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We give a characterization of finitely generated commu-
tative semigroups which are finitely subdirectly irreducible.

We call a semigroup S finitely subdirectly irreducible, or just
irreducible, if it has the following property: when S is a subdirect
product of finitely many semigroups Si9 one of the projections S~+Si
must be an isomorphism. These semigroups are of interest because
every finitely generated commutative semigroup is a subdirect product
of finitely many irreducible semigroups. (The factors in this decom-
position are then finitely generated and commutative as well as
irreducible.)

Let S be a finitely generated commutative semigroup. If S is
irreducible then S is either cancellative or a nilsemigroup or what
we call a subelementary semigroup, i.e., the disjoint union S= N\JC
of a nilsemigroup JV which is also an ideal of S, and a subsemigroup
C Φ Q) every element of which is cancellative in S. The first two
cases are easily dealt with and our new results are in the sub-
elementary case. This case reduces to the other two if N or C is
trivial. If S = N U C is subelementary with N, C nontrivial, then
the irreducibility of S is equivalent to four simple conditions of an
elementary nature. A second characterization is also given, as
follows. If S is subelementary, then S can be completed to an
elementary semigroup ( = a subelementary semigroup whose cancel-
lative part C is a group); this does not affect irreducibility. Ele-
mentary semigroups can in turn be constructed by coextension
techniques; in the case under consideration the construction is in
terms of a group, a finite nilsemigroup and a factor set. A charac-
terization of irreducible semigroups is also given in terms of this
construction.

These results specialize immediately to a characterization of finitely
generated commutative semigroups which are subdirectly irreducible.
These semigroups must be finite and classify into groups, nilsemi-
groups and elementary semigroups. In the elementary case, our two
characterizations and construction from groups and nilsemigroups
are still new. In particular they go far deeper than Schein's results
in [14], as one could expect since our results are also considerably
less general.
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56 PIERRE ANTOINE GRILLET

The proofs of our results depend on techniques of congruence
construction which were essentially developed by Schein in [14].

The paper is arranged in three sections. The first section contains
whatever basic facts about subelementary semigroupe are needed in
the paper; the reader is referred to [6] and [5] for more details.
Our study of irreducible semigroups is conducted in §§2 and 3: the
easier results are given in §2; §3 deals with the subelementary case.

We denote by Z the additive group of all integers; by Z(pn) a
cyclic group of order pn; by N the additive semigroup of nonnegative
integers. Otherwise the notation is as in [2].

The results were announced in [4].

1* Subelementary semigroups*

1. A subelementary semigroup is a commutative semigroup S
which is the disjoint union S — N[j C of an ideal N which is a
nilsemigroup, and a subsemigroup C(Φ0) every element of which
is cancellative in S. If C is a group S is an elementary semigroup;
the terminology was introduced in this case by Ponizovskii [13]. In
every subelementary semigroup SUN = C, the zero element of N
is also a zero element of S and the identity element of C, if any,
is an identity element of S. A finite commutative semigroup is
subelementary if and only if it is elementary, if and only if it has
identity and zero elements and no other idempotent.

A subelementary semigroup can always be completed into an
elementary semigroup. More generally, let S be a commutative
semigroup and C Φ 0 be a subsemigroup of S, every element of
which is cancellative in S. A semigroup of fractions C~ιS can then
be constructed as follows. The elements of C^S are all fractions
sjc with seS, ceC\ with s/c = t/d if and only if ds = ct [one may
require ceC without changing C-1S]; multiplication is well-defined
by (s/c)(t/d) = st/cd. The homomorphism s i-> s/1 of S into C~XS is
injective; it is convenient to identify s and s/1, so that S becomes
a subsemigroup of C-1S. If S = C is cancellative, then C^S = S^S
is the group of fractions, or universal group, of S.

If S — N U C is subelementary, then C^S is elementary (with
group part C^C; see [6]).

2. Any commutative nilsemigroup N can be partially ordered,
by: x ^ y if and only if x = uy for some ueN1. Sice each ueN
is nilpotent, ux < x holds for all x e N\0. If S — N U C is subele-
mentary, then x ^ y implies sx ^ sy for all s e S. However, when
x e Nf x Φ 0, no two elements of Cx are comparable in N) more
generally, two elements x Φ y of N such that cx = dy Φ 0 for some
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c, d 6 C1 are never comparable. If indeed y = ux for some ueN,
there is a greatest n with ww# ^ 0, and then eunx = dwny = d^n+1^ =
0 = cO, which is impossible since c is cancellative in S.

