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Let A be a weak-*Dirichlet algebra of L”(m). For 0<
p = oo, a closed subspace M of L?(m) is called invariant if
feM and g€ A imply that fgc M. Let B” be a weak-*closed
subalgebra of L*(m) which contains A such that B"M S M
for an invariant subspace }/. The main result of this paper
is a characterization of the left continuous invariant sub-
spaces for B”, which is a natural generalization of simply
invariant subspaces. Applying this result with B” = H”(m)
(or B®” = L%(m)), the simply (or doubly) invariant subspace
theorem follows. Moreover this result characterizes also the
invariant subspaces which are neither simply nor doubly
invariant. Merrill and Lal characterized some special invar-
iant subspaces of this kind.

1. Introduction. Recall that by definition a weak-*Dirichlet
algebra, which was introduced by Srinivasan and Wang [6], is an
algebra A of essentially bounded measurable functions on a probability
measure space (X, .94 m) such that (i) the constant functions lie in
4; (i) A+ A is weak-*dense in L“(m) (the bar denotes conjugation,
here and always); (iii) for all f and ¢ in A4,

) fodm = (] sam)({ dm).

The abstract Hardy spaces H?(m), 0 < p < oo, associated with A are
defined as follows. For 0 < p < o, H?(m) is the L?(m)-closure of A,
while H”(m) is defined to the weak-*closure of A in L~(m). For
0<p< e, Hy = | f e Ho(m): Sxfdm =o}.

Let B~ be a weak-*closed subalgebra of L“(m) which contains
A and let By = {fe B*: Sdem = 0} and let I3 be a maximum weak-
*closed ideal of B in B>, of which in Lemma 2 we shall show the
existence. If B* = H®(m) or L%(m), we know that By = I3 = Hy
or I3 = {0} respectively. By [6, p. 226] and the following Lemma 1,
it follows that Iy & H?Y.

Suppose 0 < p < s < . For any subset M < L°(m), denote by
[M], the L*(m)-closure of M (weak-*closure for p = ). For any
measurable subset EF of X, the function Y is the characteristic
function of E. If fe L?(m), write E; for the support set of f and
write ¢, for the characteristic function of K.

We use the following crucial result. In the proof, the simply
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invariant subspace theorem for L*(m) [6, p. 227] is not used. For
weak-*Dirichlet algebras it has not been published.

LeEmMMA 1 (Gamelin and Lumer). Suppose 0 <p<s=c. Ifthe
set M, is a closed invariant subspace of L*(m), then

M, = [M,], 0 L*(m) .
If the set M, is a closed invariant subspace of L*(m), then

Mp = [M, N Ls(m)]p .

Proof. The proof is essentially that of Gamelin and Lumer [1,
p. 181]. If v is a nonnegative function in L'(m) and

Svadm - gxfdm . fed,

then v = 1 a.e. By [3; Theorem 4] H*(m) is a logmodular algebra on
the maximal ideal space of L*(m), i.e., that each real-valued function
in L”(m) is the logarithm of the modulus of an invertible function
in the algebra H>(m). There exists a Radon measure 7 on the
maximal ideal space Y of L~(m) such that

Sdem - Syfdm

for all f e L”(m) where f is the Gelfand transform of f. Now the
measure 7 is a unique representing measure for the multiplicative

functional m on I?""(m) and I/I\“’(m) is weak-*closed in L~(m). By
[1, p. 131] this proves lemma.

For weak-*Dirichlet algebras, the following two invariant subspace
theorems are known.

(a) If the set M is a closed imnvariant subspace of L*(m) which
18 doubly tnvariant, i.e., if feM and ge A imply that

foeM and fgeM,

then M = X L*(m) for some measurable subset E of X.
(b) If the set M is a closed invariant subspace of L*(m) which
18 simply invariant, i.e., if

M 2 [AM],

where A, = { feA: S fdm = o}, then M = qH*(m) for lq| = 1 a.e.
X

In general there exist many invariant subspaces which are neither
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doubly nor simply invariant. Consider any weak-*closed algebra B®
such that H*(m) & B* & L”(m) if H”(m) is not a maximal weak-
*closed subalgebra, then y:q[B~], for every ¥ in B~ is an invariant
subspace which is not doubly or simply invarian.t We characterize
such invariant subspaces under a condition which is natural as a
generalization of simply invariant subspaces.

It is a consequence of the definition of a weak-*Dirichlet algebra

that if f is in H”(m) and S fdm =0 for all y; in H”(m), then
E

S Frdm = 0.

