resulting rational functions, we
can find a holomorphic function H} in D such that

(6) \Hj(z)\>c2 (zeB,),

(7) R e H ; ( z ) > - p 2 (zERjΠ{z:\z\ = b}-B})

and

(8) \H,(z)\<2p2 (zED-Tj)

where Γo (or Γj) denotes an appropriate "pole sweeping route" ending at
z = i (or - i) which is contained in

Eo = [z = x + iy : y > 0, | z | > 6, 21 x | + | y | < 1}
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(or Eι — {z : z E Eo}) (see Figure 1). Using these functions and F defined
above, set

Since F does not vanish on Bo U Bu if we appropriately choose a large (or
small) positive number as a value of c2 (or p2)> by virtue of (4) and (5)
together with (6), (7) and (8), we can show that the function g belongs to
the class 5, is bounded in Gx and further satisfies (1) and (2). This proves
Lemma.

3. The following result is immediate from Lemma in 2.

THEOREM. Let {rn} and {kn} be two sequences of positive numbers
with rn I 1 and 1 < kn f + <». Then there exists a function f which is
locally a uniform limit of a sequence in S and which furthermore satisfies
that \f(z)\^kn on the circle \z\ = rn.

Proof It is sufficient to construct a sequence {/„ (z)} in 5 such that

(9) \fn(z)\>k] if l S / g n ( z G C , = { z : | z | = r,}),

(10) I /„ (z) - fn-ι{z) I < €„-! (I z I ̂  rn_1? n g 2)

and

(11) /„ is bounded in Gλ

where {en} is a preassigned sequence of positive numbers with Σen < + α>.
In order to construct {/„} inductively, let fι(z) = 2k1 and suppose that
/i, * >/π-i have already been defined. In Lemma in 2, on setting
/ = /„-!, a = rn-u b = rn, fc = ίcn and e = min{en_1? mu , m ^ J where
my = min{|/π_i(z)| - fc7 : z E Cy}, we can find a function /„ in 5 satisfying
(9), (10) and (11). Thus we obtain a sequence {/„} in S, which, by virtue
of (10), converges uniformly on any compact subset of D. Obviously its
limit / is a desired function in Theorem. Hence our proof is complete.

The author is grateful for the valuable comments and suggestions of
the referee.
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A CHARACTERIZATION OF THE GAUSSIAN
DISTRIBUTION IN A HILBERT SPACE

JEFFREY L. SPIELMAN

In this paper we consider the case in which random
variables X, take values in a real, separable Hubert space
$ί. We look at a linear form ΣA7X, where each A} is a bounded
linear operator in $?. We then assume that this linear form is
identically distributed with a monomial and form conditions
under which it is possible to deduce that the common distribu-
tion of the random variables is the Gaussian distribution.

The study of identically distributed linear forms of independent and
identically distributed random variables has been undertaken by several
authors. J. Marcinkiewicz studied linear forms in which all moments of
the random variables are assumed to exist. He then proved that the
common distribution of the random variables was the Normal
distribution. R. G. Laha and E. Lukacs have considered the case where
one of the linear forms is a monomial. They have obtained char-
acterizations of the Normal distribution for both the case when the
variance is assumed finite and when no assumption is made concerning
the variance.

1. Statement of the main result. Suppose now that
Xί9 X2y' * is a sequence (possibly finite) of independent, identically
distributed, nondegenerate $f-valued random variables, where Xi has a
finite variance (i.e. Var Xx < + o°). Let Au A2, be a sequence of 1-1
bounded linear operators in $f, with the following two properties:

(i)

and

(2)

We note that in the above A * represents the adjoint of A, and that
the inequality ΣjA*Aj^ I is true in the sense of positive-
definiteness. (For example, see page 313 of [7].)

Our goal is to prove the following theorem.
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THEOREM 1. Suppose that ΣyAy Xy converges with probability
one. If Σ}A}X} has the same distribution as Xu then Xι has a Gaussian
distribution.

In §2 we will prove an important preliminary result (Theorem
2). Then in §3 we will present the proof of Theorem 1.

2. A pre l iminary result . In this section we will prove the
following result.

THEOREM 2. Let XUX2, ••• be a sequence (possibly finite) of
independent, identically distributed, nondegenerate, X-valued random
variables. Suppose that the sum ΣyAyXy exists with probability one, where
Au A 2 , ' ' ' are bounded linear operators in ffl, with supy || A} || < 1.

If ΣJAJXJ has the same distribution as Xu then Xx has an infinitely
divisible distribution.

Note. The hypotheses of Theorem 2 are somewhat weaker than the
hypotheses of Theorem 1.

Before beginning the proof of Theorem 2, let us fix some notation.
Let ψ(y) be the common characteristic functional of

XUX2, -. Then φ ( y ) = « β I < ^ y > for all y E %, where % denotes
mathematical expectation.

The characteristic functional of AyXy is then given by:

(3) %ei{A^ = ge'<VW = φ(A*y)

where A * denotes the adjoint operator of Ar

Now, suppose that ΣyAy Xy has the same distribution as Xx. Then
equation (3) gives us:

(4) φ(y) = U<P(A1y), for all y E %,

where the product converges uniformly on bounded spheres. (See
Theorem 4.4, pg. 171 of [5].)

Since ΣyAyX/ converges, then ΣjLπA;Xy converges, with probability
one, to the origin of ffl as n -»α>. (Of course, if Xi,X2, is a finite
sequence, the preceding statement is unnecessary.)

Thus, it is possible to choose No for any 6 > 0, such that
P{\\ Σy°°=N+1 AJXJ || > e} < 6, whenever N ^ No. Let φN(y) denote the
characteristic functional of Σ"=N+1AyXr Then using equation (4), we
have:

(5) ψ(y)= ψ(Λ*y)- - φ(A%y)φN(y).
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Proof of Theorem 2. We assume that ΣyA/Xy has the same distribu-
tion as Xj. Then equation (5) holds. If we replace y by A*y in
equation (5), we obtain:

(6)

for each / = 1,2, •• ,N.
Combining equations (5) and (6) we have:

φ(y)=ΐl φ((A*;)2y) n φ(A*A*ky)Yl
7 = 1 /Vk 7 = 1

If we repeat the above process n times, we get the following result:

(7)

The product on the right hand side of equation (7) consists of
Nn + Nn~ι + + N + 1 factors, where each of the subscripts /Ί, •••,/„
can take any of the values 1, , N with repetitions allowed.

Thus, equation (7) says that Xx is distributed as the sum of
kn ~ Σΐ=0N

k independent, ^-valued random variables, Y^k (k =
1,2, , fcn), for any positive integer n.

We will now show that Yn,fc is a uniformly infinitessimal collection of
random variables. That is, we will show that for any e > 0,
supiSkgkflP{|| Ynk | | > e } - * 0 as n-*°o. Once this has been established,
the infinite divisibility of Xx will follow from Corollary 6.2, page
199 of [5].

Consider the factors on the right hand side of equation (7). Let
e > 0 be given. By definition φN(y) is the characteristic functional of
Σ;= N + 1 Aft and P{\\ Σ;=N+1 Aft \\ > e} < 6, for all N g No.

Consider now a factor of the form φN(A *,A *2 A * n_j). This is
the characteristic functional of

Ajn_k A]2AjX 2J Aft.

Also,

p\\Ain_k --AhAh Σ

/=N+i

= H Σ A x / > € [ < e whenever N ^ JV0,
U / = N+1 || J

since supjAyl^ 1.
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Finally, we consider a factor of the form φ(A *, A *j), which is
the characteristic functional of Aln AhXu Set a = sup, || A, ||.

Then

Now choose an integer N' such that PIHX^^ e/an}< β, whenever
n ^ N'. (This is possible because 0 < a < 1). Set n0 = max{N0, N'}.

Hence, we have shown that P{\\ Ynk || > e} < e, for all fc = 1,2, , fen,
whenever n ̂  n0. Therefore, the collection Ynk is uniformly infinites-
imal and Xx is infinitely divisible. This completes the proof of the
theorem.

3. Proof of the main result. For convenience, we now will
make the assumption that Xu X2, - are symmetric random
variables. Since the common distribution of these random variables is
infinitely divisible, the common characteristic functional, φ(y), has a
unique Levy-Khintchine representation given by:

(8) lnφ(y)= -

where 5 is an 5-operator (a nonnegative, self-adjoint compact operator
on Sίf, with a finite trace), and L is a σ-finite measure with finite mass
outside every neighborhood of the origin and with the property that

ί \xfdL(x)<+">.

(see [5], page 181.)
Furthermore, since XuX2,

m m have finite variance, φ(y) has a
unique Kolmogorov representation, given by:

(9) \nφ(y)=-USy,y)+\

where 5 sis an 5-operator and K is a finite measure on 3€. (See [6].)
By equations (4) and (8) we have:

Σ ί (cos<x, A * y ) - l)dL(x)

) + j(cos(x,y)-l)dL(x).
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Also,

Σ ί (cos<x, A*y>-
J J

(cos(x, y) - ί)dLA;ι(x).

It is not difficult to show that ΣJAJSA * is an 5-operator. Also, it is
clear that LA]1 is the σ-finite measure which occurs in the
Levy-Khintchine representation of AyXy, for each /.

We denote by 53, the class of Borel sets in $f. Then the measure Kp

defined by:

K} (D) = f || x fdLA ]\x), for all D E S3
JD

is the finite measure which occurs in the Kolmogorov representation of
A,Xh for each /.

Since XUX2, * * * have finite variance,

(11) ί ||x||2dL(jc)< +00. (See [6].)

By equation (10), l

We note that

cos(x,y)-l

\\xfdL(x)<cc

because of relations (1) and (11).
Thus we may interchange the integral and summation signs in

equation (12) to obtain:
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Then, by the uniqueness of the Kolmogorov representation, we
have:

A,SA * = S and Σ K, = K.

From the second of these relations, Σ;lζ(5ίf) = K(ffl), which leads to
the following sequence of equations.

ΣJ\\AlxfdL(x)=j \\xfdL(x)

In view of relation (4), it must then be true that

(13)

We note that for n a positive integer, Σ%λA}Xj has characteristic
functional Π"=1φ(A*y), and

*y)= -\(ΣA,SA*y,y

Thus Σ^iLAj1 converges weakly, outside closed neighborhoods of
OG W, to L, as n ->oo. (See [5], page 189).

It now becomes necessary to state and prove two technical lemmas.

LEMMA 1. For any e >0,

ί \\xfdL(x)=Σ\ llA*
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Proof. Let eι and e2 be positive constants with ex < e2. Define a
function f(x) by:

Then f(x) is bounded and continuous. Thus by comment (14),

ί f{x)dL{x) = lim Σ ί f(x)dLAj1(x)
J\\x\\>€i n^°° ; = 1 J\\x\\>eι

which implies that

Σ f IIx II2 dLA Jι(x) + (62)
2 Σ LA: ' { | | X || > €l)

y = l Jei<||x||^€2 / = 1

converges to

ί \\x\\2dL(x) + (€2fL{\\x\\>€2}
Jci<\\x 1̂ 62

as n —»oo.
But, again because of comment (14), Σ;"=i LA y

7l{||x | | > e2} converges
to L{||jc| |>e2} as n-^oo.

Therefore, Σf=1 J \\x\fdLA]\x) converges to
Jei<||x||gC2

ί llχ|Pdί-(χ),
Jei<||x||g€2

whenever we choose 0 < eγ < e2.
Let 6 > 0 be given. Let en be a strictly increasing sequence of

positive numbers, en f + oo, with βj > e. For convenience we set e = e0.
Then

ί II^II2^(^)=Σ ί \\χ\\2dL(χ)
J\\x\\>€0 k=0 J €k<\\x\\^€k + l

= ΣΣ ί n x
k=0 Jek<||x||<ek + i

= ΣΣ ί h
j k=0 J €k<\\x\\^€k + l

= Σ ί \\x\\2dLAj\χ)= Σ f HAx
J||χ||>« / J||A/χ||>€

This completes the proof.

LEMMA 2. L({x: || A,JC ||2 g ||x ||2, /or 5ome fc = 1,2, •}) = L({0}).
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Proof. Let k be a fixed positive integer.
Set Ek ={x: \\Akx f = \\x ||2}. Then, using equation (13), L(Ek) =

fcn{x:ΣjAyx||2H!*ll2})
Thus, L(Ek) = L{x: Σy^fe || Ayoc ||2 = 0} = L({0}), since each operator Ay

is 1-1.

(15) Similarly, L ( U £*) = L ({0}).

Using the same type of argument, it is easy to show that for all

fc = l,2,

(16) L{x:| |Ak jc| |2>||x| |2} = 0.

Combining equations (15) and (16) we are done.
From relations (1) and (13), we see that L{x: | | x | | V Σy ||Ayx ||2} =

0. Hence, referring to Lemma 1, it is true that, for all e > 0 ,

Σ{ \\AlxfdL(x)=Σ ί \\A,xfdL(x),
j J||x||>6 J||A7x||>£

and this implies that

(17) Σ i f ||Ayx||2rfL(jc)- f \\Ajx\\2dL(x)} = 0, forall£>0.
/ LJ||x||>€ J\\AjX\\>€ J

But

(18) L {x: x έ 0 and || Ayjc || ^ || x ||} = 0, for all /.

Thus, each term in the sum of equation (17) must be nonnegative, which
yields:

ί \\AjxfdL{x)=\ ||Ayjc||2dL(x), for all e>0 and all .
J||x||>e J||A,x||>e

Or, using equation (18),

ί \\A1xfdL(x)=f WAjxfdLix),
J{||x||>e}nF, JiWAμl^ejΠF,

for all 6 > 0 and all /, where Fy = {x: \\AjX \\<\\x ||}, for each / = 1,2, .
The above implies that
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\\A,xfdL{x) = 0, for all e > 0 and all /,

or,

|| AjX fdL (x) = 0, for all e > 0 and all /.
Jib

So, we must have that

(19) L{x: || JC || > e and \\Apc || ^ e} = 0, for all 6 > 0 and all /.

Consider the set Q+ of positive rational numbers. Let k be a fixed
positive integer.

and ^ r}]= L[{x: \\Akx | |< ||x||} = L[X\{0}].
J

Therefore, L[#f\{0}] g Σ r e ( rL{x: \\x \\> r and \\Akx\\^ r) = 0, by
equation (19).

This last relation says that L is degenerate at 0 E Sίf, which means
that the common characteristic functional of XUX29 * is given by:

lnφ(y)= -ί(Sy,y> (seeEq.(8)).

Hence Xi,X2, * *' have a common Gaussian distribution.
Recall that we have assumed XUX2, to be symmetric, but it is

now easy to extend our result to the general case by using Cramer's
Theorem (see page 141 of [1]).

The proof of Theorem 1 is now completed.
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SYMMETRIZABLE-CLOSED SPACES

R. M. STEPHENSON, JR.

Symmetrizable-closed, semimetrizable-closed, minimal
symmetrizable, and minimal semimetrizable spaces are charac-
terized. G. M. Reed's theorem that every Moore-closed space is
separable is extended to: Every Baire, semimetrizable-closed
space is separable. Several examples are given.

If P is a topological property, a Hausdorff P-space will be called
P-closed provided that it is a closed subset of every Hausdorff P-space in
which it can be embedded. A Hausdorff P-space (X, SΓ) will be called
minimal P if there exists no Hausdorff P-topology on X strictly weaker
than S\

In [3] J. W. Green characterized and studied Moore-closed and
minimal Moore spaces. In this paper we obtain some analogous results
for semimetrizable spaces and symmetrizable spaces.

A symmetric for a topological space X is a mapping d:Xx
X^[0,oo) such that

(1) For all x,yEX, d(x, y) = d(y, x), and d(x, y) = 0 if and only if

(2) A set V C X is open if and only if for each x E V there exists
nEN such that V contains the set B(n, x) = {y G X | d ( x , y)< 1/rc}.

A space X which admits a symmetric is said to be symmetrizable,
and if, in addition, each J5(n, x) is a neighborhood of x, then X is said to
be semimetrizable and d is called a semimetric for X. Equivalently, X is
semimetrizable via d provided that for x E X, A CX, and d(x, A) =
inf{d(;c, a)\a E A}, the condition xEA if and only if d(jc,A) = 0 is
satisfied.

A number of the techniques used here are not new; for example, see
[2]. The terminology used is standard. One perhaps not too familiar
concept is that of θ -adherence. A point p of a topological space is said
to be a θ-adherent point (or be in the θ-adherence) of a filter base SF
provided that for every set F E 3F and neighborhood V of p, one has

F n v-έ 0.
Our first two theorems are characterization theorems.

THEOREM 1. Let (X, SΓ) be a symmetrizable Hausdorff space. The
following are equivalent.

(i) The space (X, 2Γ) is minimal symmetrizable.
(ii) Every countable filter base on (X, SΓ) which has a unique

θ~ adherent point is convergent.
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Proof, (ii) implies (i). Suppose that (X, if) is symmetrizable and
Hausdorff and Sf C SΓ. Let d be a symmetric for (X, θ>). For each point
p E X the filter base

%={{*: d(x,p)<l/n}: n E JV}

has a unique θ-adherent point in (X, 5̂ ), namely p, and so $p also has at
most one θ -adherent point in (X, SΓ). By (ii) and the relation p E Π %,
it follows that each Sδp must converge to p in (X, SΓ). Thus for every
Γ G J a n d p G T there exists n E JV such that ΓD{JC: d(x,p)< 1/n},
that is, TG5^. Therefore, J~ C5? and (X, 5") is minimal symmetrizable.

(i) implies (ii). Assume that there exist a point q E X and filter
base Ŝ  = {Fn: n E JV} on X such that:

(a) for each n E JV, FnD Fn+1;
(b) q is the unique 0-adherent point of 3* in (X, 2Γ)\
(c) ^ fails to be convergent; and
(d) Fι = X.
We will prove that (X, SΓ) cannot be minimal symmetrizable.
Let Ψ = {VE SΓ: if q E V then V contains some member of <?}.

