Pacific Journal of
Mathematics

ON A CLASS OF UNBOUNDED OPERATOR ALGEBRAS. III

ATSUSHI INOUE




PACIFIC JOURNAL OF MATHEMATICS
Vol. 69, No. 1, 1977

ON A CLASS OF UNBOUNDED OPERATOR
ALGEBRAS III

ATsusHI INOUE

In this paper we continue our study of unbounded
operator algebras begun in previous papers. In particular,
the unbounded Hilbert algebras are studied. The primary
purpose of this paper is to give necessary and sufficient
conditions under which an unbounded Hilbert algebra is
pure.

1. Introduction. In the previous paper [6] we began our study
of unbounded Hilbert algebras and raised the following problem.

Problem. Let <, be a maximal Hilbert algebra in a Hilbert
space . Does there exist a pure unbounded Hilbert algebra over &
in §?

In this paper we find that if <&, = 9 then the answer is affirma-
tive. That is, if <&, 9, then the maximal unbounded Hilbert
algebra L¢(<2,) is a pure unbounded Hilbert algebra over &, in 9.
It therefore seems that our study of a class of unbounded operator
algebras called EW*algebras is significant. For, from ([6] Theorem
3.10) if =, = $ then there necessarily exist pure EW?*-algebras over
the left von Neumann algebra Z7(=;) of =, and if %, is a semifinite
von Neumann algebra with a faithful normal semifinite trace ¢, on
Ay and L¥(p,) = U, N LHp,), then there exist pure EW+*-algebras over
%, such that are isomorphic to standard EW*algebras.

2. Basic theory for unbounded Hilbert algebras. We give
here only the basic definitions and facts needed. For a more complete
discussion of the basic properties of unbounded Hilbert algebras the
reader is referred to [6, 7].

Let & be a pre-Hilbert space with an inner product [|] and be a
+-algebra. Let § be the completion of &2. Suppose that & satisfies;

(1) &) = @*ler), &nez,
(2) 710 =m0, &nlez.
Now, we define n(¢) and #'(¢) by;

() =24én and ©EM =7, Nez.

Then, by (2), we know that 7(&) and n'(¢) are closable operators on
9 with the domain & and 7(£)* D 7w(£*), 7'(&)* D n'(&*).

105
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DerFiNIiTION 2.1. If & satisfies (1), (2) and (3) &% is dense in
9, where

g, = {£e Z; n(§) is continuous with respect to the
pre-Hilbert space structure of o},

then &7 is called an unbounded Hilbert algebra over &, in § and
m(resp. ©') is called the left (resp. right) regular representation of =.
In particular, if &, # &, then & is called pure.

Let &7 be an unbounded Hilbert algebra over &, and let § be
the completion of <. Clearly & is a Hilbert algebra and the com-
pletion of &, is the Hilbert space §. Let w(resp.n’) be the left
(resp. right) regular representation of & and let w(resp. 7;) be the
left (resp. right) regular representation of the Hilbert algebra ;.

Let 2 be a family of closable operators on a Hilbert space. Then
we denote by A the closure of Ac? and put A = {4;4 .

For each x <€ 9 we denote 7,(x) and wi(x) by;

m(x)é = T, m(x)E =T, €.

Then 7, (x) and 7y(x) are linear operators on £ with the domain ;.
The involution on < is extended to an involution on 9, which is also
denoted by *. Then we have 7,(z*) = 7w, (x)* and 7y (x*) = wy(x)*.

LEmMMA 2.2. (1) For each E€ = we have

@) = 78, 7@ = T8,
n(f") = n(&)*, w(EF) =7(9)*.

(2) For each neC (the field of complex numbers) and &, ne
we have

(&) + 7(7): = ©(&) + =(7) = =& + 1),
a(&)-x(7): = 2(&x(y) = (&) ,

(&), ©f AN#0
0 , of =0

=n(\), (&) = (&) .

Therefore n(2) is a =-algebra of closed operators on 9 under the
operations of strong sum, strong product, adjoint and strong scalar
multiplication. Sitmilarly n'(2) is a *-algebra of closed operators

on 9.

Proof. ([6] Lemma 2.1 and Proposition 2.3)
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Let Z2(=;) (resp. 7,(=,)) be the left (resp. right) von Neumann
algebra of the Hilbert algebra <, and let @, be the natural trace
on ZZ(=2,)". Let B(H) be the set of all bounded linear operators on
$. Putting

(20, = {z € §; () e BY)} ,

(=), is a Hilbert algebra containing <, If 2, = (=), then &,
is called a maximal Hilbert algebra in 9.