When S = N{J C is subelementary, the relation = on S defined
by: a = b if and only if cα = db for some c , ί e C1, is a congruence
on S. The class oί aeS modulo = is the orbit of a and will be
denoted by Ωa; the quotient semigroup S/= is the semigroup of
orbits of S and will be denoted by Ω1. We see that C itself is an
orbit, so that Ω1 is a nilsemigroup with identity adjoined; we let Ω
denote the semigroup of nilpotent orbits. The terminology comes
from the elementary case. If S = N U G is elementary, the group
G acts on S by multiplication; we see that a = b if and only if a =
gb for some g eG, so that the orbits in S are precisely the orbits
under the action of G. In general, S and C^S have isomorphic
semigroups of orbits: more precisely, every orbit of C^S intersects
S, and this yields all the orbits of S (see [6]).

We have seen that, when xeN, no two elements of Ωx are
comparable. The projection x H+ Ωx1 N h-> Ω, is order-preserving. In
fact, x < y in N implies Ωx < Ωy in Ω (otherwise Ωx = Ωz contains
comparable elements). In particular, x is a minimal element of N
if and only if Ωx is a minimal element of Ω.

3. Additional properties can be obtained when the subelementary
semigroup S = N U C is finitely generated. We state these as:

PROPOSITION 1.1. Let S = N U C be a finitely generated subele-
mentary semigroup. Then C is finitely generated; C~XS is finitely
generated; Ω is finite; N has finite height, in particular is nilpotent;
the set M of all minimal elements of N is a nonempty union of
orbits (the union of all minimal elements of Ω); in particular, for
all ceC, me M if and only if cm eM.

Proof. Since N is an ideal, C is generated by all the gener-
ators of S that lie in C, hence is finitely generated. So is C^S,
which is generated by S and the inverses (in C^S) of the elements
of C. Next, Ω1 is a homomorphic image of S and hence is also
finitely generated; since Ω1 is a nilsemigroup with identity ad-
joined, it must be finite. The implication x > y implies Ωx > Ωy

shows that no chain in N has more elements than Ω, and thus N
has finite height h. This implies Nh = 0: if x19 x29 •• ,a^eJV and
xxx2 xh Φ 0, then xι > xλx2 > > xxx2 xh > 0 would be a chain of
length h + 1. Since N has finite height, we have Mφ 0 (unless N= 0);
since m e M if and only if Ωm is minimal, M is the union of all minimal
orbits. When ceC, m = cm and hence meM if and only if cmeM.
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Note that in the above JV itself need not be finitely generated
(i.e., finite). For instance, let S = N U G, where N = {0} U {xt\ isZ}
be a null semigroup and G = {a*; ieZ} = Z, with G acting on JVby:
α*a?y = xi+ί. We see that S is elementary, and generated by a, a~ι

and xo; but JV is not finitely generated.

4. An elementary semigroup 8 = N I) G is homogeneous in case
G acts regularly on S\0, i.e., gx = x Φ 0 implies gr = 1. If G is finite,
this means that all nonzero orbits of S have the same order (namely,
the order of G). These semigroups were called equisected in [4].
By extension we call a subelementary semigroup S = N U C homo-
geneous if its elementary semigroup C^S is homogeneous; equivalently,
if ex = dx Φ 0 implies c = d when c, de C1.

When S = Nl)G is homogeneous, the extension theory in [5],
[11] provides a construction of S in terms of G and Ω, which is
particularly satisfactory in its cohomological aspects [7]. We complete
this section with a brief account of the construction itself.

Let Ω be a commutative nilsemigroup, G be an abelian group,
and σ — (0aj) be a family of elements of G, with σaJ defined whenever
a, β e Ω and aβ Φ 0. Gall σ a factor set on Ω with values in G when

a,β = <Tβ,u whenever aβ Φ 0 ,

a,βCFaβ)r = σaJrσβ}r whenever aβΎ Φ 0 .

When σ is a factor set, an elementary semigroup S = [42, G, #] can
be built as follows. The group part of S is G. The nil part N
of S is the set consisting of an element 0 and of all pairs (g, a)
with g e G, a e Ω, a Φ 0. Multiplication in N is defined thus: 0 is a
zero element, and

(gr, a)(h, β) — \

The action of G on JV is given by: #0 = 0, g(h, a) = (gffe, α). It is
not hard to see that S is indeed a homogeneous elementary semigroup,
with semigroup of orbits Ω1.

Conversely, let S — Nϋ G be homogeneous elementary, with
semigroup of orbits Ω1. Pick one element pa in each nonzero nilpotent
orbit a e Ω. Since S is homogeneous, every element x Φ 0 of JV can
be written uniquely as x — gpa with g e G, ex e Ω, a Φ 0. In particular,
when aβ Φ 0 in Ω, we have papβ — σayβpaβ for some unique σa>β e G.
It is not hard to see that σ is a factor set and that S = [β, G, σ].

