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Denote by 4, 4, 54 the open unit disc in C, its closure
and its boundary, respectively. Let X be a complex Banach
space and denote by ~(X) the class of all non-empty sets
P c X having the following property: given any closed set
F c 04 of measure 0 and any continuous function f:F— P
there exists a continuous extension f: 4 — X of f, analytic
on 4 and satisfying f(4 — F) c Int P.

THEOREM. Pec &~ (X) if and only if Int P is connected,
locally connected at every point of P and satisfies PCclosure
(Int P).

TueoreM. If PcC consists of more than one point then
Pe 7 (C) if and only if given any F and f as above there
exists a continuous extension f: 4 — C of f, analytic on 4 and
satisfying f(d)CP.

This generalizes a theorem of Rudin which asserts that
such f exists if PcC is homeomorphic to 4.

TueoreM, If Pe % (X) then given any relatively open
set Bcdd, any relatively closed set FFCB of measure 0 and
any continuous function f: F'— P there exists a continuous
extension f: 4UB— X of f, analytic on 4 and satisfying
f((4uB) — F)cInt P.

0. Introduction. Throughout, we denote by 4, 4 and 34 the
open unit disc in C, its closure and its boundary, respectively. If
X is a complex Banach space and r >0 we write B.(X) = {re X:
Nzl < 7). Let zeX and S, TC X. Wewritez + S ={r +u:ueS}
and S+ T={u+v:uecS,veT}. Wedenote by Int S, S the interior
of S and the closure of S, respectively. If F is a compact Hausdorff
space we denote by C(F, X) the set of all continuous functions from
F to X and write C(F) for C(F, C). If BCdd is a relatively open
set we denote by Hjz(4, X) the set of all continuous functions from
4U B to X which are analytic on 4. For H,/(4, X) we write A(4, X)
and for A(4, C), the disc algebra, we write A(4). We denote the
set of all positive integers by N. If a, beR, a <b we write
[a,b] = {teR:a =t < b} and we denote [O, 1] by L.

The well known Rudin-Carleson theorem [3, 19, 22] states that
given a closed set F'co4 of measure 0 and fe C(F) there exists an
extension fe A(4) of f satisfying

max | 7(z)| = max |£(s), -

zed 8eF
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Actually the following theorem was proved by Rudin: Given F as
above, let PcC be homeomorphic to 4 and let feC(F) satisfy
f(F)c P. There exists an extension f ¢ A(J) of f satisfying F(J) c P.
An interesting consequence is that given any P C homeomorphic
to J there exists J e A(4) satisfying f(d) = f(34) = P [2, 4].

The Rudin-Carleson theorem was generalized into several direc-
tions. A consequence of its generalization to the functions into a
Banach space [21, 18, 7] is that for any finite-dimensional complex
normed space X there exists fe A(4, X) such that f(4) = B.(X) [7].
Heard and Wells [12] generalized the Rudin-Carleson theorem as
follows: Let B o4 be a relatively open set and F C B a relatively
closed set of measure 0. Given any bounded continuous function
f: F—C there exists an extension fe H(4, C) of f satisfying

sup |7(@)| = sup | f(s)] .

The generalization of this result to the functions into a Banach space
X [8] makes possible, in the case when X is separable, to prove the
existence of a continuous function f:J4 — {1}— X, analytic on 4,
whose range is contained and dense in B,(X) and whose cluster set
at 1 is B(X) [8].

The applications above seem interesting enough to consider the
following general problem. A

PrOBLEM. Let X be a complex Banach space, BC 04 a relatively
open set, F'c B a relatively closed set of measure 0 and let f: FF— X
be a continuous function. Assume that a subset P of X contains
J(F). Under what conditions on P does there exist an extension
fe Hy(4, X) of f satisfying f(4 U B)c P?

