
Pacific Journal of
Mathematics

MEASURE ALGEBRAS OF SEMILATTICES WITH FINITE
BREADTH

JIMMIE DON LAWSON, JOHN ROBIE LIUKKONEN

AND MICHAEL WILLIAM MISLOVE

Vol. 69, No. 1 May 1977



PACIFIC JOURNAL OF MATHEMATICS
Vol. 69, No. 1, 1977

MEASURE ALGEBRAS OF SEMILATTIGES
WITH FINITE BREADTH

J. D. LAWSON, J. R. LIUKKONEN

AND M. W. MlSLOVE

The main result of this paper is that if S is a locally
compact semilattice of finite breadth, then every complex
homomorphism of the measure algebra M(S) is given by
integration over a Borel filter (subsemilattice whose comple-
ment is an ideal), and that consequently M(S) is a P-algebra
in the sense of S. E. Newman. More generally it is shown
that if S is a locally compact Lawson semilattice which has
the property that every bounded regular Borel measure is
concentrated on a Borel set which is the countable union
of compact finite breadth subsemilattices, then M(S) is a
P-algebra. Furthermore, complete descriptions of the maxi-
mal ideal space of M(S) and the structure semigroup of
M(S) are given in terms of S, and the idempotent and
invertible measures in M(S) are identified.

In earlier work Baartz and Newman have shown that if S is
the finite product of totally ordered locally compact semilattices,
then every complex homomorphism is given by integration over a
Borel subsemilattice whose complement is an ideal [1, Th. 3.15], and
consequently, the structure semigroup of M(S) in the sense of
Taylor [10] is itself a semilattice [9, Th. 3]. In both papers it is
shown that such results do not hold for the infinite dimensional
cube S — Iω, and Newman conjectures that what is needed for these
results to hold is a "finite dimensionality" condition. In this paper
it is shown that these results hold provided the locally compact
semilattice in question has "finite breadth"; i.e., satisfies a finite
dimensionality condition familiar from the theory of compact semi-
lattices.

The paper is organized as follows. Section 1 contains generali-
ties on semilattices and the notion of breadth. Section 2 is devoted
to the proof of our main result for finite breadth semilattices. In
§ 3 we discuss the extension of these results to a more general set-
ting and give examples to show how our hypotheses differ from
those of Newman.

1* Semilattices. A semilattice is a commutative idempotent
semigroup. We may also (equivalently) describe a semilattice as a
partially ordered set in which every two elements have a greatest
lower bound. Thus the product of two elements is their greatest
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lower bound. The reader should note that this convention differs
from that in [1, 9], in which the product of two elements in a
semilattice is viewed as their least upper bound.

A semilattice on a Hausdorff space S is a topological (semitopo-
logical) semilattice if the multiplication function which sends (x, y)
to xy from S x S to S is jointly (separately) continuous. It is
known that a compact semitopological semilattice is actually a topo-
logical semilattice [8].

If S is a semilattice and A c S we define the upper and lower
sets of A by

I A = [y e S: x ^ y for some xe A}

and

\ A — {zeS'.z ^ x for some x e A} .

For singleton sets we adopt the notation \ x and j, x instead of f {x}
and I {x}. We call a subset I of S an ideal if [1=1. Equivalently
/ is an ideal if xe S, y el implies xy el. A subset F of S is a
filter if \ F = F and F is a subsemilattice of S. Note that a sub-
semilattice FQS is a filter if and only if S\F is an ideal of S.

If A is a nonempty subset of a semilattice S we denote the
greater lower bound of A by Λ i (A A exists for all finite sets A,
and also for all infinite sets if S is a compact topological semilattice).
A fiinite set A is said to be meet-irredundant if A A< AB for any
proper subset JB of i . A semilattice S is said to have breadth n
(denoted br (S) — n) if n is the greatest cardinality of the meet-
irredundant subsets of S. Equivalently S has breadth n if and
only if n is the smallest integer such that any finite subset J of S
of cardinality m > n has a subset L of cardinality n such that
AJ= ΛL, and this is equivalent to n being the smallest integer
such that any finite subset J of cardinality n + 1 has a subset L of
cardinality n such that AJ= Λ i . We adopt the convention that
a singleton semilattice has breadth 0.

A subset A of a semilattice S is bounded above if there exists
peS such that p^ a for all ae A. The bounded breadth of $ is
% (denoted bbr (S) = n) if n is the greatest cardinality of any
meet-irredundant set bounded above.

PROPOSITION 1.1. Let S be a semilattice of finite breadth.
Then bbr(S) £ br(S) ^ bbr(S) + 1. 1/ S has an identity, then
bbr(S) = br(S).