In the above we call a a factor set associated with S. Note
that σ depends on the choice of the elements pa and hence is not
uniquely determined by S. It is easy to see that any two factor



IRREDUCIBLE COMMUTATIVE SEMIGROUPS 59

sets associated with S must differ by a factor set of the form σa,β =
ua + uβ — uaβ (aβ Φ 0), where u = (ua)aeΩ\0 is a family of elements of
G; we call a factor set of this form trivial.

A homogeneous elementry semigroup S = NU G splits in case
the projection f:N—»Ω is a retraction, i.e., there exists a homo-
morphism p: Ω —> N such that fp is the identity on Ω. If S splits,
we may choose pa — pa in the above; this yields σa}β = 0 whenever
aβ Φ 0, so that S = [Ω, G, 0]. Conversely, it is easy to see that
[Ω, G, σ] splits if and only if σ is trivial (as defined above).

2* Irreducible semigroups*

1. Recall that a semigroup S is a subdirect product of the semi-
groups (Si)ieI if there is an injective homomorphism S~•ILe/S, such
that the induced projection S —• S* is surjective for all i e I. The
projections S-+Si induce congruences C* (i el) on S whose intersection
is the equality on S; if conversely the equality on S is the intersection
of congruences {Cτ)i&1 on S, then S is a subdirect product of the
quotient semigroup (S/Ci)ieI. A semigroup S is subdirectly irreducible
if it has more than one element and if, in every subdirect decom-
position of S into semigroups (Si)iei9 some projection S-+Si must
be an isomorphism; equivalently, S is subdirectly irreducible if S
is not trivial and the equality on S is completely Π -irreducible, i.e.,
is not the intersection of congruences on S all different from the
equality. A classic theorem of Birkhoff implies that every com-
mutative semigroup is a subdirect product of subdirectly irreducible
[commutative] semigroups (see for instance [3]).

We call a [commutative] semigroup S finitely subdirectly irre-
ducible if it is not trivial and if, in every subdirect decomposition
of S into finitely many semigroups (Si)ieif some projection S-+Si
must be an isomorphism; equivalently, if S is not trivial and the
equality on S is Π -irreducible, i.e., is not the intersection of finitely
many congruences on S all different from the equality. A subdirectly
irreducible semigroup is evidently irreducible, but not conversely;
for instance, Z is irreducible yet is a subdirect product of all Z(p)
with p prime.

PROPOSITION 2.1. Every finitely generated commutative semi-
group S is a subdirect product of finitely many irreducible semi-
groups.

Proof. One form of Redei's theorem [2] states that the congru-
ences on a finitely generated free commutative semigroup F satisfy
the ascending chain condition. Since S is isomophic to a quotient of
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some such F, the congruences on S also satisfy the ascending chain
condition. An easy Noetherian induction then implies that every
congruence on S is the intersection of finitely many n -irreducible
congruences. [If this is not true, there is a congruence C on S
which is maximal with the property of not lying in the set R of
finite intersections of Π -irreducible congruences. In particular C is
not Π -irreducible, and is the intersection of finitely many congruences

Ct greater than C. By the maximality of C, every Gt is in R.
However, R is closed under finite intersections, so that CeR, a
contradiction.] In particular, the equality on S is the intersection
of finitely many Π -irreducible congruences C,; one may assume that
no S/Qi is trivial. Since Ct is (Ί -irreducible, the equality S/Ct on is
Π-irreducible, and S/Qi is irreducible; and S is a subdirect product
of the finitely many semigroups S/Ci9

By contrast, we shall see that, when S is finitely generated but
not finite, a subdirect decomposition of S into subdirectly irreducible
semigroups necessarily has infinitely many terms.

The irreducible semigroups in the decomposition oί S in 2.1 are
homomorphic images of S and therefore are also finitely generated
[and commutative].

2. Another subdirect decomposition was given in [6]. When S
is a finitely generated commutative semigroup, Propositions 1.6, 1.7
of [6] imply that S is a subdirect product product of finitely many
semigroups that are cancellative, nil or subelementary. Hence:

PROPOSITION 2.2. A finitely generated commutative irreducible
semigroup is cancellative, nil or subelementary.

The proof in [6] used primary decomposition in the Noetherian
ring C[S\. Since 2.2 is fundamental for what follows, we give ar
alternate proof, which uses congruences much as in [9],

Assume that S is finitely generated and commutative, so that
the congruences on S satisfy the ascending chain condition, and is
irreducible, so that the equality on S is Π -irreducible. Take any
element c of S. For each k > 0, define a congruence Ck on S by:
xCky if and only if ckx = cky. Then β £ C2 £ C3 and hence C% =
Gn+1 for some n > 0. Let R be the Rees congruence of the ideal
cnS, i.e., xRy if and only if x — y or x, y e cnS. If x, y e cnS and xCxy9

then ex = cy; also x = cnu, y — cnv for some u, v e S; hence uCn+1v,
so that uCnv and x = y. It follows that RΓ)C1 is the equality.
Therefore, either Cλ is the equality, in which case a = 6, or R is the
equality, in which case cnS is a trivial ideal of S, so that S has a
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zero element and cn = 0. Thus, either c is cancellative in S, or S
has a zero element and c is nilpotent. Note that a nilpotent element
cannot be cancellative in S, and that (when S has a zero) the nilpotent
elements form an ideal of S. It is then immediate that S is can-
cellative or nil or subelementary.

