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Let A be a weak-*Dirichlet algebra of L°°(m). For 0 <
V ^ °°> a closed subspace M of Lp(m) is called invariant if
feM and ge A imply that fgeM. Let B°° be a weak-*closed
subalgebra of L°°(m) which contains A such that B°°MQ M
for an invariant subspace M. The main result of this paper
is a characterization of the left continuous invariant sub-
spaces for B°°, which is a natural generalization of simply
invariant subspaces. Applying this result with B°° = H°°(m)
(or B°° = L°°(m)), the simply (or doubly) invariant subspace
theorem follows. Moreover this result characterizes also the
invariant subspaces which are neither simply nor doubly
invariant. Merrill and Lai characterized some special invar-
iant subspaces of this kind.

1* Introduction* Recall that by definition a weak-*Dirichlet

algebra, which was introduced by Srinivasan and Wang [6], is an
algebra A of essentially bounded measurable functions on a probability
measure space (X, J < m) such that (i) the constant functions lie in
A; (ii) A + A is weak-*dense in L°°(m) (the bar denotes conjugation,
here and always); (iii) for all / and g in A,

I fgdm = (\ fdm)(\ gdmλ .

The abstract Hardy spaces H*(m), 0 < p <£ oo 9 associated with A are
defined as follows. For 0 < p < oo, Hp(m) is the Lp(m)-closure of A,
while ίjΓ°°(m) is defined to the weak~*closure of A in L°°(m). For

Let B™ be a weak-*closed subalgebra of L^im) which contains
A and let B™ = \feB°°: \ fdm = θ[ and let l£ be a maximum weak-
*closed ideal of B°° in JB0°% of which in Lemma 2 we shall show the
existence. If B°° = H°°(m) or L°°(m), we know that -Bo°° = IS = -H?
or IS = {0} respectively. By [6, p. 226] and the following Lemma 1,
it follows that I? £ H™.

Suppose 0 < p <Ξ s ^ co. For any subset MaLs(m), denote by
[M]p the L2)(m)-closure of Λf (weak-*closure for p — co). For any
measurable subset E of X, the function χ^ is the characteristic
function of E. If / e Lp(m), write ϋ7/ for the support set of / and
write χf for the characteristic function of Ef.

We use the following crucial result. In the proof, the simply
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invariant subspace theorem for Lp(m) [6, p. 227] is not used. For
weak-*Dirichlet algebras it has not been published.

LEMMA 1 (Gamelin and Lumer). Suppose 0 < p < s S °°. If the
set Ms is a closed invariant suhspace of Ls(m), then

Ms = [M.]P Π Ls(m) .

If the set Mp is a closed invariant subspace of Lp(m), then

Mp = [Mp n L'(m)]p .

Proof. The proof is essentially that of Gamelin and Lumer [1,
p. 131]. If v is a nonnegative function in U(m) and

I fvdm — \ fdm , f eA ,
Jx JX

then v = 1 a.e. By [3; Theorem 4] H°°(m) is a logmodular algebra on
the maximal ideal space of L°°(m), i.e., that each real-valued function
in L°°(m) is the logarithm of the modulus of an invertible function
in the algebra H°°(m). There exists a Radon measure m on the
maximal ideal space Y of L°°(m) such that

ί fdm = ( fdm
Jx Jr

for all / e L°°(m) where / is the Gelfand transform of /. Now the
measure m is a unique representing measure for the multiplicative

functional m on H°°(m) and H°°(m) is weak-*closed in L°°(m). By
[1, p. 131] this proves lemma.

For weak-*Dirichlet algebras, the following two invariant subspace
theorems are known.

(a) If the set M is a closed invariant subspace of Lp(m) which
is doubly invariant, i.e., if feM and gβA imply that

fgeM and fgeM,

then M = XELp(m) for some measurable subset E of X.
(b) If the set M is a closed invariant subspace of Lp(m) which

is simply invariant, i.e., if

where Ao = ί / e A : l fdm = θl, then M = qHp(m) for \q\ = 1 a.e.
v Jx )

In general there exist many invariant subspaces which are neither
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doubly nor simply invariant. Consider any weak-*closed algebra B°°
such that H°°(m) £ J5°° 5 L°°(m) if H°°(m) is not a maximal weak-
closed subalgebra, then χEq[B™]P for every χE in BΓ is an invariant
subspace which is not doubly or simply invarian.t We characterize
such invariant subspaces under a condition which is natural as a
generalization of simply invariant subspaces.

It is a consequence of the definition of a weak-*Dirichlet algebra

that if / is in H°°(m) and ( fdm = 0 for all χE in H°°(m), then
f2dm = 0.