X

DEFINITION 1. Suppose B~ is a weak-*closed subalgebra of L™(m)
which contains A. We call the measure m quasi-multiplicative on
B~ if S f*dm = 0 for every f in B* such thatg fdm = 0 for all y,

X E
in B*.

THEOREM. Fix p in range 0 < p < c. Let the set M be a
closed invariant subspace of L*(m) such that B°M = M and

XsM 2 115 M),

Sfor every nmonzero X, in B” so that XzM #+ {0}. Let B be a weak-
*closed subalgebra of L~(m) which contains A and on which the
measure m 1s quasi-multiplicative. Then M has the form

Xz,9B*

Jor some unimodular function q and some Yz, in B®, where B® =
[B~],.

This theorem contains all known results of invariant subspaces
(doubly, simply and sesqui-invariant [4]) in the context of a weak-
*Dirichlet algebra.

2. Decomposition. Let 4 be a weak-*Dirichlet algebra of L*(m).
Hy is a rgaximal weak-*closed ideal of H*(m) and it is clear that
H¥m) @ H; = L¥(m).

LEMMA 2. Suppose B is any weak-*closed subalgebra of L™(m)
which contains A. Then, for 1 < p £ oo,

(1) There exists a maximum weak-*closed ideal Iy of B* which
18 contained in By.

(2) Let I3 = [Iz],. Then

Iy = {f e L(m): Sngdm =0 forall geB}.
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(3) Let B = [B”],. Then
B? = {feL“’(m): S fogdm = 0 for all gte;?} .
X

_ (4) B”+ I; is weak-*dense in L™(m) and in particular B*@D
I3 = L*(m).
(5) Iy ts contained in Hy.

Proof. Suppose I3 = {f e L”(m): g fgdm = 0 for all ¢ eB“}.
Then since H®*@@ H? = L*(m), it follové{s that Iy c He < By, This
proves (5). It is trivial that I3 is a weak-*closed ideal of B®. Let
V be any weak-*closed ideal of B* which is contained in By. Then
since B*V €V and V C By, the set V & I7 and hence the weak-*closed
ideal I; of B> is maximal in By. This implies (1). For 1 < p < oo,
it is trivial that

M, = {feLp(m):S Fgdm =0 for all geBw}.
X

Since both I% and M, are the closed invariant subspaces of L*(m),
by the first half of Lemma 1, it follows that I3 = I N L*(m) and
by definition, I3 = M, N L*(m). Now by the second half of Lemma
1, it follows that I3 = M,. This proves (2). Let

W= {feLl(m):X Sfgdm = 0 for all geI“;;} .

Then since I3 = { f e L*(m): SX Fgdm = 0 forall ge B‘}, by the duality
relation, it follows that W' = B For 1 < p < <o, by the first half
of Lemma 1, the assertion (3) is proved. If f in L)m) annihilate
B* + Iz, by (2) and (3), then felI,nN B'. Since fe B, there exists
a sequence ¢, € B* such that g, — f in L'(m) as n — . Hence, since
Iy is a ideal of B”, it follows that | f?e[I”],,. < H(m). |f]?= 0 a.e.
because every nonnegative H'*(m) function is a constant [7]. Thus
f = 0a.e. This proves (4).

DEFINITION 2. Let the set M be a closed invariant subspace of
Lr(m) for 0 < p £ . (i) M is called left continuous for B~ if B~
is a weak-*closed subalgebra such that B*M & M and A B™ and

XM 2 1l L5 M ],

for every nonzero X € B™ so that ;M =+ {0}. (ii) M is called right
continuous for B~ if M is left continuous for B® where

M= {fexELs(m); Sngdm — 0 for all geM}
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and F is a support set of M and 1/p + 1/s = 1.

We shall show a decomposition theorem that any invariant subspace
of L*(m) is a direct sum of a left continuous invariant subspace, a
right continuous invariant subspace and a remaining invariant sub-
space.

THEOREM 1. Suppose 0 < p < oo, the set M is an invariant
subspace of L*(m) and B> is a weak-*closed subalgebra such that
B°M C M and B*D> A. Then

M=M+ M, + M,

where M; = Yp,M(t = 0,1, 2), xz,€B~(1 =0, 1, 2) and YzXz; =0 as
1% 3. M, s left continwous for B*, M, is right continwous for B*
which contains no left continuwous invariant subspace of the from
Y=M for Yz € B, and M, = [I3M,], and My = [I3M],, where s is the
conjugate index to p. If the algebra B~ is fixed, then this decom-
position s unique.