Proof. Clearly bbr (S) ^ br (S) and the two agree if S has an
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identity (since in the latter case every set is bounded above). If
{xί9 • ••, xn) is a meet-irredundant set in S, let yt — XiXn for i = 1,
•••, n — 1. Then it is straightforward to verify that {y19 •••, yn_J
is a meet-irredundant set bounded by xn. Hence it follows that
b r ( S ) ^ b b r ( S ) + 1.

PROPOSITION 1.2. Let S be a topological semilattice such that
bbr (S) ^ n, where n ^ 1. If I is a dense ideal of S, then for any
subsemilattίce T contained in S\I, bbr(T) ^ n — 1.

Proof. Let x19 , xn e T and let beT such that xt ^ δ for
i = 1, , w, where n ^ 2. Let #α be a net in I converging to b.
Then za=yab is a net in J (since / is an ideal) converging to bb — b.
Since b b r ( S ) ^ w for each a there exists ua e {x19 , xn, za} — Fa

such that ΛFa= Λ(Fa\{ua}). But ΛFaeI since ««el; hence uaΦza

since » ( 6 Γ for 1 ^ ΐ ^ ^ and T is a subsemilattice. By picking
subnets and renaming, we may assume ua = x1 for each a. Then
$i •$» = Km a?i mxnza = lim α?2 α?nsα = 05a α?Λ. Hence bbr T^n — 1.

Now suppose w = 1. Let a? < 6 be two elements of Γ. Again
let {zα} be a net in / such that za^b for all a and 2α —> b. Since
S has bounded breadth 1 and / is an ideal, we see that za < x for
all a. Therefore b = lim za^x, a contradiction. So bbr (T) = 0.

PROPOSITION 1.3. Let S be a topological semilattice and let
A = {x19 *-xn} be a meet-irredundant subset of S of cardinality n.
Then there exist open sets Ul9 •••, Un such that Xjβ Us for j — 1,
• , n and if y,> e Ud for j = 1, , n, then {y19 , yn) is a meet-
irredundant set of distinct elements.

Proof. Suppose not. Then there exists a net (τ/lα, ---,yna) con-
verging to (x19 •••,#») in U"=iS such that for each a9 there exists
i,l^i^n, such that Λ;=i Via = Λ {!/,-«: 1 ^* j ^ n, j Φ i}. By pick-
ing subnets and renumbering if necessary, we may assume that yla

is always the omitted. Then A]=iχj — Mm Λ?=i2/y« — Mm A]=2Vja =
Ai=2^i However, this conclusion contradicts the hypothesis that A
is meet-irredundant.

In the following T* denotes the closure of T.

COROLLARY 1.4. Let T be a subsemilattice of finite breadth of
a topological semilattice S. Then br(Γ) — br(T*).

Proof. Suppose br(T*) = n. Then there exists a meet-irredundant
set {xlf , xn) of cardinality n in T*. By Proposition 1.3 there exist
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open sets Ulf -fUn with xs e U3- for 1 ̂  j <i n such that if yά is chosen
in UjΓiT, then {y19 •••,#„} is meet-irredundant. Hence b r ( T ) ^ n .
But since Γ c Γ , br(Γ) ^ Λ.

Let X be a compact Hausdorίf space and let P(X) denote the
set of nonempty compact subsets of X. It is well known that P(X)
is a compact Hausdorff space when endowed with the topology of
open sets generated by the subbasis

N(U, V) - {AeP(X):AdU and AΠVΦ0}

where U and V are arbitrary open subsets of X. A net Ka of
compact subsets of of X converges to K e P(X) if and only if K =
lim sup Ka = lim inf Ka. We call this topology the Vietoris topology.

PROPOSITION 1.5. Let Ka converge to K in P(S) where S is a
compact semilattice. If each Ka is a compact topological subsemί-
lattice of S such that bbr (Ka) ^ n, then K is also a compact sub-
semilattice and bbr (K) ^ n. Hence the collection of compact sub-
semilattices of bounded breadth less than or equal to n is a closed
subset of P(S).

Proof. It is known that P(S) endowed with the operation AB~
{abiaeA, beB} is a compact topological semigroup [4]. Since Ka

converges to K, and KaKa — Ka for each a, by continuity KK = K,
i.e., if is a subsemilattice.

