Vol. 69, No. 2, 1977

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A note on Edelstein’s iterative test and spaces of continuous functions

Jack Douglas Bryant and Thomas Francis McCabe

Vol. 69 (1977), No. 2, 333–335
Abstract

In this note a question posed by Nadler is answered. It is shown that if X is a compact Hausdorff space that contains a sequence of distinct points that converge then there exists a linear contractive selfmap f of C(X) such that, for some x, the sequence of iterates {fn(x)} does not converge. In particular, the iterative test is not conclusive for c.

Mathematical Subject Classification 2000
Primary: 54H25
Milestones
Received: 11 November 1971
Published: 1 April 1977
Authors
Jack Douglas Bryant
Thomas Francis McCabe