By the results mentioned above such an f exists if Pc X is a
closed ball. To prove this one needs the fact that the subspace of
all bounded functions in Hy(4, X) is a left A(4)-module and the fact
that P is absolutely convex in order to make the necessary norm
estimations on the interpolating function 7 assuring that 7(4UB)CP
[8]. Nothing similar is true in general when we consider the funec-
tions in Hy(4, X) whose ranges are contained in other sets than balls.
Consequently one has to apply different techniques in the general
case. In [11] this was done in the special case when the set P was
open and it was proved that f above exists if P is (open and) con-
nected. Of course this was not a generalization of the Rudin-Carleson
theorem although it was enough to reprove the main result of [9]:
Given any open connected set P in a separable complex Banach
space X there exists a continuous function f: 4 — {1} — X, analytic
on 4, whose range is contained and dense in P.
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In the present paper we study the general case when the set
Pc X is not necessarily open. In the special case when X = C we
obtain a simple complete topological description of the sets PcC
having the following property: given any closed set FCodd of
measure 0 and any fe C(F) satisfying f(F)C P there exists an ex-
tension fe A(d) of f satisfying f(d)c P. If PcC has such a pro-
perty and if P consists of more than one point we show that for
every relatively open set B C 04, every relatively closed set FFC B
of measure 0 and every continuous function f: F'— P there exists a
“peak” extension of f, i.e. an extension fe Hy(4, C) of f satisfying
Ff((4UB) — F)cInt P. In the general case we study only the sets
Pc X with the property that given any closed set F' C d4 of measure
0, every function fe C(F, X) satisfying f(F)C P admits a peak ex-
tension fe A(4, X), and obtain their topological description.

In §1 we state the main results. In §2 we give the complete
proofs; this section contains some lemmas and theorems which might
be of independent interest. In §3 we present some simple applica-
tions to the ranges and cluster sets of analytic functions.

1. Main results.

DErFINITION 1. [10, 11] Let BcC 64 be a relatively open set. A
subset P of a complex Banach space X is said to have the analytic
extension property (AEP) with respect to Hy(4, X) if, given any
relatively closed set F'— B of measure 0 and any continuous function
f: F— P there exists an extension fe Hy(4, X) of f which satifies
FfAUB)cP. We say that Pc X has AEP if it has AEP with
respect to Hy(4, X) for every relatively open set B dJ.

DEFINITION 2. Let BCd4 be a relatively open set. A subset
P of a complex Banach space X is said to have the peak analytic
extension property (PAEP) with respect to Hy(d, X) if, given any F
and f as above there exists an extension f e Hy(4, X) of f satisfying
Ff((4U B) — F)cInt P. We call every such extension a peak extension
with respect to P (whether P has PAEP or not). We say that Pc X
has PAEP if it has PAEP with respect to Hy(4, X) for every rela-
tively open set BcCo4.

Let O be an open subset of a complex Banach space X. O is
called locally comnected (LC) at a point e X if given any ¢ >0
there exists ¢ > 0 such that if (x + By(X))N O is not empty it is
contained in a connected component of (z + B.(X))N O [17]. Note
that O is LC at every point of O.

Now we are able to state our main results.
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THEOREM 1. Let P be a nonempty subset of a complex Banach
space X. Then the following are equivalent

(A) there exists a closed set F'C a4 of measure 0 with infinite-
ly many points such that every continuous function f: F— P admits
a peak extension fec A(d, X) with respect to P

(B) P has PAEP with respect to A(4, X)

(C) P has PAEP

(D) P has the following properties:

(i) PclIntP.
(ii) Int P is connected and locally conmnected at every point
of P.

THEOREM 2. Let P be a subset of C containing more than one
point. Then the following are equivalent

(A) there exists a closed set F C 4 of measure 0 with infinite-
ly many points such that every continuous function f: F— P admits
an extension fe A(4) satisfying f(4) < P

(B) P has AEP

(C) P has PAEP.

COROLLARY. Let P be a subset of C containing more than one
point. Then the following are equivalent

(A) given any closed set F Cad of measure 0 and any fe C(F)
satisfying f(F) C P there exists an extension fe A(4) of f satisfying
fdHcP

(B) given any closed set F a4 of measure 0 and any feC(F)
satisfying f(F)CP there exists an extension fe A(d) of f satisfying
f(d— F)cInt P

(C) P has the following properties

(i) PcIntP
(ii) Int P is connected and locally commected at every point
of P.