Proof. If M is left continuous for B*, let M, =M. If M is
not left continuous for B, there exists at least one nonzero y <€ B~
and ¥ M < [[;M],. If yz and X, in B® such that y,M < [I3M], and
1=M = [IzM],, then it is easy to show that ¥z ,,€ B™ and ¥z,, M <
[IzM],. Let

a = sup {m(E): xzM € B®, yzM < [I3M],}

then we can show that there exists Xx, in B” such that m(K,) = a
and yx,M < [I;M],. The set yx:M is left continuous for B” or trivial.
Suppose M, = xx:M if YoM =+ {0}, where E, = K.

The set Yx,M coincides with [I3xx,M],. Let E be the support
set of M and let K; = K,N E. Suppose

(e, M)* = {f & Lx; L (m): SX fodm = 0 for all gexeM},

where 1/p +1/s =1. Then ()x,M)" is a closed invariant subspace
of L‘(m) and B (Xx,M)* = (x»,M)*. Just as in the first part of the
proof, we can show that there exists ¥, in B” such that

(XKOM)i = XFo(XKOM)L + XFS(XKQM)J- ’

where the set Xr:(Xx,M)" is left continuous for B* and X»,(Xx,M)* =
5%, (Xx, M) ]s. Then

LM = Xponx, M + ngnKoM ,

where the set ngnKoM is right continuous which contains no left
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continuous invariant subspace yzM for Y€ B~ or trivial. Let M, =
Xe M if Yz M + {0} and let M, = Xz M where E, = F;N K, and E,=
F,NK, It is clear that M, = [I;M,], and M} = [I3M}],. If the
algebra B is fixed, then this decomposition is unique. For if M =
XeM + Yz M + Xz M is anotherde composition of M for B, it is absurd
that m(E;N E) >0 or m(E;N E,) >0 since Yz M = [I51zM], and
O M)t = [I5(;M)*),. Thus E, = E;. Both xz M and x5 M are right
continuous for B* and they do not contain left continuous invariant
subspaces ;M for Xz€B”. So it is clear that £, = E,. This proves
the uniqueness.

REMARK. In this theorem, suppose B*(M) = {g € L*(m): gM < M}.
The remaining invariant subspace M, has the properties such that
M, = [I3.,nM,), and M{ = [I34 My], with 1/p + 1/s=1. Then for
every weak-*closed subalgebra B> such that B*M, S M,and B* D A,
M, = [I;M,], and M} = [I3M}],. For suppose

D> = {feL”(m): fM, < M},
then D is a weak-*closed subalgebra and ¥,D” = yxzB“(}M) where F
is the support set of M, Let I3 be a maximal weak-*closed ideal
of D in Dy. By (4) of Lemma 2 and Lemma 1, it follows that
YrIls = Arlzan and hence M, =[I3M,], and M} = [I3M)],. If B°M,=M,,
then B*C D~ and hence I; S Iy by (2) of Lemma 2. Thus M, =[I3M,],
and Mi = [I5M{]..

Helson and Lawdenslager [2] established that there exists an
invariant subspace M such that if the weak-*closed subalgebra B~
containg A and B°M < M, then M = [[3M], and M* = [IzM*], with
/p+1/s=1.

3. Characterization. Let A be a weak-*Dirichlet algebra of
L>(m). In this section, we shall characterize left continuous invariant
subspaces for any weak-*closed subalgebra B® which contains A and
on which the measure m is quasi-multiplicative. Then we can charac-
terize right continuous invariant subspace, too.

LEMMA 3. Suppose B® is any weak-*closed subalgebra which
contains A and on which the measure m 1is quasit-multiplicative.
If v is a monnegative function in B', then (1) Vve B, (2) 1/(v +¢) ¢
B* for any ¢ > 0 and %, < B

Proof is an easy consequence of Lemma 4 and Theorem 4 in §5.
For [<%°], = L(<#) for some o-algebra <Z
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Now we shall show the main theorem.

THEOREM 2. Fix p in range 0 < p < . Suppose B” is a
weak-*closed subalgebra of L~(m) which contains A and on which
the measure m s quasi-multiplicative.

(1) The set M is a left continuous invariant subspace in L?(m)
for B> if and only +f M has the form

M = yzqB*

where Yz 1S & characteristic function in B™ and q 1s a unimodular
function. If M = y.¢'B* with a wunitmodular function q', then
¥sq' = Y:Fq where F is a unimodular function and F, Fe B>,

(2) The set M is a right continuous imvariant subspace in
L*(m) for B” if and only if M has the form

M = yzql%

where Yr is a characteristic function in B™ and q is a unimodular
function.