X

DEFINITION 1. Suppose B°° is a weak-*closed subalgebra of L^im)
which contains A. We call the measure m quasi-multiplicative on

B°° if [ pdm = 0 for every / in B°° such that \ fdm = 0 for all χE

in B°°.

THEOREM. Fix p in range 0 < p ^ ©o. Lei the set M be a
closed invariant subspace of Lp(m) such that B°°M C M and

for every nonzero XE in B°° so that χEM Φ {0}. Let B°° be a weak-
* closed subalgebra of L°°(m) which contains A and on which the
measure m is quasi-multiplicative. Then M has the form

for some unimodular function q and some χEQ in J5°°, where Bp =

This theorem contains all known results of invariant subspaces
(doubly, simply and sesqui-invariant [4]) in the context of a weak-
*Dirichlet algebra.

2* Decomposition* Let A be a weak-*Dirichlet algebra of L°°(m).
H™ is a maximal weak-*closed ideal of H°°(m) and it is clear that
H\m) 0 HI = L2(m).

LEMMA 2. Suppose B°° is any weak-*closed subalgebra of L°°(m)
which contains A. Then, for 1 ^ p ^ °°,

(1) There exists a maximum weak-*closed ideal 1% of B°° which
is contained in B™.

(2) Let 1? = [It\p. Then

H = | / e Lp(m): [ fgdm = 0 for all g e B°°J .
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( 3 ) Let Bp = [B°°]p. Then

Bp = \feLp(m): [ fgdm = 0 for all gel^l .
( Jx

( 4 ) 7?°° + Iβ is weak-*dense in L°°(m) and in particular B2 <
7 | - L2(m).

( 5 ) IB is contained in H™.

Proof. Suppose IB = {/ 6 L°°(m): I fgdm = 0 for all ^ e ΰ α

Then since H2@ Hf = L2(m), it follows that 7* c i70°° c -Bo°°. This
proves (5). It is trivial that 7j is a weak~*closed ideal of 7?°°. Let
F be any weak-*closed ideal of B* which is contained in 7?J°. Then
since J3°°F £ F and F c 5 0

M , the set F £ 7̂ ° and hence the weak-*closed
ideal /£ of 5°° is maximal in 50°°. This implies (1). For 1 <£ p < oo,
it is trivial that

7S £ Mp = 1/ e L^m): ί /gώm = 0 for all geB°
( Jx

Since both 7§ and Mp are the closed invariant subspaces of Lp(m)f

by the first half of Lemma 1, it follows that 7? = 7| Π L°°(m) and
by definition, 7j = Λί̂  ΓΊ L°°(m). Now by the second half of Lemma
1, it follows that Pβ = Λfp. This proves (2). Let

W1 = {/ G ^(m): J / ^ m = 0 for all

Then since 7? = 1/ e L°°(m): ( fgdm = 0 for all # e B1!, by the duality
relation, it follows that W1 = B1. For 1 < p g oo, by the first half
of Lemma 1, the assertion (3) is proved. If / in Lι(m) annihilate
B°° + TB, by (2) and (3), then fel^nB1. Since feB\ there exists
a sequence gn eB°° such that gn —»f in I/^m) a s w ^ ω , Hence, since
7? is a ideal of B°°, it follows that | / 1 2 e [7TO]1/2 c i71/2(m). | / ]2 = 0 a.e.
because every nonnegative H1/2(m) function is a constant [7]. Thus
/ = 0 a.e. This proves (4).

DEFINITION 2. Let the set M be a closed invariant subspace of
Lp(m) for 0 < p ^ oo. (i) M is called left continuous for B°° if E°°
is a weak-*closed subalgebra such that B°°M £ I f and A c β ° ° and

for every nonzero χEeB°° so that 1EM Φ {0}. (ii) M is called right
continuous for B°° if M is left continuous for B°° where

If = | / G χ E L s ( m ) : \ fgdm = 0 for all # e ,
I Jx
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and E is a support set of M and 1/p + 1/s = 1.
We shall show a decomposition theorem that any invariant subspace

of Lp(m) is a direct sum of a left continuous invariant subspace, a
right continuous invariant subspace and a remaining invariant sub-
space.

THEOREM 1. Suppose 0<p^ oo, the set M is an invariant
subspace of Lp(m) and B°° is a weak-*closed subalgebra such that
B°°M Q M and B°° z> A. Then

where Mt = χEiM(i - 0, 1, 2), χE. e B°°(i = 0, 1, 2) and χEiχEj = 0 as
i Φ j . M2 is left continuous for B°°, M1 is right continuous for B°°
which contains no left continuous invariant subspace of the from
χEM for χEeB°°, and Mo = [IBM0]P and Mi = [l£Mi-]99 where s is the
conjugate index to p. If the algebra B°° is fixed, then this decom-
position is unique.