Let I be the set of all measurable operators on § with respect
to Zy(=,). For every TeIN* we put

v T) = sup [p((E); 0 =7, (8) < T, s e ()]
and
LX) = {TeW; (| T|,: = (| TIP)? < o}, 1=p< oo,

Then || T'||, is called the Lf-norm of T in L*(p,) and f, is called the
integral on L'(p,). If p = o, we shall identify Z(=;) with L(p,)
and we denote by ||T|| or || T'||. the operator norm of T e Z(<=,).

DEFINITION 2.3. We define L“-spaces with respect to @, and &,
as follows;

L(p,) = A L(p), Li(p) = <N L*(p,) ,

and
LAZ) = we @) e L@y)} , L) = {xe §; m() e Lilpy)}
respectively. For p = 2 we set
Ly =z, = {ve §; m(z) € L*(py)}
llell, = ||@”p , xeLi(=)
l2]le = lI7@)|l, @€ L3(Z) = (Z)s -

THEOREM 2.4. Ly(=,) (resp. L°(=;)) is an wunbounded Hulbert
algebra over (), (resp.(Z)i) in . If & is a pure unbounded
Hilbert algebra, then <= is a =-subalgebra of L{(=;). Hence Ly ()
1s maximal among unbounded Hilbert algebras containing

Proof. ([6] Theorem 3.9)

3. Necessary and sufficient conditions under which L{(%;) is
pure. Let &, be a Hilbert algebra in a Hilbert space £ and let ¢,
be the natural trace on Z/(=Z;)".
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LEMMA 3.1. For 2 < p < q we have
Li=2,) = $ D LI(Z,) D L{=Z,) > Li{(Z,) © L (Z,) = (Z),
and

Ly(=z)= n L(=z),

25n<oo

where n 18 an integer.

Proof. For each xze Li=z;) let w(x) = U|r,(x)| be the polar
decomposition and let |7(x)| = S ME(N) be the spectral resolution of
J— 0
|m(x)|. Then,

2l = [ Z=@ 2 = - | Vdp B0))

Il

=\ vagmonn — | vdeE0y)

= — [ Vg - | v (E0)
s el + el < oo

Hence, x¢ Li(=;). Consequently L#(=;) D Li(<=,), and so we can
easily show that L{(Z;) = Niguce Li(Z;) (m; integer).

LEmmMa 3.2. If LI=;) = LU{<=,) for some q>p=2, then
Li(=2,) = Ly(=,) for all re[p, ).

Proof. Let xe LX) = Li(=;). Then, |x,(x)|¥? € L*(¢,). Since
2 < 2q/p £ q and LY =Z,) D L¥*(=z;) D L=, (by Lemma 3.1), we get
we L¥'(2,), Le., | (®)[** e L(p,). Hence, |7(x)|"” € L*p,) N L¥p).
Repeating the same argument, we get that |[7,(x)|?" e L?(p,)N
L(=2,) (n=1,2,---). From ¢/p >1 and Lemma 8.1, v € L(=)).

DEFINITION 3.3. An element ¢ of & is called a projection if
et =e = e*. Let FE(Z;) denote the collection of all projections in ;.

THEOREM 3.4. Let =, be a Hilbert algebra in 9. Then the
following conditions are equivalent.

(1) Ly(=;) is pure.

(2) L“(=;) is pure.

(3) There exists a sequence {¢,} of nonzero mutually orthogonal
projections in (), such that >, |le.ll: < oo.

(4) 9 is not a Hilbert algebra, i.e., (), # 9.

(5) Li(=zp) + 9.
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(6) L=z, + LU=z;) for some 2 = p <q.

(7)) LU=z, # LA=,) for each p > 2.
In particular, if =, has an identity, then (L)~(7) are equivalent
to (7);

(7)Y Lp,) # LYp,) for each ¢ > p = 1.

Proof. From Lemma 3.1, for 2 < p < g¢q
Lo LD LD LY D (=), .
Hence, (7) = (6) = (5) = (4) and (2) = (1) are easily showed.

Q)= (7); If LA =,) = LL=;) for some p > 2, then from Lemma
3.2 we have Li=,) = L{y(=;). Since Ly(<=,) is an algebra, for each
xe LA 2;), Z(r(2)) = 9, i.e., m(x) e B(H). Hence Ly(Z;) is a Hilbert
algebra.