Proof. If the assertion (1) is shown, the assertion (2) follows
by (2) and (3) in Lemma 2. In the assertion (1), ‘if’ part is easy.
For if M = yzqB?, then

LAz M], = XeXedls S XeXzdB® = XrM

for all ¥y € B~ and ¥,M == {0}. We shall show only °‘only if’ part.
By Lemma 1, it suffices to consider the case p = 2. For when 2 <
P = oo, let M be a left continuous invariant subspace of L?(m) and
let M, = M n L*(m). Then M, is a closed invariant subspace of L*(m)
and it is left continuous by the second half of Lemma 1. Thus
M, = %zqB* and hence again by the second half of Lemma 1, M =
xzq¢B?. By the first half of Lemma 1, when 0 < p < 2, the proofs
are the same one as the above.

Let M be a left continuous invariant subspace in L*(m) for B~
and let R = MS][I;M],. Observe that for any feR.

| giflam =0 (geIp.

By (3) of Lemma 2, it follows that |f|* lies in B' and hence by
Lemma 3, it follows that |f| lies in B? and ¥, B”. Let E be the
support set of R, then there exists fe R with E; = E. Now just
as Merrill and Lal [4, Lemma 8], define

f@)/f@) wecE

Q(x):{ 1 2¢E.
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Define q.(x) = f(@)/(f(x)| + &) for any ¢ > 0. Then ¢, lies in R.
For since f is orthogonal to I3M and 1/(|f| + ¢)e B, the function
f is orthogonal to 1/(|f| + ¢)I53M. Thus ¢, is orthogonal to Iz M for
any ¢ > 0. Since ¢.¢ M, it follows that ¢. lies in B. Since ¢, —
qyr a.e. as ¢— 0 and |q.| <1, it follows that y,geR. Clearly
YzqB* & M as B"M & M and yzq € M.

Let ge M & yzqB% Then ¢ is orthogonal to X,qB”. Also since
%:q € R, we have %q is orthogonal to gI; & IZM. 8o yz7g is orthogonal
to B® + I3 in L*m), and hence is 0 a.e. by (4) of Lemma 2. But
lg] = 1a.e., 80 ¥zg = 0a.e. If yzg # 0, then

{0} = YpeM S Y| I3 M],

and y¥,.<€ B*. This contradicts M being left continuous. So ¥..g=0
a.e. and hence g = 0 a.e. Thus M = yqB"

If M = y.¢'B? with a unimodular function ¢', then the function
¥:0q" and %,q7 lie in B™., Suppose F = %09 + Yze.

This theorem contains all known results of invariant subspaces
in the context of a weak-*Dirichlet algebra as corollaries.

COROLLARY 1 (Wiener). For 0 < p = oo, the set M 1s a doubly
invariant suwbspace in L*{m) if and only ©f M has the form

M = y,L"(m) .

Proof. Since A + A is weak-*dense in L”(m) and M is doubly
invariant, L™(m)M < M. Since m is clearly quasi-multiplicative on
L=(m), apply Theorem 2 with B* = L”(m).

COROLLARY 2 (Beurling [6, p. 244]). For 0 < p < oo, the set M
ts a stmply invariant subspace in L*(m) tf and only +f M has
the form

M = qH?{(m)
where q 1s o unimodwiar function.

Proof. Since m is multiplicative on H”(m) by definition, apply
Theorem 2 with B” = H>(m).

CoroLLARY 3 (Merrill and Lal [4]). Suppose there exists at least
one positive nonconstant function v in L'(m) such thet the measure
vdm s multiplicative on A. Then there exists a unimodular
Sunction Z such that Hy = ZH(m). For 1 < p £ o, define
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Ir= {fGH”(m): SZ_"fdm =0,n=0,1,2, }

and denote by Z? the closure (in L*(m)) of the polynomials in Z
and Z (for p = o, the closure is taken in the weak-*topology). Let
M be a closed invariant subspace of L*(m) such that M is not simply
or doubly invariant. Then we call M sesqui-invariant.

Fix p im range 1 < p <co. Let M be a closed sesqui-invariant
subspace of LP(m) and let E be the support set of M. Let

R= {feMm Li(m): Sngdm — 0 for all geI""M}

where s 1s the conjugate index to p. Then E 1is the support set for
R if and only ©f M has the form

M = yzq(&? + I7)

where Yz € F* and q is a unimodular function.