3. The following result will be used in the cancellative and
subelementary cases. Assume that S Φ {1} is commutative and has
a subsemigroup C, every element of which is cancellative in S. Then:

PROPOSITION 2.3. S is irreducible if and only if C^S is irre-
ducible.

Proof. Let A be a congruence on C^S which is the equality
on S. When a, be C-1S, there exists c e C1 such that ca, cb e S. If
aAb, then caAcb, so that ca — cb and a — b. Therefore A is the
equality. [In other words, S is dense in C^S, as defined in [8].]

Now assume that S is irreducible. Let the equality on C^S be
the intersection of finitely many congruences A*. The equality on
S is then the intersection of the finitely many congruences on S
induced by the congruences At; therefore some At must be the
equality on S; by the above, some At is then the equality on C^S.
Thus C~"SS is irreducible.

For the converse we construct from each congruence i o n S a
congruence A* on C~ιS, thus: let aA*b if and only if ca, cb e S and
caAcb for some c e C1; it is immediate that A* is indeed a congruence.
We see that A* is the equality on C- 1S if and only if A is the equality
on S. Furthermore let {A%)ieI be a finite family of congruences on
S, and A ^ Π i e i ^ . Assume aAfb for all i. For each i, then
C&, Gib e S and c^A^fi for some Ci e C\ The product c of all ct then
satisfies ca, cbeS and caA^b for all i. Therefore aA*b. Conversely,
aA*b implies aAfb for all i, since A £ A*. Thus, (Hie/A*)* =
ΠielAf.

Now assume that C^S is irreducible. Let the equality on S be
the intersection of finitely many congruences At. By the above the
equality on C~ιS is the intersection of the finitely many congruences
A*. Therefore some Af must be the equality on C^S and the
corresponding At is the equality on S. Thus S is irreducible.

PROPOSITION 2.4. Assume that S is not trivial. Then S is
irreducible if and only if S° is irreducible, if and only if Sι is
irreducible.
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Proof. Assume that S does not have a zero. Let A be a con-
gruence on S° whose restriction to S is the equality. If A is not
the equality, then OAz for some zeS; for all xeS, xzAxO = OAz and
xz = z; this contradicts the hypothesis on S. Therefore A is the
equality. As in the proof of 2.3, it follows that when S is irreducible
then so is S°.

For each congruence A on S define a congruence A0 on S° by:
xA°y if and only if x = y = 0 or x, y eS, xAy. It is clear that this
contruction preserves intersections. Furthermore, Ao is the equality
on S° if and only if A is the equality on S. As in the proof of
2.3, it follows that when S° is irreducible then so is S. The proof
is similar for S1.

The same arguments show that, when S is not trivial, S is
subdirectly irreducible if and only if S° is subdirectly irreducible,
and similarly for SK In 2.3, if S is subdirectly irreducible then so
is C^S. (The converse is true in all cases considered hereafter but
we do not have a general proof.)

4. We now investigate the three kinds of finitely generated
irreducible semigroups provided by 2.2. The first two kinds are
easily disposed of.

PROPOSITION 2.5. Let S Φ {1} be a cancellatίve, finitely generated
commutative semigroup. Then S is irreducible if and only if it is
isomorphic to Z, Z(pn) (with p prime), or to a subsemigroup of N.

Proof. By 2.3, S is irreducible if and only if S^S is. Now
S^S is a finitely generated abelian group, and is irreducible if and
only if it is isomorphic to Z or to Z(pn) (with p prime). If S~XS =
Z{pn) then S is finite and hence S - S'Ή = Z(pn). If S^S = Z, then
S is isomorphic to a subsemigroup T of Z such that T — T = Z.
If T does not contain negative integers, or does not contain positive
integers, then it is isomorphic to a subsemigroup of N.

Assume that T contains both positive and negative integers.
Note that T contains arbitrarily large positive integers and arbitrarily
large negative integers. Since T — T = Z contains 1, there also
exists a e T with a + 1 e T; we can always add a sufficiently large
integer c e T to a, and therefore may assume a > 0. Then T contains
every integer k ^ α2: indeed k = qa + r with 0 ̂  r < a, q ̂  a > r
and therefore k = (q — r)a + r(a + 1) 6 T. [This argument also shows
that if T does not contain negative integers then JV\Γ is finite.]
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For any beT, T contains all integers m ^ b + a2; if we let 6 be
negative sufficiently large, this includes —1 and +1, and therefore
T = Z.