Proof. If M is left continuous for B°°, let M2 = M. If M is
not left continuous for B°°, there exists at least one nonzero χE e B°°
and χEM £ [IBM]P. If χE and χF in B°° such that χEM £ [IBM]P and
χ^M £ [IBM]P, then it is easy to show that χEUF e JB°° and χ^UjP Λί £
[lSM\p. Let

α - sup {m(E): χEMeB~, χEM £ [EM],}

then we can show that there exists χKQ in B°° such that m(K0) = a
and χ X o M £ [/SΛίlp. The set χκ*M is left continuous for J5°° or trivial.
Suppose M2 = χ ĵΛf if χ ^ M ^ {0}, where ^ = Ko

c.
The set χXoilf coincides with [I^χKύM]p. Let £/ be the support

set of M and let K'o = Kof) E. Suppose

. = 0 f or all g e χKQM

where l/j> + 1/s = 1. Then (χKoM)L is a closed invariant subspace
of Ls(m) and B°°(X.KoM)L £ (χ^0Af J1. Just as in the first part of the
proof, we can show that there exists χFQ in B°° such that

where the set χFc(χKoM)L is left continuous for B°° and XFQ{XKQM)L =

[ β Z . o ί Z ^ ) 1 ! - Then

where the set χF°nκM is right continuous which contains no left
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continuous invariant subspace χ îkΓ for χE e B°° or trivial. Let Mt =
χElM if χElM Φ {0} and let AΓ0 = χEoM where E1 = Fξ n Kΰ and # 0 =
Fo n iΓ0. I t is clear that Λf0 = [i£Afo]p and Aft = [I?Λft]β. If the
algebra B°° is fixed, then this decomposition is unique. For if M —
XE'M + XE'M + χE'M is anotherde composition of M for B°°, it is absurd
that m(E'o n E,) > 0 or m(E'Q Π i^) > 0 since χ^ΛΓ = [l2χ^Λf]P and
{χE>MY - liSO^jilί)1].. Thus S o = Eό. Both χ^LM and χEM are right
continuous for B°° and they do not contain left continuous invariant
subspaces χEM for χE e JB°°. SO it is clear that E>t = JS?X. This proves
the uniqueness.

REMARK. In this theorem, suppose B°°(M) = {ge L°°(m): gM £ ikf}.
The remaining invariant subspace MQ has the properties such that
Af0 = [ ĵfjAΓol, and Mi- - [β(Jf,AG-]t with 1/p + 1/β = 1. Then for
every weak-*closed subalgebra B°° such that 5°°ikf0 Q Mo and 5°° D A,
Mo = [IBMQ]P and Mo

λ = [JϊΛίo1],. For suppose

then J9°° is a weak-*closed subalgebra and χFD°° = χFB°°(M) where F
is the support set of Mo. Let 2£ be a maximal weak-*closed ideal
of D°° in Z)J°. By (4) of Lemma 2 and Lemma 1, it follows that
XFID = ZFIS(JT) and hence Mo = [I%MO]P and M0

L = [ISMO

L]8. If JS°°ikίoSΛίo,
then B^^D00 and hence /S£l? by (2) of Lemma 2. Thus Mo = [I%MO]P

and Mi = [βAftl..
Helson and Lawdenslager [2] established that there exists an

invariant subspace M such that if the weak-*closed subalgebra B°*
contains A and B^MQM, then Λf = [I?Af]p and ikί1 = [I?Λί1]s with
1/p + 1/8 = 1.

3* Characterization* Let A be a weak-*Dirichlet algebra of
L°°(m). In this section, we shall characterize left continuous invariant
subspaces for any weak-*elosed subalgebra B°° which contains A and
on which the measure m is quasi-multiplicative. Then we can charac-
terize right continuous invariant subspace, too.

LEMMA 3. Suppose B°° is any weak-""closed subalgebra which
contains A and on which the measure m is quasi-multiplicative.
If v is a nonnegative function in B\ then (1) Vv e B\ (2) l/(v + ε) e
B1 for any ε > 0 and χv e B\

Proof is an easy consequence of Lemma 4 and Theorem 4 in § 5.
For \£?B\ = L\&) for some cr-algebra &.
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Now we shall show the main theorem.

THEOREM 2. Fix p in range 0 < p <; ©o. Suppose B°° is a
weak-*closed subalgebra of L°°(m) which contains A and on which
the measure m is quasi-multiplicative.

(1) The set M is a left continuous invariant subspace in Lp(m)
for B°° if and only if M has the form

M = χEqBp

where χE is a characteristic function in B°° and q is a unimodular
function. If M = χEq'Bp with a unimodular function q', then
χEq' = %EFq where F is a unimodular function and F, Fe B°°.