Proof. Since M is sesqui-invariant, it follows that J°M < M by
[4, Lemma 2], where J* is the weak-*closure of Uz, Z"H"(m). By
Theorem 5 in §5, m is quasi-multiplicative on J*. Hence by the remark
below Theorem 4 in §5, J* = <~ + Iy, where & is a selfadjoint
part of J~. It is clear that I* 2= I7 and by the definition of I~
and by [4, Lemma 1], it follows that H>*(m)I* S I* and ZI* < I~.
So I” is a weak-*closed ideal of J” in J7 and hence I = I7. Since
H¥(m) = 57* + I*, where 5#* is the L*-closure of the polynomials in
7, it follows that J* = [, D I* 2 [#~ + I”], 2 H*(m). Since J~
is the minimum weak-*closed subalgebra of L*(m) which contains
H>(m) properly by [5, Theorem 1], J® = &~ + I” = [~ + I"], N
L>(m). Hence by the second half of Lemma 1, it follows that
[, + IP =[], + I and hence [%57], =[], We can show
that [=°], = [ "), = L¥(<Z) for some ¢-algebra B and hence &£~ =
L.

Let E be the support set of R. Suppose there exists some
characteristic function y in J* such that 3z M = Xz [["M]* and
Xz, M # {0}. If f is any function in L*(m)(1/p + 1/s = 1) such that

S Fgdm =0 for all geysI°M,
X
then

S fgdm =0 for all gey, M.

X

Therefore if feR, then Xz f =0 a.e. This contradicts the fact
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the support set of M conincides with that of R. Thus M is left
continuous for J”. Now apply Theorem 2 with B* = J*, then
M = yzqJ* where Y;€J” and ¢ is a unimodular function. By
Lemma 4 in §5,J? = &7 + I*. It is clear that y;eJ” if and only
if yze &£

In many examples which we know, the measure m is quasi-
multiplicative on every weak-*closed subalgebra which contains A.
So under such a condition we would like to know the form of all
invariant subspaces.

THEOREM 3. Suppose the measure m is quasi-multiplicative on
every weak-*closed subalgebra B® which contains A. Suppose 0 <
P = oo, the set M is an invariant subspace and B™ = {f € L*(m):
fM < M}. Then

M = M() -+ XE1q1]§ -+ XEzqup

where M, = (1 — Xz, ~ X&) M, Xz,0.1% = Yz, M, and Ap,0:B? = Az, M, Az, €
B=(i = 1,2) and YzXs, = 0 and ¢.(i = 1, 2) are unimodular functions.
Here %p,0.1I% = Y50l I513], and M, = [I3M], and M} = [IzM}], with
1/p + 1/s = 1. Moreover if Iy is left continuous for B>, then

M= XEZQzBP .

Proof. By Theorem 1, we can get a decomposition of M such
that M = M, + M, + M,. By Theorem 2, it follows that M, = y, M =
Ae,q. 1% where Yz€ B® and ¢, is a unimodular function and, M, =
Xz, M = Yz,9:B” where ), € B and ¢, is a unimodular function.

Moreover if I7 is left continuous for B~, then I3 = yzqB~ by
Theorem 2. So xz,9.0% = Ys)sq.B* and hence ¥z ¢,I% is left continuous.
By the above decomposition, it follows that y,q,I% = {0}. Since M, =
[I3M,}, = q[xzB"M,], and B*M, < M,, it follows that gM, S M, As
in the remark below Theorem 1,

{f exrgL=(m): fM, & My} = yzB”

where F' is the support set of M,. While since ¥xxz7 ¢ B” for every
Yz €B” and XXz #= 0, if xr # 0,

{f expL=(m): fM, = M} + %»B~ .
Thus M, = {0} and hence M = %;,9,B".
4. Remarks. Our definition of left continuous invariant sub-

spaces is natural as a generalization of simply invariant subspaces.
Because it is immedeate that if M is a simply invariant subspace,
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then M is a left continuous invariant subspace. Suppose M is a closed
invariant subspace of L?(m). We call M a sesqui-invariant subspace
for B® under the following condition: Let B* be a weak-*closed
subalgebra which contains A, let E be the support set of M and let

R= {feMm Lé(m): Sngdm ~0 forall g eI;;M}

where 1/p + 1/s = 1, then E is the support set for B. This definition
is a natural generalization of sesqui-invariant subspaces by Merrill
and Lal [4]. However it is somewhat unnatural. If M is a sesqui-
invariant subspace in L'(m), even if the measure m is not quasi-
multiplicative on B®, we can characterize it. For we can easily
show that if » is a nonnegative function in any weak-*closed sub-
algebra which contains A, then (1) v'v ¢ B*, (2) 1/(v + ¢)€ B~ for
any € > 0 and (8) x,€ B®. Then we can show that M = y.qB" just
as the proof of Theorem 2. But we can not characterize any sesqui-
invariant subspace for p = 1. If M is a sesqui-invariant subspace,
then it is clear that M is a left continuous invariant subspace.