This proof also shows that every subsemigroup T of N is finitely
generated. As above, we may assume that T — T = Z, so that T
contains integers a and a + 1, and hence all integers k ^ α2, which
are generated by a and a + 1. Therefore T is generated by all
elements I < α2 of T.

5. Now let S = iV =£ 0 be a finitely generated commutative nil-
semigroup; this forces N to be finite. Since N only has finitely
many congruences, it is irredudible if and only if it is subdirectly
irreducible. A characterization of these irreducible semigroups can
therefore be found in [14] (Corollary 4.6.1). We give below a slight
restatement of this result and, for the reader's convenience, a direct
proof. Call a congruence C on the nilsemigroup N pure in case {0}
is a class modulo C. We denote by P the upper Teissier congruence
of {0} [15]; P is the greatest pure congruence on S, and is given
by: xPy if and only if {u e N1; ux = 0} = {u e N1; uy = 0}.

PROPOSITION 2.6 (Schein [14]). A commutative nilsemigroup N
of finite height is irreducible if and only if NφQ and its congruence
P is the equality.

Proof. Assume N Φ 0 throughout, so that the set M of minimal
elements of N is nonempty. Assume now that N is irreducible. To
each meM there corresponds the ideal {0, m) of N. If M has two
or more elements, the Rees congruences of the corresponding ideals
intersect into the equality on N; since N is irreducible this cannot
happen, and hence M has exactly one element m. Now 0 and
m are not equivalent modulo P; the intersection of P and the
Rees congruence of {0, m} is therefore the equality; hence P is the
equality.

Conversely, assume that P is the equality. Since all elements
of M are equivalent modulo P, we again have M = {m}. Let C be
a congruence on N which is not the equality: there exist x,yeN
with xCy, x Φ y. Since xPy then does not hold, there exists ueN1

with, say, ux Φ 0, uy = 0. Since each nonzero element of N lies
above some minimal element, we have ux ^ m and there exists v eN1

such that vux = m. It follows that m = vuxCvuy = 0. Thus 0 and
m are equivalent modulo every congruence on N different from the
equality; therefore the equality on N is not an intersection of such
congruences.
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COROLLARY 2.7. An irreducible finite commutative nilsemigroup
has precisely one minimal element.

The converse of 2.7 does not hold. This is shown by:

EXAMPLE 2.8. Let N = {α, δ, m, 0}, with multiplication given by:
a2 = db — b2 — m and all other products are 0 (in particular N* = 0
and N is a semigroup). We see that N is a finite commutative
nilsemigroup. The order relation on N is: α, b, m > 0, a > m, b > m;
there are no other comparable pairs. In particular m is the sole
minimal element of N. But we see that {u e N1; ua = 0} = {m, 0} =
{w e N1; ub = 0}; by 2.6, iSΓ is not irreducible.

3* The subelementary case* 1. We now consider the third
kind of irreducible semigroups in 2.2: throughout this section, S =
N U C is a finitely generated subelementary semigroup.

If C is trivial, then S = N1 is finite, and 2.4, 2.6 tell when S is
irreducible. The case when N — 0 is similarly taken care of by 2.4,
2.5. In what follows we further assume that N Φ 0 and C is not
trivial. [In view of 2.3 we could also assume that S is in fact
elementary; but this is of no particular advantage for most of the
proofs.] Then it follows from 1.1 that C is finitely generated, N
has finite height, and M Φ 0 .

2. We denote by M the congruence on N defined by: xMy if
and only if, for all u e N\ ux e M is equivalent to uy e M and implies
ux = uy; M is the intersection of the upper Teissier congruences of
the elements of M [15]. We call N weakly irreducible in case M
is the equality. Since every nonzero element of N has a minimal
multiple, we see that M is a pure congruence. In particular, MQ P;
if N is irreducible then by 2.6 it is weakly irreducible. The converse
does not hold: the null semigroup with three elements is weakly
irreducible, but, by 2.7, not irreducible. However, we have the
following result (which will not be used later):

PROPOSITION 3.1. A commutative nilsemigroup N of finite height
is irreducible if and only if it is weakly irreducible and has only
one minimal element.

Proof. Both conditions are necessary, as we have seen. Now
assume that N is weakly irreducible and has only minimal element
m. Take x, y e N with x Φ y. Then xMy does not hold, so that
there exists ueN1 such that, say, ux — m, uy Φ m. If uy Φ 0, then
uy lies above some minimal element, hence uy > m; hence m — vuy
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for some v e JV; since vux = vm = 0, we see that xPy does not hold.
If Uy = 0 then again a Ps/ does not hold. This proves that P is the
equality on JV, and the result follows from 2.6.