REMARK. The above Corollary gives a complete topological de-
seription of the sets P C for which the Rudin theorem holds. If
(C) in the Corollary above is satisfied by a (nonempty) compact set
Pc C whose interior is simply connected note that then P is homeo-
morphic to 4 [17]. Finally, note that the main results of [7, 8, 9,
11] follow from Theorem 1 and Theorem 2 above.

2. Proofs.
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LEMMA 1. Let P be a nonempty subset of a complex Banach
space X and let F'Cod be a closed set of measure 0 containing in-
finitely many points. Suppose that given any continuous function
fiF—P there exists an extension fecA(4, X) of f such that
fd— F)cInt P. Then

(i) PcIntP
(ii) Int P is connected
(iii) Int P s locally commected at every point of P.

Proof. Let zeP. By the assumption there exists fe A(4, X)
satisfying f(F) = {x} and f(4d — F)cIntP. Let {2,}C4 converge
to a point of F. By the continuity of f {f(z,)} converges to z.
Since f(z,)eInt P (ne N) (i) is proved.

By the assumption F is nowhere dense on 64 and contains more
than one point. Consequently F' = F, U F, where F,, F, are nonempty
disjoint compact sets. Let z,ycIntP and define f(s) =z (scF)),
f8) =y (seF,). Clearly feC(F, X) and by the assumption there
exists fe A4, X) satisfying F(F) = {«}, f(F,) = {y} and f(d— F)c
Int P. Let z,¢F, z,€F,. Now t— @(t) = f(z, + t(z, — 2,)) is a path
joining  and y. By the properties of f we have @(I) C Int P which
proves (ii).

To prove (iii) assume that Int P is not LC at a point zeP.
This means that there exists ¢ > 0 such that for every d > 0 the
set (¢ + B;(X)) N Int P meets at least two connected components of
the set (z + B.(X)) N Int P. It follows that there exist two sequences
{z,} cInt P, {y,} CInt P converging to x such that for every ne N
z, and y, lie in different components of (x + B.(X)) N Int P. Assume
for a moment that there exist a sequence {t,} C64 converging to
teod and feA(d, X) satisfying f(4)cIntP and f(t,._,) = .,
Htss) = ¥yo(n e N). By the continuity of f there exists a neighbour-
hood Uc 4 of t such that f(U)cxz + B.(X). Consequently there is
some 1 € N such that the closed segment J joining ¢,,, and ¢, is
contained in U. Then by the properties of f, f(J) is a path joining
%, and ¥, in (¢ + B.(X)) N Int P, a contradiction.

It remains to prove the existence of f and {¢,} above. By the
assumption F contains infinitely many points which implies that
there is some ¢ € F' which is a cluster point of F' — {¢}. Since F is
nowhere dense on 04 there exists a decreasing sequence {T,} of open
arcs in 04 all of whose endpoints lie in 04 — F' and such that Fc T,
Ny-. T, = {t}. Define F, =FN(T,— T,,) neN). Then F,(neN)
are disjoint compact sets infinitely many of which are not empty.
Passing to a subsequence if necessary we may assume that all sets
F, (ne N) are nonempty. Define f: F— X by
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f(s) =2, (s€ Fy,_;neN),
f(s) =y, (se Fy,;meN),
@) ==.

It is easy to see that f is continuous. By the agsumption there
exists an extension fec A(4, X) of f satisfying f(4 — F)cInt P.
Choose t, € F,(ne N).

An open subset O of a complex Banach space X is called uni-
Jormly locally connected (ULC) on a subset K of X if given any
€ >0 there exists 0 >0 such that for every 2eK the set
(xz + By(X)) N O, if not empty, is contained in a connected component
of the set (x + B.(X)) N O [17]. We call any such ¢+ d(¢) a modulus
of ULC of O on K.

LEMMA 2. Let O be an open subset of a complex Banach space
X and let KC X be a compact set. Suppose that O is locally con-
nected at each point xe€ K. Then O is uniformly locally connected
on K.

Proof. Simple. For the idea see [17, p. 160].