5. Quasi-multiplicative. To our regrect, we have been unable
to prove the conjucture; Every left continuous invariant subspace
can be characterized. However we characterized left continuous
invariant subspaces for the weak-*closed subalgebra B*® on which
the measure m is quasi-multiplicative. In this section, we investigate
when the measure m is quasi-multiplicative.

Let B” be any weak-*closed subalgebra of L“(m) which contains
A and let <% be a self-adjoint part of B®. Suppose

G = {feB“’:S fdm =0 for all erB“} ,
E
then By 2 %~ 2 I3. If B* = H*(m) or B® = L*(m), then %~ = I3.

LEMMA 4.
B* = 4@ %
where @ denotes algebraic direct sum. Moreover for 1 < p < o
B =L ®15%], .
Proof. The set <~ is a weak-*closd subalgebra of B* and hence
it is a commutative von Neumann algebra as an algebra of operators

on L¥(m). Let & be the o-algebra of Borel subsets £ of X for
which the characteristic functions y; lie in B*. Then %% coincides
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the set of essentially bounded measurable functions L”(<Z) on a
probability measure space (X, <&, m) and [&5°], = L°(<F) for 1 <

p < oo,
If fe B>, then f defines a bounded linear functional on L!(m)
which induces a bounded linear functional on L'(<%). Let

6:0) = | vfdm

for any v in L'(<Z). Since L*(<#) is a dual space of L'(<%), there
exists a function F' in L*(<%) such that

ngfdm = SXdem

for all v in L<Z). By definition of %, f — F lies in _%>. Hence
B” = & @ %, To show the second assertion, as [1, Lemma 5],
it suffices to show that whenever f = u + F' for we &, and Fe

%~ then for 1 < p < oo, (SX!ul"dm>l/p = (L}f}"dm)up.

(wran)”

— sup HXsudm - eLq(.%’)SX’s[qdm <1

— sup ]S‘Ys(u + F)dm] < (leu + Fl”dm)w .

Thus B” = [.<%7], © [ 2],

Let the set M be a closed invariant subspace of L*(m), let B> MM
and suppose ¥ M 2% :[.%"M], for every nonzero X, € B* and y,M={0}.
Then we can show that M = ¥,¢B” as in the proof of Theorem 2.
However we do not know whether %,B? 22 x;[.-%"B"], for every
nonzero ¥z € B®. We shall show that this is equivalent to the measure
m being quasi-multiplicative.

THEOREM 4. Let B™ be a weak-*closed subalgebra which contains
A. Then the following are evuivalent.

(1) The measure m 1s quasi-multiplicative on B™.

(2) For every real-valued function w in B, there exist real-
valued functions u, tn B such that S [ — u,*dm—0 as n— oo,

X

(3) A =1I7

(4) B~ A S A

(5) xeB” 2 Y[ SA"B”].. for every nonzero ¥ in B,

Proof. Suppose S = B*O I%, then S is the self-adjoint part of



INVARIANT SUBSPACES OF WEAK-*DIRICHLET ALGEBRAS 163

B* by (4) of Lemma 2. By Lemma 4
" D[S L=SB L.
This shows that (2) < (3).

(1)=(3). The assertion (1) implies that fg e By for every f and
g in %~ and hence _%" is orthogonal to .%~. This is that B is
orthogonal to .%*. By (4) of Lemma 2, it follows that %" = I.

(8)=1(5). Since I3 is a weak-*closed ideal of B and %~ =1I3,
for every nonzero ¥z in B*, XzB” = YzI3 = Xz[-%7B~].

(5)=(4). By Lemma 1, we may assume Y B®22 y][.%"B?,
for every nonzero ¥, in B®. Let R = B*©[_%"B?,, then for any
feR

| gl 7rdm =0 (ge5).

By (8) of Lemma 2, it follows that |f|* lies in B'. Since |f|*e B
annihilate %>, by Lemma 4, it follows that | f |* lies in [ 5], = LY(<#)
for some oc-algebra <& So |f|eB% 1/(|f| + ¢)eB” for any ¢ >0
and y,€ B”. As the proof of Theorem 2, we can show that B* = ¢B*
for some unimodular function ¢ in RN <%°. Since <R R, it
follows that the constant function 1 lies in R and hence B?=
[%°). D [#5~B’],, and hence B*.%" & %~ by Lemma 4.