(4)— (3); Suppose that v€ § — (2. Let [7@)| = | ME() be
the spectral resolution of |7m(x)|. Since |m,(®)| ¢ B(D), E(n + 1) —
E(n) # 0 for infinite many », and so we may suppose that E(n + 1) —
En)+#0 (n=1,2,..-). We shall show that E(n + 1) — E(n)e
L(p,) N L¥(@,). Clearly, E(n + 1) — E(n)e L*(@,) = Z(=;). More-
over, we have

1B+ 1) — Em)ls = (B + 1) — Bm) = = do(E0))
= =" VdeBO) = 1@ = lalk -
Hence, E(n + 1) — E(n) € LXp,) (»n =1,2, ---), and so there exists
e, €(=,), such that E(n + 1) — E(n) = wle,) (n =1,2--.). Clearly

{e.} is a sequence of nonzero mutually orthogonal projections in (=;),.
We shall show that >7_, |le,|l; < . In fact, for m > n

Sliell = 3 o) = 3 @k + 1) — H)
= pE(m + 1) — E(n)

and {E(m + 1) — E(n)} converges o-weakly to 0(n, m — ). Since
@, is o-weakly continuous, we have

lim Heullz = 11111oo p(E(m + 1) — E(n)) = 0.

mym—oo k=

Hence, > lle, |} < eo.

(8) = (2); For some positive integer k, 3o, |le, |2 < 1. We set
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Gw= 5 el a= 5 el a= 3 el

n=kg n=ko+1 =ko+n

b, = |log @y}, -+~ , b, = lloga,], -

and
T = nZ:) b1y -
We shall show that z e L(=Z;) — (&), For every pell, «)
S b Yol < | log olrde = p1
and so

Jim ] 3 Bueegse |l = Um 35 (b [enlli = 0.
Hence, ¢ and |[|z] = X7, |b."|€wnlll- Similarly, for every
pell, ), xeli(=) and ||zl = 357,101yl Therefore,
zeL“(=z,). On the other hand, lim,.b, = e and [e,./;+*0
(n=1,2,--), and so 7, (2) ¢ B(H). Hence, ¢ L(Z) — (Z),. That
is, L°(<z;) is pure.

Suppose that <, has an identity.

(7Y = (7); Obvious.

(7) = (7)'; For 1 < p < ¢ we have
Li(p)) 2 L*(@,) D Lp,) D L*(@o) D L*(p,) -

Suppose that L*(p,) = LY@, for 1 < p <gq. Let TeLYp,). Then,
[TM? e L*(p,) = L(p,). Hence, |T|¥?e L'(p,). Repeating the same
argument, |T]|9?" e LY{p)n =1,2,---), and so |T|eL“""(p,)
(n=12---). From ¢/p >1 and Lemma 3.1, |T|e L*p,), and so
T ¢ L*(@,).

Let =7, be a Hilbert algebra in 9. From Theorem 3.4, if & is
not a Hilbert algebra, i.e., (=), # $, then L(<7,) becomes a pure
unbounded Hilbert algebra over (), in . So, the previous problem
is solved. If Lg(=;) is a Hilbert algebra, then £ is a Hilbert
algebra and Lg(=7) = . Hence we can give some conditions for
L¢(=;) to be a Hilbert algebra.

COROLLARY 3.5. Let <, be a Hilbert algebra in 9. Then the
following conditions are equivalent.

(1) 9 is a Hilbert algebra.

(2) Ly(=z;) is a Hilbert algebra.
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(3) 9= Li(=z) = (Z).

(4) Either E((=,),) ts a finite set or D, |le,|li = « for each
sequence {e,} of mutually orthogonal projections in E((Z),).

(5) There exists C > 0 such that ||e|l, = C for all ¢ E(Z),).

(6) Li=zn) = Li(=z;) for each q > p = 2.

(7) LA=zr) = Li=z;) for some p > 2.
In particular, if =2, has an identity, then (1) ~ (7T) are equivalent
to (7);

(7)Y LAZ) = LYZ,) for some ¢ > p = 1.

Proof. From Theorem 3.4 (1)« (2) = (8) = (6) = (7) = (7)’ are
easily showed.

Let E = w,(e) and F = n,(f) for e, fe E(=),). We denote by
ENF (resp. EU F) the projection onto EH N FO (resp. EO U F).
Clearly, ENF and EUF in L~(p,) N L*p,). Hence there exist
projections eNf and ¢ U f in (&), such that EN F = n(eN f) and
EUF = weU f).

If E((=;,),) is an infinite set, then there exists a sequence {e,}
of mutually orthogonal projections in E((=;),). In fact, the following
two cases are considered.

(i) There exists a sequence {e,} of E((=;),) such that

ez—(elﬂez)ioy"'16n—(61U62U"'Uen_l)nenio,“' .

(ii) There exists a sequence {e,} of E((=,),) such that ¢, > e,
for all n = 2.