Then 7 is a topology on X with Ύ CSΓ, and because ^ has no
θ -adherent point other than q, the space (X, V) is Hausdorff. By (c),

Now consider any symmetric d for (X, SΓ). Define d * : X x
X-»[0,°o) by the rule

d(x,y) iί

= j 0 if x = q = y
min{d(x, y), 1/n} if y = g and x E Fn\F,,+1.

Clearly, d* is a symmetric for the space (X, V), and so (X, if) cannot be
minimal symmetrizable.

THEOREM 2. Let X be a symmetrizable Hausdorff space. The
following are equivalent.

(i) X is symmetrizable -closed.
(ii) Every countable filter base on X has a θ-adherent point.

Proof, (ii) implies (i). Suppose that there exists a symmetrizable
Hausdorff space Y such that X is a subspace of Y but X ^ X. Because
X is a closed subset of Y, X is symmetrizable (e.g., see [5, p. 93])._ Let d
be a symmetric for X. Since X fails to be a closed subset of X, there
must exist a point p E X\X with 0 = inf {d(p, x): x E X}. Thus for each
nG'JV,
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Fn={xEX:d(p,x)<l/n}

is nonempty, and so 2F = {Fn: n E N} is a countable filter base on
X. Obviously 3F has no 0-adherent point in X.

(i) implies (ii). Assume that there exists a filter base ^ =
{Gn: n 6 JV} on X such that Gλ = X, each Gn D Gn+l9 and $ has no
0-adherent point in X. Choose a new point qf£ X, let £ = X U {q}, and
call a subset V of E open if and only if (a) V Π X is open in X and (b) if
q E V then for some n6ΛΓ, VDG n . Then £ is a Hausdorff space in
which X is embedded as a proper dense subspace. E is also symmetriz-
able, for if d is any symmetric for X, then the function d*: E x
£ -> [0, oo) determined by the rule

d*(x,y)=d*(y,x)=\

d(x,y) ifx,yEX

0 if x = q = y

IIn if x E Gn\Gn+1 and y = <jr,

is easily seen to be a symmetric for E.
For many properties P, P-minimality is a sufficient condition for

P-closedness. For P = symmetrizable, the same is true.

COROLLARY 3. Every minimal symmetrizable Hausdorff space
(X,2Γ) is symmetrizable-closed.

Proof. If d is a symmetric for (X,SΓ) and & is a descending
sequence of nonempty sets having no θ -adherent point in (X, SΓ\ with
l E f , then for any point q E X, the function d* defined in the proof of
Theorem 1 is a symmetric for a strictly weaker symmetrizable Hausdorff
space (X, V).

COROLLARY 4. Every regular, symmetrizable-closed space is com-
pact.

Proof. In a regular space θ-adherence and adherence are equiva-
lent concepts, so by Theorem 2, every regular symmetrizable-closed space
is countably compact. By a result of Nedev [7] every countably compact
symmetrizable Hausdorff space is compact.

For various properties P, topologists have often been interested in
the question as to whether or not there exists a non-compact P-space in
which every closed subset is P-closed. If P = Hausdorff or completely
Hausdorff, the answer is known to be no, but if P = regular, the question
is open. For P = symmetrizable, the following result holds.
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COROLLARY 5. Let X be a symmetrizable Hausdorff space in which
every closed subset is symmetrizable -closed. Then X is compact.

Proof. Obviously no infinite discrete space can be symmetrizable-
closed, so every infinite closed subset of X must have a limit point, that
is, X must be countably compact.

Let us now give some examples of these concepts.

EXAMPLE 6. In [1] N. Bourbaki pointed out that a certain space X
due to Urysohn is a minimal Hausdorff space that fails to be
compact. We will describe this space and show that it is also semimet-
rizable, in order to show that there exist noncompact, Hausdorff minimal
symmetrizable spaces.

Let

X = JV U {n ± Urn: n, m G JV, m > 2} U {± TΓ}.

Define d: X x X-»[0,oo) by the rule

d(x,y)=d(y,x) =

0

\x-y

if x = y

if

1/n

if x G JV and y G {± TΓ}, or
if x = n + 1/m and y = - TΓ, or
if x = n — 1/m and y = TΓ, or
if x = TΓ and y = - TΓ, where
m,nE:N and m >2;

if x = n + 1/m and y = TΓ, or
if x = n - 1/m and y = - TΓ,

where m,nEN and m > 2.

Call a subset V of X open if and only if for each point v E V there exists
e > 0 with {x: φ , ϋ ) < e } C V . Then d is a semimetric for the space X,
and X is homeomorphic with the space in [1] (X is also described in [2, p.
101]).

EXAMPLE 7. If X is as in Example 6, then its subspace

Y = JV U {n + 1/m: n, m G JV, m > 2} U {TΓ}

is well known to be Hausdorff-closed but not minimal Hausdorff. Since
Y is a subspace of X, it is also semimetrizable. If Y' denotes the space
which has the same points as those of Y but which is topologized so that
it is the one-point compactification of the space Y\{π}, then Y' is
metrizable, and so one sees that Y is not minimal semimetrizable. Thus
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Y is an example of a Hausdorff semimetrizable, symmetrizable-closed
space that is not minimal semimetrizable.

For P = semimetrizable, the results one can obtain concerning the
concepts P-closed and P-minimal are much more similar to those in
[3]. Since the proofs are not too different from some of the ones above
and in [3] and [9], the details are omitted. First two definitions are
needed.

A topological space is called feebly compact if every countable open
filter base has an adherent point. A space is called semiregular if it has a
base consisting of regular open sets, i.e., sets having the form V = (V)°.

THEOREM 8. Let X be a semimetrizable Hausdorff space. The
following are equivalent.

(i) X is semimetrizable -closed.
(ii) X is feebly compact.

THEOREM 9. Let X be a semimetrizable Hausdorff space. The
following are equivalent.

(i) X is minimal semimetrizable.
(ii) Every countable open filter base on X with a unique adherent

point is convergent.
(iii) X is semiregular and semimetrizable -closed.

For semimetrizable spaces, it is easy to show that the concepts
semimetrizable-closed and symmetrizable-closed are distinct. For ex-
ample, let X be any noncompact, regular, semimetrizable-closed space
(such as one of the spaces discussed in [3]). By Corollary 4, X cannot be
symmetrizable-closed.

Not too much is known concerning the density character and
cardinality of semimetrizable-closed and symmetrizable-closed
spaces. G. M. Reed [8] has proved that every Moore-closed space is
separable, but I do not know if an analogous result holds for all
semimetrizable or symmetrizable spaces. (A proof is given in [10] that a
feebly compact symmetrizable space is separable if it has a dense set of
isolated points.) In our final theorem it is shown that Reed's condition
Moore-closed space, or, equivalently, feebly compact Moore space (see
[3]), can be weakened.

We recall that a topological space X is said to be a Baire space
provided that for every countable family <& of dense open subsets of X,
the set Π ̂  is also dense. It is known [6] that every regular, feebly
compact space is a Baire space.

THEOREM 10. Every Baire, feebly compact, semimetrizable space X
is separable.
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Proof. The proof will consist of two parts. We will first prove that
(*) every family of pairwise disjoint nonempty open subsets of X is
countable. Next, using (*), we will construct a countable dense subset
for X.

Let d be a semimetric for X. For JC E X and n E JV, {y E
X: d(x, y)< 1/n} will be denoted by J3(n, x), and the interior of B(n, x)
will be denoted by I(n, x).

Proof of (*): Suppose that there exists an uncountable family V of
pairwise disjoint nonempty open subsets of X. For each VET and
m E JV let

Vm={xeV:B(m,x)CV}-9

and note that since V = U {Vm: m E JV}, it follows from the Baireness of
X that one can select an integer m(V) for which Vm(v) has nonempty
interior. Choose i E JV such that W = {V E T: m (V) = /} is uncounta-
ble, and for each VKE ^ l e t /^ denote the interior of W,. By the feeble
compactness of X, there must exist a point p E X at which / =
{/w: W E ̂ } fails to be locally finite. But consider any set Jw E / with
φ?£ K = Jw Π I(i,p). Because X is a nonempty open subset of Wn

there must exist a point g E W with B(i, g) C W and with q E K. Then
d(p,q)<l/i and so pGB(i, ι j )CΨ. This latter relation, however,
shows that β must be locally finite at p, for given any Jv Eβ with v y W,
we have W Π / v = 0. Thus we have obtained a contradiction, and the
proof of (*) is complete.

For the remainder of the proof, if n E JV let

mn = {I(k, x): x E X, k E JV, and k ̂  n},

and let 3)n be a maximal family of pairwise disjoint members of
3&n. Once the sequence {2)n: n E JV} has been determined, choose, for
each n E JV and D E 2fw one point npD such that D = I(fc, npD) for some
fc E JV with k ̂  n, and let

Then C = U {Cn: n E JV} is a countable subset of X, because by (*), each
3)n is countable. We will conclude the proof by proving that C is also
dense in X.

Because each U 3)n is an open dense subset of X, the set E =
Π { U 3)n: n E JV} is also a dense subset of X.

Now consider an arbitrary point e E E. For each n E JV there
exists a set /(fe, npD) E 2)n which contains e. Thus each d(e, n/?D) < 1/n,
which shows that e EC.
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Therefore, E C C and so X = E = C
While not every Baire semimetrizable-closed space is regular (e.g.,

Example 6), R. W. Heath has informed the author that he can prove
every regular, semimetrizable-closed space is a Moore space — to verify
Heath's result, appeal to the characterizations A and B' in [4] and the
well known fact that in a regular feebly compact space any countable
open filter base with a unique adherent point is convergent.

Since every separable first countable Hausdorfϊ space has cardinality
^ c, it follows from Theorem 10 that every Baire semimetrizable-closed
space has cardinality ^ c. We will conclude by showing that if the
conditions "Hausdorff, semimetrizable, and Baire" are deleted, then the
bound c may be exceeded.

EXAMPLE 11. Let m be an arbitrary infinite cardinal number, let
Mm be a maximal family of countably infinite subsets of m such that the
intersection of any two members is finite. Denote by {pM: M E Mm) a
set of distinct point not in m, and let Xm = m U{pM: M EJίm}. For
each MGMm let gM:M^>N be one-to-one. Define d: Xm x
Xm -* [0, oo) by the rule

1 if x, y E m and x ^ y

1 if x = pM and y £ {pM} U M
d(x,y)= d(y,x)= \

l/gM(y) ιi x = pM and y E M; and

0 if x = y.

Topologize Xm by declaring a set V to be open if and only if for each
point v E V there exists e > 0 with {x GXm: 4(x,υ)<e}C V. Then the
space Xm is a feebly compact symmetrizable space of cardinality ^ m.
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COMPLETELY SEMISIMPLE INVERSE Δ-SEMIGROUPS
ADMITTING PRINCIPAL SERIES

P. G. TROTTER AND TAKAYUKI TAMURA

A Δ-semigroup is a semigroup whose lattice of congruences
is a chain with respect to inclusion. A completely semisimple
inverse Δ-semigroup that admits a principal series is cha-
racterized here as a semigroup that results from a particular
series of ideal extensions of Brandt semigroups by Brandt
semigroups. A characterization is given of finite inverse
Δ-semigroups in terms of groups, Brandt semigroups, and one to
one partial transformations of sets.

1. Introduction. A A-semigroup is a semigroup whose lattice
of congruences is a chain with respect to inclusion. Schein [8] and
Tamura [11] showed that a commutative Δ-semigroup is either a quasi-
cyclic group A, or a commutative nil semigroup B with the divisibility
chain condition, or A0, or B\ We study here the structure of com-
pletely semisimple inverse Δ-semigroups with principal series. Such
semigroups will be characterized in terms of Δ-groups, idempotent
properties, and ideal extensions of Brandt semigroups by Brandt semi-
groups.

In [11] it was shown that the least semilattice congruence on a
Δ-semigroup has at most two classes. We begin by characterizing
completely semisimple inverse semigroups admitting principal series and
having this property.

In the final section we show that each finite inverse Δ-semigroup
determines a set of structure data that involves groups, Brandt semi-
groups and one to one partial transformations of sets. Conversely the
semigroup can be reconstructed from the structure data.

2. Preliminaries. We call a semigroup 5 an 5?r, or if2-
semigroup if the smallest semilattice congruence on 5 has one, or two
congruence classes respectively. S is a Δ-semigroup only if it is an ίfλ- or
5^-semigroup. In this section we characterize completely semisimple
inverse Sfx-> or ^-semigroups that admit principal series.

A subsemigroup H of a semigroup 5 is if-unitary if and only if
whenever HxyH C H for x, y e S1 then Hx, yH C H. Notice that if £ is a
semilattice and efg = e in E then ef = e = ge. Hence, any class of a
semilattice congruence on S is ^-unitary. Let β* denote the least
congruence on S containing Green's relation $. For a E 5 let Ja be the
/-class of a and J(a)= S'aS1.

515
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THEOREM 2.1. Let S be a regular semigroup. The following are
equivalent:

(i) S is an ΐfλ-semigroup.
(ii) β* = SxS.
(iii) Each Sf-unitary subsemigroup ofS that is a union of β-classes is

an ideal.

Proof. Howie and Lallement [2] have shown that J>* is the least
semilattice congruence on 5. Hence (i) and (ii) are equivalent.

(ii) implies (iii). Let H be an 5^-unitary subsemigroup that is a
union of /-classes but is not an ideal. Suppose xay E H for some
x j E S 1 , aES. Then HxayH C H so Hxa C H. Hence HxaH C H
so aHCH and HaH C H. If Jα = Jh b E S, then there exists r , 5 6 S ]

so that HxrbsyH C H and similarly HW/ C H. So H/flH C H. Since H
is not an ideal and is 5^-unitary there is a d E 5 so that

if. Define

Ch={a<ΞS\ χjay Π H ^ D for some x, y E S1} and

Let ρH denote the equivalence relation on S with classes CH and CH. If
α 6 C H then we have HJaH CH CCH. Furthermore, since H is Sf-
unitary, HabH CH if and only if HaH, HbH CH, for a,b E S1. Hence
CH is a unitary semigroup, CH is an ideal, and pH is a nonuniversal
semilattice congruence.

(iii) implies (ii). Since a /*-class is 5^-unitary, it is an ideal. But
ideals of S intersect nontrivially.

The next theorem is an immediate consequence of results in [5], [6]
or [9].

THEOREM 2.2. For any semigroup S the following are equivalent:
(i) S is an 9\-semigroup.
(ii) Each ideal of S is an ζfx-semigroup.
(iii) S is an ideal extension of an Sfx-semigroup I by an Sfrsemi-

group T.

Note that T has zero divisors.

COROLLARY 2.3. Let S be a regular semigroup with a principal
series. S is a ίfx~semigroup if and only if each 0-simple principal factor of
S has a zero divisor.

-Proof. By Theorem 2.2, the condition is clearly necessary.
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Conversely let 5 0 C Si C C Sn = S be a principal series. Since So

is simple it is an ^-semigroup. Continuing by induction, assume S, _i is
an ^-semigroup and SJSt-i has zero divisors for some /, l ^ i ^
n. Si/Si-ι is 0-simple so is an ^-semigroup. Hence, by Theorem 2.2
(iii), S, is an ^-semigroup.

Let B(G,I) denote the Brandt semigroup that is a Rees matrix
semigroup over the group with zero G° and with the identity Ix I
sandwich matrix. We call G the basic group of B(G, /) . B(G,I) has
zero divisors if | I | > 1 and is isomorphic to G° if | I | = 1. Since an
inverse semigroup is completely [0]-simple if and only if it is a group
[Brandt semigroup], we have from Corollary 2.3:

COROLLARY 2.4. Let S be a completely semisimple inverse semi-
group with principal series So C S1 C C Sn = S. S is an ίfx-semigroup if
and only if (i) So is a group, and (ii) S /S -i = B(Gh It) with | ί | > 1 for

We conclude this section with a similar result for inverse Sf2-
semigroups.

T H E O R E M 2.5. Let S be a completely semisimple inverse semigroup
with principal series So C Si C C Sn = S. S is an ^-semigroup if and
only if (i) So is a group and (ii) Si/St-ι = B(G» /,) for l^i^n where
I Ir I = 1 for exactly one r, 1 ̂  r ^ n.

Proof We first observe that if \Ir | = 1 and Jr = Sr\Sr-u 1 ̂  r ^ n,
then Jr is an S^-unitary subgroup of S that is a /-class but not an
ideal. As in the proof of Theorem 2.1 there is a semilattice congruence
ρJr with classes CJr, CJr defined as in (1).

Assume that S is an ^-semigroup then So is a group and by
Corollary 2.4 there exists an r, 1 ̂  r ^ n, so that | Jr | = 1. Suppose also
that I/,I = 1, l ^ ί ^ n . Then pΛ = / * = pΛ. Hence CΛ = CΛ and since
Jn Jt are /-classes, r - t.

Conversely assume (i) and (ii). As in the proof of Theorem 2.1, CJr

is a unitary subsemigroup and CJr is an ideal of S. Then the /-classes of
CJr and the /-classes of CJr are /-classes of S. Since S0CCJr and
Λ C CΛ are the only /-classes that are groups then CJr, CJr are Sfγ-
semigroups. Hence pJr = / * .

3. Characterization. In this section completely semisimple
inverse Δ-semigroups with principal series are characterized.

The following Lemma is an immediate consequence of results of
Preston [7]. Parts (i) and (ii) are also corollaries of Tamura [10].
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LEMMA 3.1. Let S = B(G,I) be a Brandt semigroup.
(i) S is Δ-semigroup if and only if G is a Δ-group.
(ii) Each congruence of S is idempotent separating or universal
(iii) S is primitive.

We need some further results.

LEMMA 3.2. Let S be an inverse semigroup with ideal I. Any
congruence p' on I extends to a congruence p on S so that

c ap' if ael
ap = \

[ {a} if aES\I.

In particular, any ideal of an inverse Δ-semigroup is an inverse Δ-
semigroup.

Proof. Let A and B be congruence classes of p'. Suppose xay E
B for some x,yES\ a E A. Since xaa~ιaa~ιay E B and
xaa~\ a1 ay E I then xaa~ιAa~ιay QB. If c E A then aa~ιca~ιa E A
and xcc~ιaa~ιca~ιac~ιcy = xaa~ιca~ιay E B so xcc~ιAc~ιcy CB. In
particular xcy E B. Hence xAy C B. Since I is an ideal the result
follows.