(2) The set M is a right continuous invariant subspace in
Lp(m) for B°° if and only if M has the form

M = χEq II

where χE is a characteristic function in B°° and q is a unimodular
function.

Proof. If the assertion (1) is shown, the assertion (2) follows
by (2) and (3) in Lemma 2. In the assertion (1), 'if part is easy.
For if M = χEqBp, then

XF[IBM]P = χFχEqIp

B £ χFχEqBp = χFM

for all χF e B°° and χFM Φ {0}. We shall show only Only if part.
By Lemma 1, it suffices to consider the case p — 2. For when 2 <
p <; oo, let M be a left continuous invariant subspace of Lp(m) and
let M2 = M Π L\m). Then M2 is a closed invariant subspace of L\m)
and it is left continuous by the second half of Lemma 1. Thus
M2 — χEqB2 and hence again by the second half of Lemma 1, M =
χEqBp. By the first half of Lemma 1, when 0 < p < 2, the proofs
are the same one as the above.

Let M be a left continuous invariant subspace in L\m) for B°°
and let R = MQ[IBM]2. Observe that for any feR.

" g\f\2dm = 0 (gels) .
JX

By (3) of Lemma 2, it follows that | / | 2 lies in B1 and hence by
Lemma 3, it follows that | / | lies in B2 and χfeB°°. Let E be the
support set of R, then there exists feR with Ef = E. Now just
as Merrill and Lai [4, Lemma 8], define
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Define qε(x) = f(x)/(\ f(x) | + ε) for any ε > 0. Then qε lies in R.
For since / is orthogonal to IβM and 1/(|/| + ε)eJ3°°, the function
/ is orthogonal to 1/(|/| + ε)I%M. Thus qε is orthogonal to Jjlf for
any ε > 0. Since qε e M, it follows that qε lies in B. Since qε —>
qχE a.e. as ε —•> 0 and (gε| < 1, it follows that χEqeR. Clearly
χEqB2 £ If as £°°lf C ikf and χEq e If.

Let g eMQχEqB\ Then # is orthogonal to X^B00. Also since
χ^g e R, we have χ£g is orthogonal to gl# C i£Λf. So χEqg is orthogonal
to B°° + J j in L\m), and hence is 0 a.e. by (4) of Lemma 2. But
\q\ = l a.e., so χ ^ = 0 a.e. If χEcg Φ 0, then

and χEc e B00. This contradicts M being left continuous. So χ,ECg = 0
a.e. and hence ^ = 0 a.e. Thus M = XEQB2.

lί M = χEq'Bv with a unimodular function gr, then the function
χEqqr and χ^g '̂ lie in B°°. Suppose F = χEqqr + χ£β.

This theorem contains all known results of invariant subspaces
in the context of a weak-*Dirichlet algebra as corollaries.

COROLLARY 1 (Wiener). For 0 < p <̂  °o, the set M is a doubly
invariant sub space in Lp(m) if and only if M has the form

M = χEL*(m) .

Proof. Since A + A is weak~*dense in L°°(m) and M is doubly
invariant, L^irrήM £ M. Since m is clearly quasi-multiplicative on
L°°(m)9 apply Theorem 2 with BTO = L^im).

COROLLARY 2 (Beurling [6, p. 244]). .For 0 < p <; oo, ίfee sβέ Λf
is α simply invariant subspace in Lp(m) if and only if M has
the form

M = qHp(m)

where q is a unimodular function.

Proof. Since m is multiplicative on H°°{m) by definition, apply
Theorem 2 with B°° = H°°(m).

COROLLARY 3 (Merrill and Lai [4]). Suppose there exists at least
one positive nonconstant function v in U{m) such that the measure
vdm is multiplicative on A. Then there exists a unimodular
function Z such that H™ — ZH°°(m). For 1 ̂  p ^ co, define
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P = {/ 6 H*(m): \znfdm = 0, n = 0, 1, 2, . . J

denote by Sfp the closure (in Lp(m)) of the polynomials in Z
and Z (for p — °°, the closure is taken in the weak-*topology). Let
M be a closed invariant subspace of Lp(m) such that M is not simply
or doubly invariant. Then we call M sesqui-invariant.

Fix p in range 1 <^ p <: °°. Let M be a closed sesqui-invariant
subspace of Lp(m) and let E be the support set of M. Let

B = j / e l n Ls(m): \ fgdm = 0 for all g e ΓM

where s is the conjugate index to p. Then E is the support set for
R if and only if M has the form

M =

where χE e J^f2 and q is a unimodular function.