(i); Obvious.

(ii); We set

n
DL =8€y ", pn:61_kL_Jzeky ctt

dn = Pp — Dnt1 s /”’:1,2,""

If ¢, # 0 for infinite many =, then {g,} is a sequence of mutually
orthogonal projections in E((Z;),). If ¢, =0 for infinite many =,
then e, > e,,, for infinite many ». Putting f, =e, — e,.,, {f.} is a
sequence of mutually orthogonal projections in E((Z;),). From the
above argument and Theorem 3.4, (2) = (4) is easily showed.

(56) = (4); Obvious.

(4) = (5); Suppose that (5) is not satisfied. For each n there
exists e, € E((=;),) such that ||e,|l, < 1/n. After a slight modification
of the above, we can make a sequence {p,} of mutually orthogonal
projections in  E((&;),) such that 35 (|p.l= 30k llell =
225:1 1/ n® < oo,
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4. Standard EW?#*algebras. From ([6] Theorem 3.10) if < is
a pure unbounded Hilbert algebra over <z, then there exists the
pure EW*algebra Z7(=22) on Ly(=;) over Z(=;). So, from Theorem
3.4, if &7, is a Hilbert algebra in $ and (&), = 9, then there neces-
sarily exist pure EW?*algebras over % (<;). Hence it seems that
our study of EW#*algebras is significant. For a more complete
discussion of the above argument we give here the basic definitions
and facts of EW¢*algebras.

DEFINITION 4.1. Let © be a pre-Hilbert space with an inner
product (| ) and let § be the completion of ©. We denote the set of
all linear operators on ® by (D). A subalgebra U of D) is called
a %-algebra on © if there exists an involution on ¥U; A — A* such
that

(Ag[7m) = (&|A%)), Ae¥U, £79eD.
We set
A, = {AecW; AcBO)) .

Let A be a #-algebra on ® with an identity operator I. - is called
a symmetric #-algebra on ® if (I + A*A)™* exists and lies in ¥, for
every Ac¥l.

A symmetric #-algebra U on D is said to be an EW#algebra
over ¥, if ¥, is a von Neumann algebra. If A == %;, then U is called
a pure EW*-algebra.

Let 2 be a set of densely-defined closed operators on £ which
is a@ x-algebra under the operations of strong sum, strong product,
adjoint and strong scalar multiplication. ¥ is said to be an EW*-
algebra over %, if (I + T*T) ' e for every T € ¥ and the sub-algebra
9, of bounded operators in ¥ is a von Neumann algebra. If A = Y,
then o is called a pure EW*-algebra.

Clearly if % is an (resp. pure) EW*algebra, then ¥ is an (resp.
pure) EW*-algebra.

Let & be an unbounded Hilbert algebra over &, in a Hibert
space © and let @, (resp. ) be the natural trace on Z/(=Z;)" (resp.
7:(Z,)T). For every xc$ we see that

Jr(x) = m(x*) and Jr(x) = m(x*),
where J denotes the involution * on $. Hence we get that

JL(po)d = L*(vo) , JLi (@) = L3(+¥) ,
LAZ) = (e & m@w) e L(y0)} , Li(2) = {& € §; mi(x) € Li(yr,))
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and
w\Z) L)) c Ly(=2,) , 70(Z)Li(=2,) € Li(=Z) .

Let ¢ (resp. (z')¢) be the left (resp. right) regular representation of
L¢(=;) and let

Z () Li(Z) = {T/Ly(2); T e Z(20)}
P2 Li(=2,) = {T'|Ly(2y); T' € 72} »

where T/L{(<Z;) is the restriction of T onto L(=;). Then nmy(2),
(*"N(2), Z(2)/L:(Z) and 7;(2,)/Ls(Z,) are #-algebras on L (=)
under 73(£)* = m(&*), ('):(6) = (@'):(&%), (T/L(=Z)) = T*/L:(=Z;) and
(T'/Ly(2,)) = (T')*|L(Z;), respectively.

NoTATION. We denote by Z(2) (resp. 7°(=2)) the #-algebra on
Ly(2;) generated by m3(2) (resp. (v'):(2)) and Z(Z)/Li(Z) (resp.
7:{(2,)| Ly (=2))-

THEOREM 4.2. Let &2 be a pure unbounded Hilbert algebra over

2, in o Hilbert space 9. Then Z(2D), Z (L(Z;)) and Z (Ly(Z;))

(resp. 77(2), 77 (L°(=;,)) and 7 (Ly(=,))) are pure EWi-algebras on
() over () (resp. 7;(=2;)). Furthermore, we have

Z (Ly(2) = 7 (L(Z,)) , 7" (L(=Z) = 7°(L(=Z))
and
JZ () = 7 (2), J7V(2) =% (2).