If S is an inverse semigroup with semilattice E, let C(E) denote the
centralizer of E in S.

LEMMA 3.3. Let S be a completely semisimple inverse semigroup
with principal series {0}CSj C5 and with semilattice E. Then on S;

(i) Each non idempotent separating congruence has Sx or S as a
congruence class if and only if for any e/fEEso that e E S\SU f E SAO
there exists a E S so that a~xea = / and so that fa = 0 if e > f

(ii) Each idempotent separating congruence is the identity equiva-
lence on S\S} if and only if C(E) Π (S\S,)C E.

Proof, (i) Suppose the non idempotent separating congruences
have Si or S as congruence classes. If a E SAO then Si = J(a). If
b & J{a) then considering the Rees congruence modulo J(b) we see that
J(a)CJ(b) = S. Hence the principal ideals of S are chain
ordered. Let r be the least congruence so that for some e^ f in J5\0,
(e,f)Eτ. Assume that e E S\Sλ and f E. Si. Then r is
universal. Since OEfr then by Teissier [12] there exists xu yu , xn,
ynES1 so that

/ = Xihyu χ\hy\= *2*2y2, , Xnjnyn = 0
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where ip,jpE{e,f), p = l, ,n. But (xpipyPY\xpipyp) = z~Hpzp where

zp = χ~P

ιxPyr So

/ = zilixzu zϊιjιzι = Z2li2z2, , z~nUzn = 0 .

Deleting repetitious terms we may assume that z~ιipzp^ z~p]pzp, and
that z'p

ιipzp > z~ιjpzp (otherwise replace zq by zqz~ιipzp ίoτp^q^n). If
e >f then z~ιezp g z;1/2^ so ιp = e, jp = f Furthermore, by Lemma 3.1
(iii) we have / = zϊ1ez1 > z\xfzλ = 0. Hence (fzQ^φi) = ° s o Ai = °

Conversely, suppose e/f in E. U_e E S\SU and /ESAO, then
a^ea = f for some α G S , so J(f)CJ(e) - S. Let r be the least
congruence with (e,f)ET. %By Lemma 3.1 (ii), if e,fESu then erD
SL If e,feS\Su then, by Lemma 3.1 (iii), ef E Sλ and e/6eτ. If
eES\Sλ and / G S b then 0Geτ since either e > / and 0 = a~lfa^
a~ιea = / for some a E S, or ef = 0 by Lemma 3.1 (iii). Then er =
/(e)=&

(ii) By [1] the greatest idempotent separating congruence on 5 has
group kernel normal system {He Π C(E); e E E} where He is the 3€-class
of e.

LEMMA 3.4. Let S be a completely semisimple inverse Sfrsemigroup
with principal series {OjCSiCS. S is a ^-semigroup if and only if

(i) the Brandt semigroups S/Sλ and Si have Δ-basic groups,
(ii) each non idempotent separating congruence of S has Sλ or S as a

congruence class, and
(iii) each idempotent separating congruence of S is the identity

equivalence on S\Si.

Proof. Let 5 be a Δ-semigroup. By Lemmas 3.1 (i) and 3.2, (i) is
satisfied. Comparing congruences with the Rees congruence modulo Si
we see that (iii) holds and that any non universal congruence has its
classes in Sx or S\Sχ. Hence, applying Lemma 3.1 (ii) to Si, we see that
(ii) holds.

Conversely, by (i), (iii) and Lemma 3.1 (i) applied to Su the
idempotent separating congruences are chain ordered. By (ii) the other
non universal congruences have Si as a class and are then chain ordered
since, by (i), S/Sί is a Δ-semigroup. Hence, by (iii), S is a Δ-semigroup.

LEMMA 3.5. Let S be a completely semisimple inverse ^-semigroup
with principal series {0} C Si C S. S is a Δ-semigroup if and only ifSλ is an
SfrΔ-semigroup, S\Sι is a Δ-group and S satisfies conditions (ii) and (iii)
of Lemma 3.4.

Proof By Theorem 2.5 just one of SAO or S\Si is a
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group. Assume S is a Δ-semigroup. The /-classes of S are chain
ordered [11]. If SAO is a group then, as in the proof of Theorem 2.5, β*
has classes {0}, 5\0. But then β* is not comparable with the Rees
congruence modulo Sλ. Hence S\Sλ is a group while SAO is not. The
remainder of the proof is as for Lemma 3.4.

The following theorem is the main result. Together with the results
2.4, 2.5, 3.1(i), 3.3, 3.4 and 3.5, it provides a characterization of
completely semisimple inverse Δ-semigroups with principal series in
terms of Δ-groups and idempotent properties.

THEOREM 3.6. Let S be a completely semisimple inverse semigroup

with principal series So C Sλ C C Sn = S. S is a Δ-semigroup if and only

if
(i) So is a Δ-group So = {0} // n > 0,
(ii) Si is a Brandt semigroup with Δ-basic group if n > 0 ,
(iii) SJSt-2 is an if x-Δ-semigroup for i = 2, , n - 1,
(iv) Sn/Sn-2 is an 5^-, or 5^2-Δ-semigroup.

Proof Say S is a Δ-semigroup. S and So have the same maximal
group homomorphic image and if n > 0 the only such group is trivial
[11]. Hence, by Lemmas 3.2, 3.1(i), (i), 3.4 and 3.5, we see that
(i), -(iv) are satisfied.

Conversely we prove that for any congruence p on S and some /,
O i i ^ n , then ap = S, for a E Sb ep Π E = {e} for e e (Si+ι\St) Π E
where E is the semilattice of S, and ap = {a} for a E S\Sι+ι. Then S will
be a Δ-semigroup. The result holds for n = 0 or 1, by Lemma 3.1
(ii). Continue by induction, assuming the result for n = t. Since
St+JSt-i is a Δ-semigroup, then the congruences of S,+1 that have their
classes in St or Sί+ASf are of the required form by Lemmas 3.4,
3.5. Suppose p is a congruence on S,+1 with (α, 6 ) E p , a E S/+ASf,
b E S,. Then the congruence on the Δ-semigroup S,+i/Sf_i induced by p
is universal by Lemmas 3.4, 3.5. Hence there exists h E St\St-u k E S,_i
so that (ft, k) E p. But then, by the induction assumption, S, C ftp. Since
St+JSt-x is a Δ-semigroup, then, by Lemmas 3.4, 3.5, ap = S,+1.

4. Further study of finite case. We now investigate cir-
cumstances under which the extensions of Theorem 3.6 are possible for
finite inverse semigroups. Some further information is required.

EXAMPLE 1. Let Hx be the subgroup of the symmetric group Px

whose elements displace a finite number of elements of the set X. The
alternating group Ax is a simple normal subgroup of Hx with index 2 (see
[3]) for \X\ ^ 4. Hence Hx is a Δ-group. In particular if \X\ is finite
then Px is a Δ-group.
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EXAMPLE; 2. The symmetric inverse semigroup i x, \X\ finite, is a
Δ-semigroup. To see this, let D(a), R(a) denote the domain and range
of a E J>x respectively. Any ideal of $x is of the form In = {a E $x\
\Ό(a)\ ^ n}. Since 3X is finite it has a principal series and is completely
semisimple. If a is an idempotent its ^-class is { β G i x ; D(β) =
R(β) = D(a)} (see [4]), which is the symmetric group on D(a). So for
some a a non group principal factor has Δ-basic group isomorphic to
PD{a). If α, γ are idempotents so that | D ( α ) | > | D ( γ ) | ^ l then there is
a β E$x SO that β~λaβ = y and \D{β-χyβ)\ < \D(y)\. If a is not an
idempotent there is an idempotent β so that \D(a)\ - \D(β)\ ̂  1 and
βa / aβ. $x can now be seen to satisfy the requirements of Lemmas
3.3, 3.4 and Theorem 3.6.

Let Zn denote the set {1,2, , n}. If X = Zn write Pn = Px and

Λ = Λ-
Suppose 5 is a finite Δ-semigroup with {OjC^CS, Sx = B{G,Zn)

and S/Sί = B(H,Zr). Let (G x Zn x Zn) U{0} denote the set of el-
ements of Si, with the binary operation (JC, i,j)(y, h,k) = (xy, i, k)iίj = h,
and 0 if j/ h.

Denote the semigroup of right translations of Si by P(Si) and for
aES define pa^P(S1) by bpa = ba for all b E Si. Since inverse
semigroups are left reductive there is a unique homomorphism
θ: S-»P(Si) so that the restriction of θ to S1 is the regular represen-
tation of Si (by [6; III.1.12]). θ is given by aθ = p\ a^S, and
(S2)0 = Si. Since S is a Δ-semigroup then, by Lemma 3.4 or 3.5, θ is
injective. Call θ the extension homomorphism of S.

Let 1 denote the identity of G. For u E S, i Ez Zn define D(w) =
{/ E Zπ; (1, i,j)uθ/ 0}. By [6; V.3.6 and V.5.4] there exists φw E $n with
domain D(φu) = D(u) and a map αu: D(κ)-^ G so that

r (x (jau), i, /φu) if / E D (w),
(x,ij)uθ= \

[ 0 i f/gD(κ).

Furthermore the map given by uθ->(au,φu) defines an isomorphism
between (S)θ and the semigroup {(au, φu); u E S} with the binary
operation (αu, φ.X^, </>,) = (au αυ, </>uφy) where j(au - aυ) = (jau)(jφuav).
Since θ is an isomorphism then (auv, φuv) = (au * aυ, φuφυ). Note that with
the operations and composition of maps, the sets {au u E S} and
{φu u E S} respectively are homomorphic images of S. For conveni-
ence we will identify uθ and (αu, φu) for each u E S.

Clearly u E Si if and only \i\D(φΌ)\^l. Since φM is a bijection for
M £ S then {υ E S; |D(φB) | S \D(φu)\} is an ideal of S. Hence for
u,vES\Su \D(φu)\ = \D{φυ)\\ call this number the rank of
S/Si. Clearly e is an idempotent of S\0 if and only if (D(φe))ae = {1}
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and φe is an identity map. A product of distinct idempotents e,f E 5 is
in 5^0 \D(φe)Π D(φf)\^ 1. Hence if S\Sί is not a group then the rank
of 5/5! is bounded above by [(n + l)/2].

DEFINITION 4.1. For integers m and n, 1< m g n, let nΓm denote
the largest number so that {Y,; | Y\ = m, i = 1, 9

HΓm} is a family of
subsets of Zn with | Yt Π Yy| g 1 for ΐ ̂  y. For an integer r , K r ^ n Γ m , let
JZ/ = {Xi |Λ̂ Ϊ I = m, i E Zr} be a family of subsets of Zn with | ^ Π ΛJ | ^ 1
for i φ j. Let

^ * = {αE jfn; α = 0 or D{a\ R(a)E d)

with a binary operation * so that

r α/3 if R(α) = D(/3)

I 0 if R(a)j*D(β).

LEMMA 4.2. Lei 5 be a Δ-semigroup with principal series {0} C 5i C 5
so that Sx = B{G, Zn) and S/Sι = B(H, Zr) has rank m. Then

(i) either 1< m g [(n + l)/2] and 1< r g nΓm or 1< m g n and

r = l,
(ii) /f i*5 embeddable in the symmetric group Pm.

Proof. Part (i) follows from the preceding commets and
definition. Let Q = (S\S}) U {0} and define a binary operation * so that
u*v = uv if uvE S\SU and 0 otherwise. Then Q = β(H,Z r ) . Let
si = {D(φu); u E S\S1}. The map δ: Q -> ^ * given by wδ = φu is a
homomorphism. If w ^ ϋ in S\SX and φu = φv then |D(φM l Γ i) |> 1 so
Mϋ1 is a non idempotent element of 5\5i. But then for any idempotent
e E S, it can be readily shown that (euυ~ι)θ = (uv~ιe)θ so euiΓ1 =
wt;"1 .̂ This contradicts Lemmas 3.3 and 3.4 or 3.5. Hence δ is
injective. If e ̂  0 is an idempotent of Q then it can be easily shown that
the ^f-class of e in Q is He = {u E O; D(φu)= R(φu)= D(φe)}. Then
(He)δ = He=H. Part (ii) follows since the elements of (//e)δ are
permutations of D(φe).

Let S8* = {αu; w E 5\5!}U{0} with a binary operation * so that
au * av = au - av if uv E S\SU and 0 otherwise. Since δ is injective, if
φu = φv for M, i; E 5\5i then u-υ so αu = α̂ . Hence there is a
homomorphism λ: (Q)δ -> 35 * given by φαA = αu if u E 5\5i and Oλ =
0. The set H = {(wδλ, wδ); u E 0} with the binary operation so that
(wδλ, uδ)(vδλ, vλ) = ((w * ϋ)δλ, (w * v)δ) is then a semigroup isomorphic
to Q.
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DEFINITION 4.3. A structure data set is a set {n, r, m, G, H) defined
as follows:

(i) n, r and m are integers so that either 1 < m g [(n + l)/2] and
1< r g T w , or 1< m S n and r = 1.

(ii) G is a Δ-group.
(Hi) Let si = {Xi I Xi I = m, i E Zr} be a family of subsets of Zn so

that \Xt ΠXj\^l if i/j. Let H be a Δ-subgroup of the symmetric
group Pm. Let Kbe a subsemigroup of sέ* so that K = B(H,Zr). Let
λ:K—»33* be a surjective homomorphism so that for φ E K,
φλ: D(φ)-> G is a map and so that for j E D(φ*ψ) then /(φ * ψ)λ =
(J(φλ))(jφ(φλ)). Define H = {(φλ, φ); ψ 6 K } with a binary operation
so that (φλ, φ)(ψλ, ψ) = ((φ * ψ)λ, φ * φ). Write φλ * </rλ = (φ *

Notice that in the terminology of [6], H satisfies this definition if and
only if H is a subsemigroup of the right wreath product of G and K so
that the map H-+K given by (φλ, φ)-> φ is an isomorphism.

We have seen that any finite inverse Δ-semigroup S with principal
series {0} C 5i C 5 determines a structure data set {n, r, m, G, if}. Call
this a structure data set of S._ We say that structure data sets
{n, r, m, G,H) and {n', r\ m\ G\H'} are equivalent if and only if n = n\
r = r\ m = m' and there exists an isomorphism a: G°->(G')° and a
bijection β: Zn^>Zn so that the map γ: H-+H1 given by (α, φ)γ =
(jβ"!αα, β~xφβ) is a bijection.

LEMMA 4.4. Lei S and Γ fee finite inverse ̂ -semigroups with princi-
pal series {0}CSXCS and {0}CTXCT respectively. Then S = T if and
only if the structure data sets of S and T are all equivalent.

Proof Lable the elements of Si and Tx so that Si =
( G x Z n xZn)U{0} and Tx = (G'x Znx Zn)U{0}, with binary opera-
tions as defined after Example 2. Then structure data sets {n, r, m, G, H}
and {n', r', m', G', /Γ} of S and T respectively can be uniquely deter-
mined by the method described above. Depending on the labelling of
the elements of S1? each structure data set of S can be so
determined. Let θs and θτ be the extension homomorphisms of S and T
respectively and let η : S—> T be an isomorphism. Then n = n1\ r = r'
and the restriction of η to Sλ determines an isomorphism α: G°-> (G')°
and a bijection β: Zn -> Zn so that (JC, i,;)r/ = (xα, i)8, ;'j8) E Tλ. The map
wθs, w E S, is given by v(uθs) = uw for all u E S^ Let uηθτ = (6uη, ^u η)
and v = (x, i,j) then

((x(jau))a,iβjφuβ) - (ϋ(iιft))τ, = (I»I)(KI?0T) = ((xa)jβbun9 iβjβψuη)

So (x(yα«))α = (xijβbuy,)^'1)^' Since D(u)β = D(uη) then αu =
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βbU7}a~\ Likewise φuβ = βψuv. Thus m = m' and since H =
{{dw> Φu)\ u E S\Sχ} U {0} then the structure data sets are equivalent.

Conversely, given that {n,r,m,G,H} and {n\ r', m', G', H'} are
equivalent structure data sets, let a:_Go^{G')° be an isomorphism,
β:Zn^Zn be a bijection and y:H-*H' be the bijection so that
(α, φ)γ = (β-'aa, β'ιφβ). Define i^: £-> Tx by (JC, ί,/)^! = (xα, ift/jβ).
Then r/! is an isomorphism. As in the first part of the proof we get for
VELSX that VΎ\IΘT - (β~ιaυa, β~ιφυβ). Hence there is a bijection
γ':(S)θs^(T)θτ given by

Define η : S —> Γ by wηθτ = u0 sγ'. Then

(x, i,/)iίi(uτϊβτ) = {xa{jββxaua\ iβ,jββιφuβ) = ((x(/<O)α, iβ>]'Φ*β)

= (x,i,j)uθsηi.

So wr/0T = TϊΓ^MfeJrji and clearly η is an isomorphism.

THEOREM 4.5. jBαc/i finite inverse ^-semigroup S with principal
series {0} C Si C 5 has a structure data set {n, r, m, G, if}. A semigroup is
isomorphic to S if and only if its structure data sets are equivalent to
{nyr,m,GyH}. Conversely, each structure data set {n,r,m,G,H} is a
structure data set of some finite inverse ^-semigroup T with principal series

Proof The first two statements have been proved. Suppose
{n, r, m, G, H} is a structure data set. Let Tλ = (G x Zn x Zn) U {0} with
binary opejation as defined after Example 2. Then Tλ = β ( G , Z n ) . Let
Γ = Γx U if \(0,0). For (α, φ), (fc, φ) E H\(0,0) and (JC, i,y), (y, fc, fc) G Tx

define a binary operation on T so that:

{ (a*b,φψ)EH if D(φψ) = D(φ)

(la(lφa),Uφψ)ET1 if

0 if

I

: Tr if j (

0 if jfέD(φ),

(iφ-'ax, iφ'\ j) e Γj if i £ R(φ)

0 if i£R(φ),
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yk)eT1 if j = h
(*Λj)(y,h,k)= \

[ 0 if j/h.

