DECOMPOSITIONS FOR NONCLOSED PLANAR m-CONVEX SETS

Marilyn Breen
DECOMPOSITIONS FOR NONCLOSED PLANAR
m-CONVEX SETS

MARILYN BREEN

Let S be an m-convex set in the plane having the property that $(\text{int } \text{cl } S) - S$ contains no isolated points. If T is an m-convex subset of S having convex closure, then T is a union of $\sigma(m)$ or fewer convex sets, where

$$\sigma(m) = (m - 1)(1 + (2^{m-2} - 1)2^{m-3}).$$

Hence for $m \geq 3$, S is expressible as a union of $(m-1)2^{m-3}\sigma(m)$ or fewer convex sets.

In case S is m-convex and $(\text{int } \text{cl } S) - S$ contains isolated points, an example shows that no such decomposition theorem is possible.

1. Introduction. For S a subset of Euclidean space, S is said to be m-convex, $m \geq 2$, if and only if for every m distinct points of S, at least one of the line segments determined by these points lies in S. Several decomposition theorems have been proved for m-convex sets in the plane. A closed planar 3-convex set is expressible as a union of 3 or fewer convex sets (Valentine [4]), and an arbitrary planar 3-convex set is a union of 6 or fewer convex sets (Breen [1]). Concerning the general case, a recent study shows that for $m \geq 3$, a closed planar m-convex set may be decomposed into $(m - 1)2^{m-3}$ or fewer convex sets (Kay and Breen [2]). This leads naturally to the problem considered here, that of determining whether such a bound exists for an arbitrary m-convex set $S \subseteq \mathbb{R}^2$: With the restriction that $(\text{int } \text{cl } S) - S$ contain no isolated points, a bound in terms of m is obtained; without this restriction, an example reveals that no bound is possible.

The following terminology will be used: For points x, y in S, we say x sees y via S if and only if the corresponding segment $[x, y]$ lies in S. Points x_1, \ldots, x_n in S are visually independent via S if and only if for $1 \leq i < j \leq n$, x_i does not see x_j via S. Throughout the paper, $\text{conv } S$, $\text{bdry } S$, $\text{int } S$, and $\text{cl } S$ will be used to denote the convex hull of S, the boundary of S, the interior of S and the closure of S, respectively.

2. The decomposition theorem. We shall be concerned with the proof of the following result, which yields the decomposition theorem as a corollary.
Theorem. Let T be an m-convex set in the plane having the property that $(\text{int} \, \text{cl} \, T) \sim T$ contains no isolated points. If $\text{cl} \, T$ is convex, then T is a union of $\sigma(m)$ or fewer convex sets, where

$$\sigma(m) = (m - 1)[1 + (2^{m-2} - 1)2^{m-3}] .$$

The main steps in the proof will be accomplished by a sequence of lemmas. The first lemma, which generalizes [1, Theorem 5], will require the following result by Lawrence, Hare and Kenelly [3, Theorem 2].

Lawrence, Hare, Kenelly theorem. Let Γ be a subset of a linear space such that each finite subset $F \subseteq T$ has a k-partition $\{F_1, \ldots, F_k\}$, where $\text{conv} \, F_i \subseteq T$, $1 \leq i \leq k$. Then T is a union of k or fewer convex sets.

Lemma 1. Let T be an m-convex set in the plane, $m \geq 3$, such that $\text{cl} \, T$ is convex. If all points of $(\text{cl} \, T) \sim T$ are in bdry$(\text{cl} \, T)$, then T is a union of $\max(m - 1, 3)$ or fewer convex sets. The result is best possible.

Proof. By the Lawrence, Hare, Kenelly theorem, it suffices to consider finite subsets of T, so without loss of generality we may assume that $\text{cl} \, T$ is a convex polygon. Consider the collection of all intervals in $\text{cl} \, T$ having endpoints in T and some relatively interior point not in T, and let \mathcal{L} denote the collection of corresponding lines. Since $(\text{cl} \, T \sim T) \subseteq \text{bdry}(\text{cl} \, T)$, each line L in \mathcal{L} supports $\text{cl} \, T$ along an edge, and by the m-convexity of T, $L \cap T$, has at most $m - 1$ components. We will examine the components of $B = \bigcup \{L \cap T : L \in \mathcal{L}\}$.