Suppose bbr (K) > n. Then there exists a meet-irredundant set
{Vit •> Vn+i} °f distinct elements in K and a peK such that yΊ ̂  p
for 1 ̂  j <! w + 1. By Proposition 1.3 there exist open sets
U19 , £7"Λ+1 with yό e ZĴ  for all j such that if a point is chosen
from each Uίf the set of elements obtained is meet-irredundant.
Pick by continuity of multiplication an open set V, peV, and open
sets Vu , Vn+ί, Vi e Vs for 1 ̂  j ^ n + 1, such that VVά c J7f.
By the definition of the Vietoris topology, there exists Ka such that
KaΓ\V Φ 0 and Ka Π Vs Φ 0 ΐov 1 ̂  j ^ n + 1. Choose q e KaC\ V
and Wj eKaΓ\ Vs. Then z5 = gtί y 6 iΓα Π ί/y for i = 1, , n + 1.
Now {#!, •••, zn+1} is a meet-irredundant set and it is bounded in Ka

by q. This is in contradiction to the hypothesis that bbr (Ka) ^ n.

PROPOSITION 1.6. Let S be a compact topological semilattice.
Then {J s: seS} is a closed subset of P(S).

Proof. The set of all singletons {{s}:seS} is homeomorphic to
S and hence a compact subset of P(S). Since J s = Ss, we have
that {Js:seS} is simply a translate of the compact set of single-
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tons in the topological semigroup P(S), and hence is compact.

A subset A of a topological space X is said to be locally closed
if A is the intersection of an open set and a closed set. Equivalent-
ly A is locally closed if it is open in its closure.

PROPOSITION 1.7. Let S be a topological semilattice of finite
breadth. Then any dense filter in S is open. Hence every filter
in S is locally closed.

Proof. We first assume S has an identity. Let F be a dense
filter in S. If 1 is not in the interior of F, then there exists a net
xa in the ideal I = S\F converging to 1. Since for any y e S, yxa e 1
and yxa converges to yl = y, I is dense in S. Hence by Proposi-
tions 1.1 and 1.2, br (F)<br(S). But by Corollary 1.4 br (F) = br (S).
Hence it must be the case that 1 is in the interior of F.

We now drop the assumption that S has an identity and let F
be a dense filter in S. If x e F is not in the interior of F, then
there exists a net xa in the complement of F converging to x. Then
also the net ya = xxa is not in F and converges to x.

Since F is a filter and xeF, xF — \ x Π F. Since F is dense in
S, xF is dense in xS = | x. Hence \ x fΊ F is a dense filter in the
subsemilattice \ x which has x for an identity. Hence by the first
part of the proof x is in the interior of \ x Π F in \x. But the net
ya converges to x in J x and is not in J x (Ί F. This contradiction
implies that x must have been in the interior of F in S. Hence F
is open.

Since any filter in S is a dense filter in its closure, the last
statement of the proposition follows from what has just been proved.

We conclude this section with some remarks about compact 0-
dimensional semilattices and discrete semilattices. Let S be the
category of discrete semilattice monoids and identity preserving
semilattice morphisms, and Z the category of compact 0-dimensional
semilattice monoids and continuous identity preserving semilattice
morphisms. Then, clearly 2 = {0, 1}, the unique two point semilat-
tice, is both an S-object and a Z-object. Moreover, as is described
at great length in [3], S and Z are dual categories under the
functors D:S-+Z°* and E:Z"~+S given by D(S) = S(Sf2)( = §)
and E(T) = Z(T, 2)(=f), and their obvious extension to the mor-
phisms. Thus, for any Z-object T, the morphisms Z(T, 2) separate
the points, and, in fact, T cz f.

DEFINITION 1.8. If TeZ, then keT is a local minimum in T
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if ! & is open in T. K(T) denotes the set of all local minima of
the semilattice T.

If / : T —* 2 is a Z-morphism then, f~\ϊ) is a clopen subsemilattice
of T, and so it has a minimum, k. Moreover, since f~ι{l) is a filter,
\k •= f~ι{l). Thus, / = %,£, the characteristic function of \k. Clearly,
χ]keZ(T, 2) for any keK(T), and s o f = {χ,k: keK(T)}. Moreover,
if klf k2eK(T), then χ]kl χ]k2e f, and X^-X^X^, where &3 = k,Vk2.
Thus (if(T), V) is a semilattice with 0 as identity, and this semi-
lattice is isomophic to T.

Conversely, if S e S, then clearly χls e S for each seS. However,
for 8lf s2 e S, sx V s2 may not be defined in S. Thus, there are more
semicharacters in S than just those generated by some s e S . How-
ever, if feS, then f~ι{l) is a filter on S, and for f,geS,f'g = χF,
where J P = f~ι{l) n ^"'(l). Thus, if (J^ίS), Π) is the semilattice of
all filters on S under intersection, then (^(S), Π) — S (algebraically),
and so we topologize J^iS) with the topology from §Q2S. There-
fore, if SeS, we can refer to S as the filter semilattice on S.