Proof. Since M is sesqui-invariant, it follows that J°°M Q M by
[4, Lemma 2], where J°° is the weak-*closure of \J^=0Z

nH^{m). By
Theorem 5 in §5, m is quasi-multiplicative on J°°. Hence by the remark
below Theorem 4 in §5, J°° = £fj°° + /J, where ^T is a self adjoint
part of J°°. It is clear that I°° 2 17 and by the definition of Γ°,
and by [4, Lemma 1], it follows that H°°(m)Γ £ Γ and ZΓ c I°°.
So Γ is a weak-*closed ideal of J°° in JΓ and hence Γ = Iy. Since
H\m) = .^r72 + P, where £tf* is the L2-closure of the polynomials in
Z, it follows that J 2 = \£f?\ 0 P 2 [J^°° + I°°l» 3 ίί2(m). Since J°°
is the minimum weak-*closed subalgebra of L°°(m) which contains
H~{m) properly by [5, Theorem 1], J°° = £?? + Γ = [£f°° + Γ]2 Π
L°°(m). Hence by the second half of Lemma 1, it follows that
[^TL + P = [^°°]2 + i* and hence \&?\ = [^%. We can show
that \&f\ = [Jδ °̂°]2 = L\^) for some tf-algebra β and hence =ST =

Let £7 be the support set of B. Suppose there exists some
characteristic function χEo in J°° such that χEoM = XEo[I

00ilί]2) and
χEQM Φ {0}. If / is any function in L8(m)(l/p + 1/s = 1) such that

ί fgdm = 0 for all # e χE(iΓM ,

then

ί / ^ m = 0 for all g e χEoM .

Therefore if feR, then %EJ = 0 a.e. This contradicts the fact
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the support set of M conincides with that of R. Thus M is left
continuous for J°°. Now apply Theorem 2 with B°° = J°°, then
M = χEqJp where χE e J°° and q is a unimodular function. By
Lemma 4 in §5, Jp = ..Sf' + I*. It is clear that χ^e J00 if and only
if χEe^f\

In many examples which we know, the measure m is quasi-
multiplicative on every weak-*closed subalgebra which contains A.
So under such a condition we would like to know the form of all
invariant subspaces.

THEOREM 3. Suppose the measure m is quasi-multiplicative on
every weak-*closed subalgebra B°° which contains A. Suppose 0 <
p <L co, the set M is an invariant subspace and B°° = {/ e L°°(m):
fM £ M}. Then

where Mo = (1 - χEl - χEz)M, χElqJp

B = χElMf and χE2q2B
p = χE2M, χEi e

jB°°(i = 1, 2) and χElχE2 — 0 and qt(i — 1, 2) are unimodular functions.

Here X^qJl = fc^lS-Klp α^d ikf0 = [IBM0]P and Mt = [ W L
1/p + 1/s = 1. Moreover if IJ is left continuous for B°°, then

M = χ

Proof. By Theorem 1, we can get a decomposition of Jlί such
that M= Mo + Mx + M2. By Theorem 2, it follows that Mx = χ^xM =
XEJQJB where χ^ e JS00 and gi is a unimodular function and, M2 =
χS2ilf = χElq2B

v where χ 2̂ e J5°° and g2 is a unimodular function.
Moreover if IS is left continuous for J5°°, then J£ = χ^5°° by

Theorem 2. So χSlgJS = XEχElQιBp and hence χ^gJS is left continuous.
By the above decomposition, it follows that χEιqJp

B = {0}. Since Mo =
[βikfolp = g[χ^°°M0]p and B°°M0 S ikί0, it follows that qMQ Q Mo. As
in the remark below Theorem 1,

{/ 6 χFL~{m): fM0 £ Mo} - χFB~

where F is the support set of MQ. While since χ^χ^g ί B°° for every
χ x e 5°° and χ^χ^ ̂  0, if χ^ ̂  0,

{/ e χFL"(m): fM0 £ Mo} Φ χFB~ .

Thus Mo = {0} and hence M = χEzq2B
p.

4+ Remarks* Our definition of left continuous invariant sub-
spaces is natural as a generalization of simply invariant subspaces.
Because it is immedeate that if M is a simply invariant subspace,
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then ikf is a left continuous invariant subspace. Suppose M is a closed
invariant subspace of Lp(m). We call M a sesqui-invariant subspace
for B°° under the following condition: Let 5°° be a weak-*closed
subalgebra which contains A, let E be the support set of M and let

R = {/ e M n L8(m): ^ fgdm = 0 for all g e ISM}

where 1/p + 1/s = 1, then E is the support set for R. This definition
is a natural generalization of sesqui-invariant subspaces by Merrill
and Lai [4]. However it is somewhat unnatural. If M is a sesqui-
invariant subspace in L\m), even if the measure m is not quasi-
multiplicative on B°°, we can characterize it. For we can easily
show that if v is a nonnegative function in any weak-*closed sub-
algebra which contains A, then (1) WeB00, (2) l/(v + e)eBco for
any ε > 0 and (3) χv e B°°. Then we can show that M = XEQB1 just
as the proof of Theorem 2. But we can not characterize any sesqui-
invariant subspace for p Φ 1. If M is a sesqui-invariant subspace,
then it is clear that M is a left continuous invariant subspace.