Order the vertices of $\text{cl} \, T$ in a clockwise direction along $\text{bdry}(\text{cl} \, T)$, letting p_i denote the ith vertex in our ordering, $1 \leq i \leq k$. If p_i lies in some component of B, let c_i denote this component. Otherwise, let $c_i = \emptyset$. Define sets A_i', $1 \leq i \leq \max(3, m - 1)$, each an appropriate collection of components of B: For i odd, $i < k$, assign c_i to A_i'; for i even, $i < k$, assign c_i to A_i'; assign c_k to A_i'.

Now consider the remaining components of B. If the line $L(p_i, p_{i+1})$ determined by p_i and p_{i+1} is in \mathcal{L}, $1 \leq i \leq k$ (where $p_{k+1} = p_0$), assign each remaining component on this line to some A' set not containing $c_i \neq \emptyset$ or $c_{i+1} \neq \emptyset$, and assign at most one component to each A' set. Since there are at most $m - 1$ components on each line, at most $m - 1$ A' sets are required at each stage of the argument. Furthermore, no two components on any line will be assigned to the same A' set.

Finally, let $A_i = T \sim \bigcup \{A_{i}' : j \neq i\}$, $1 \leq i \leq \max(m - 1, 3)$. It
is easy to show that the A_i sets are convex and that their union is T, completing the proof.

To see that the result in Lemma 1 is best possible, consider the following example.

Example 1. Let T be a pentagonal region having exactly $m-2$ points deleted from the relative interior of each edge, $m \geq 3$. Then T is m-convex and is not expressible as a union of fewer than max $(m-1, 3)$ convex sets.

Lemmas 2, 3 and 4 concern points in $(\text{int cl } S) \sim S$.

Lemma 2. Let S be an arbitrary set in the plane. If $(\text{int cl } S) \sim S$ contains at least r noncollinear segments, where $r = 2^n$, $n \geq 0$, then S contains $n + 2$ visually independent points.

Proof. The proof is by induction. If $n = 0$, then $r = 1$ and certainly S contains 2 visually independent points. Assume the theorem true for numbers less than n, $n \geq 1$, to prove for n. Let L be the line determined by one of the 2^n (or more) noncollinear segments C in $(\text{int cl } S) \sim S$. Then at least half of the $2^n - 1$ remaining segments contain points in one of the open halfspaces H_i determined by L. Hence $S' = S \cap H_i$ has the property that $(\text{int cl } S') \sim S'$ contains at least r' noncollinear segments, where $r' \geq (2^n - 1)/2 = 2^{n-1} - 1/2$. Since r' is an integer, $r' \geq 2^{n-1}$, so by our induction hypothesis, S' contains $n + 1$ visually independent points y_1, \ldots, y_{n+1}. Letting H_2 denote the opposite open halfspace determined by L, select y_i in $H_2 \cap S$ so that (y_o, y_i) cuts C for $1 \leq i \leq n + 1$. Then $\{y_o, \ldots, y_{n+1}\}$ is a set of $n + 2$ visually independent points of S.

Corollary. If S is planar and m-convex, then $(\text{int cl } S) \sim S$ contains at most $2^{m-2} - 1$ noncollinear segments.

Proof. Assume that S contains $r \geq 1$ noncollinear segments. Then $2^n \leq r < 2^{n+1}$ for an appropriate $n \geq 0$, and by the lemma, S contains $n + 2$ visually independent points. Since S is m-convex, we have $n + 2 \leq m - 1$, so $r < 2^{m-2}$.

The author wishes to thank the referee for his conjecture of the following result.