If S is a compact 0-dimensional semilattice, then S1, the semi-
lattice S with an identity adjoined as an isolated point, is clearly
a Z-object. Similarly, if S is a discrete semilattice, then S1 e S.
Moreover, for a semilattice S (discrete or compact 0-dimensional)
S1 — S U {%{i}}, so the structure of S1 is completely determined by
that of S.

2. Locally compact semilattices with finite breadth. In this
section, S is a locally compact semilattice with finite breadth, and
M(S) is the Banach algebra of all bounded Borel measures on S under
convolution. We will show that for every complex homomorphism h
of M(S), there is a filter FczS such that h(μ) = μ(F) for all μ e M(S).
Recall that a semicharacter of a semigroup is a homomorphism of
the semigroup into the unit disk in C under multiplication. Since
the semicharacters of S are precisely the characteristic functions of
the filters in S, we will have shown that every homomorphism of
M(S) is given by integration against a semicharacter.

We begin with a simple measure-theoretic lemma.

LEMMA 2.1. Let ^~ he a family of Borel sets on the locally
compact space X. Let μ be a positive bounded Borel measure on
X. Then μ = μ0 + Σ~=1 μn, where μo(F) = 0 for all F G ^ and
each μn(n Ξ> 1) is concentrated on some Fn e J^. Moreover, μ0, μlf

μ2j are pairwise mutually singular positive bounded Borel
measures. Finally, μ0 and μ — μ0 are uniquely determined.

Proof. Let I = sup {μ(F) | Fe^"}; then I < oo. Choose F,e
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Let μί = μ\F1 and vx =μ\F\. Let ϊ1 = sup{v1(F)|ί7e
For each n > 1 choose 2^ e ^ 9 ^ ( ί 7 , ) ^ 1/2 ^_x. Let μn =

F n and vΛ = v ^ | F°n. Let ίΛ = sup {vn(F) \ FeJ^}. This defines
inductively the sequences {μn}, {vn}, and {ln}. Note μ ^ J^ 2̂  v2 Ξ>
•-^vn^ vn+ί ^ ^ 0 and in fact μ = vN + Σ»=i i"» f o r a 1 1 #• We
also have I ^ ^ ^ Z2 Ξ> . . ;> ln :> iΛ+1 ^ for all w. Note that the
μn are pairwise mutually singular, since if m < n, μn<^vm_L vn.
Now the μn are mutually singular and dominated by μ9 so Σϊ^ii"*
exists and is dominated by /*. Set μQ = μ — Σn=i Ân Clearly μo^vN

for all iSΓ, and so for each FeJ?~, μo(F) ^ ^(i^7) ^ ^ ^ 2^(F^+1) =
+i|| —0 as N~+oo since ΣΓ=i lli".ll = I I Σ ϊ U A J K °° Thus
= 0 for all Fe*^~, and clearly each μΛ is concentrated on Fn.

It remains to check the uniqueness. Let L be the closed linear
span of all bounded Borel measures concentrated on some element
of &~. Clearly L is an L-subspace of M(X) in the sense of [10],
and so by the Lebesgue decomposition theorem M(S) = L 0 L1,
where LL — [η \ η ± v for all veL). Since μoeLL and μ — μoeL,
the uniqueness follows.

We now consider a compact semilattice S.

PROPOSITION 2.2. Let S be a compact semilattice, and let ά?"
be a family of compact subsets of S such that J?~" is a closed subset
of P(S). If μ is a probability measure on S such that μ(F) = 0
for all Fe^y then there exists a metric quotient f:S—*S' ofS
such that

μ{fΛf{F))) - 0 for all F e ^ .

Proof. Let ε > 0. Suppose for each neighborhood <%f of the
diagonal J c S x S , there exists f ^ e ^ such that μ(^[Ff/])^ε
where

^[A] = {beS:(b, a)e%S for some aeA}.

Since J^ is closed and hence compact in P(S), some subnet Fa of
the net { F / . i c interior (f?)} converges to FeJ^. Since μ{F) = 0,
by outer regularity there exists an entourage <Zf (i.e., a neighbor-
hood of the diagonal) such that μ(^[F]) < ε . Pick an entourage
T such that T^Ta^f and T is symmetric. Since Fa—>F, there
exists a β such that Fβ c T[F] and μ(T[Fβ]) ^ ε. Then

ε ^ μ(T[Fβ]) ^ μ{ToT[F}) ^ μ(^[F]) < ε ,

a contradiction. Hence there exists an entourage ^ such that
< ε for all
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Now using the uniform continuity of multiplication on S, we
choose inductively for each n a compact entourage %fn satisfying

(1) M ^ c ^ f f l (products taken coordinatewise),
( 2 ) ^ = ^~\
( 3 ) μ(f/n(F)) < 1/n for all F e ^ ,
(4) ^ o ^ c ^ . , .
It is now standard that p = Π {^n: neω} is a closed congruence

on S (see e.g. [4], Proposition 8.6, p. 49) and S' = S/p is metrizable.
That μ{f~\f{F))) = 0 for all Fe^ follows easily from property (3).