3. We now return to S and study what the irreducibility of S
implies for JV, C and the action of C on JV.

LEMMA 3.2. If S is irreducible then JV is weakly irreducible.

Proof. We see that M is the equality on the ideal M (J {0} of
S. We can extend M to a congruence JkΓ on S, namely: sM't if and
only if either s = teC or s, teN, sMt. Then the intersection of Mf

and the Rees congruence of the ideal M U {0} is the equality on S;
therefore M' is the equality, and JV is weakly irreducible.

LEMMA 3.3. If S is irreducible then M is an orbit.

Proof. By 1.1, M is always a union of orbits; hence it suffices
to show that Cιm U C'n Φ 0 for all m, n e M. But if Cγm n Gιn =
0, the Rees congruences of the ideals C^m U {0}, Cιn U {0} of S have
the equality on S as intersection and S is not irreducible.

LEMMA 3.4. // S is irreducible then it is homogeneous.

Proof. The proof is somewhat similar to the proof of Theorem
3.6 in [14]. Let α, b e C, x e N be such that ax = bx Φ 0.

Since x Φ 0 there exists a minimal element n 5g x, i.e., n = tea;
for some ue JV1; ax = δα; then implies απ = 6^. For each meM there
exist, by 3.3, elements c, deC1 with cm = dn; then cam = cίa?& =
dbn = cbm, and therefore am — bm, for all meM.

Let C be the congruence on S defined by: sCt if and only if
aΨs = α^'έ for some i, j ^ 0 (with α° = 6° = 1 e S1). We see that
C is a pure congruence on S. If furthermore s, t e M (so that as =
bs, at = bt) and sCt, then, for some i, j ^ 0, ai+js = α^δ^ = α ^ —
α ί+iί, and hence s = t. Therefore C is the equality on the ideal
M U {0} of S. The intersection of C and the Rees congruence of
M U {0} is then the equality; since S is irreducible, C is the equality.
But aCb (since ba = αδ), and thus α = 6—which proves that S is
homogeneous.

LEMMA 3.5. If is S irreducible then so is C.

Proof. The proof is somewhat similar to that of Theorem 5.3
in [14] For each congruence A on C we construct a congruence
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A* on S thus: sA*t if and and only if as — bt for some a,beC such
that aAb. It is immediate that A* is a pure congruence on S, whose
restriction to C contains A.

Now assume that the equality on C is the intersection of two
congruences A, B on C. Let s, teS satisfy s A*Π£* t; then as =
&£, es = dt for some a,b,c,deC with αAδ, cl?c£. If s = 0, then t =
0 = s. Assume s Φ 0. Then αds = bdt = δcs. Therefore αώ = δc
(trivially if S G C , by 3.4 if s eΛΓ). It follows that adAbd, ad =
bcBbd, ad = bd and a = b. Then as = 6ί = a£ and again s = t. Thus
A* Π B* is the equality on S. Therefore A* or 2?* is the equality on
S; this implies that A or B is the equality on C.

4. It turns out that the necessary properties given by these
four lemmas are together sufficient; namely:

THEOREM 3.6. Let S = N U C be a finitely generated subele-
mentary semigroup, with N Φ 0 and C nontrivial. Then S is
irreducible if and only if N is weakly irreduible, C is irreducible,
the minimal elements of N form an orbit and S is homogeneous.

Proof. Assume that S has all four properties. Let C be a
congruence on S which is not the equality; then sCt for some stte
S} s Φ t. If 8, t 6 C, then for any m e M we have sm, tmeM (by 1.1),
sm Φ tm (since S is homogeneous) and smCtm, so that C is not the
equality on M. If s e C, t e N, then for any m e M we have sm e M,
tm = 0 and hence smCO; since C is not trivial and S is homogeneous,
there exists ceC such that cs Φ sf hence csm Φ sm and as above
csm e M, csmCOCsm (since csCct e N); again C is not the equality on
M. Finally, assume s,teN. Since N is weakly irreducible, there
exists ueN1 such that, say, us e M and either ut eM,utΦ us or
ut ί M. In the first case C is not the equality on M. In case ut g
Λf, either w£ = 0 or ut Φ 0. If ut = 0 then m = usCut = 0; as before,
cm Φ m for some c 6 C, since S is homogeneous and C nontrivial,
and cmCcO = OCm, with m, cm e M. lί ut Φ 0 (and still %ί g M) then
ut > m for some meM, i.e., m — vwί for some veN; hence m =
vutCvus = 0 since us e M, v e N, and as above C is not the equality
on Jlf. Thus we have proved that if C is not the equality on S then
C is not the equality on M.