Lemma 3. Let S be an m-convex set in the plane, $m \geq 3$. If M is any line, then $M \cap [(\text{int cl } S) \sim S]$ has at most $m + [(m-3)/2]$ components. The result is best possible.
Proof. Assume that $M \cap [(\text{int } \text{cl } S) \sim S] \neq \emptyset$, for otherwise there is nothing to prove. Since S is m-convex, it is easy to show that the set $\text{cl } S$ is m-convex, so $M \cap \text{cl } S$ has at most $m - 1$ components M_i, $1 \leq i \leq m - 1$. There exist disjoint convex neighborhoods U_i of M_i, $1 \leq i \leq m - 1$, such that no point of $U_i \cap \text{cl } S$ sees any point of $U_j \cap \text{cl } S$ via S, $1 \leq i < j \leq m - 1$. Thus no point of $U_i \cap S$ sees any point of $U_j \cap S$ via S, $1 \leq i < j \leq m - 1$.

Note that if $M_i \cap [(\text{int } \text{cl } S) \sim S] \neq \emptyset$, there are at least two points in $U_i \cap S$ which are visually independent via S. Hence $M_i \cap [(\text{int } \text{cl } S) \sim S] \neq \emptyset$ for at most $[(m - 1)/2]$ of the M_i sets.

We use an inductive argument to prove the lemma. If S is 3-convex, then $M_i \cap [(\text{int } \text{cl } S) \sim S] \neq \emptyset$ for at most one component M_i of $M \cap \text{cl } S$, and it is easy to see that $M_i \cap [(\text{int } \text{cl } S) \sim S]$ consists of at most three components. Assume that the result is true for j, $3 \leq j < m$, to prove for m. For some component M_i of $M \cap \text{cl } S$, assume that $M_i \cap [(\text{int } \text{cl } S) \sim S]$ has k components. Then clearly $1 \leq k \leq m$. For the neighborhood U_i defined above, there correspond at least $\max(2, k - 1)$ visually independent points of S in U_i. Examine the set $S' = \cup \{U_i \cap S : i \neq 1\}$. There are two cases to consider.

Case 1. If $k \geq 3$, the set S' contains at most $m - k$ visually independent points, and S' is $(m - k + 1)$-convex. By our inductive assumption applied to S', $M \cap [(\text{int } \text{cl } S') \sim S']$ has at most $(m - k + 1) + [(m - k + 1 - 3)/2]$ components. Then $M \cap [(\text{int } \text{cl } S) \sim S]$ has at most $k + (m - k + 1) + [(m - k - 2)/2] = m + [(m - k)/2]$ components. This number is maximal when $k = 3$, giving the desired result.

Case 2. If $1 \leq k < 3$, then a similar argument shows that there are at most $2 + (m - 2) + [(m - 2 - 3)/2] = m + [(m - 5)/2] < m + [(m - 3)/2]$ components, finishing the proof of the lemma.

An inductive construction may be used to show that the result of Lemma 3 is best possible.

Example 2. For $3 \leq m \leq 4$, remove m collinear segments appropriately from an open convex set to obtain an m-convex set having the required property. Inductively, for $m \geq 5$ let S denote the union of an $(m - 2)$-convex set S_1 and a 3-convex set S_2, where $(\text{int } \text{cl } S_i) \sim S_i$ has the maximal number of collinear components, $(\text{int } \text{cl } S_i) \sim S_i$ and $(\text{int } \text{cl } S_i) \sim S_2$ are collinear, and $\text{cl } S_i \cap \text{cl } S_2 = \emptyset$. By our inductive construction, the set $(\text{int } \text{cl } S) \sim S$ will have exactly $m - 2 + [(m - 5)/2] + 3 = m + [(m - 3)/2]$ collinear components.

Lemma 4. Let S be an m-convex set in the plane. If $x \in (\text{int }
cl(S) ~ S and x is not an isolated point, then x lies in a segment in (int cl S) ~ S.

Proof. Assume on the contrary that x is not in a segment in (int cl S) ~ S to obtain a contradiction. By the corollary to Lemma 2, (int cl S) ~ S contains at most $2^{m-1} - 1$ noncollinear segments. Also, by Lemma 3, for any line determined by such a segment, $M \cap [(int cl S) ~ S]$ has at most $m + [(m - 3)/2]$ components, so the segments in (int cl S) ~ S may be written as a finite union of segments. Hence we may select an open disk N centered at x which is disjoint from each of these segments, with $N \subseteq int cl S$. Let N_0 be an open disk centered at x and properly contained in N. Let L be any line through x, and let C be any component of $(int cl S) ~ S$ containing x. Since x is not an isolated point, there are points of $C \cap N_0$ in at least one of the open halfspaces H_i determined by L, and we let C_i be a component of $C \cap H_i \cap N_0$. Clearly C_i is not a singleton set and cannot be collinear with x.