PROPOSITION 2.3. Let S be a compact semilattice of finite
breadth. Suppose h is a complex homomorphism on M(S) which
annihilates the discrete measures. Then h = 0.

Proof. Clearly it suffices to show h(μ) = 0 for every probability
measure μ. Let % = bbr(S). We argue by induction on n, and
clearly it holds for n = 0. We show that if the proposition is valid
for bbr(S) < n, it is true for bbr(S) = n. Let μ be a probability
measure on S. Let J^ denote the collection of principal ideals \ s,
seS, let ^l denote the collection of compact subsemilattices of
bbr^n- 1, and let j r = j^ΓU J^Γ. By 2.1, μ = μQ + Σ?U μk where
ô annihilates every member of ^ and each μk9 k ^ 1, is concentrated

on some member of ^ .
If μfc is concentrated on some member of ^ , our inductive

hypothesis gives h(μk) = 0. If μk is concentrated on J, xk, then
μk = Λ*^Λ (the unit point mass at ajA), so h(μk) — h(μk*δXk) = M f̂c)
0 = 0. Thus we need only show that h(μ0) = 0, and so we assume
without loss of generality that μ annihilates every member of J^.

By 2.1 we can write the convolution power μn+2 — v0 + vx where
v0 annihilates every member of J^ and vί lives on a countable union
of members of ^ T

By Propositions 1.5 and 1.6 ^ 7 , j^l and hence Jf are closed in
P(S). Hence by 2.2 there are closed congruences p1 and p2 on S
such that Si = S/pι and S2 = S/p2 are metrizable semilattices and
μ(fΛUF))) - 0 for all F e ^ , ^(/^(/.(F))) = 0 for all i ^ e ^ ,
where Λ: S -> St and /2: S -> S2. Let p = ^ n ft, and /: S -> S' = S/p.

Since S' embeds as a subdirect product of S1 xS 2 , S' is metri-
zable. Furthermore since p c ft and ^ c ft, μif^ifiF))) = 0 for all
F e ^ and ^(/"'(/(-F))) = ° f ^ r all .FeJ^"\

Choose a countable dense set y c S ' ; we have ί' = Ufe 1 Vk is
a dense Borel ideal of Sf. We have for τ/eS' and the induced
measure f(μ) on S' that

/(i")(l ») = KΓ'il V)) - ^/^(/( l x)) = 0 where /(a?) - » .
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Similarly /(i>0)Utf) = 0. Hence f(μ)(Γ) = Q = f(vo)(Γ). Thus I=f~V')
is a Borel ideal of S such that μ(I) = f(β)(Γ) = 0 = f(vQ)(Γ) = vo(I).
Hence μ = μ \ (S\I) and vo = vo\ (S\I).

Let R = S\J. If Γ is a compact subsemilattice of S contained
in R, we claim μ(T) = 0.

Note first of all that f(T) = f(f~\f{T)) Π /*). One contain-
ment is obvious. Conversely let # = f(t)ef(T) where £e T. Since
I' = /(/) is dense in S', there exists a net {#«} c /' converging to
y in S'. Pick # α e l such that f(xa) = ya. By compactness some
subnet of xa converges to cue I*. By continuity f(xa) converges to
/(«) = y. Hence a; 6 f-\f{T)) Π J* and so y ef(f-\f(T)) Π /*).

Now f~%f{T)) Π /* = P is a subsemilattice of S contained in
J*\/ (since T Π J = 0) . By Proposition 1.2 bbr (P) ^ n - 1. Hence
P e ^ , and thus μ(P) = 0. Hence by the way S' was chosen
μ{fΛf(P))) = o. But ΓWP)) = f~ιf(fΛf{T)) n I*) - tιf{T)^ T.
Hence μ(T) = 0. Thus the claim is completed. Note in particular
if xeS\I, then μ{\ x) = 0.