Since H = B(H,Zr) it can be routinely checked that T is an inverse
semigroup. It can also be checked, using Lemmas 3.3 and 3.4 or 3.5,
that S is a Δ-semigroup. Since (x,ij)(a,φ) = (x(ja),i,jφ) for
(JC, /,/) G Γi, (α, φ) G 77 TΊ and / G D{φ) we see that {n, r, m, G, H} is a
structure data set of T.

Let 5 be a finite inverse Δ-semigroup with principal series So C S1 C
- CSq = S where g > 1. We can uniquely determine, up to equival-
ence, the structure data sets of the semigroups Si/Si-2 for i =
2, , q. Conversely, let {{nh rh mh Gt, H,}; i = 2, , q} be a family of
structure data sets so that nf = ry_i and G; = ίζ _! for / = 3, , q, where
Hj-ι is the basic group of H^. Then, by Theorem 3.6 and the proof of
Theorem 4.5, we can construct a finite inverse Δ-semigroup T with
principal series ToC Tx C CΓq = Γ so that {nh rh mh GhHi} is a struc-
ture data set of Tx\Tx-2. Any finite inverse Δ-semigroup that is not a
group or a Brandt semigroup can be so constructed.

The authors are grateful for the referee's kind suggestions on this
paper.
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TORSION FREE ABELIAN GROUPS
QUASI-PROJECTIVE OVER

THEIR ENDOMORPHISM RINGS

C. VlNSONHALER AND W. J. WlCKLESS

Certain classes of torsion free abelian groups which are
quasi-projective as modules over their endomorphism rings are
characterized. The main results concern completely decompos-
able and strongly indecomposable groups.

1. Preliminaries. Abelian groups which are quasi-projective
over their endomorphism rings have been characterized by Fuchs in the
torsion case. His methods have been extended by Longtin to the
algebraically compact and cotorsion groups [5]. In this paper, we
investigate some other classes of groups with this property. Specifically:

DEFINITION. A (left) module M over a ring R is quasi-projective
provided the natural map HomR(M, M)—>HomR(M,MAK) is epic for
every submodule K, of M.

An abelian group G will be called £-quasi-projective (Eqp) pro-
vided G is quasi-projective as a module over E =
End (G). Henceforth, the word group will denote a'torsion free abelian
group. Other notation follows Fuchs [4], in particular, t(G) - type G
for any group G of rank 1.

The following simple lemmas will be quite useful.

LEMMA 1.1. Let G be Eqp and K a fully invariant subgroup of
G. Then G/K is a quasi-projective E-module.

Proof. See Proposition 2.1 in Wu and Jans [9].

LEMMA 1.2. Let G be Eqp and K a fully invariant subgroup. Then
ZE, the center of E, maps onto HomE(G/K, G/K).

Proof Let Π: G —» G/K be the factor map. Since G is Eqp, for
every θ GHom £ (G/X,G/X), there exists a G Hom£(G,G) = ZE such
that Πα = ΘU.

LEMMA 1.3. Let G be Eqp and K a fully invariant subgroup such
that G/K is torsion. Then if ZE is countable, G/K is bounded.
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Proof. If G/K is unbounded and torsion, then HomE(G/K, G/K)
is uncountable: it must contain either a copy of Q* (the ring of p-adic
integers) for some prime p, or a direct product of an infinite number of
cyclic groups. Hence the result follows from Lemma 1.2.

2. D e c o m p o s a b l e g r o u p s . In this section, some classes of
decomposable Eqp groups are characterized, including completely de-
composable and homogeneous separable groups.

We begin with completely decomposable groups, those groups G
isomorphic to a direct sum of rank one groups.

LEMMA 2.1. If G = 0 I E J ΣA, is a direct sum of rank one groups,
then G is indecomposable as an E-module if and only if given any two
summands A, and A}, there is a finite sequence A, = AM, Ai2, , Aln = A}

such that t(Alk) is comparable to t(Alk^) for k = 1,2, , n - 1.

Proof. If S is a subset of the set {A;},G/, define I(S) = {A, | t{A{) is
comparable to t(Am) for some Am in S} and In(S)= I(Γ\S)). Then it
is easy to see that for a fixed Aw 0 Σ { A , | A, E U; = 1 I

n(Ak))} and
0 Σ { A , I A, §L U*= 1 I

n(Ak) are £-submodules whose sum is G. The
lemma follows immediately.

LEMMA 2.2. If G = 0 Σ A , is completely decomposable and inde-
composable as an E = E n d ( G ) module, then ZE C Q.

Proo/. Maps in Z E must commute with projections and maps
Ax->Ar The fact that G is E-indecomposable and Lemma 2.1 imply
that any map in ZE multiplies each A, by the same rational number.

THEOREM 2.1. Let G = 0 J G / A, be a direct sum of rank one groups
such that G is indecomposable as an E-module. Then the following are
equivalent:

1. G is Eqp.
2. The type set T = {tι\tι — t(At) for some i} satisfies :
(a) // tn tj G T and tn t} ^ tk for some tk E Γ, then tn t} ̂  t{ for some

h G T ;
(b) Countable descending chains in T are bounded below
(c) // ti G T is finite at an infinite set of positions {py}, then 3tk E Γ

5wc/ι ί/iαί ίfc /s 0 αί an infinite subset of {pj}.

3. If K is a fully invariant subgroup of G such that G/K is torsion,
then G/K is bounded.

Proof. (1) φ (2). Let t , ί/? 4 E T such that ίi? t, ̂  ίk. Suppose
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there is no t} such that ί, ^ tn tr Let K = 0 Σ{Am | ίw ^ f, and
r w ^ ί,}. Then K is a fully invariant subgroup of G, and G/K is a direct
sum of two E-modules, G/K = Bλ 0 B2 where Bi = 0 Σ{Am | tm S £•} + X
and B2

 = 0 Σ{Am | tm ^ t}} + K But multiplication by integers nλ on £?!
and n2 ¥=• nx on B2 is an jE-map of G/i£ to G/K which is not induced by a
map in ZE. By Lemma 1.2, this is a contradiction.

Now suppose tn ^ ί/2 g is a countable descending chain of types in
T which is not bounded below. Let p be a prime not dividing Aπ and
define K to be sum of {A^t^Q and {p*A711, ^ ί/k, ίy^ ίIk+I, k =
1,2, }. Then i£ is fully invariant and G/K is an unbounded torsion
group. Since G is £-indecomposable, by Lemmas 2.2 and 1.3, this is a
contradiction.

Finally, assume t0 E T is finite at an infinite set of positions {p}}, and
suppose no tι ^ t0 is zero on an infinite subset of {/?,}. Then for each
tt === /0, choose x, E A, such that ^-height xt ^ 1 /or α///?r Now let // be
the minimal fully invariant subgroup containing the JC,. Since
homomorphisms do not decrease height, (l/py)x0 £ H for any pr Thus
Ao/Afl Π // contians a copy of Z(p}) for each p r By Lemma 1.3 this is a
contradiction.

(2) φ (3). Let H be fully invariant in G such that G/H is
torsion. Suppose first that for some An At/Ai Π H is unbounded, with
nonzero /?fc-component for an infinite set P = {pk} of primes. Note that
AJAι ΠH contains no Z(px) since rank A, = 1 and Aι Π H is fully
invariant in A,. We may, therefore, assume that tx is finite and positive
at all pk E P. By condition 2(c), there exists t} < tt such that t, is zero at
an infinite subset of P. Since H is fully invariant and t} < tt, A, Π ί ί C
pkA, implies A ; Π H C pkA} for all pk E P. This is impossible since tf is
zero at infinitely many pk.

Now if G/H is unbounded, choose a countable sequence A,,, A,2,
such that 0 Σ*=1 Alr/Alr Π H is unbounded. By conditions 2(a) and 2(b)
there exists a fixed A, with ί, ^ ίIr, for all r ^ 1. It follows that AJAt Π H
must be unbounded. This is impossible, as above.

(3) φ (1). It is easy to show that if G/K is bounded for all fully
invariant K with G/K torsion, then Hom E (G, G/K) = {nU\ n E Z}
where Π : G - > G / K is the natural factor map. It follows that
Homg(G, G IK) = {n Π | n E Z}, for any fully invariant K

The above theorem characterizes the completely decomposable Eqp
groups since any completely decomposable group G may be expressed as
a direct sum 0 Σ G , of E-indecomposable subgroups which are com-
pletely decomposable, and in this decomposition End(G t ) = J5|Gl.

COROLLARY 2.1. Let G be completely decomposable of finite rank
with type set T. Then G is Eqp iff Tsatisfies 2(a) and minimal types in T
are idempotent.
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Proof. T is finite so that minimal types are idempotent iff 2(c)
holds. Since 2(b) holds vacuously, the result follows.

COROLLARY 2.2. Let G = 0l€Ξ/ ΣA with {A, | i G /} rigid [4]. Then
G is Eqp i/f ί(A.) is idempotent for all i G /.

Proof If {A,} is rigid, (a) and (b) hold vacuously and (c) holds iff
each t(At) is idempotent.

REMARK. Since E is commutative if {A,} is rigid, Corollary 2.2 can
also be derived from a trivial modification of a result of Arnold ([1],
Theorem 1.1).

EXAMPLE. The following is a nontrivial (uncountable E-
indecomposable) example of a completely decomposable group satisfying
2(a), 2(b) and 2(c) of 2 in Theorem 2.1.

Define a relation on the set / of all infinite subsets of the natural
numbers by S ^ T iff S \ T is finite. Let {Sa} be a maximal chain in
/. It is easy to see that {Sa} is uncountable. For each α, define a type ta

by ta = [<JC Γ>] x°! = 1, i £ S α ; xΓ = 0, /£ Sa. It is easy to see that {ta}
satisfies 2(a) and (b) of Theorem 2.1. By the maximality of the chain
{Sα}, {ta} also satisfies 2(c). Let A = 0 Σ A , where Aα is of rank one
and type ta. Then A is Eqp by Theorem 2.1.

We next characterize homogeneous separable Eqp groups ([4], §87).

LEMMA 2.3. Lei G fee homogeneous and separable. Then ZE C O

Proof. This is an easy exercise. (See [4], Problem 12, page 235.)

LEMMA 2.4. Let G be homogeneous and separable. Then, for all
nonzero fully invariant K C G, we have G/K is a torsion group.

Proof Let 0 / K be fully invariant in G. Choose 0 ̂  x G
X. Since G is homogeneous separable we can write G = OO*0G',
where (*}* denotes the pure subgroup generated by x. If G' C K, then
GIK = (x)*l{x)*C\ K and G/K is torsion. Otherwise, choose y €Ξ
G'\G'0K. Since G' is also homogeneous separable, write G =
(*)*Θ(y)*Θ G". Since G is homogeneous, there exists a G £, n G Z +

with α(x)= ny. Thus, ny G K Since y was an arbitrary element of
Gf\GfΠK, we have G/K = (x)J(x)*Π KQG'/G'nK is torsion.

REMARK. The claim made in Problem 13, page 235 of [4] is
incorrect. Any rank one group of nil type will sei e as a
counterexample.
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A group G is called strongly irreducible iff for all nonzero fully
invariant JKΓC G, G/K is bounded. (See [7].)

THEOREM 2.2. Let G be a homogeneous separable group. Then G
is Eqp iff G is strongly irreducible.

Proof. If G is homogeneous, separable and Eqp, Lemmas 1.3, 2.3
and 2.4 show that G is strongly irreducible.

Conversely, let G be strongly irreducible, homogeneous and
separable. Let K/ (0) be fully invariant in G and θ E
Hom(G, G/K). Write G/K in its primary decomposition, G/K =
®Σ?=](G/K)Pι. Say, for some fixed p} E {pt | ί = 1 N}, we have
(G/K)P/ = 0 Σ α e Λ > f t ) with order (αα) = p;

s«, sa ^ s, (Here ά =
a + K). Since 0 is an £ map and G is homogeneous separable, it is
easy to show that, for some fixed m} E Z + , we must have θ(aa) = rnfia for
all a E A,-. Choose m E Z+with m = nijipfij = 1 -N. Then Πm =
ft

The final results of this section deal with groups G which can be
written as a sum of two groups related in a special way. We will need
the notions of outer type (OT) and inner type (IT) of a group as defined in
Warfield [8].

THEOREM 2.3. Let G = A®B where IT (A) > OT(B) and let E =
End(J3). Then G is Eqp iff B is Eqp and rank ZE = 1.

Proof. ( Φ ) Let K be an E-submodule of B. Then A φ K is an
£-submodule of G since Hom(A, J3) = 0. Therefore, any E-map
θ: B-^B/K, induces an jE-maρO0 0: A 0 J B - * A 0 B / Λ 0 K which
must lift to a map in ZE of the form αφjS, where α: Λ ~> A,
/3: B->B. It follows that̂  0 is an £-map which lifts θ.

Now suppose rank ZE > 1. Choose γ E Z £ and b E B, such that
6, γ(6) are independent. Then 0 φ γ : Λ φ β - ^ ( Λ (&B)IA is an £
map and lifts as above to a map of the form a 0 β in ZE. Since
IT(A)>OT(B), there exists δEHom(B,A) such that δ(b) = 0 and
S(y(b))^ 0. But then 0 = αS(/?) = <5/3(6) = δγ(b) ̂  0, a contradiction.

(<=) Let K be a fully invariant subgroup of G, and θ: G—»G/l£
an E-map. Then iC = K Π A 0 K Π β and 0(i?) C B/B Π X so that (9
restricted to B may be lifted to a map α G Z E C Q . Since ΓF(A)>
OT(B), A = U/ B^Λ Image /. It follows that α: A -» A must be a lifting
of ΘU

REMARK. This theorem may be generalized slightly to the case



532 C. VINSONHALER AND W. J. WICKLESS

COROLLARY. // G = D φ R where D is divisible and R is reduced,
then G is Eqp iff R is E(R)qp and rank ZE(R)= 1.

3. Strongly indecomposable groups. In this section we
characterize the strongly indecomposable Eqp groups of finite
rank. We start by characterizing the strongly indecomposable, strongly
irreducible ones. Recall that a group G is called strongly indecompos-
able if it admits no nontrivial quasi-decompositions ([4], §92).

THEOREM 3.1. Let G be strongly indecomposable, strongly irreduc-
ible of finite rank. Then G is Eqp iff G / PkG is a cyclic E module for all
nonzero prime ideals P CE.

Proof. Suppose G is Eqp. Since G is strongly indecomposable
and strongly irreducible, we can conclude that £ is a subring of an
algebraic number field F with QE = F. (See [7].) Note that E is
Noetherian and P^ (0) prime in E implies P is maximal. (Since
QE = F, every nonzero ideal I QE contains a nonzero rational
integer. Thus, Ell is finite.)

We show G/PkG is a cyclic E module for all nonzero prime ideals
P CE. If not, let X = {x{ xn} be a minimal set of E generators for
G/PkG, where jc, = xι + PkG. Let H be given by Ex, Π ΣU Ex> =
H/PkG. Then H is fully invariant and G/H = Λ φ β with A = Eϊu

B = Σΐ=2EXn where jξ = x-x + H. This is a nontrivial direct sum decom-
position because of the minimality of X.

Let /, g be the projections from G/H onto A, B and Π: G —> G/H
the natural map. Let f,gGE be such that Π/ = /Π, Ug =
gΠ. Finally, let I = {a E E\a(G)QH}. Then Pk C /, so iCp
(primes in E are maximal). Clearly fg E / C P, so / E P or g E P. If
/ E P, PA = A. Thus, PkA = A, so /A = A. But /A = (0) and A ̂  (0)
— a contradiction. A similar contradiction arises from the assumption
g£P. Thus G/PkG is cyclic.

Conversely, let G be strongly indecomposable strongly irreducible
of finite rank with G/PkG cyclic for all nonzero primes P CE. We
show, for all positive rational integers n, G/nG is E cyclic. Let
nGZ+. Since (0)/(n)CE and E is Noetherian we have (n)D
Pkι Pi?* with the P.'s nonzero prime ideals in E ([10], page 200). Now
the ideals Pff, i = 1 s, are co-maximal in £ ([9], page 176) and, by
assumption, G/Pk G is E-cyclic. It is easy to show (using the Chinese
Remainder Theorem in E) that G/(UPki)G is E-cyclic. Thus, G/nG is
E -cyclic.

Now let θ: G-+G/K be an E map, (0)^K a fully invariant
subgroup of G. Since G is strongly irreducible, nG C K for some
positive integer n. Thus G/K is £-cyclic, say G/K =
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E(g + K). Choose a E E with θ{g) = a(g + X). We claim that a is a
lifting of θ. To show this, it only remains to show that Θ{K) = (0). Let
G InG = E(/ι + nG). Then for any /c E X, k = βh + nx for some
0 E E, x E G. Now β/ι E K, so, since £ is commutative, β{G)Q
K. Thus, 0j3(G) = j3θ(G) = (O) in G / K Finally, 0(fc) =
0|3(/ι)+n0(jc) = O + K This shows that G is Eqp and completes the
proof.

We now consider the general case, and begin with a more general
definition of quasi-projectivity which is invariant under quasi-
isomorphism.

DEFINITION. If R is a ring, an R -module M is almost quasi-
projective, if there exists a positive integer t such that the image of
HomR (M, M) in HomR (M, M/N) is bounded by t for every submodule N
of M.

LEMMA 3.1. If M — Nare {quasi-isomorphic) R modules, and M is
almost quasi-projective, then N is almost quasi-projective.

Proof. Without loss of generality, assume nM C N C M for some
positive integer n. Let K be a submodule of N and
f:N->N/KL Then nf:M->MIK lifts to a map / E Horn* (M,M)
such that Uf = tnf where Π: M->M/K. Then n/ E Hom*(N, N) and
is a lifting of tn2f. Hence N is almost quasi-projective.

LEMMA 3.2. Lei G be strongly indecomposable and almost
Eqp. Then there is a g E G suc/i f/iαί G/Eg is bounded.