We assert that there is some point z_i in $N \cap S$ and some neighborhood N_i of x, $N_i \subseteq N$, such that z_i sees no point of $N_i \cap S$ via S: Select points s, t in C_i such that x, s, t are not collinear. Select $z_i \in S$ in the open convex region bounded by the rays $R(x, s), R(x, t)$ and in $N \sim N_0$ (where $R(x, s)$ denotes the ray emanating from x through s). Since $[x, z_i] \subseteq N$, each component of $[x, z_i] \sim S$ is a singleton point. Also, there are at most $m - 2$ such components, so there is some point q on $[x, z_i]$ such that $(x, q) \cap C_i = \emptyset$.

Let line L_i be parallel to L so that s, t, z_i are on the same side of L_i, and so that L_i contains some point $q_i \in (x, q)$. Repeating an argument from the preceding paragraph, components of $C_i \cap L_i$ are singleton sets. Hence there exist points v, w in $L_i \cap N_i$, $v < q, w$, with $(v, w) \cap C_i = \emptyset$. Without loss of generality, assume that v and w are interior to the convex region determined by rays $R(z_i, s)$ and $R(z_i, t)$. Then for $v < y < w$, we see that $[z_i, y] \cap C_i = \emptyset$. Otherwise, the path $\lambda = [z_i, y] \cup [y, q_i] \cup [q_i, x]$ would be disjoint from C_i, with s and t on opposite sides of λ. Since $z_i, x \in H_1 \cap N_0$ and $C_i \subseteq H_i \cap N_0$, λ would separate C_i, impossible.

Finally, let N_i be any open disk about x in the open convex region determined by $R(z_i, v)$ and $R(z_i, w)$ such that N_i and z_i are on opposite sides of L_i. Then for every y in N_i, $[z_i, y]$ intersects (v, w) and thus $[z_i, y]$ intersects C_i. Hence z_i sees no point of $N_i \cap S$ via S, the desired result.

Repeat the argument to obtain z_2 in $N_i \cap S$ and $N_2 \subseteq N_i$ with z_2 seeing no point of $N_2 \cap S$ via S. By an obvious induction, we obtain $\{z_1, \ldots, z_m\}$ a set of m visually independent points in S. This contradicts the m-convexity of S, our original assumption is false,
and \(x \) must lie in a segment in \((\text{int} \text{ cl} \; S) \sim S\).

Finally, the following combinatorial result will be helpful.

Lemma 5. For each collection \(\mathcal{L} \) of \(r \geq 1 \) lines in the plane, \(\mathbb{R}^2 \sim (\cup \mathcal{L}) \) consists of at most \(f(r) = 1 + \sum_{i=1}^{r-1} k \) convex components.

Proof. We use an inductive argument. If \(r = 1 \), the result is clear. Assume the result true for \(r = n \geq 1 \) to prove for \(n + 1 \). For \(\mathcal{L} \) consisting of \(n + 1 \) lines, select any member \(L \) of \(\mathcal{L} \) and let \(\mathcal{L}' = \mathcal{L} \setminus \{L\} \). Then by our induction hypothesis, \(\mathbb{R}^2 \sim (\cup \mathcal{L}') \) consists of at most \(f(n) \) convex components. The line \(L \) cuts each member of \(\mathcal{L}' \) at most once, so there are at most \(n \) corresponding points of intersection. These \(n \) points in turn determine at most \(n + 1 \) intervals on \(L \) (two of which are unbounded), and each of these intervals cuts a component of \(\mathbb{R}^2 \sim (\cup \mathcal{L}') \), yielding two convex components where previously there was only one. Hence \(\mathbb{R}^2 \sim (\cup \mathcal{L}) \) consists of at most \(f(n) + n + 1 = f(n + 1) \) convex components.