Now we claim μn+2(R) = 0. In fact, for 1 ̂  i ^ w + 2, let 2^ =
{(»i, , *»+2) e i?%+21 a ^ B i -^ a?Λ+2 6 R}, and let i ^ ^ ί ^ , , xn+1) e
J B ^ 1 ] ^ ! - #w + 1eiϋ}. (Here ^ means a?< is to be omitted.) Then using
the Fubini Theorem we have

(μ X X μ)(Et) = j s n + 2 Z ^ ( » » •» » + « ) ^ X X ^)(»i,

= ! ί Z^(»i, - , Xn+*)dμ(x%)d{μ X X ^)(a?lf . , xi9

= \ \ Z^(»i, , xn x x

= I μ{\ x, x t x n + 2 ) d ( μ x x / ^ K ^ , • • • , £ „ , α?Λ + 2) = 0 .
JF

Since bbr(S) = n9 br(S) ^ w + 1 and so {(x19 , α?n+1) e i2ίl+2|α?1 α;%+2

\j7SEt. Thus μn+2(R) = (μx - x/^)(te, ,a?n+ί) e JK-^I^. xn+ι e
(μx x μ X U S ί E'ί) = 0. So μn+2 is concentrated on J. But vo(/) = 0
and so μn+2 = ̂  i.e., j«%+2 lives on a countable union of elements of

It follows that &(μw+2) = 0, whence h(μ) = 0.

PROPOSITION 2.4. Let S be a locally compact semίlattice of finite
breadth and suppose h is a complex homomorphism of M(S) which
annihilates the discrete measures. Then h = 0.

Proof. We assume without loss of generality that μ is a prob-
ability measure on S, and show h(μ) = 0. Let ε > 0, and choose a
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compact set KaS such that μ(S\K) < ε. If n is the breadth of S, Kn

is a compact subsemilattice of S and μ(S\Kn) < ε. By 2.3, since h
annihilates every discrete measure in M(Kn), h(μ\Kn) = Q. So\h(μ)\ ==
\h(μ\S\Kn)\ g \\μ\S\Kn\\ < ε. Since ε > 0 is arbitrary, h{μ) - 0.

THEOREM 2.5. Let S he a locally compact semilattice of finite
breadth. Let h e AM(S). Let Fh = {s e S \ h(δs) = 1}. Then Fh is a
locally closed (hence Borel) filter, and for all μeM(S), h{μ) — μ{Fh).

Proof. Clearly Fh is a filter. By 1.7, Fh is locally closed, and
hence Borel. We observe first that if μ e M(S), h(μ) = h(μ \ Fh).
Let Ih = S\Fh, and let Kalh be an arbitrary compact subsemilattice.
Then h annihilates every discrete measure living on K (since for
x 6 K, h(dx) = 0) and so by 2.3, h(μ j K) = 0. Using the regularity
of μ we see that h(μ \ Ih) = 0. Thus h(μ) = λ(^ | ί7^.

Now let ε > 0 and assume without loss of generality that μ is
positive. Choose K a compact subset of Fh such that μ(Fh\K) <ε.
Then if n = hr(S), Kn is a compact subsemilattice of Fh and
μiFh\K*)<ε. Let fc= Λ P . Then fc e iΓ^ and h(μ\Kn) = k(δk)h(μ\K*) =
h(δk*μ\K*) - h(μ(K*)δk) - μ(K")h(δk) = M-^%). Hence

^ 2μ(Fh\Kn) < 2ε. Since ε > 0 is arbitrary, we have h(μ) =

If >S is a locally compact semilattice of finite breadth, then so
is S1. Moreover, for any locally compact semigroup S, MiS1) ~
M(S)®C, and so JMiS1) ~ ΔM{S) U {0}, where 0 is the 0-homomor-
phism of M(S), and AM(Sι) is the one-point compactification of ΔM{S).
Thus, if we determine the structure of AMiS1), we have also deter-
mined the structure of JM(S), and conversely. The difference is
that AM(Sι) is always a semigroup [10], whereas this is not true if
S has no identity. Thus, throughout the rest of this section, we
assume S is a locally compact semilattice with identity having finite
breadth.

If S is such a semilattice, then according to Theorem 2.5, each
complex homomorphism h of M(S) is given by integration over
some filter FQS. Thus, AM(S) is *β~(S), the set of all filters on
S. Moreover, it is clear that the product of two homomorphisms
of M(S) corresponds to the intersection of their associated filters.
Hence, algebraically, AM(S) cz (^ΠΛ>), Π). NOW, AM(S) is a semi-
topological semilattice in the weak topology [10]. But AM(S) is
also compact and a semilattice, and so AM(S) is a compact topolo-
gical semilattice in the weak topology [8].

From our discussion at the end of § 1, we know that (^"(S), Π) —
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Sd is a compact O-dimensional topological semilattice, where Sd is
the semilattice S with the discrete topology. But, the topology on
a compact semilattice is uniquely determined by the algebraic
structure [7]. Hence, AM(S) - Sd.