Proof. Choose {gι, — ',gk} of minimal cardinality with respect to
GjEgλ + Eg2+ - - - + Egk is bounded. This is possible by Lemma
1.3. If k > 1 , let H = Eg! Π Σf=2 Eg,. Then H is fully invariant and
Σfβl E&/H = Eg, + H φ ΣU Eg, + H. Furthermore, Eg, + H is not tor-
sion since ngj E H => nEg! C H, contradicting the minimality of
k. Since G is strongly indecomposable, any a E E is either monic or
nilpotent (see [6]). But if t is a positive integer such that tG C Σf=1 Eg,,
then ί followed by projection onto Σf=2 Eg, + // is a map from G to G/H
which cannot be lifted, as the lifting could be neither monic nor
nilpotent. Thus fe = 1, proving the lemma.

THEOREM 3.2. Let G be strongly indecomposable of finite
rank. Then G is Eqp iff G is strongly irreducible and G/PkG is a cyclic E
module for all nonzero prime ideals P C E.
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Proof. In view of Theorem 3.1, we only need show that strongly
indecomposable Eqp groups of finite rank are strongly irreducible.

By the preceding Lemma nG C Eg C G for some n and Eg = E/L
(as E-modules) for some left ideal L CJ(E), the Jacobson radical of
E. Therefore by Lemma 3.1, E/L is almost Eqp, with associated
integer ί, for some t >0.

Now for any x E E consider

E/L

/a

E/L -> E/Lx + L

Xι = left multiplication by x
Lx + LCJ(E)/E.

Then nα is an E endomorphism of G, hence in ZE. Furthermore
na - tXi: E —> Lx + L, so that na - tx £ί Lx + L. Hence to E ZE +
Lx + L. This implies LtxQL + L2x, so that t2x E Z(E) + L2x +
L. Continuing inductively ίkx E Z(E) + Lkx -f L. Since L is nilpotent
(L C J{E)\ for some m > 0, Lm = 0 arid Λ E Z E + L. Thus
tmECZ(E) + L, and G - E/L - Z(E) +L/L = ZE/L Π ZE, a com-
mutative ring with identity. By ([2], Th. 1.4, Cor. 3.6, Th. 1.13) G must
be strongly irreducible.

COROLLARY 3.1. Let G be finite rank strongly indecomposable with
rank E < rank G. Then G is not Eqp.

Proof. For any O ^ g E G , £g is a fully invariant subgroup of G
with rank Eg ^ rank E < rank G. Thus, G is not strongly irreducible,
so G cannot be Eqp.

4. Groups of rank two. In this section we use the results of
§§1-3 to survey the Eqp property for groups of rank two. This is most
conveniently done by considering the six possibilities for the quasi-
endomorphism algebra, QE(G)= Q <g)zE(G). (See [3].) If QE(G) =

[O]2X2 or JC, y, z E θ\ then G is completely

decomposable. In the first case we have G = A φ A , and in the second
case G = A φ JB with A, B of rank one, t(A)< t(B). In either case
Corollary 2.1 applies; G is Eqp iff t(A) is idempotent. If QE(G) =
0 0 0 , then G is quasi-decomposable G-AφB with t(A), t(B)
incomparable. A slight modification of the arguments of Theorem 2.1
prove that G is Eqp iff t{A) and t(B) are idempotent.

We next consider the strongly indecomposable cases. If QE(G) =
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Q or QE(G)= j ί J x,y E QK then G is strongly indecomposa-
c vy x / J

ble but not strongly irreducible, so G is not Eqp by Theorem 3.2. We
settle the final possibility, QE(G) = Q(VjV), in the following theorem.

THEOREM 4.1. Let G be of rank two with QE(G) = Q ( V N ) . Then
g is Eqp iff G is strongly irreducible.

Proof. If G is Eqp, G is strongly irreducible by Theorem
3.2. Conversely, let G be strongly irreducible and K any nonzero fully
invariant subgroup of G. Write the finite group G/K in its primary
decomposition: G/K = @%χ(GIK)pr Since rank G = 2, K is fully in-
variant, and QE(G)= Q(\/N), it is easy to show, for each pt, either
(G/KX = Z(pf ) for some s, ^ 0 in Z, or (G/K^, = Z(pί-)©Z(p; ) for
some ί, ^ 0 in Z. Moreover, in the latter case we can choose a E G so
that a + K{ and V N α + X, are generators of (G /Kt)Pι. It is now easy to
check that G /K is a cyclic £ module. Thus, Theorem 3.2 applies and G
is Eqp.
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TOPOLOGIES ON THE SET OF CLOSED SUBSETS

FRANK WATTENBERG

In this paper the techniques of Nonstandard Analysis are
used to study topologies on the set Γ(X) of closed subsets of a
topological space X. The first section of the paper investigates
the "compact" topology developed by Narens and constructs a
variant of that topology which is particularly useful for non
locally compact spaces X. (When X is locally compact this
variant is shown to be identical with Naren's original "compact"
topology.) This new topology is a natural extension to Γ(X) of
the one point compactification of X embedded in Γ(X) in the
obvious way with the point at infinity corresponding to the empty
set. The second section shows that the techniques developed by
Narens can be used to obtain a natural characterization of the
Vietoris Topology by considering monads of non nearstandard
points. The final section uses this same approach to construct a
topological analog of the Hausdorff metric for normal spaces.

0. Introduction. Suppose that X is a topological space and
that Γ denotes the set of closed subsets of X. It is frequently desirable to
endow Γ with a topology of its own. Various topologies on Γ have been
proposed and studied by several mathematicians. If X is a metric space,
Hausdorff (see [2], [6], [7]) defined a metric on Γ in a natural way. With
this metric X is embedded isometrically as a closed subset of Γ by the
mapping x»{x}. One drawback of this metric, however, is that it
depends in an essential way on the metric on X. That is, d and df may
be two metrics for the same topology on X, but induce Hausdorff metrics
which do not give the same topology on Γ. In [10] E. Michaels
investigates among other topologies the Vietoris or Finite topology on
Γ. This topology also has the property that X is embedded as a closed
subset of Γ by the mapping x »{x}. Both the Hausdorff metric on Γ and
the Vietoris topology on Γ make Γ into a compact space if and only if X
was originally compact. More recently, L. Narens [12] has introduced
an interesting topology on Γ using the techniques of Nonstandard
Analysis. This topology always maLes Γ a compact set with the empty
set 0 E Γ acting (see Theorem 1.8) somewhat like the point at infinity of
the one-point compactification of X.

Nonstandard Analysis provides a particularly nice framework for
investigating topological questions. Intuitively, a topological space is a
set together with some notion of "nearness"

537
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If X is any set and *X is a nonstandard extension of X then a
topology on X can be described by a relationship of "infinitely close" on
some points of *X (see [9], [13], [14]). If X is a topological space, x E X
and y E *X we say y is infinitely close to JC, written y ~ JC o r y E μ ( x ) ,
provided for every standard open set 0 if x E € then y6*(?. In this
case x is called the standard part of y, denoted x = St(y). If A is an
internal subset of *X, let St (A) = {x E X \ μ (x) Π A ^ 0}. Under suita-
ble conditions on *X St(A) is always closed. Now, if A, BE*X,
Narens defines A ~ B provided St(A) = St(B). He uses this relation-
ship to define a topology which he calls the compact topology. In the
present paper we will call this same topology the N-compact
topology. Although the relationship ~ provides a definition of the
N-compact topology, it is important for a full understanding of this
topology to obtain a description of the actual monads for this topology
(see [14], for an elucidation of this point).

The first part of this paper is devoted to the investigation of the
N-compact topology and a closely related topology we call the 5-
compact topology. With either of these topologies Γ is compact and the
one point compactification of X is embedded as a closed subset of Γ by
the mapping x -»{x} with °° corresponding to 0 E Γ. When X is locally
compact, the S-compact and N-compact topologies are identical, both
are Hausdorff, and the monad, μ(F), of a point F E Γ is given by
μ(F) = { H E * Γ | F ~ H } . When X is not locally compact the S-
compact and N-compact topologies may be different, neither is Haus-
dorff and neither monad is given by {H E * Γ | F ~ H}. The 5-compact
topology has a good standard as well as a good nonstandard characteriza-
tion.

The technique Narens has developed suggests several different
topologies on Γ. In the second section we use this technique to obtain a
nice description of the Vietoris topology. This description elucidates
some of the properties of the Vietoris topology. In the third section of
the paper we define a new topology, called the fine topology on Γ. This
topology has many nice properties and, in particular, may be regarded in
some sense as the analog in the topological category of the Hausdorff
metric (see Theorem III.8).

Throughout this paper, X, Y and Z will always denote Hausdorff
spaces (although Γ may not be Hausdorff). When we are dealing with
several spaces X, Y and Z, their extensions will always be taken in a
single nonstandard model *M. That is, we let M be the complete higher
order structure on X U Y U Z and let *M be a higher order elementary
extension of M ([8], [9], [13]). If K is the cardinality of the universe of Jί
we will assume throughout that *M is at least κ+ saturated ([1], [3], [4],
[5], [11]). Thus we will assume GCH to insure that such an extension
exists.
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I. The iV-compact and S- compact topologies. Suppose
throughout this section that X is a Hausdorff space and that Γx (or Γ
where confusion is unlikely) is the set of closed subsets of X. We
topologize Γ as follows

1.1. DEFINITION. Suppose F E Γ and H E * Γ we write H~F
whenever St(H) = F. Then the premonad, ra(F), of F in *Γ is defined
by m(/7) = {HE *Γ\H- F}. A subset Λ C Γ i s said to be N-open if
and only if for each FEA, m(F)C*A. It is easy to verify that the
N-open subsets of Γ form a topology which, modifying the terminology
of [12], we call the N-compact topology.

If F E Γ the monad, μN(F), of F in the N-compact topology is
defined in the usual way by

μN(F)= Π *A
FEA, A N-open

It is immediate from these definitions that ra(F)CμN(F) although it
turns out (See 1.9) that frequently m(F)έ μN(F).

1.2. LEMMA. Suppose 0 is an open subset of X. Define 6 C Γ by
0 = {F |F Π <9y 0}. Then 0 is open in the N-compact topology.

Proof. Suppose F E ϋ and H ~ F. Since FEU there is a point
xEΘDF. Since 0 is open μ{x)Q*ΰ. Since St (H) = F,
jcESt(H). Hence, μ(x)ΠH^0 and thus *UΠH^0. .Therefore
HE*O.

1.3. LEMMA. Suppose K is a compact subset ofX, Define K C Γ by
K = {FEΓ\FΠK = 0}. Then K is open in the N-compact topology.

Proof Suppose FGK and H- F. If H£K then
HΠ*Kj4 0. Let x E H Π *K Since iC is compact y = St(x) exists
and is in K. Since St (H) = F, y E F Thus X Π F ^ 0 and

K. This contradiction completes the proof.

1.4. PROPOSITION. Γ with the N-compact topology is compact and

Proof
(i) // // E *Γ, H E m (St(if)) C ^(St(H)) . 77zw5 every point of

*Γ is near-standard and Γ is compact.
(ii) Suppose F, G E Γ, F ^ G. Without loss of generality we may

assume F\G^0. Choose a E F\G. By Lemma 1.3 {a} is open and
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G E {a} but F£ {a}. By Lemma 12 X\G is open and G £ X\G while
FEX\G.

It is natural to ask when Γ with the N-compact topology is
Hausdorff. The following proposition shows this occurs precisely when
the premonads, m(F), are actually the monads, μN(F).

1.5. PROPOSITION. The following are equivalent
(i) Γ is Hausdorff.
(ii) For each FGΓ, m(F) = μN(F).

Proof (ii)-> (i) is immediate since F^ G implies m (F) Γi m (G) =
0.

(i)-^(ii). We must show μN(F)Cm(F). Suppose H£m{F).
Hence St(H)^F. Since Γ is Hausdorff μN(St(H))Π μN(F) = 0. But
H E m(St(H))C μN(St(H)) and, hence, H£μN(F). This completes
the proof.

1.6. THEOREM. Suppose X is locally compact then Γ is Hausdorff
and, hence, by 1.5 for each F E Γ , m(F) = μN(F).

Proof Suppose Λ,BEΓ. Without loss of generality we may
assume A\B^ 0 . Choose a E A\B. Since X is locally compact there
is an open set U such that a E U, Ό is compact and Ό Π B = 0 . JBy
Lemma 1.2 U is open. By, Lemma 1.3 U is open. Clearly ϋ Γ) U =
0. But A E U and B EC/ which completes the proof.

The converse of Theorem 1.6 is also true as a consequence of the fact
(Theorem 1.8) that the one-point compactification of X can be embedded
in Γ with the point at infinity corresponding to the empty set.

1.7. DEFINITION. Let X+ denote the one-point compactification of
X with o° denoting the point at infinity. We define an embedding
e:X+-±Γ by

e(x) = {x] if

1.8. THEOREM, e: X+->Γ is a homeomorphism of X+ into Γ.

Proof (i) Suppose x E X. If y E μ(x) then {y}~{x} so
*e(y)Gm(e(x)). Hence e{μ(x))Q m(e(x))C μN(e(x)). Now, sup-
pose y £ μ(x) then there is a standard open set 0 such that x E 0 and
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y£*Θ. By Lemma 1.2 6 is open in Γ and e(x)EO but
*e(y)fέO. Hence, *e(y) £ μN(e(x)). Thus e(μ(x)) = μN(e(x)).

(ii) We must show μN(0) Π *β(X+) = Λ where A is given by A =
{0} U {{x}\x<Ξμ(oo)}. Notice that μ^) = ΠK c o m p a c t*(X - K) U{oo}. By
Lemma 1.3 if K is compact K is open. But KΓ)e(X+) =
0Ue(X-K). Hence μ N (0) Π *e (X+)C A. Now suppose
{y}£μN(0). Hence there is an open set ϋQΓ s.t. 0 6 ( 9 but
{y} £ *<9. Let K = {x E X|{x} fέ 0}. Notice if x E *K then {*} £ *<9, so
{x} £ m(0) and hence x must be near-standard. Now, if {st(x)}E €
then {*} would also be in *G so {st (x)} £ 0 and St(jc) E K. Thus, we've
shown for each x E *K9 St(x) exists and is in K, so K is compact. Now
y E *X, so y ^ μ(°°) Hence A C μN(0)Π e(X+) which completes the
proof.

1.9. COROLLARY. The following are equivalent
(i) X is locally compact
(ii) Γ is Hausdorff
(iii) For eαcfc F E Γ, m(F) = μN(F).

Proof. Immediate from 1.5,1.6 and 1.8 since X+ is Hausdorff if and
only if X is locally compact.

We would like to obtain a standard description of the compact
topology on Γ. Lemmas 1.2 and 1.3 suggest a topology which is
analogous to Vietoris topology. This approach is developed in the
following pages. For locally compact spaces the two topologies are
identical. However, for more general spaces they may be distinct (see
Example 1.16).

1.10. DEFINITION. A subset ϋ of X is said to be cocompact
whenever X\U is compact. Suppose that 0 is cocompact and that
Ui,U29 -,Un are open subsets of X. Then let (€, Uu U2, , Un)
denote the set

{ F E Γ | F C < ? and for i = l,2, ,n

By Lemmas 1.2 and 1.3 the set (O9UUU2,' -,Un) is open in the
N-compact topology. Let 38 denote the set of all such
(ΰ, Uu U2, - , Un). Notice the intersection of two sets in S3 is again in

(0, Uu U2, , Un) Π (C, Vu V2, , Vk)

= (0 n o\ uu u2, , um vu v2, , vk).
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So, S3 forms a basis for a topology on Γ. This topology is called the
S-compact topology. By the above remarks every set open in S-compact
topology is also open in the N-compact topology. Hence, the S-
compact topology is compact. Furthermore, an examination of the
proof of Theorem 1.8 shows that e: X+—>Γ is a homeomorphism of X+

into Γ with the 5-compact topology.
One of the basic lemmas in Nonstandard Topology is that if X is a

topological space, x E X and μ(x) its monad then there is a *open set U
such that *JC E U C μ(x). For the ΛΓ-compact topology we have been
working primarily with the premonad m (F) rather than the actual monad
μN(F) of F in the N-compact topology. It is not true that for this
premonad there is always a *open set U in the N-compact topology such
that *FE UCm(F). However, when X is locally compact m(F) =
μN(F) and such a U can always be found. In particular the following
lemma shows such a U can be found in *S8.

1.11. LEMMA. Suppose X is locally compact and F E Γ. Then there
is a set UE *S$ such that F E U Cm(F).

Proofs (i) For each x f£ F let Wx be in an open set such that
x E Wx, Wx is compact and Wx Π F = 0 . By a straightforward enlarge-
ments argument there is *compact set K such that KΠF = 0 and for
each x£F9 WkCK. Let 0 = X - K.

(ii) For each x E F choose a *open set Ux such that x E Ux C
μ(x). By a straightforward saturation argument there is an internal
*finite collection of *open sets {Vu V2, , Vv) such that for each
i = 1,2, •••,!/, v; Π*F^0 and for each x E F, UxE{Vh V2, , Vv}.

(iii) Let U = (0, Vu V2, , Vv) E *33. It is straightforward to
verify that *FE UCm(F).

1.12. COROLLARY. Suppose X is locally compact. Then Sft is a
basis for the N-compact topology on Γ. Hence, the S-compact topology
and N-compact topology are identical.

Proof. Immediate from Lemma 1.11.

Example 1.16 will show that the S-compact and N-compact to-
pologies may be distinct when X is not locally compact. In view of this
fact if F E Γ we denote its monad in the S-compact topology by
μs(F). Notice, μN(F)Cμs(F). In order to obtain a characterization
of μs(F) we need a definition.

*x.
1.13. DEFINITION. Suppose X is a topological space and x E

x is said to be a far point provided for every standard compact
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subset K of X, x £ *K Let FAR(X) = {x G *X|x is far}, when X is
locally compact, the far points of *X are precisely the nonnearstandard
points.

1.14. PROPOSITION. Suppose F G Γ and / / £ *Γ then HG μ s(F) if
and only if

(i) FCSt(/f) and
(ii) For eiwy x G i ϊ either x G FAR (X) or St (x) βxiste and St (x) G

F.