5* Quasi-multiplicative* To our regrect, we have been unable
to prove the conjucture; Every left continuous invariant subspace
can be characterized. However we characterized left continuous
invariant subspaces for the weak-*closed subalgebra B°° on which
the measure m is quasi-multiplicative. In this section, we investigate
when the measure m is quasi-multiplicative.

Let B°° be any weak-*closed subalgebra of L°°(m) which contains
A and let £f£ be a self-adjoint part of B°°. Suppose

^5~ = J/ e B°°: \ fdm = 0 for all χE e £°°J ,

then J50°° 2 J^ 2 I? . If B°° = H°°(m) or B°° = L*(m), then J^ = Is.

LEMMA 4.

where 0 denotes algebraic direct sum. Moreover for 1 ^ p <

Proof. The set =5̂ °° is a weak-*closd subalgebra of B°° and hence
it is a commutative von Neumann algebra as an algebra of operators
on U(m). Let & be the σ-algebra of Borel subsets E of X for
which the characteristic functions χE lie in B°°. Then £?£* coincides
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the set of essentially bounded measurable functions LF{&) on a
probability measure space (X, ^ m) and [SfB°°]v = Lp(&) for 1 S
P < oo.

If feB™, then / defines a bounded linear functional on Z/(m)
which induces a bounded linear functional on Lx{0). Let

= \ vfdm
JX

for any v in Lϊ(0). Since U*{0) is a dual space of &(&), there
exists a function F in U°{&) such that

Jx h
vFdm

for all v in U{0\ By definition of ^ζ°°, f — F lies in ^ ° \ Hence
ΰ°° = ^5°° © w °̂°. To show the second assertion, as [1, Lemma 5],
it suffices to show that whenever / = u + F for tt6^°°, and Fe

G \l/3> f /

u\pdm) S
x /

([ \u\pdm\

sudm I s I qdm < 1

\ s(u + F)dm
JX

= sup

= sup

Thus Bp = \Ά*
Let the set M be a closed invariant subspace of Lp(m), let

and suppose XE^^1E[^B°M]P for every nonzero XEeB™ and
Then we can show that M = X F ^ 2 ' as in the proof of Theorem 2.
However we do not know whether %EBP 5 XE[-^B°°BP]P for every
nonzero χE e U00. We shall show that this is equivalent to the measure
m being quasi-multiplicative.

THEOREM 4. Let B°° be a weak-*closed subalgebra which contains
A. Then the following are evuivalent.

(1) The measure m is quasi-multiplicative on J3°°.

(2) For every real-valued function u in B2, there exist real-

valued functions un in B°° such that \ \u — un\
2dm —-> 0 as n —> co.

JX

( 3 ) <-J^β°° — IS

(4) ί ^ ς / /
( 5 ) χEB°° 5 XEI^B^B00]^ for every nonzero χE in B°°.

Proof. Suppose S = B2 Q 1%, then S is the self-ad joint part of
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B2 by (4) of Lemma 2. By Lemma 4

This shows that (2) ~ (3).

(1) => (3). The assertion (1) implies that /# e 2?" for every / and
g in Ŵ B°° and hence <̂ 5°° is orthogonal to ^°°. This is that B°° is
orthogonal to ^ξ°°. By (4) of Lemma 2, it follows that J^ = j£.

( 3 ) => ( 5 ). Since I? is a weak-*closed ideal of B°° and ^°° = ls,
for every nonzero χE in £°°, χ^°° ^ χ^I? =

( 5 ) => (4). By Lemma 1, we may assume χEB2 3
for every nonzero χE in B°°. Let J2 = B2 Q \^^B%, then for any
feR

\ = 0 ( g e Λ M ) .

By (3) of Lemma 2, it follows that 1/|2 lies in B1. Since \f\2eBι

annihilate ^°°, by Lemma 4, it follows that | /1 2 lies in \&?\ = U{^)
for some σ-algebra &. So | / | e δ 2 , 1/(|/| + ε)eB°° for any ε > 0
and χf e S00. As the proof of Theorem 2, we can show that B2 = #J32

for some unimodular function q in JS Π ^£°°. Since .STJB £ B, it
follows that the constant function 1 lies in R and hence B2 =
[cSfiΓ]* θ [*J^°°B2]29 and hence JS 0 0^ 0 0 £ ^°° by Lemma 4.