One of the key results in Taylor's work is the determination
that, for any convolution measure algebra M, the so-called critical
points in AM carry the cohomology of AM. A critical point is an
element x e AM such that f x is open and x ^ 0. For the semilattice
AM(S), a critical point is what we referred to in § 1 as a local
minimum. Hence the critical points of AM(S) are K(AM(S)) =
K(Sd) = K(^~(S), n). However, the critical points of J^iS) are
precisely the principal filters on S, i.e., the filters Fez S of the
form F = ί s for some seS [3]. Hence, K(AM(S)) = {h: h'^l) = ] s
for some seS} is the set of critical points of AM(S). Identifying
s with the principal filter f s we have a natural correspondence be-
tween S and the critical points of AM.

For a semisimple convolution measure algebra M, Taylor defines
the structure semigroup T of M to be the unique compact abelian
monoid T such that there is an isometric L-isomorphism /: M —>M(T)
such that f(M) is weak *-dense in M(T), each complex homomor-
phism on M is given by integration against some semicharacter
he T, and T separates the points of T. In general, knowing the
algebraic semigroup f does not determine the semigroup T uniquely.
If we return now to the situation where M = M(S) for some locally
compact semilattice S with identity and having finite breadth, then
AM(S) is a semilattice, and Taylor's work shows that the structure
semigroup for M(S) has the discrete semigroup AM(S) as its semi-
lattice of semicharacters. Since the structure semigroup T for M(S)
always has enough semicharacters to separate points and since in
this case each semicharacter is idempotent, it follows that T must
be idempotent and hence a semilattice. Since the semicharacters of
a semilattice have range {0, 1}, T can be embedded in a product of
the two-point semilattice and hence must be totally disconnected.
According to the duality between S and Z discussed in § 1, we must

then have that T ~ AM(S)d, where again AM(S)d is the discrete
semilattice AM(S). But, we know AM(S) ~ Sdf so we conclude

T ^ (Sd)d. We summarize our results in the following:

THEOREM 2.6. Let S be a compact semilattice with identity and
having finite breadth. Then AM(S) ~Sd is a compact ̂ -dimensional
semilattice, and the critical points of AM(S) are precisely those
complex homomorphisms h of M(S) of the form h = χu for some

seS. Moreover, the structure semilattice of M(S) is (Sd)d.
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As we remarked above, Taylor shows that H*(ΔM(S)) is the
direct sum of the cohomology of the maximal subgroups H(e) as e
ranges over the critical points of ΔM(S). However, since ΔM{S) is
a semilattice, H(e) = {e} for all e e ΔM(S), so H*(ΔM(S))~®seSd H({s}),
where Sd represents the critical points of ΔM(S). We draw two
conclusions.

First, the Shilov Idempotent Theorem states that the idempo-
tents in M(S) are in one-to-one correspondence with H°(ΔM(S)) ~
Q)seSdH°({s}). Hence, since the correspondence is given by the
Gelfand transform, so that σ8 ~ H°({s})Vs e S, we conclude that
μeM(S) is idempotent if and only if μ = Σ?=i#jAjfc f° r some
819 , sneS, where (Vs e S) Σ * ^ ak = ji (this latter follows from

the fact that μ{\ s) e {0, 1} as μ(\ s) = h(μ) where h = χls e ΔM(S)).
Our second conclusion is as follows. Since ΔM(S) is 0-dimen-

sional, Hn(ΔM(S)) — 0 for n Ξ> 1, so that, according to the Arens-
Royden theorem, the group of invertible elements in M(S) is pre-
cisely the group of exponential measures.

3* P-algebras* In [9], Newman defines a P-algebra to be a
semisimple convolution measure algebra M such that whenever μ is
positive element of M and h e ΔM, the h(μ) ^ 0. He shows (Theorem
1 of [9]) that these are precisely the semisimple convolution measure
algebras whose structure semigroups are in fact semilattices. It is
easily checked that the equivalence (1) <==> (2) <=> (3) of Theorem 1 of
[9] is true without assuming semisimplicity, so we shall define a P-
algebra to be a convolution measure algebra M such that h{μ) ^ 0
for all h e ΔM and all μeM such that μ^O. Thus we have shown
(Theorem 2.5) that if S is a locally compact semilattice with finite
breadth, then M(S) is a P-algebra. We shall see that this is true
in a somewhat more general setting, but first we give a general
condition which insures that M(S) is a semisimple convolution
measure algebra.

DEFINITION 3.1. A locally compact semilattice is said to be
Lawson if it has a neighborhood basis of compact subsemilattices.
Equivalently, S is Lawson if the semilattice homomorphisms into
([0, 1], Λ) separate the points of S. (See [6].)