(—>) (i) Suppose x G F and 1/ is a standard open set with
xEU. Therefore FG (X, U) so H E *(X, 17) and H Π
*£/τ^0. Hence, by a straighforward saturation argument HO
μ{x)f0. So x e S t ( H ) .

(ii) Suppose x EH and x £ FAR(X). Therefore there is a stan-
dard compact set K with x G *K Thus, St(x) exists and St(x)G K.

Now suppose St(x)^F. Since K is compact there is an open
subset U of K such that St (x) G U and 0 Π F = 0 . 17 is compact since
it is a closed subset of K and x G *C7 since St(x)G U. Since £7 Π F =
0, F G <X \ f?>. But * ί7 Π H ^ 0, so H ^ *(X \ (7) contradicting // G
μs(F).

( ^ ) Suppose F G (ϋ, Uu , Un). First, suppose H ^ *C, then
HΠ*(X\ϋ)έ0. So ίeHΠ*(X\σ), St(r)GX\(?; so F£*09 con-
tradicting F G <(?, [/,, , Un). Now, F Π Utέ 0. Therefore there is
anxEFΠί/,. But /x(x)C*Uί and by (i) there is a y Eμ(x)ΠH. So
H Π * Ut / 0. This completes the proof.

1.15. COROLLARY.

(a) Suppose F G Γ and H G μN(F) then
(i) F C St(H) and
(ii) For every x EH either x GFAR(X) or St(x) exists and

St(x) GF.
(b) The mapping u: Γ x Γ -» Γ de/ϊm>d by u(H,F) = HUF is con -

tinuous in the S-compact topology.

Proof
(a) μ N (F)Cμ s (F).
(b) For (H,F)G ΓxΓ, μ(//,F) = μs(H) x μ s(F) and clearly

H ; G /x5(H), F'G μ5(F) implies H ' U F ' 6 μ 5 (H UF).
By Corollary 1.12 if X is locally compact u is continuous in the

JV-compact topology. However, without this assumption the author
does not know whether u is continuous in the N-compact
topology. Clearly, if HΈm{H) and FfEm(F) then Jf 'UF'G
m(HUF). However, although this provides some evidence for the
continuity of w, it is not by itself sufficient to prove u is continuous.
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The following example shows that the JV-compact and 5-compact
topologies are distinct.

1.16. EXAMPLE. We first state carefully two facts necessary for this
example.

(i) If A C Γ then A is closed in the N-compact topology if and
only if for each F E *A, St (F)E A. This equivalence is an immediate
consequence of Definition I.I.

(ii) If A C Γ then A is closed in the 5-compact topology if and only
if for each F E *Λ and each H E Γ, F E μs(H) implies H E A. Notice
that since Γ is not Hausdorff there may be many H E A such that
F E μs(H). This equivalence is an immediate consequence of Defini-
tion 1.10.

Now let Q denote the rationals and let G denote the set of closed
subgroups of Q. We claim G is closed in the N-compact topology but
not in the 5-compact topology. The first assertion was proved by
Narens in [12] by means of (i) above and the observation that if F is a
*closed *subgroup of a topological group then so is St(F). We proceed
to the second assertion.

By a straightforward enlargement argument there is an a E *Q such
that

(i) α E μ ( l )
(ii) For each standard integer n

naE FAR(Q).

Now let H = {na | n E *Z}, where Z denotes the set of integers. H is
clearly a closed subgroup of *Q. By Proposition 1.14 H E μs({l}). But
{1} is not a subgroup of Q. This completes the proof.

Although the N-compact and S -compact topologies on Γ have some
very nice properties they also lack some desirable properties. In
particular certain constructions on Γ which one might like to be continu-
ous are not continuous with these topologies. We close this section with
several such examples before going on to discuss other topologies on Γ in
the remainder of this paper.

L17. EXAMPLES, (i) Suppose /: X—> Y is a continuous map. /
induces a map /: Γ x - * Γ y defined by f(A) = f(A). One might desire
that / be continuous. However, this need not be so. In particular, if /
were continuous this would imply that / had a continuous extension to
g: X+-» Y+ with g(co) = oo. No such extension exists, for example, if
/: (0,1)—• R is the usual inclusion of the open unit interval into the real
line.

(ii) Suppose again that /: X—> Y is continuous. / induces a map
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f:Γγ^>Γχ defined by f{A) = f~\A). Again one might hope that /
would be continuous. However, this need not be so. In particular if /
is a bijection then the continuity of / would imply / is a homeomorphism
which is, in general, false.

(iii) Let X = R and define /: Γ-^Γ by

f is not continuous since if a is any negative infinite nonstandard real
{a} E μN(0) but f({a}) = [a, °°) jZl μs(0) = μs(f(0)).

II. The Vietoris topology. Some of the difficulties noted at
the end of §1 result from the fact that knowing H 6Ξ μN(F) gives us little
or no information about the non-nearstandard points in H and *K In
order to obtain a topology on Γ which takes these points into considera-
tion we need a notion of monads for points which are not near-
standard. One such notion is the coarse "monad system" defined in [14]
and [15]. We suppose throughout this section that X is a Tx space.

II. 1. DEFINITION. Suppose x E *X the coarse monad of x, denoted
c(x) is defined by

c(x)= Π *U.
xG'FC'U.Fstandard closed,

U standard open

We collect some results about c(x) in the following proposition.

Π.2. PROPOSITION.

(i) IfxEX,c(x) = μ(x)
(ii) Ifx,ye*X,xec(y)«+y(=c(x)
(iii) X is regular <-» for every near standard x, c(x)= μ(St(x)).
(iv) X is normal **ifx,yE*X either c(x) ~ c(y) orc(x) Γ)c(y) =

0.
(v) If f: X-^Y is continuous then for every xE*X *f(c(x))C

c(*f(x)).

Proof.
(i) Clear.
(ii) If x (£ c(y) then there is a standard closed set F and a standard

open set U such that y E *F but x & *U. But then x E *(X\U) and
y£*(X\F)so y£φ).

(iii) and (iv) see [14].
(v) Clear.
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II.3. DEFINITION. Suppose F E Γ and HE*Γ. We say H 7 F
whenever for every x E *F there is a y E H such that y E c(x) and for
every y EH there is an x E *F s.t. y E C(JC). The c-monad of F, c(F) is
defined by c(F) = {H E *Γ\H r F}. Notice, in particular, that c(0) -
{0}.

Π.4. THEOREM. Suppose F E Γ , tften c(F) is the monad of F in the
Vietoris topology.

Proof. First recall that a basis for the Vietoris topology on Γ is
given by sets of the form (0, Vu , Vn) = {F E Γ |F C 0 and for / =
1,2, , n F Γ) V,-̂  0} where 0, Vί? , Vn are open subsets of X.

(i) Suppose F E <Q V1? , Vn) and // E c(F). For each y G H
there is an x E *F such that y E C(JC). Since F is closed and F Qϋ
c{x) C *0. Hence H C *σ. Since F E ((7, Vl5 , Vn) there is an x E
F Π V, for each i. Since {JC} is closed c(x) C * Vi and since H ~ F there

is a y E i ί n c ( j c ) . Hence i / Π * V , ^ 0 . Thus HC*(O, Vl9 , Vrt>.
(ii) Suppose H£c{F). There are two possibilities.

(a) For some x G*F there is no y EH such that y E
c(x). Hence, by a straightforward saturation argument there is a
standard open U and closed T with JC E *TC *[/ and *U ΠH =
0. But then F e (X, C7) and H ^ *<X, (7).

(b) For some y EH there is no JC E *F such that JC E
c(y). Hence by a straightforward saturation argument there is a
standard open U and closed Γ with y E * Γ C * U and t/ ΓΊ F = 0 . But
then FE(X\Γ) and fJ£*<X\Γ>.

Thus, in either case H£c(F) implies H£ monad of F in the
Vietoris topology, completing the proof.

Notice, that the mapping X->Γ defined by x—>{JC} is a
homeomorphism into using the Vietoris topology but e: X+—>Γ is not
even continuous (unless X is compact) since 0 is an isolated point of Γ
with the Vietoris topology. In addition it is clear that the mapping
w . T x Γ ^ Γ defined by u (F, H) = F U H is continuous with the Vietoris
topology.

With the Vietoris topology the mapping / defined in Example 1.17
will be continuous if the range is normal. To see this we first observe
that Definition II.3 can be extended to the full *power set of X, denoted
*P(X).

II.5. DEFINITION. Suppose A, BE *P(X). We say A ~ B
whenever for each a E A there is a b E B such that a E c(b) and for
each b E B there is an a E A such that aE c(b).
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II.6. LEMMA. Suppose A E *P(X) and A is the *closure of A then
A ? A.

Proof. Since A C A we need only show that for each x E A there
is an a EA such that a E c(x). Suppose x E * F C *U. F standard
closed and U standard open. Since *U is *open and JCEA, A Π

. Hence, by a straightforward saturation argument AD

11.7. PROPOSITION. Suppose f: X—> Y is continuous, Y is normal
and f: Γx -» Γ γ is defined by f(F) = f(F). Then f is continuous in the
Vietoris topology.

Proof. Since Y is normal it is easy to see using Proposition II.2 (iv)
that r is transitive on *P(Y). From Proposition II.2 (v) it is clear that
FΎH implies f(F)Ύf(H) but f(F) ~ f(F) _and f(H)Ύf(H) by the
preceding Lemma and, hence by transitivity f(F)~?f(H).

Although the coarse monad system imposes some control on the
non-nearstandard points of X, this is not a very natural monad system,
and, in fact, the coarse monads are much too large. As one result the
Vietoris Topology has the following interesting property.

11.8. MONOTONE LIMIT THEOREM. Suppose Ft C F2 C is an as-
cending sequence in Γ. Let F = U Fk. Then in the Vietoris topology

ooFfc = F.

Proof. Suppose F E (0, Uu , Un)
(i) F C € implies Fk C 0 for each k
(ii) For each i, FΠ U^Q}. Hence there is an x EFΠ Ut and

since Uι is open (U Fk) Π Ui^ 0 . Therefore for some kh Fki Π
ϋ i ^ 0 . Let X = max(fc1, ,fcn).

Now for each k^K, FkE (0, Uu , Un).

From our point of view some insight into this theorem can be
obtained from the following example.

II.9. EXAMPLE. Suppose x E *R is an infinite positive nonstandard
real and A is a standard set with x E *A. Then c(x)Π *A contains
arbitrarily small and large infinite numbers i.e. for each infinite positive
yE*R, c ( x ) Π * A Π ( O , y ) ^ 0 and φ ) n * A Π ( - y , « ) ^ 0 . The
proof of this is a straightforward saturation argument.

In the next section we consider a monad system on X which gives
more control over the non-nearstandard points.
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III. The fine topology. In [14], [15] we obtained a very
natural monad system for non-nearstandard points. This monad system
enables us to define a topology on Γ which provides a great deal of
control around non-nearstandard points. Throughout this section we
will restrict our attention to normal spaces.

111.1. DEFINITION.

(i) Suppose U is a *open subset of *X and F is a *closed subset of
*X with FCU. The pair ([/, F) is said to be a quasi-standard pair,
Q.S.P. provided there is a standard locally finite collection °ti =
{(Ua, Fα)}α€ΞJf of pairs ([/«, Fa) such that each Ua is open, each Fa is closed,
Fa C Ua and ( l / , F ) e *<tt (See [14], [15]).

(ii) If x E *X we define the monad of x, μ(x) by

μ(x)= ΓΊ I/.
xGFQU,(U,F)aQ.S P.

We recall the following facts about this monad system from [14],
[15]. Our assumption that X is normal is important here.

111.2. PROPOSITIONS.

(i) If x is standard, μ(x) is the usual monad μ(x)-
n * TT

xGU,U standard open U

(ii) If x is nearstandard μ (x) = μ(St(x))
(iii) For each x , y 6 * X either μ(x) = μ(y) or μ(x)Π μ(y) = 0 .
(iv) If f: X-+Y is continuous then for every x E *X, */(μ(jc))C

μ(*f(*))

Proof. [14], [15].

111.3. DEFINITION. Suppose H, F E *Γ we say H ~ F whenever for
every x E H, μ(x) Π F/ 0 and for every y E F, μ(y) Π H ^ 0 . In view
of Proposition III.2 ~ is an equivalence relation. For each F E * Γ ,
μ (F) is given by μ (F) = {H E *Γ | //— F}. The topology defined by the
/I monads is called the fine topology on Γ.

We can obtain a standard characterization of the fine topology in the
obvious way.

111.4. DEFINITION. Suppose °tt ={Ua}aej is a locally finite collec-
tion of open subsets of X and 0 is an open subset of X. Then define
<<?,<?O = { F E Γ | F C 0 and for each Uae% UafλF^0\. Let ^ =
{(<?, %>| ϋ C X open, % = {t/α}αe^ a locally finite family of open sets in

χι
111.5. THEOREM. 9 is a basis for the fine topology on Γ.
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Proof.
(i) Suppose F G Γ , Fe(O,°U) and H<Ξϊ>(F). We must show

that He*(C,<U).
(a) FE<0,<ft> implies FCU. Hence for each x G F, μ,(x)C

*(?. So, clearly HC*O.
(b) For each l/β G % choose xα G C/α Π F. Given Uβ(Ξ*°U

(UβΛXβ}) is a Q.S.P. so μ(xβ)CUβ and since μ(xβ)Γ)H^0,

uβ n //^ 0.
(ii) Suppose F E Γ , and Hgμ(F). We must find an 0, °U such

that FE<0,<tt> but H£*<σ,%>.
(a) Suppose for some Jt G *F, μ,(jc)Π // = 0 . Then by a

straightforward saturation argument there is a locally finite collection of
pairs °U = {(Ua, Fa)}aGJ containing a pair (Uβ, Fβ) G *°U such that x G Fβ

and [/^n// = 0 . Let y = {Ua \FΠ Ua^0}. Then FE(X,V) but
H£(X,V) since t/β E *y.

(b) Suppose for some y £ ί ί , j L i ( y ) n F = 0 . By a straightforward
enlargement argument there is a locally finite collection of pairs °U =
{(l/α,Fα)}αej, such that for some β, y G Fβ but J7 β Π*F = 0 . Let
T= Uαe^FαnF=0Fα. Since % is locally finite, T is closed. But FE
(X\Γ,0) andHjί*<X\Γ,0>.

This completes the proof.

111.6. PROPOSITION. Suppose f: X—> Y is continuous and
f: Γx —> Γ y w defined by f(F) = /(F). 77ιen / w continuous in the fine
topology.

Proof. Entirely analogous to that of Proposition II.7.

Notice that as with the Vietoris topology the mapping *—>{*} is a
homeomorphism into of X into Γ but e: X+—>Γ is not (unless X is
compact) since 0 is an isolated point of Γ. In addition the mapping
u: Γ x Γ -> Γ given by u (F, H) = F U // is easily seen to be continuous in
the fine topology. It is easy to see that the Monotone Limit Theorem is
false in the fine topology. In fact a counterexample is provided by the
sequence Fn = [- n, n] of subsets of R.

In general, the compact topology is coarser than the Vietoris
topology which in turn is coarser than the fine topology. Of course,
when X is compact all three topologies are identical.

For metric spaces the Hausdorff metric provides a very natural
topology on Γ. One difficulty with this topology, however, is that it
dependes in an essential way on the metric on X. Recall the definition
of the Hausdorff metric.

111.7. DEFINITION. Suppose X is a metric space with metric d.
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(i) If x G X and F G Γ define

p'(x9F) = mid(x,y) if

= 00 if F = 0

(ii) If A, B G Γ define

p'(A, J5) = max (sup p'(α, 5), sup p'(6, A)).

Finally we define the Hausdorff metric pd(A,B) by pd{A,B)~
min(l,p'(Λ,B)). (See, for example [2] or [6] and [7]).

Since this topology depends in an essential way on the given metric
d, it is natural to look for a topology related to the Hausdorff metric
which is independent of the metric d.

III.8. DEFINITION. Suppose X is a metrizable space. If d is a
metric on X let τd denote the set of open subsets of Γ with the metric
ρd. Let 35 = Udametπcoπχτd. $ is clearly a basis for a topology on Γ.

III.8. THEOREM. Suppose X is metrizable space. Then £β is a basis
for the fine topology on Γ.

Proof.
(i) Suppose FEAGτd. We must show /z(F)C*A. Since

AErd there is a standard e > 0 such that for every H G *Γ, *ρd(H, *F) <
e implies H G *A. But, now by [14, Theorem 2.12] for every x, y G *X,
yEμ(x) implies *d(x,y)~0. Hence, Heβ(F) implies *pd(H,*F)~
0; so H G * A. Thus /I (F) C Π Aea * A.

(ii) Suppose H & μ (F) we must find some A E $ such that F G A
but if g- * A. Since H £ β (F) there is an open set ΰ and a locally finite
collection %={t/α}α e^ of open sets such that Fe.{C,°U) but
H £ *<σ, °U). There are two cases.

(a) H£*O. Since F is closed and FCO there is a continuous
function σ: AT-» [0,1] such that σ(x) = 0 for JC G F and σ(x)= 1 for
JC ίέ 0. Let d be any metric on X. Define a new metric δ on X by
δ(x, y) = d(x, y) + | σ(x) - σ(y )|. It is straightforward to verify that δ is
a metric on X. But if zEH\*0 and JC G *F, δ(jc,y)gl; so
p δ *(H,*F)g l and, thus, /f g *{T|pδ(T,F)< 1} which is in τδ and,
hence, 3$.

(b) For some ) 3 E * i , H Π Uβ = 0. For each α choose
4 ^ ί / f l Π F and choose a continuous function σα: X-*[0,1] so that
cra (xa) = 1 and σα (y) = 0 if y £ [/«. Let rf be any metric on X and define
a new metric δ on X by δ(jc, y) = d(x, y) + maxα |σα(jc)- σa{y)\.
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Notice for y e H, *δ(x α ,y)^l so *pδ(*F,H)^ 1. Therefore, we
need only verify that δ is a metric on X. But this is a straightforward
verification after noticing that for given x and y there are neighborhoods
U of x and V of y in which only finitely many σα's are nonzero and, thus,
maxα \σa(x)- σa(y)\ is continuous.