(4) => (1) is trivial.

Now by the above theorem, if the measure m is quasi-multipli-
cative on the weak-*closed subalgebra B°° which contains A, then
B°° or H°°(m) has the form

B00 = &Γ θ IB

or

where StfjΓ = Jϊ°°(m) n -2̂ °°.
We shall search for the weak-*closed subalgebra which contains

A and on which the measure m is quasi-multiplicative. jff°°(m) and
L°°(m) are typical such subalgebras.

THEOREM 5. Let B°° be a weak-*closed subalgebra which contains
A and let 1% = XEQB°° for some χE in B°° and some unimodular
function q. Suppose D°° is the weak-*closure of U^U (XEQY^ If the
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measure m is quasi-multiplication on B°°, then it is quasi-multi-
plicative on χFD°° + χFcLΓ{m) for some χF in D°°.

Proof. Let S be a weak-*closed linear span of χEqn^fB°° for all
positive integers n. Then

B2 = [S]2 0 ΓD .

For suppose K = B2 Q [S]2, then since m is quasi-multiplicative on
i3°°, by (2) of Theorem 4, the set KcΓB. Since I\ = χEqB2 and χEqK
is orthogonal to S, the set χEqKc:K and hence SKcK. If feK
and #e£°°, then fgeB2. If fceS, then kfeKcPB and hence by

(4) of Lemma 2 ί kfgdm = 0. Thus /> lies in ίΓ, i.e., 5°°ίL £ iΓ and
hence D°°K Q K. By the definition of K, the subspace K contains
ΓD. Again by (2) of Lemma 2, K n L°°(m) coincides l£ and hence
K — I2

D by Lemma 1.
Now we can show that m is quasi-multiplicative on 2)°°. For by

the above assertion,

L\m) - B2 0 I |

and I | © β is contained in [S]2. Thus D2 = [S]2 0 (J| Q ΓD) φ β and
hence m is quasi-multiplicative J9°° by (2) of Theorem 4. For some
χFD°°, suppose DF = χ^i)00 + XpcL^im). Then

by the remark below Theorem 4, since m is quasi-multiplicative on
D°°. By Lemma 4 and (3) of Theorem 4, it follows that m is quasi-
multiplicative on Dp1.

6* Applications* Let A be the algebra of continuous, complex-
valued functions on the torus T2 = {(#, w)eC2: \z\ = \w\ = 1} which
are uniform limits of polynomials in znwm where

(n, m)eΓ = {(w, m): m > 0} U {(̂ , 0): ̂  ^ 0} .

Denote by m the normalized Haar measure on T2, then A is a weak-
*Dirichlet algebra of L°°(m). Merrill and Lai [4] characterized com-
pletely the invariant subspaces of Lp(m)(l ^ p ^ ©o), together with
known results.

If M is an invariant subspace of Lp(m)(l ^ p ^ ©o), then Λf has
the next forms;

(1) M = χELp(m) for some measurable set 2? £ T2.
(2) =5^ is the Z/(m)-closure of the polynomials in z and « and
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I9 is the Z^-closure of the polynomials in znwm for m Ξ> 1. Then,

M = χEp(m) + χEzq(^fp + P)

where q is a unimodular function, E1 is some measurable set of T2,
χE2e£f2 and χEl χE2 = 0.

( 3) Λf = qHp(m) for some unimodular function g.

Our Theorem 3 implies that if Λf is an invariant subspace of
Lp(m)(0 < p <£ oo), then AT has the form

where B°° = {f eLp(m): fM Q M}9 q is a unimodular function and

There exist many examples to which the theorem of Merrill and
Lai [4] is not applied. However our theorem is applied. We shall
give those examples.

First example: Let A be a weak-*Dirichlet algebra. Suppose
there exists at least one positive nonconstant function v in U{m)
such that the measure vdm is multiplicative on A. Then let J°° be
the minimum weak-*closed subalgebra of LΓ{m) which contains H°°(m)
properly and suppose χfe J°° for every feH°°(m).

By [5, Theorem 1], it follows that J°° is the weak-*closure of
\jZ=,ZnH~, where H% = ZH°°(m). Since m is multiplicative on H°°(m)9

by Theorem 5, m is quasi-multiplicative on ZsJ^+XscL^fm) for χEeJ°°.
Since XfβJ°° for every /ej°°, by [5, Theorem 4], we know that
each weak-*closed subalgebras which contains H°°(m) has the form;
XEJ°° + XEcL°°(m) for χE e J°°i Hence by Theorem 3, it follows that
if M is an invariant subspace of Lp(m)(0 < p <; oo), then M has the
form

M = Mo + χElqJp

B + χE2q,Bp

where B°° = {/ e L°°(m): fM Q M} and χE. e B°° and qt is a unimodular
function.