Theorem 1. Let \(T \) be an \(m \)-convex set in the plane having the property that \((\text{int} \text{ cl} \; T) \sim T\) contains no isolated points. If \(\text{cl} \; T \) is convex, then \(T \) is a union of \(\sigma(m) \) or fewer convex sets, where

\[
\sigma(m) = (m - 1)[1 + (2^{m-2} - 1)2^{m-3}].
\]

Proof. If \(m = 2 \), the result is clear, so assume that \(m \geq 3 \). By Lemma 4, \((\text{int} \text{ cl} \; T) \sim T\) may be expressed as a union of segments, and by the corollary to Lemma 2, these segments determine a corresponding collection \(\mathcal{L} \) of at most \(r = 2^{m-2} - 1 \) lines. Using Lemma 4, \(\mathbb{R}^2 \sim (\cup \mathcal{L}) \) consists of at most \(f(r) \) convex components \(C_i, \; 1 \leq i \leq f(r) \), where \(f(r) = 1 + \sum_{i=1}^{r-1} k = 1 + (r(r + 1))/2 = 1 + (2^{m-2} - 1)(2^{m-3}) \).

Let \(T_i = (\text{cl} \; C_i) \cap T, \; 1 \leq i \leq f(r) \). Then clearly \(T_i \) is an \(m \)-convex set, \(m \geq 3 \), such that \(\text{cl} \; T_i \) is convex and \((\text{cl} \; T_i) \sim T_i \subseteq \text{bdry-} (\text{cl} \; T_i)\). Then by Lemma 1, \(T_i \) is a union of \(\max (m - 1, 3) \) or fewer convex sets. Hence if \(m \geq 4 \), \(T \) is a union of

\[
\sigma(m) = (m - 1)[1 + (2^{m-2} - 1)2^{m-3}]
\]
or fewer convex sets, the desired result.

In case \(m = 3 \), then by [1, Lemma 3], all points of \((\text{int} \text{ cl} \; T) \sim T\) are collinear. If \(L \) is the corresponding line, \(T \cap L \) contains at most two components \(L_1, L_2 \). Letting \(H_i, H_2 \) represent distinct open halfspaces determined by \(L \), define \(T_i = (H_i \cap T) \cup L_i, \; 1 \leq i \leq 2 \).
A proof similar to that of Lemma 1 shows that each T_i is a union of two or fewer convex sets, so T is a union of $\sigma(3) = 4$ or fewer convex sets, completing the proof of the theorem.

Corollary. If S is an m-convex set in the plane, $m \geq 3$, having the property that $(\text{int cl } S) \sim S$ contains no isolated points, then S is expressible as a union of $(m - 1)2^{m-3}\sigma(m)$ or fewer convex sets.

Proof. It is easy to show that the set $\text{cl } S$ is m-convex, and by [2, Theorem 6], $\text{cl } S$ may be decomposed into $(m - 1)2^{m-3}$ or fewer closed convex sets. If C is one of these convex sets, let $T = C \cap S$. Clearly T is m-convex. There are two cases to consider.

Case 1. If C is contained in a line, then T contains at most $m - 1 < \sigma(m)$ convex components.

Case 2. If C is not contained in a line, then it is easy to show that $\text{cl } T = C$: First pick p in C. Since $C \subseteq \text{cl } S$, every neighborhood of p contains points of S. If p is in $\text{int } C$, then points of S contained in small discs centered at p necessarily belong to $C \cap S = T$. Thus we conclude that $p \in \text{cl } T$. On the other hand, if $p \in \text{bdry } C$, then every neighborhood of p contains points of $\text{int } C$. By our previous remarks, $\text{int } C \subseteq \text{cl } T$, so $p \in \text{cl } (\text{cl } T) = \text{cl } T$. Hence $C \subseteq \text{cl } T$. The reverse inclusion is obvious, so $C = \text{cl } T$ and $\text{cl } T$ is convex. Certainly $(\text{int cl } T) \sim T$ contains no isolated points, so by the theorem, T is a union of $\sigma(m)$ or fewer convex sets. Thus S is a union of $(m - 1)2^{m-3}\sigma(m)$ or fewer convex sets.

3. An example. The following example shows that no decomposition theorem is possible in case S is an m-convex set having isolated points as components of $(\text{int cl } S) \sim S$.