Proof. From ([6] Theorem 3.10) % (=), % (L“(=Z;,)) and
Z (LY(=2;)) are pure EW*algebras on Ly(=;) over Z/(2;). Similarly
we can easily prove that 7 (=), 7 (L*(<=;)) and 7 (L(<=;)) are pure
EWtalgebras on L) over %;(=,). We shall show that
w (L(=2) = 7 (L3(Z,)). Clearly, Z (L(2;)) ¢ Z (L;(=,)). Suppose
that 2 L2(=;). Let w(x) = U|w,(x)| be the polar decomposition of
m(z) and let |7 (@)] = S: MdE(\) be the spectral resolution of |z,(x)|.
Then, |7x)| = U*n(x) = n(U*x) € Ly(®,). Since |7 (x)| is @,-restrict-
edly measurable, E(\)* € L*(p,) for a positive number A, Hence,
I7(@) | B(\o)* € L) LA(po) N L™(9,)) © L*(9,). Therefore we have

@) = | MEC) + 7@ B0
e Z(2,) + L(p,) -

Hence, m3(U*x) € Z7 (L“(=;)), and so wy(x) € ' (L°(=,)). Consequently
72 (L3(2) = Z(L°(=;)). Similarly we can show that 7 (L$(=;)) =



114 ATSUSHI INOUE

7°(L(=Z;)). Since JZ () = 73(=2;) and Jr(x)] = m(x*) for every
r e, we see that JZ(2)J = 7(=2).

DEFINITION 4.3. Z/ () (resp. 77(2)) is called the left (resp. right)
EW?#algebra of <.

THEOREM 4.4. Let <, be a Hilbert algebra in a Hilbert space
and (), = 9. Then Ly (=) is a pure unbounded Hilbert algebra,
and 7z (Li(=2,) and 7°(L(=,)) are pure EWHalgebras on L3(<=)
over Z () and 73(2,), respectively.

Proof. Theorem 3.4 and Theorem 4.3.

DEFINITION 4.5. Let U be an EW?*algebra. 9 is called a standard
EW¢talgebra if there exists a pure unbounded Hilbert algebra &
such that U = ' (2).

Let 9, be a semifinite von Neumann algebra on a Hilbert space
9 and let ¢, be a faithful normal semifinite trace on AF. Let ()
denote the set of all measurable operators with respect to 2. From
([4] Proposition 4.3) M(A) is an EW*-algebra over . Let M, be
the maximal ideal associated with ¢,, i.e., M, = {T e W; @ (| T|) < ==}
For every T eM(,)" we put

HUT) = sup o(4),

AE‘JR‘T;OzAéT

and

L (@y) = {T e MQU); [| T|l,:= | TI?)/? < oo}, 1=p< oo,
Lm(@o) = U

Then Ly(@,): = L”(@,) N L¥(p,) is a maximal Hilbert algebra in the
Hilbert space L*g,) under the inner product (S|T)= p(T*-S) and
Ly(@5): = Nazpew L7(p,) is a maximal unbounded Hilbert algebra over
Li(p,). Let (@) be an unbounded Hilbert algebra in L¥(p,) over

7(®). Then Z(p,) is regarded as a =x-algebra on § under the
strong sum, strong product, adjoint and strong scalar multiplication.
We denote by A(Z(p,)) the set of closed operators on § which is
the x-algebra generated by <(p,) and %,. Then W F(p,)) is an
EW*-algebra over %, and it is isomorphic to the left EW#*algebra
Z (2 (@)

THEOREM 4.5. Let U, be a semifinite von Neumann algebra on
o Hilbert space © and let ¢, be a faithful normal semifinite trace on
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Us. If LAp,) ts mot a Hilbert algebra, i.e., L*(p,) #= Ly(p,), then
there exists a pure EW*-algebra U over A, such that is isomorphic
to a standard EWialgebra. In particular, if Nrerpwy 2(T) s
dense in 9, then we may regard U as a pure EWialgebra over 2.

COROLLARY 4.6. Let U, be a semifinite von Neumann algebra
on o Hilbert space £ and let ¢, be a faithful normal semifinite
trace on AF. If N is a pure EW*-algebra over U, such that A
A(L(p,)), then A is isomorphic to a standard EW*-algebra.

Proof. We can easily prove that 2 N L¢(@,) is a pure unbounded
Hilbert algebra over L;(p,) and 2 is isomorphic to Z (U N L (p,)).
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