Now let A, B be congruences on S different from the equality.
By the above there exist x, y, z, te M such that xAy, zBt, x Φ yf z Φ t.
Take meM. Since M is an orbit, there exist a, bf c} deCι such that
ax, by, cz, dt e Cγm\ then any r e abcdC satisfies rx, ry, rz, rt e Cm,
rxAry, rzBrt, rx Φ ry, rz Φ rt; in other words we may as well assume
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that x, y, z, teCm, for some me M.
Then let Af be the congruence on C defined by: aA'b if and only

if amAbm. Since x, ye Cm we see that A! is not the equality.
Similarly the congruence B' on C defined by: aB'b if and only if amBbm,
is not the equality on C. Since C is irreducible, A! (Ί Bf is not the
equality on C and there exist a,beC such that aΦb, amAbm, amBbm.
Since S is homogeneous, am Φ bm, which shows that A Π B is not
the equality on S.

In the course of this proof we have shown:

COROLLARY 3.7. Let S be as in Theorem 3.6. If S is irreducible,
every congruence on S other than the equality identifies two elements
of M.

5. Combining Theorem 3.6 with the previous results (2.5, 2.6, 2.4)
we obtain all irreducible, finitely generated commutative semigroups.
The list is as follows:

I: a cancellative semigroup, isomorphic to Z(pn) (with P prime),
to Z, or to a subsemigroup of N;

II: a finite commutative nilsemigroup whose congruence P is
the equality;

III: {0,1};
a cancellative semigroup, as in I, with zero adjoined;
a finite nilsemigroup, as in II, with identity adjoined;
a finitely generated subelementary semigroup S — N U C, such

that N is weakly irreducible, C is as in I, M is an orbit and S is
homogeneous.

6. This result is similar to the result of Schein [14] which gives
all subdirectly irreducible, finitely generated commutative semigroups.
The list of these semigroups can be simply obtained from the above
by adding the requirement that the cancellative semigroups in I and
III be isomorphic to Z(pn) only (cf. [14]).

It is easy to prove this result directly (without referring to
[14]). First we show:

LEMMA 3.8. Let S be as in Theorem 3.6. If S is subdirectly
irreducible then so is C.

Proof. Assume that S is subdirectly irreducible (in particular,
irreducible), and that the equality on C is the intersection of con-
gruences Ci(ieI) on C. Pick meM and let Cf be the relation on
S defined by: sC*t if and only if s = t or s = am, t = bm for some
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a,beC such that aCJ). Since S is is homogeneous, bm = cm im-
plies b = c when b, ceC, and it follows that Cf is an equivalence
relation. Since xCm = 0 for all a? 6 JV we see that Cf is in fact a
congruence.

Let C* be the intersection of all C_f. Asume sC*t, s Φ t. Then
s,te Cm, say s = am, t — bm for some a,beC. For each i we also
have 8 = cm, t = ώm for some c, deC with cC^. Since S is homo-
geneous, am = cm, bm — dm implies a = c, b = d and therefore aCb.
Since this holds for all i, it follows that α = b, which contradicts
β ^ ί . Therefore C* is the equality on S. This implies that some
Cf is the equality on S. The corresponding C< is then the equality,
since aCJ), a Φ b implies amGfbm, am Φ bm.

Now let S be a finitely generated commutative semigroup. Assume
that S is irreducible. If S = C is cancellative and isomorphic to
either Z or a subsemigroup of N, then S is not subdirectly irreducible.
By the remark following 2.4, S is not subdirectly irreducible if S =
C° with C as above; and Lemma 3.8 says that S is not subdirectly
irreducible if S = NU C is subelementary with C as above. The
remaining semigroups in our list of irreducible semigroups are all
finite: this is evident in all but last case, in which S is homogeneous
elementary (since S = Z(pn) is a group), so that all nonzero orbits
have pn elements; then S is finite since, by 1.1, it only has finitely
many orbits. Now a finite irreducible semigroup only has finitely
many congruences and is therefore subdirectly irreducible. Thus
the subdirectly irreducible, finitely generated commutative semigroups
obtain from our list of irreducible semigroups by adding the require-
ment that the nontrivial cancellative semigroups in cases I and III
be isomorphic to Z(pn) only. Finiteness is an equivalent requirement.

In particular this yields the following theorem of MaΓcev [12]:

COROLLARY 3.9. A subdirectly irreducible commutative semigroup
which is finitely generated must be finite.

Equivalently, finitely generated commutative semigroups are re-
sidually finite. Other proofs of this result were given by Carlisle
[1] and Lallement [10].