Example. Let k be an arbitrary integer and let P be a regular polygon having $2k$ vertices p_1, \ldots, p_{2k}. Let v_1, \ldots, v_{2k} be vertices of a regular polygon interior to P, where for $1 \leq i \leq 2k$, v_i is sufficiently close to p_i that the following holds: If x and y are visually independent points of $P' \equiv P \sim \{v_1, \ldots, v_{2k}\}$, then for every i, j, $1 \leq i, j \leq 2k$, either $(R(x, v_i) \sim [x, v_i]) \cap (R(y, v_j) \sim [y, v_j]) \cap P = \emptyset$ or x, v_i, y, v_j are collinear. Hence three points x, y, z are visually independent via P' only if they are collinear with a pair of distinct points v_i and v_j, and P' is 4-convex.

However, P' is not expressible as a union of fewer than $k + 2$
convex sets. (If the vertices v_i are ordered in a clockwise direction, $1 \leq i \leq 2k$, consider the $k + 1$ subsets P_i, \ldots, P_{k+1} of P' bounded by and disjoint from the k lines $L(v_i, v_{2i}), L(v_{2i}, v_{3i}), \ldots, L(v_{ki}, v_{k+1})$. Let $P_{k+2} = \text{conv}(\cup \{(v_i, v_{2i+1-i}) : 1 \leq i \leq k\})$. Assign each remaining segment of $P' \cap L(v_i, v_{2i+1-i})$ to one of the adjacent regions P_i or P_{i+1}, $1 \leq i \leq k$, in the obvious manner. This yields a $(k + 2)$-member decomposition of P'. The number $k + 2$ is best possible.)

REFERENCES

Received May 1, 1975 and in revised form October 29, 1975.

UNIVERSITY OF OKLAHOMA
NORMAN, OK 73069
Carol Alf and Thomas Alfonso O’Connor, *Unimodality of the Lévy spectral function* ... 285
S. J. Bernau and Howard E. Lacey, *Bicontractive projections and reordering of L_p-spaces* .. 291
Andrew J. Berner, *Products of compact spaces with bi-k and related spaces* .. 303
Marilyn Breen, *Decompositions for nonclosed planar m-convex sets* .. 317
Robert F. Brown, *Cohomology of homomorphisms of Lie algebras and Lie groups* .. 325
Victor P. Camillo, *Modules whose quotients have finite Goldie dimension* .. 337
Daniel Reuven Farkas and Robert L. Snider, *Noetherian fixed rings* .. 347
Alessandro Figà-Talamanca, *Positive definite functions which vanish at infinity* .. 355
Josip Globevnik, *The range of analytic extensions* .. 365
André Goldman, *Mesures cylindriques, mesures vectorielles et questions de concentration cylindrique* 385
Richard Grassl, *Multisectioned partitions of integers* .. 415
Haruo Kitahara and Shinsuke Yorozu, *A formula for the normal part of the Laplace-Beltrami operator on the foliated manifold* 425
Marvin J. Kohn, *Summability R_r for double series* .. 433
Charles Philip Lanski, *Lie ideals and derivations in rings with involution* .. 449
Solomon Leader, *A topological characterization of Banach contractions* .. 461
Daniel Francis Xavier O’Reilly, *Cobordism classes of fiber bundles* .. 467
James William Pendergrass, *The Schur subgroup of the Brauer group* .. 477
Howard Lewis Penn, *Inner-outer factorization of functions whose Fourier series vanish off a semigroup* .. 501
William T. Reid, *Some results on the Floquet theory for disconjugate definite Hamiltonian systems* .. 505
Caroll Vernon Riecke, *Complementation in the lattice of convergence structures* .. 517
Louis Halle Rowen, *Classes of rings torsion-free over their centers* .. 527
Manda Butchi Suryanarayana, *A Sobolev space and a Darboux problem* .. 535
Charles Thomas Tucker, Il, *Riesz homomorphisms and positive linear maps* .. 551
William W. Williams, *Semigroups with identity on Peano continua* .. 557
Yukinobu Yajima, *On spaces which have a closure-preserving cover by finite sets* .. 571