If Ij is left continuous for J°°, then I?E is left continuous for
JE = XEJ00 + χEcL°°(m)(χE e JT). For I?E = χ^Jy. Thus by Theorem 3
every invariant subspace M has the form

M = χEqBp

where B°° = {/ e L°°(m): fM £ Λf}, g is a unimodular function and
XEeB".

Second example: Let A be the algebra of continuous, complex-
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valued functions on the polydisc Tn = {(zlf , zn) eC*: \zλ\ = ••• =

I zn I = 1} which are uniform limits of polynomials in zrf\ , zι» where

U ••• U {(/„<>, •• , 0 ) : / 1 > 0 } .

Denote by m the normalized measure on T*, then A is a weak-*
Dirichlet algera of L™(m). For n = 1, we know forms of all invariant
subspaces of Lp(m). For w = 2, Merrill and Lai [4] characterized
all invariant subspaces of Lp(m). However their result is not applied
to n i> 3. We shall show that for n = 3, if M is an invariant subspace
of Lp(m) (0 < p <: oo), then M has the form ikf = χEqBp where E p =
{/ e L°°(m): fM £ M}. For w > 3, we can show it similarly. By
Theorem 3, it suffices to show that m is quasi-multiplicative on every
weak-*closed subalgebra B°° which contains A and every Jj is left
continuous.

Suppose Jf is the weak-*closure of \Jn=o^ΐH°°(m) and suppose
J? is the weak-*closure of \Jn=oZ*J?. By Theorem 5, m is quasi-
multiplicative on every weak-*closed subalgebra 2?°° which has form
B°° = χElJΐ + χE2Jΐ + χ^°°(m) for χ^ e J? and χ^ e JΓ(ΐ - 2, 3). IS
for such a subalgebra is clear left continuous. Thus it suffices to
show that every weak-*subalgebra B°° which contains A has the form
B~ = χElJΐ + χE%Jt + χ^°°(m) or B~ = H°°{m).

Let β°° be any weak-*closed subalgebra which contains A. By
[5, Theorem 1], it follows that if B°° ^ H°°(m), then B00 2 JΓ Then
JB°° is an invariant subspace such that J^B°° S J5°°. Since m is quasi-
multiplicative on Jf and I™1 is left continuous, by Theorem 1 and
Theorem 2, B°° has the form χE

cB°° + χ^gJT for χ^ e J?, where
χEc£~ = χ ^ / ^ Ί o o . Since χ^ lies'in χi^Jf, it follows that B" =
% £̂°° + χ^/00. Since J^ = z2JΓ, ̂ 2%̂ °̂° £ χ*j-B00 and hence Jΐχ^B00 £
χ^β 0 0 . Similarly as the above χ ^ 0 0 = XF'XEIB" + XFXEC/Ϊ and
ZZXFCXEIB^^XFCXECB™. Since L°°(m) is the weak-*closure of U»=o«?J?»
XFCXE'B" - χ^χ^Llm) . Let £/2 be Ffl #τ

c and let JK8 be Fc n £?.
Then J3~ - χSlJΓ + χ^/Γ + X*zL-(m).

Third example: Let K be the Bohr compactification of the real
line. Let A be the algebra of continuous, complex-valued functions
on K x K which are uniform limits of polynomials in χΓiχr2 where

fa, τ2)eΓ = {fa, r2): τ2 > 0} U {fa, 0): τγ ^ 0}

and denote by χτ. the characters on K, where τt in the real line.
Denote by m the normalized measure on K x K, then A is a weak-*
Dirichlet algebra of L°°(m). Then there exist no positive nonconstant
functions in U(m) which are multiplicative on A. If M is a simply
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invariant subspace of Lp(m) or a doubly invariant subspace of Lp(m),
then the characterization of M is known.

Suppose M is neither simply nor doubly invariant. Suppose
there exists τγ > 0 such that χTlM £ M. Let F°° be the weak-*closure
of Ur^o χτiH°°(m), then H°°{m) 5 V°° 5Ξ L~(m) and T00 is a weak-*closed
subalgebra. Then χr e V°° for every J5eiΓ°(m) [5, Example 3]. By
(2) of Theorem 4, we can easily show that m is quasi-multiplicative
on V°° and hence on every weak-*closed subalgebra which contains
FTO by [5, Theorem 3]. From the hypothesis, it follows that

V°° £ B°° = {g e L°°{m): gM £ M) .

Thus if M is left continuous, we can characterize the form of M.
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