THEOREM 3.2. // S is Lawson, then M(S) is semisimple.

Proof. Let I = ([0, 1], Λ). Baartz showed in [1] that if n <c°,
then M(In) is semisimple. Now if a is any cardinal number, M(Ia) —
proj lim%<0O M(In), where the maps M(Ia) —> M(In) are quotient maps,
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and where a measure μ e M(Ia) is zero iff its image in every M(In)
is zero. Since the complex homomorphisms of each M(In) separate
the points, it follows that the same is true of M(Ia).

Now clearly if S is a Lawson semilattice there is a continuous,
injective semilattice morphism /: S —> Ia for some cardinal a. Every
nonzero measure μ in M(S) lives on a σ compact set Tμf and f\Tμ—>
f{Tμ) is a Borel isomorphism. In particular f(μ) Φ 0. So /: M(S)—>
M(Ia) is an injection, and it follows that M(S) is semisimple.

COROLLARY 3.3. If S is a locally compact semilattice with
finite breadth, then M(S) is a semisimple P-algebra.

Proof. Immediate from 2.5, 3.2, and the observation that S
must be Lawson.

We can actually assert that M(S) is a P-algebra for somewhat
more general S.

THEOREM 3.4. Let S be a locally compact semilattice. Suppose
every μeM(S) is concentrated on a Borel set which is the countable
union of compact subsemilattices of finite breadth. Then M(S) is
a P-algebra.

Note. We are not asserting here that M(S) is semisimple.

Proof. Straightforward from 2.5.

Here are two examples of compact finite breadth semilattices
which cannot be imbedded in finite dimensional cubes and are thus
not dealt with by Newman's methods, and a third to show that
semilattices with nonfinite breadth, but still satisfying the hypo-
theses of Theorem 3.4, do exist.

EXAMPLE 3.5 (cf. Exercise 1.12 of [2]). Let S be the Rees
quotient P/(I x {0} U {0} x I) . S has breadth 2.

EXAMPLE 3.6. Let S = {(xn) e I°° | xn — 0 for all but at most one
n). Then S has breadth 2, but cannot be imbedded in a finite-
dimensional cube In. In fact, S contains an infinite set {xn} of ele-
ments which annihilate each other pair-wise, and for any finite n, it
is not difficult to see that no such infinite sets exist in /*, (no matter
what element of In is the image of the 0 in S).

EXAMPLE 3.7. For each n ^ 1, let In denote the %-fold product
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of the semilattice ([0, 1], Λ) with itself. Let S, = \JnίίlI
n, and let

S = SJR, where R is the relation on S1 which identifies the identity
of I* with the zero of In+1 for each n — 1, 2, . Then S is a
locally compact semilattice satisfying the hypotheses of Theorem
3.4, but br(S) = oo. If S1 denotes S with an identity added as the
one point compactification of S, then S is a compact semilattice with
identity satisfying the hypotheses of 3.4 which fails to have finite
breadth.

We remark that the investigations of this paper can be carried
out in a more general setting. Let S be a locally compact semilat-
tice, and let N(S) be the norm closure in M(S) of all measures
with support a subset of a compact finite breadth subsemilattice of
S. Then N(S) is a norm-closed L-subalgebra of M(S) which consists
precisely of all measures in M(S) which vanish outside of a counta-
ble union of compact semilattices with finite breadth.

THEOREM 3.8. Let S be a locally compact semilattice, let
heJN(S), and let Fh = {s eS: h(ds) = 1}. Then for all μeN(S),
h(μ) = μ(Fh Π K) where K is any countable union of compact sub-
semilattices of finite breadth such that μ vanishes outside of K.

Proof. Let μeN(S) which vanishes outside of K=\J~=ιKj
where each K3- is a compact subsemilattice of finite breadth. We
may assume the Kά tower up (by defining a new sequence with wth
element K^K2- -K^, if necessary). Let μj — μ\Kj. Then {μά}
norm converges to μ. By Theorem 2.5 we have h(μj) = μ(Fh Π K5)
for each j . Hence h(μ) = lim h(μd) = lim μ(Fh Π JQ = μ(Fh Π K).

Using this theorem we deduce as before that Λ(N(S)) = Sd and

the structure semigroup T of N(S) is (Sd)d. Other analogous remarks
that were made about M(S) before can now be made about N(S).

In general any filter F o n a locally compact semilattice S gives
rise to a homomorphism hFeJ(M(S)) defined by hF(μ) is the inner
μ measure of F. Hence Sd always sits in J(M{S)). It is conjec-
tural that Sd is 4M(S) if and only if M(S) = N(S). (We have
shown the " if " direction.)
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