7. Our last result is a sharpening of Theorem 3.6 in the ele-
mentary case. By 2.3 this is, theoretically, the only case we need
consider in Theorem 3.6 [although in practice it is not immediately
evident that if C"W£ C^S is weakly irreducible then so is N]. If
furthermore S is subdirectly irreducible in Theorem 3.6, then we
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have seen that S is finite, and therefore elementary.
Let S — N U G be a finitely generated elementary semigroup,

with N Φ 0 and G nontrivial. If S is irreducible, then, by 3.6, S
is homogeneous. If conversely S is homogeneous, then we saw in
§1 that S can be reconstructed from G and from the finite nilsemi-
group Ω of nilpotent orbits of S. Looking at the other conditions
in Theorem 3.6, we see that M is an orbit if and only if Ω has only
one minimal element (by 1.1); that G is irreducible if and only if
G=Z or G = Z(pn). The last condition, that N be weakly irreducible,
can be expressed as follows:

LEMMA 3.10. Let S = N U G be an elementary semigroup such
that N Φ 0, G is not trivial, and Ω is finite with only one minimal
element μ. Then N is weakly irreducible if and only if any factor
set σ associated with S satisfies the condition: when a, β eΩ and
aMβ, a Φ β, then the function oa^σj\ is not constant on T =
{υ e Ω; υa = μ) — {υ e Ω; υβ = μ}.

Proof. Let σ be any factor set associated with S. Then S =
[Ω, G, σ]; we may as well assume that S — [Ω, G, σ]. Then N consists
of 0 and all pairs (g, a) with g e G, a e Ω, a φ 0. Also, (g, a)eM if
and only if a = μ.

Let a, β e Ω be such that aMβ, a Φ β. From the definition of
M we see that α, β Φ 0, μ (since a Φ β) and that T= {υ eΩ) υa = μ} =
{υeΩ; υβ = μ) (since υaf υβ φ μ when υ = leΩι). Furthermore TΦ
0, since a, β > μ. Take and assume that N is weakly irreducible.
Let a = (σβ>υ, a), b = (σa>υ, β) e N. We have a Φ b (since a Φ β).
Therefore aMb does not hold. However, for all u e JV1, ua e M if and
only if ubeM (since aMβ in Ώ). Hence there exists ueN1 such
that ua, ub e M, ua Φ ub. We cannot have u = 0,1; hence u = (g, τ)
w i t h g e G , τ e Ω , τ Φ 0 . W e h a v e τ e T ( s i n c e u a e M ) . A l s o

(gσβ>υσa>τ, μ) = ua Φ ub = (gσa>t)σβ>τ, μ) ,

so that σa>τσ^τ Φ σatυσ~χ. Since τ, υ e T, the condition in the lemma
is necessary.

Conversely, assume this condition holds. Take afbeNfaΦb.
If either of α, 6 is zero or minimal then aMb cannot hold in N. Now
assume that neither of a, b is zero or minimal, so that a = (g, a), b =
(hf β), where a, β > μ. If a — β, then g Φ h; we see on the formula
which gives the multiplication on N (in §1) that au Φ bu whenever
au, bu Φ 0; therefore aMb does not hold. Assume a Φ β. If aMβ
does not hold in Ω, then aMb does not hold in JV. Now assume that
aMβ holds in Ω. As before T Φ 0 . Take υeT and let u = (1, υ)9

so that au = (gσa,υ, μ), bu = (hσβtυ, μ) e M. If σatUσj^ Φ hg~λ then
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au Φ bu and aMb does not hold. If σaiUσ^υ — hg~ι then by the hypo-
thesis there exists τ e T such that σatXσj\ Φ hg"1; then t = (1, r) is
(as above) such that at, bt e M, at Φ bt, and hence aMb does not hold.
In no case does aMb hold when aΦb, which proves that N is weakly
irreducible.

Combining 3.10 with our previous results we obtain a construction
of all our irreducible semigroups in terms of groups (Z and Z(pn))
and finite nilsemigroups.

Lemma 3.10 shows that the properties inherited by Ω when S
is irreducible are even weaker than these inherited by N. Specifically,
Example 2.8 is a finite nilsemigroup which has only one minimal
element but is not irreducible, and hence is not weakly irreducible
(by 3.1). However it is the semigroup of nilpotent orbits of a finite
irreducible semigroup: the factor sets with values in any group G =
Z(pn) are easy to calculate: they are all families σα>α, σa>h, σδ,α, <rM e G
such that σatb — σb,a; the condition in 3.10 is that σataσΐX Φ σathσj;\
and with G Φ 1 as above there is always a factor set σ with this
property.

In general, however, the condition in 3.10 does put restrictions
on Ω (beyond the uniqueness of the minimal element). For instance
note that if S splits in 3.10 then N cannot be weakly irreducible
unless Ω is: for we may let σ — 0 and then the function σa%υσj^ has
to be constant on T in case aMβ, a Φ β. In other words, if S is
irreducible and splits, then Ω is weakly irreducible. In particular,
if Ω is not weakly irreducible, then 3.10 requires of Ω that its factor
sets with values in G are not all trivial.
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