(4) = (1) is trivial.

Now by the above theorem, if the measure m is quasi-multipli-
cative on the weak-*closed subalgebra B® which contains A, then
B” or H*(m) has the form

B = &5 @I
or
H"(m) = 225~ ® Iz

where 573~ = H*(m) N &5~

We shall search for the weak-*closed subalgebra which contains
A and on which the measure m is quasi-multiplicative. H>(m) and
L>(m) are typical such subalgebras.

THEOREM 5. Let B™ be a weak-*closed subalgebra which contains
A and let I3 = xzqB” for some ¥z in B” and some wunimodular
Sunction q. Suppose D* is the weak-*closure of Us-, (Xz9)"B”. If the
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measure m is quasi-multiplication on B=, them it is quasi-multi-
plicative on YzD” + YrL™(m) for some Yy in D".

Proof. Let S be a weak-*closed linear span of 9”& for all
positive integers n. Then

B =[SL® I} .

For suppose K = B*©[S],, then since m is quasi-multiplicative on
B, by (2) of Theorem 4, the set K I%. Since I} = %,q9B? and %;¢K
is orthogonal to S, the set ¥,§K — K and hence SKc K. If feK
and g€ B, then fgeB:. If keS, then kf e Kc I3 and hence by
(4) of Lemma 2 Sxﬁfgdm = 0. Thus fg lies in K, i.e., B°K < K and
hence DK < K. By the definition of K, the subspace K contains
I3. Again by (2) of Lemma 2, KN L”(m) coincides I3 and hence
K = I3 by Lemma 1.

Now we can show that m is quasi-multiplicative on D*. For by
the above assertion,

L¥{m) = B* I}
=[SLO LoD

and I3 © I3 is contained in [S],. Thus D* =[S, PO 1%) D I% and
hence m is quasi-multiplicative D* by (2) of Theorem 4. For some
+rD”, suppose Dy = yzD” + ¥z.L“(m). Then

5= A Ls + ApeL(m) + Yp I3,

by the remark below Theorem 4, since m is quasi-multiplicative on
D~. By Lemma 4 and (3) of Theorem 4, it follows that m is quasi-
multiplicative on D3.

6. Applications., Let A be the algebra of continuous, complex-
valued functions on the torus 7% = {(z, w) € C* |z| = |w| = 1} which
are uniform limits of polynomials in z"w™ where

(n, m)e I’ = {(n, m): m > 0}U{(n, 0):n = 0}.

Denote by m the normalized Haar measure on T% then A is a weak-
*Dirichlet algebra of L“(m). Merrill and Lal [4] characterized com-
pletely the invariant subspaces of L?(m)(1 £ p £ ), together with
known results.

If M is an invariant subspace of L?(m)(1 £ p = ), then M has
the next forms;

(1) M = y;L*(m) for some measurable set £ & T

(2) 7 is the L?(m)-closure of the polynomials in z and Z and
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I* is the L?-closure of the polynomials in z*w™ for m = 1. Then,
M = 35, L7 (m) + Yz,9(Z” + I”)

where ¢ is a unimodular function, F, is some measurable set of T3,
XEzegz and XEI'XEZ = 0.
(3) M = qH?"(m) for some unimodular function gq.

Our Theorem 3 implies that if M is an invariant subspace of
L*(m)(0 < p < oo), then M has the form

M = YzqB?*

where B” ={fecL*(m). fM & M}, ¢ is a unimodular function and
Xz € B”.

There exist many examples to which the theorem of Merrill and
Lal [4] is not applied. However our theorem is applied. We shall
give those examples.

First example: Let A be a weak-*Dirichlet algebra. Suppose
there exists at least one positive nonconstant function » in L'(m)
such that the measure vdm is multiplicative on 4. Then let J* be
the minimum weak-*closed subalgebra of L~(m) which contains H*“(m)
properly and suppose Y€ J* for every f e H> (m).

By [5, Theorem 1], it follows that J= is the weak-*closure of
U, Z"H”, where Hy = ZH>(m). Since m is multiplicative on H*(m),
by Theorem 5, m is quasi-multiplicative on yzJ” + Yz.L™(m) for Yz €J~.
Since y;eJ” for every feJ”, by [5, Theorem 4], we know that
each weak-*closed subalgebras which contains H*(m) has the form;
Y& + Az L7(m) for yzcJ”. Hence by Theorem 38, it follows that
if M is an invariant subspace of L?(m)(0 < p < ), then M has the
form

M = M, + %zq.1% + Yz,9.B°

where B” = {f € L”(m): fM < M} and X, € B” and g, is a unimodular
function.