In view of Theorem III.8 the fine topology may be regarded in some
sense as the analog of the Hausdorff metric in the topological category.
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INTEGRAL REPRESENTATION OF
TCHEBYCHEFF SYSTEMS

R. A. ZALIK

A representation of Tchebycheff systems in terms of iterated
Riemann-Stieltjes integrals, is given.

1. In troduct ion . A system of real-valued functions
{MO, Wi,' * , "nl defined on a totally ordered set is called a Tchebycheff
system or Γ-system (Weak Tchebycheff system or WΓ-system), provided
that for every choice of points t0 < tλ < < tn of the set,

(1) D(u0, uu , un/t0, tu - , tn) = det(M, (ίy); ij = 0,1, , n)

is strictly positive (nonnegative). A function u is said to be convex with
respect to the system {M0, MI, , «„}, if {w0, uu , un, u) is a WT-
system. The set of functions convex with respect to {w0, wb , un} is
evidently a cone. This cone is referred to as "Generalized Convexity
Cone". If {MO, wl5 , MJ is a Γ-system for / = 0, l, ,n, then
{M0, Mi, , Mn} is called a Complete Tchebycheff system or CT-
system. Note that no assumptions of continuity have been made in this
paragraph.

In 1965 there appeared a paper by M. A. Rutman in which the
following proposition is stated (cf. [4, Thm. 3]):

THEOREM. Suppose the system of right-continuous functions
{1, Mi, w2, , un} is a CT-system on the open interval (α, b). Then.there is
a system {1, yl9 y2, , yn} admitting of the following two representations on

(2) y, = M, + Σ auuj ί = 1,2, , n,
j = 0

and

yι(t)= ί dPι{s)
J c

(3) y2(t) = £ j'1 dp2(s2)dPι(Sί)

yn(t) = I I I dpnis^dpn-^Sn^) - - - dpx{sλ\

where c E(a,b) is arbitrary, and the functions p, are strictly increasing and
right-continuous on (α, b).
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Rutman's theorem has apparently nowhere been proved in detail; in
fact, as will be shown in the next section, it is not correct with this degree
of generality. The purpose of this paper is to investigate the existence of
representations of the type (3), in the most general context possible.

If the functions u, are n times continuously differentiate on an
interval /, we can extend the definition of D(u0, * * *> wn/ί0, * * , tn) as given
by (1), so as to allow for equalities amongst the t : if f0 = *i = = ti is
any set of points of /, then D*(u0, , un/tθ9 , tn) is defined to be the
determinant in the right hand side of (1), where for each set of equal t 's,
the corresponding columns are replaced by the successive derivatives
evaluated at the point. With this definition, the system {w0, * * *> un) will
be called an Extended Tchebycheff system (£T-system), provided that
D*(u0, - - -, unltQ, - - , ί n ) > 0 for every set ί o = Ί = ' * = *π of points of
/. If, moreover, the systems {u0, * , w,}; i = 0,1, , n are £T-systems,
the system {M O ," , M J is called an Extended Complete Tchebycheff
system (£CΓ-system). The validity of Rutman's theorem for ECT-
systems has essentially been proved in [3, Ch. XI, Theorem 1.2], a fact
which will be used further along in our discussion.

We now turn to the statement of our results. Following R. Zielke
[8, 9], we shall say that a set A has property (D), provided it is totally
ordered, it contains no smallest nor greatest element, and for every two
distinct elements of A, there is a third element of A in between. The
main feature of this paper is the following:

THEOREM 1. Let {uih ,un} be a CT-system on a nondenumerable
set A having property (D), and let c E A. Then there is a system of
functions {y(), , yn} having the following properties :

(a) The functions y u - * , yn have a representation of the form (2) and
yQ = Mo on A.

(b) There is a subset B of A, having an at most denumerable
complement in A, a real valued strictly increasing function /ι, defined on A,
and a set {pu •••,/*„} of real valued strictly increasing functions, defined on
the open interval whose end points are the infimum and the supremum of
/z(A), such that pκ [h(c)] = 0, / = 1, , n and, for every point t of B,

ί
Jh(c)

(4) y 2(O=yo(θί f c ω Γ dPl
Jh(c) Jh(c)

CHt) Γsλ rsn_x

yπ(0 = yo(O dpn{sn)dpn-λ{sn-λ)
Jh(c) Jh(c) J h(c)
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Moreover, if the function y is convex with respect to the system {u0, ••-,«„},

it admits of the representation

(5) y(t)=u (t) + yo(t) f (} ί ' ί " dpn+1(sn+ι) dp
Jh(c) Jh(c) J h(c)

on B, where pn+ι is an increasing function and u is in the linear span of the
system {uQ, •*,«„}.

(c) For i = 1, , n, the functions y( are uniquely determined, and
the functions pi are uniquely determined (a.e.), by the functions h, u(h , ur

(d) If A is a dense subset of an open interval (in particular if A is an
open interval), h can be taken to be the identity function: h(t)= t.

(e) Let v+(t) and v~(t) denote the right and left one-sided
limits of the function v at the point t, and let vι = (w, ° h ~ι)/(u0 ° h ~ι). If t is
an element of the set B there is a real number p, contained in the interval
[0,1], such that if s = h(t), then

(6) zx (s) = pz:(s) + (1 - p)zj(s), i = 1, , n + 1.

Conversely, if for some point t of A the functions z, admit of a
representation of the form (6), with s = h(t), then t is contained in B,
provided that p be contained in the open interval (0,1). Ifp = 0 orp = 1,
t may, or may not, belong to B. (See the first counterexample in the next
section.)

REMARKS, (a) Note that if {u0, , un) is a T-system defined on a
set having property (D), its linear span contains a basis that constitutes a
CT-system, (see [8]).

(b) For the case of an jECΓ-system, the representation (5) is
implicit in [3, Ch. XI, section 11] (see also [6]).

In the following theorem, we have gathered several propositions of
independent interest, some of which will be employed in the sequel.

THEOREM 2. Let {1, yl9 , yn} be a CT-system on a dense subset A
of an open interval I, and assume that yn+1 E C ( l , y b , yn)
thereon. Then:

(a) For i = 1, , n + 1, and every point t of I, the one-sided limits
yt(ί) and y7(0 exist and are finite, and the functions y] and y~ thus
defined are of bounded variation in every closed subinterval of I.

(b) For every function a: / - > [ 0 , 1 ] , // zx = ay+

t + (I- a)y~, then
{1, Zi, , zn) is a CT-system on I, and zn+ι E C ( l , yu , yn) thereon,
under the additional assumption that A is nondenumerable.

(c) // y{ is right (left) continuous at a given point of A, all the
functions yh i = 1, , n + 1 are right (left) continuous at this point.

(d) Let n > 1, and let s be a point of I. If equation (6) is satisfied by
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the functions yu y2, and y3, where p is a point of the interval [0,1], then it is
satisfied (for the same number p) by all the functions yl9 i = 1, , n + 1.

REMARK. Note the connection between Theorem 2d. and
Theorem le.

The proof of Theorem 1 will be divided into two parts, which we
shall now outline. In the first part, we shall consider bounded functions
ut defined on an open bounded interval /, such that {1, uu , un} is a
CT-system, M n , ,6C( l ,Mι," ,Mn) and, for / = l, ,n + l, M, = (l/2)
(u~ϊ -f u~). Convolving each function u, with the Gauss kernel Gk(s) we
obtain (for each fc), an ECT-system {uQ(k, ), , un(k, )}, such that
un+ι E C(uQ(k, •),•••, wn(/c, )). As we have already remarked, Rut-
man's Theorem is valid for ECT-systems. Since u, = (l/2)(u+

t + u~t), it
can be shown that lim,,^* H, (fc, ) = ut on /. Thus, the proof of this case
will follow (after a number of steps), by letting k tend to infinity. The
general case will be considered in the second part of the proof. By a
suitable normalization, the original system will be transformed into a
CΓ-system of bounded functions defined on a dense subset D of an open
interval I. Redefining these functions so that they will equal the average
of their lateral limits everywhere on D, and applying Theorem 2 to
extend them to the whole of /, we shall reduce the problem to the one
considered in the first part of the proof.

Using Theorems 1 and 2, we shall easily prove the following
proposition, which generalizes a result of Bartelt [1, Theorem 1]:

THEOREM 3. Let {u(h , un) be a T-system on a dense subset A of
an interval (a,b). Then:

(a) The system {w(), , un) can be extended as a T-system to the
whole of (α, b).

(b) // {M*, , wΐ} is a system of continuous functions on (α, b),
such that w*=w, on A, / = 0, , n, the following propositions are
equivalent:

(i) The system {w *> , "*} is a T-system on (α, b).
(ii) The linear span of {ut, , w*} contains a function that does

not vanish on (α, b).
(iii) The functions u* cannot all vanish at any one point of {a, b).

Theorem 1 admits of a converse. Indeed, we shall readily prove the
following:

L E M M A . // the functions yt admit of a representation of the form (4)

on a totally ordered set A, where the functions h, pi, ,p π are strictly

increasing, and yQ is strictly positive, then {y0, , yn} is a CT-system on A.
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2. Counterexamples to Rutman's theorem. Let

ί - 1 , if - K K O Γ r ~ 1 ? i f ~ 1 < ί < 0

0, if ί = 0 , P 2 (0 = |

ί + 1, if 0 < ί < l I ί + 1, if O^f < 1

and define

yi(t)= ί dpί(s)9
Jo

y2(ί)= P f" φ2(S 2)φ,(s,)= P [
Jo Jo Jo

and

Thus,

and

w , ϊ = ί ( l / 2 ) ί 2 - 2 ί on (-1 ,0)
y A l ) \{H2)t2 on [0,1).

We know from our Lemma, that {l,yi,y2} is a CT-system on

(-1,1). We thus see from Theorem 2b. or by direct computation, that

if

, s _ (t — 1 on (—1,0)
v y [t +1 on [0,1)

and w 2 =y 2 , then also {1, uu u2) is a CT-system on (-1,1). Assume
now, that there are two functions υλ = uγ 4- α, u2 = u2 4- fti^ 4- b2, and two

strictly increasing functions qu q2, such that vλ{t) = dqx(s), and ϋ2(ί) =
Jo

dq2(s2)dqλ(sλ). Without any loss of generality, we can assume that
Jo Jo
<jfi(O) = q2(0) = 0; thus υx = qx = Mi 4- α. If / is any point of the interval
( - 1,1) other than 0, it is clear from their definition that uλ = y1# Since,
as remarked above, y1 = pu we conclude that qλ = px 4- α, identically on
( - 1,1), excepting perhaps at zero. Since the function q2 vanishes at 0, it

is readily seen that v2 = q2(s)ds. On the other hand, from the integral
Jo

representation of the functions yn and bearing in mind that ux = y, if t^ 0,
we see that, for every point of ( - 1,1), with the possible exception of 0,

Vbιyι+b2= \ [ p 2 ( s ) + & i - l ] φ i ( s ) + & 2 .
Jo

v2 =
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Let r be the saltus function of pu i.e.

f 0 on (-1,0)

r(ί) = j 1 if ί = 0

12 on (0,1)

Then p,(r) = (ί - 1) + r(t). Thus, if t > 0,

v2(0 = f' [P2(s)+ 6, -l]ds + 2[p2(0) + 6, - 1] + b2.
JO

From the integral representation of v2 in terms of q2, we see that υ2

vanishes at 0. Passing to the limit in the preceding formula, and bearing
in mind that p2(0) = 1, we conclude that b2Λ-2bx — 0. Since Ui(0)= 1,
and w2(0) = 0, from the representation of v2 in terms of ux and u2 we
conclude, on the other hand, that bx + b2 — 0. It is therefore clear that
b{ = b2 = 0. Thus, if t > 0,

Jo

and we conclude that for positive values of ί, q2 = pi - 1. Passing to the
limit, we readily see that g2 is right-continuous at 0. But, being that
(?i = Wi + α, also ^ is right continuous at 0, and therefore the integral

v2(t)= q2(s)dqx(s) cannot exist for negative values of t.
Jo

We can also prove that, even if the desired representation exists, the
functions px in (3) may not be right-continuous. In order to see this, we
can consider, for instance, the following example: Let qλ and q2 be strictly
increasing functions defined in the interval (-1,1) . Let qx be right-
continuous and q2 left-continuous, and assume that they are bounded,
and have the same set of points of discontinuity; assume moreover that

<?i(0) = q2(0) = 0, and define uι(t)= \ dq{(s), and u2(t) =
Jo

dq2(s2)dqi(sι). Clearly ux = qu and u2{t) = q2(s)dqί(s). Thus also
Jo Jo Jo
u2 is right-continuous on ( - 1 , 1 ) .

Assume now there are two functions y b y2, y{= ux+a, y2 =
u2+ bxux+ b2j and two strictly increasing, right-continuous functions pu

p 2 , such that, for every t in (—1,1),

= ί
Jo

dp}(s),
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and

y2(ί) = ί f l dp2(s2)dpί(sί)
Jo Jo

Since uί(0) = y^O) = 0, we conclude that a = 0. Thus dpi = dqx. Since
also w2(0) = y2(0) = 0, it is clear that 62

 = 0, whence combining the two
representations of y2, we see that

= f
Jo

= Γ
Jo

Let k = b{ + p2(0). It is clear from the preceding identity, that
q2+ k = p2, on the set of points at which qx is continuous. Since qx and
q2 have the same set of points of discontinuity, we therefore conclude that
also p2 and qλ have the same points of discontinuity. But dpλ =
dqx. Thus pλ and p2 have the same points of discontinuity. But this is
clearly impossible because, being that both pλ and p2 are right-
continuous, it will suffice that the interval (0, t) contain one point of
discontinuity of pu for the integral

not to exist.
Rutman's mistake is due to his belief that, if {y0, — ,yn} is a

CT-system of right-continuous functions on an interval (a, b) with y0 = 1,
the functions zt(t) = limΛ_*0

+[y.(ί + h)- yι{t)]l[yι{t + h)- yx(t)] not only
exist for every point t of (α, b), (which is true), but that in addition, they
are right-continuous thereon (cf. op. cit. Thm. 2). This can be disproved
by considering the following counterexample:
Let

t-1 on (-1,0]

t + 1 on (0,1)

and define: y0 = 1, y, = pu y2 = p2{s)dpλ{s).

Jo
Referring to our Lemma, we see that {y0, yu yi} is a CT-system of
right-continuous functions on (α, b). Moreover, if ί^O, z2(t) =
p2(t). However, it is easy to verify that z2(0) = 0, while lim^0

+ z2(t) =
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3. Proofs.

Proof of Lemma. Taking into consideration [3, p. 10, Example 2b.],
it will suffice to consider the case h(t)= t. From the linearity of the
integral we conclude (as in the proof of [3, Ch. XI, Lemma 2.1]), that if
{1, yu y2, , y j is a T-system and p is a strictly increasing function, then

JΊ, I.dp, y i φ , , yidp} is a Γ-system, whence the conclusion

follows by an obvious inductive procedure.

Proof of Theorem 2. (a) Let / = (α, b). The assertions are obvi-
ous for n = 0. Assume they are true if n = fc, and let n = k + 1. It will
suffice to carry out the proof for every interval of the form (c, 6),
a<c<b, with c E A. Let gz = [y, - yt(c)]/[yi - yi(c)], and c < tλ <
• < tn+ι < b. Developing by the first column, we readily see that

yu , yjc, tu , U) = (f] [yifo ) ~ yi(O]) O(l, g2, *'', g./Ί,' * ', O

Since yλ is strictly increasing, the factors y\{tj)-y\{c) are strictly
positive. We thus conclude that {1, g2, * , gn} is a CT-system on
A (Ί (c, d), and gn+1 E C(l, g2, , gn) thereon, whence the assertions
readily follow from the inductive hypothesis.

(b) Let B denote the set of points of A at which all the functions y,
are continuous. From (a) we know that the set difference A ~ B is at
most denumerable; therefore B is dense in /. Clearly y, = zx on B thus
{l,z b ,zn} is a CT-system on B, and zn+] E C(l, ,2n) thereon. We
shall first prove that, for i = 1,2, , n + 1, {1, Zj, , z j is a WT-system
on /; from this will follow, in particular, that zn+1 E C(l, z1? , zn) on
/. The assertion is obvious if the function a can only assume the values
0 and 1; indeed, this simply means that for every point t, either
z,(ί) = yl(ί)> ϊ# = 1>'' '> n> 0 Γ z ' ( 0 = yT(O? i = 1, * , w whence, since B is
dense in 7, the proof of our claim follows by an obvious limiting
process. In the general case, the assertion follows from the preceding
discussion, the linearity of the determinant, and the fact that the
functions a and I- a are nonnegative. For example, let a < t{) < tx < b,
a(to) = p, a(t1) = q. Then, setting z o = l , we have: D ( l , z A , *i) =

-q)z~{U)\\ =

To prove that {1, z b , zn} is a CΓ-system we proceed by
induction. The assertion is obvious if n = 0. Assume it to be true if
n = fc, and let n = k + 1. By inductive hypothesis, {1, z b , z ^ } is a
CT-system. Thus, we only have to prove that {l,z b , zn} is a
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T-system on /. Assume this is not so; then, there is a nontrivial linear
combination g of the functions l ,z 1 ? — ,zn, that vanishes on a set
k < t\ < < tn of points of J. Since by inductive hypothesis
{l,Zi, , zn_J is a Γ-system on /, the coefficient of zn in g cannot be
zero; thus, without any loss of generality, we can assume it to equal
1. Since B is dense in /, and {1, zu , zn} is a Γ-system thereon, there
is a point t'n of B, tn^< t'n< tm such that g(t'n)^O. Assume first that
g(t'n) > 0; then, since the coefficient of zn in g is 1, developing by the last
row and applying the inductive hypothesis, we see that

, ZU ' , ZjtU , tn-U t'n, tn) = D(l, ZU , Z n - b g/tU , tn-U C tn)

If g(ίή)<0, we similarly see that D ( l , z b , zjto, , ίn_i, ί i ) <
0. But these conclusions contradict the fact that {1, zu , zn} is a
WT-system on /.