If I7 is left continuous for J<, then I7, is left continuous for
J3 = XeJ” + XgeL*(m)(Yz €J”). For I7, = xzI7. Thus by Theorem 3
every invariant subspace M has the form

M = yzqB*

where B® = {feL”(m): fM < M}, q is a unimodular function and
Az € B”.

Second example: Let A be the algebra of continuous, complex-
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valued functions on the polydisc T™ = {(z,, +++, 2,)€C™ |2)| = +++ =
|%,] = 1} which are uniform limits of polynomials in 21, ---, 2!» where

(/15 "'!/n)eF:{/lf ) (/'n):/n>0}u{/1’ tr ety layy 0):/%~1>0}
Uoeee U{(/lyoa "',0):/1>0}.

Denote by m the normalized measure on 7", then A is a weak-*
Dirichlet algera of L”(m). For n = 1, we know forms of all invariant
subspaces of L?(m). For n = 2, Merrill and Lal [4] characterized
all invariant subspaces of L?(m). However their result is not applied
to n = 3. We shall show that for n = 3, if M is an invariant subspace
of L*(m) (0 < p < o), then M has the form M = y,qB* where B? =
{feL*(m): fM < M}. For m >3, we can show it similarly. By
Theorem 3, it suffices to show that m is quasi-multiplicative on every
weak-*closed subalgebra B* which contains A and every I3 is left
continuous.

Suppose J7 is the weak-*closure of {J_,zrH“(m) and suppose
J7 is the weak-*closure of Uy, z;J7. By Theorem 5, m is quasi-
multiplicative on every weak-*closed subalgebra B™ which has form
B” = x5 J7 + YgJ? + Ap L7(m) for yz eJy and Yy eJ7(i =2,8). I3
for such a subalgebra is clear left continuous. Thus it suffices to
show that every weak-*subalgebra B~ which contains A has the form
B” = 2z J7 + Aeds + Az L7(m) or B* = H”(m).

Let B” be any weak-*closed subalgebra which contains A. By
[5, Theorem 1], it follows that if B* 22 H*(m), then B~ 2 J7. Then
B~ is an invariant subspace such that J7B* & B”. Since m is quasi-
multiplicative on Ji° and I7 is left continuous, by Theorem 1 and
Theorem 2, B™ has the form yz:B” + YzgJ7 for ) € Jv, where
Xz:B® = Xpl17,B”).. Since 5 lies in xzqJ7, it follows that B” =
XEEBOG + Az J”. Since I, = 2,J7, Z)p:B” S )z:B” and hence JryzB” S
XzB”. Similarly as the above XezB* = YpelpeB” + ArXeedy and
Z)lred s BT SXpe)p:B”. Since L”(m) is the weak-*closure of U5, %5J7,
XreXesB” = AreXzeL™(m). Let E, be FN E; and let E; be F°N Ei.
Then B” = Yz J7 + Xgds + Xz L™(m).

Third example: Let K be the Bohr compactification of the real
line. Let A be the algebra of continuous, complex-valued functions
on K X K which are uniform limits of polynomials in X. )., Where

(cym)el = {(zv, 7): 7, > 0} U {(z, 0): 7, = O}

and denote by ., the characters on K, where 7, in the real line.
Denote by m the normalized measure on K X K, then A is a weak-*
Dirichlet algebra of L*(m). Then there exist no positive nonconstant
functions in L'(m) which are multiplicative on A. If M is a simply
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invariant subspace of L?(m) or a doubly invariant subspace of L*(m),
then the characterization of M is known.

Suppose M is neither simply nor doubly invariant. Suppose
there exists 7, > 0 such that ¥, M & M. Let V'~ be the weak-*closure
of U:z0 X-, H"(m), then H*(m) S V= & L”(m) and V> is a weak-*closed
subalgebra. Then y,c V* for every Be H”(m) [5, Example 3]. By
(2) of Theorem 4, we can easily show that m is quasi-multiplicative
on V= and hence on every weak-*closed subalgebra which contains
V> by [5, Theorem 3]. From the hypothesis, it follows that

V= C B® = {ge L (m): gM = M} .

Thus if M is left continuous, we can characterize the form of M.
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