(c) The assertion is obviously true for n = 1. Assume it to be true
for n = fc, and let n = fc + 1. Assume for example that y1 is right
continuous at a point 5 of A. By inductive hypothesis, the functions yn

/ = 1, * ,n are right continuous at 5. Let ί o < *i < * * * < tn-i < s < tm

where the /f's are points of A. Since D ( l , yl5 , yn+i/r0, , in-b s, tn) is
nonnegative, making tn tend to 5, we see that

0 ^ D ( l , y1? , yπ+1/ί0, * * , tn-u s, s+)

= bn+i(s) - yn+ι(s)] D ( l , yl5 , yn/t0, , ίπ-b 5).

Thus y; + i (s)-y n + 1 (5)i?0.
By considering now points t'h such that t'0< -- < t'n-2< s < t'n-ι< t'n

(if n = 2, such that s < t'o < ίj), and making ίn_i tend to s, we similarly see
that y+ + 1 (s)- y n + 1 (s)§0, whence the conclusion follows.

(d) The assertion is true by hypothesis for n = 2. Assume it to be
true for n = fc, and let n = fc + 1. Let 5 be any given point of A, and let
k < ''' < tn be points of the set A Π (5, b). Let Q =
D(l , y1? , yn/k, - - , ίn) and, for ί = 0,1, , n, let the functions z, be
defined by z,(r) = £>(1, y1? , yn/t0, , ίf_b ί, ίl+1, , ίn). It is readily
seen that D(z 0 , , zn/t0> ,ίn) = O π + 1 > 0 , and proceeding as in [7,
Lemma 2], we conclude that {zo? ,zn} is a Tchebycheff system on
A. If zn+1(t) = D(z 0 , , zn, yn+i/^o? , ̂ , 0» it is also clear that zn+1 G
C(z0, * ,z n ) thereon. Let 5 0 < < 5 ί be points of (α,/ 0 )nA,
(i < n). Then

0 < £>(ZO, , Zn/So, , Si, ti+u , ίn) = O l + 1 D ( Z 0 , , Zf/So, * , 5έ),
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and it follows that {zθ9 -,zn} is a CT-system on (a9t0)ΠA. It is
similarly seen that also {z0, ', zn-29 - zn} is a CΓ-system on (a, t0) Π A,
and that zn+1 E C(z0, * , zn_2, - z«) thereon. Let υx = zjz^ and assume
first that Vι is continuous at s. From (c) we know that all the functions vt

must be continuous at s. It is therefore clear that the functions vι admit
of a representation of the form (6) at the point 5, where p can be any
number in the interval [0,1]. On the other hand, were υλ discontinuous
at s, if a representation of the form (6) exists at all, p must clearly be
unique. Applying therefore the inductive hypothesis to the systems
{1, υu - - , υn} and {1, υu , υn-2, - υn, vn+ί} we conclude that the functions
vu , υn+ι admit of a representation of the form (6) at the point s. In
particular, since l/z0 is in the linear span of these functions, it also admits
of this representation, and we readily conclude that p[zo(s)/zj(s)] +
(1 -p)[zo(s)/z~o(s)] = 1. Setting q = p[zo(s)/z+

o(s)], and bearing in mind
that Zi = zQ - vh the conclusion follows.

Proof of Theorem 1. We shall first consider the case in which
{1, Mi, , un) is a CΓ-system of bounded functions defined on a bounded
open interval (α, b), such that ux = (l/2)(wt + u~) on (α, fc), for
i = l, ,n + l.

Given a real-valued function u defined on (a, b), let w(/c, •) be
given by

M(fc, ί ) = l u ( s ) G k ( ί - s)ds, where

Under the conditions imposed on the functions uh it can be shown that
Hindoo Uι(k, ) = ut on (α, fe), for / = 0,1, , n. To see this, extend the
functions ux to the whole real line by stipulating that they should vanish

outside of (a, b). Setting σ f ( ί ) = I ut(s)ds, and taking into considera-
J a

tion that Gk(t - s)= Gk(s - t), we see that

u,(k,t)=\ Gk(s-t)dσι(s)= Gk(s)dσ,(s +1),
J -00 J-00

and the conclusion follows from [5, Theorem 4].
From the Basic Composition Formula [3, pp. 14, 15], we know that

for any fixed integer fc, fc = 1,2, , the system {wo(fc, •)>""'> wn(fc, )} is
an ECΓ-system on [α, b]. Let c be any given point of (α," fc). From [3,
Ch. XI, Thm. 1.1] we conclude that by adding to each function 14(fc, ) a
suitable linear combination of its predecessors, we obtain a system
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i - l

y,(fc, • ) = ut(k, ) + Σ α ί , / (/c)w y ( fc , ) ?

satisfying the constraints yίr)(/c, c) = 0; r = 0 ,1 , , i - 1; i = 1,2, , n.

Proceeding exactly as in the proof of [3, Ch. XI, Thm. 1.2], we see

that the functions y, (fc, ) admit of a representation of the form yo(fc, *) =

wo(K '); yi(fc, 0 = wo(fc, 0 vv f̂c, s)ds, and in general

y,(fc, 0 = wo(fc, 0 I vv f̂c, 5i) I w2(fc, s2)\ - I w,(fc, sι)dstdsi-i - - dsλ

on [α, ft], for i = l , 2 , * ,n, where the functions wf (fc, •) are strictly

positive. Thus the functions p,(fc, ί ) = W;(fc, s)<is are strictly
Jc

increasing. Clearly,

(7) y,(fc, 0 = yo(k, 0 £ J I

/ = 1,2, •• ,n.

Let α < to < t\ < - - ίn_i < c, where the points tx are arbitrary but

fixed. Let

z,(fc, 0 = D(iιo(k, •), * , M. (k, )/ίo, * , ίi-i, 0/

D ( i i o ( f c , •)>•'% w i - i ( f c

9 ' )/Ό, ίi, * ' , ti-ι).

If | | / | | Λ denotes the supremum of the function | / | , taken over the set A, it

is obvious that the sequences {|| Mf(k, )||[α,f,]}; k = 1,2, are

bounded. Thus, also the sequences {||z/(fc, )IU*]}; k = l>2, ••• are

bounded. Moreover, from [7, Lemma 3] we conclude that the functions

z, (fc, ); i = 1,2, , n admit of a representation of the form

(8) z, (fc, 0 = wo(k, 0 I w^fc, 5 l ) I ' w2(k, s2) •
Ju-x Jbi(k,i)

Jfcι-i(k,i)

where ί0 < &ι-i(k, i) < fet-2(k, /)<•••< fti(k, /) < /;_!. Therefore, by com-

paring (7) and (8) we conclude that if / g c, 0 ^ y f(k, ί) ^ z,(fc, ί) This

implies that the sequences {||y,(fc, )||[C,f,]}; k = l , 2 , ••• are bounded,

whence we can easily show that the coefficients atJ(k) are uniformly
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bounded in /, j and k. Thus, there exist numbers aιΛ, aι2, , au, with
α ( ί = 1, and a sequence {fcy}; / = 1,2, such that, for / = 1,2, , n,

(9) lim yι(/cy, ) = Σ ^/"/ Ξ

on (α, 6). Clearly {1, y *, , y *} is a CT-system on (α, ft). It remains
to show that there exist strictly increasing functions pu- - ,pn such that
for yu , yn as in equations (3), y, = y *, i = 1, , n.

We shall now restrict ourselves to the consideration of any closed
subinterval [a, β] of (α, b). The proof for the whole of (α, b) will follow
from the uniqueness of the functions p, .

We shall consider two cases, according as to whether the functions
pt(kn •) are bounded on [α,/3] uniformly in {/c,}, or not. The first case
will give us the desired representation, whereas the second will be shown
to be impossible.

Since the functions pt(k, •) are monotone, in the first case we can
apply Helly's first theorem to conclude that there are increasing functions
pt and a subsequence {fe'} of kp such that limy_+ocpf(/cj, •) = p, on [α, β], for
ί = l, ,n. Passing to the limit under the integral sign in (7), we
conclude from (9) that the functions y * have a representation of the form
(3) on [α, j8]. (This passage to the limit, in which a Riemann-Stieltjes
integral is obtained, can be easily justified by means of Theorems 15.2
and 15.6 of [2, Chapter 2]). The functions px must be strictly increasing,
for assume that some function p{ is not strictly increasing. Then pt must
take a constant value on some subinterval of [α, β\. By a simple
inductive procedure, involving the number of integrations, we see that
under this condition y* must be in the linear span of the functions
1, y *, , y *_! thereon. But this contradicts the fact that {1, y *, , y *}
is a Γ-system. Setting therefore y, = y t, ί = 1, , n, the conclusion
follows.

Assume now that for some i the sequence {pι(k, -)} is not uniformly
bounded on [α, β ] , and let m be the smallest such i. Since the sequence
{αM)(fc)}; fc = l,2, ••• is bounded, we easily conclude from (9) that
m > 1. Since the functions pm (fc, ) are increasing, we know that one of
the sequences {pm (fc, a)} or {pm (k, β)}; k = 1,2, is unbounded. Among
the several possibilities, let us choose for illustration purposes the case in
which {pm(K <*)} is unbounded and a < c < β. By definition, the func-
tions Pi(k, ) vanish at c and are negative to the left of c. Hence, there
exists a sequence {kr} and strictly increasing functions ph such that

^xp, (fcr, •) = pt on [α, β]\ ' i =-1, , m - 1, and, if t ^ a,
^cpm{k n t)= - oo. Let In{tu t2) denote the subset of Rn defined by

^ sn g sn-ι ^ ^ Si ̂  ί2- Then, from (7) we see that, if t < α,
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= J dpm(k,sm)

[~Pm(K 5m_1)]φm_1(fc, Sm-t) ' φi(fc, Sj)
Jlm-\(t,c)

= J [ ~ Pm (fc, 5m_1)]dpm-1(fc, Sm-l) * * * Φl(fc, *l)

Γ

Thus, \y *(ί)| = lim,^ | ym (fcr, t)/yo(kn ί) | = °°, which is impossible.
Let w be bounded, and convex with respect to {w0, * * , wn}. If w is

contained in their linear span, in order to obtain a representation of the
form (5) it will suffice to take pn+x = 1. If w is not contained in the span
of the functions un it is easily seen that {vo(k, ), , υn(fc, ), u(fc, )} is an
£CΓ-system, and we can proceed as above.

In order to establish the uniqueness of the functions pn assume that
the functions yf admit of a representation of the form (3) with respect to
two sets of functions {#} and {gj, with pt(c) = qι(c) = 0; i =

1, , n. Then dp, = pXt) and dqt = q,{t). Without loss of gener-

ality we can assume that yo(t) = 1. Then yx(t) = pλ{t) = qλ(t), and

y,(0 = I * * * 2 P i ^ -OΦi-i^-O dpλ{sλ)
J c J c J c

= \ \ ' " J < ? « ( s , - i ) d < 7 i - i ( 5 i - i ) " # ' ^ i ( 5 0 ; i = 2 , , n ,

whence the assertion follows by repeated application of [2, Ch. II,
Theorem 16.2]. In similar fashion, it can be shown that pn+ι is uniquely
determined (a.e.), up to a constant, on the set of points at which it is
strictly increasing.

We have thus shown that the functions pt are uniquely determined
(a.e.) by the functions yu- ,yf. In order to establish part (c) of the
theorem, assume that the functions yu ,yk admit of the representa-
tions (2) and (3), and the functions zu , zk of a representation of the
form (2) with respect to coefficients bih and of a representation of the
form (3) with respect to functions qu---,qk, where u0 = y0 = z0, and
p,(c) = q,{c) = 0, i = 1, , k. We have to show that aX] = bιp and px = qn

for / = 0, , i - 1, and i = 1, , fc. Since the systems {y0, * , yk} and
{z0, * ,zfc} have both been obtained from the system {uo," ,uk} by
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means of a triangular linear transformation, it is clear that there exist
coefficients cih such that, for i = 1, , fc, y, = z x + Σ ioCy z r Since the
functions y, and z, admit of representations of the form (3), it is clear that
they vanish at the point c, whence from the preceding formula we
conclude that 0 = ci0 z0. Since z0 = uθ9 it is strictly positive. We thus
conclude that ci0 = 0, and in particular that yi = Zi.

The proof of the assertion now easily follows by an inductive
argument involving the number of integrations, and the fact that the
function p, is uniquely determined by the functions y,, , y,.

Let us now consider the general case. Since u0 is strictly positive,
and w0, uλ is a T-system, it is clear that the function ujuo is strictly
increasing. Let Q be the image of A under the function
arctg(wi/w0). Since this function is strictly increasing and bounded, it is
clear that Q is a bounded set of real numbers, having property (D).

For every element t of Q, let I(ί) be the least upper bound of the set
of points of Q that precede /, and u(t) the greatest lower bound of the set
of points of Q that follow t. Clearly there is an at most denumerable set
of points of 0 for which I - u > 0 . For every element t of Q, let
q(t) = 1(0 + Σ s < l [u(s)- l(s)]. It is readily seen that q is a strictly increas-
ing function that transforms Q into a dense subset of a bounded open
interval. Let h{t) = q[arctan(ui/uo)(O]> a n d consider the functions de-
fined on h(A) by Zi(t)= u^h^yuoih'it)], i = 0,1, , n + 1. Clearly
{z0, •• ,zn} is a CΓ-system on h{A), and zn+ίE C(z0, , zn)
thereon. Since z0 = 1, and h(A) is a dense subset of an open bounded
interval (α, b), we know from Theorem 2(b) that, if z * = (1/2)[zΐ + z7],
then {1, z ΐ, , z *} is a CΓ-sysΓem on (α, b), and z *+1 E C(l, z f, , z *)
thereon. By a procedure similar to the one employed in the proof of
Theorem 2(a), we readily see that the functions z * are bounded in every
interval of the form (α', b'), with a < a' <b' <b. From the uniqueness
of the representations (2) and (3), we readily see that the assertions
proved in the first part of this proof are also valid without the condition of
boundedness. Thus, if c is a point in the set A, and d = h{c), we know
there is a system {1, y ?, , y *+1} admitting of the representation y * =
z* + ΣJIQ aUjz*, i = 1, , n + 1, on (α, b), as well as of a representation of
the form (3) thereon (where c is replaced by d), and the validity of
statements (a), (b), (c), and (d) readily follows from the fact that zt = z*,
except for an at most denumerable set of points. In order to prove (e)
first note that, if t is a point of B, it is easily seen, from the basic
properties of Riemann-Stieltjes integrals, that the functions y * admit of
a representation of the form (6) at the point s = h (t), whence the proof of
the necessity readily follows. Conversely, let 5 denote the set of points
of (α, b) at which the functions z, admit of a representation of the form
(6), with p in the interval [0,1]. By virtue of their integral representa-
tion, we know that the functions y * can be written in the form
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(10) y*(t)= Γ x,(s)dpι(s),
Jd

on (α, 6), for i = 1, , n + 1, where xt is a function of bounded variation
in every closed subinterval of (α, b). In particular, note that, for every
point t of (α, 6), y ?(ί) = pj(r) — 0 = z *(*) + #i,o The function p] can
be redefined at every point of discontinuity so as to assume any desired
value between p\ and p~u without changing the values of the functions y *
at points other than these points of discontinuity, with one possible
exception: If one of the functions xt is discontinuous and right (left)
continuous at a point t0 at which also the function px is discontinuous,
then pi cannot be redefined to equal p\ (or p\) at this point, without
affecting the existence of the integral (10) for all points t such that
11 - d I > I ί0 ~~ d |, as was shown in the first counterexample of §2.

Let therefore p * be defined to equal zx + ah0 on the set of points of 5
for which p is neither 0 nor 1, and to equal pλ at all other points of (α, b)\
for / = 1, , n + 1, define vt by means of the formula vt(t) ~

Xi(s)dp*(s), and let g, = zt +Σ]ZoaitJzh where the coefficients α u arei
the same ones that appear in the representation of the functions y * in
terms of the functions z*. In the light of the remarks made in the
preceding paragraph, and bearing in mind that υλ = gx on S, we see that
Vi = gi thereon, for / = 1, , n + 1. Thus, y,(ί) = yo(ί) v\h(t)}, on S,
and the conclusion follows.

Proof of Theorem 3. The proof of part (a) is essentially contained in
the preceding discussion, and will therefore be omitted. In order to
prove part (b), note that the implication (i) => (ii) is a direct consequence
of [8], whereas (ii) => (iii) is trivial. In order to prove that (iii) => (ii), note
that in view of the result of [8] we can assume, without any loss of
generality, that {w0, , un) is a CΓ-system on A, Thus, it is clear that
{u o, •', u *} is a WT-system on (α, b), for k = 0, , n. Assume now
that uS(so) = O, for some point s0 of (α, b). We claim that u*(so) = O,
i = 0, , n, in contradiction of (iii). We proceed by induction on
I The assertion is true by hypothesis, for i = 0. Assume it to be true
for i smaller or equal to m, and let i = m + 1. Let a < t0 < * * * < tm-\ <
So<tm< 6, where the points tx are contained in A. Clearly
D(ut, •• , M*/ίo, * , ί m ) > 0 . Thus, since w*(so) = O, i = 0, ,m, it is
clear that

0 ^ D(u S, , u Z+1/to, * , ίw-i, So, ί«)
= - u t+ί(so)D(u 5, , w */f0, , ίm ,

whence-it is clear that M * + 1 ( S 0 ) ^ 0 . Choosing now the points u so that
a < t0 < - < ίm < So, we similarly conclude that u *+i(s0) S 0.
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In order to prove that (iii) Φ (i), assume also in this case that
{Wo, ••-,«„} is a CT-system. In view of the proof carried out in the
preceding paragraph, it is clear that w* is strictly positive throughout
(α, b). By continuity we conclude that {u *, , u *} is a WΎ-system on
(α, 6), for fc = 1, , n, and the proof is carried out inductively, using (as
was done in Theorem 1 to prove that the functions px are strictly
increasing) the representations (4) and (5), and the Lemma.
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