LEMMA 3. [11] Let BC o4 be o relatively open set, GC B a
relatively closed set of measure 0, and HC B a compact set of
measure 0, disjoint from G. Let Uc 4U B be a neighbourhood of
H and let ¢ >0. Assume that P is an open connected set in a
complex Banach space X which contains the point 0 and let f: H— P
be a contiajuous Sfunction. There exists fe Hy(4, X) which satisfies

(i) flH=F

(ii) S(G@) = {0}

(i) ||f(®)| <e (ze(duUB)—U)

(iv) fl4uB)cP.

Lemma 8, which gives an approximate solution to our Problem,
is the most important tool in the present paper.

LEMMA 4. Let O be an open connected set in a complex Banach
space X. Let FCod be a closed set of measure 0 and f,, f, two
continuous functions from F to O. There exists a homotopy
p: F x I — 0 satisfying

(s, 0) = fi(s)

p(s, 1) = £is)] <)
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Proof. Choose s,€04 — F and 0. By Lemma 3 there exist
g.€ A(4, X) (¢ = 1, 2) satisfing

gi[F:fl‘
9(4)cO (i =1,2).
g:s) =@ )
Put
(9,05 + 265, — 9)) (seF,0=t=1p2)

p@J%:www—@—zms—%» (seF,1/2=5t<1).

It is easy to check that p has the required properties.

LEMMA 5. Let O be an open subset of a complex Banach space
and let F'Cod be a closed set of measure 0. Suppose that f: F— O
is @ continuous function and assume that O is ULC on f(F). Let

e 0(e) be a modulus of ULC of O on f(F). Let R > 0 and assume
that g: F— O is a continuous function satisfying

1f(s) — g(a)ll < o(R)/2 (seF).

Let ¢ > 0. There exists a homotopy =: F x I — O satisfying
(i) 7(s,0) =g(s) (sek),
(i) liz(s, 1) — fs)ll <e (seF),
(iil) [lz(s, ) — f(8)[| < 2R (seF,0=<t=1).

Proof. By the properties of F
F=UF,
where F(1 =1, 2, --+, m) are disjoint compact sets such that

Y A — I < min{R, 6(R)/2, ¢/2} (¢, neF;i=1,2 -, m).

Choose {, e Fy(i=1,2, -+, m). Since f(F)cO there exist z, €0
(1=1,2, +++, m) such that

(1.2) IWAE) — @]l <min{3(R)/2, ¢/2} (¢=1,2,---,m).

Define hi{s) = %, (s€ F,;v=1,2, ---,m). By the assumption and by
(1.1) we have

(1.3) L) = g() | = IAZ) = & + [[f(s) — 9(s) ]|
< o(R) (seF;i=1,2,--+,m)

and similarly by (1.1) and (1.2)
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(1.4) [R(s) — f(s)]] = [In(s) — SEE N + 1AE) — f(s)]]
<€ (seF;t1=1,2, .-+, m).

By (1.2) and (1.3) we have
@, = hs)e(fC) + Bon(X)NO  (seF3i=1,2 -+, m)
and
96) e (fC) + B XNNO  (seF;i=12, -+, m)

and it follows that for each ¢ =1,2, ---, m both h(F,) and g(F,) are
contained in the same connected component of (f({;) + Bz(X)) N O.
Now Lemma 4 applies to show that for each 7=1,2, --., m there
exists a homotopy p,: F;, X I— O satisfying

ps, 0) = g(s) L s
pi(s, 1) = hs) } BeFsi=L2., m

and

(1.5) p(s, 1) e (S (L) + B(X)NO
(seF;0=t=L+=12 .-+, m).

Define m: Fx I—0 by w|F, xI=9p, (t=12,---,m). Since F,
(t=1,2, ---,m) are disjoint compact sets it follows that F, x I
(t=1,2, ---, m)are disjoint compact subsets of F x I and consequent-
ly © is continuous. Clearly #(s, 0) = g(s) (s€ F). By (1.1) and (1.5)
we have

Ipds, t) — F(&) = o, t) — SN + [IAL) — F$) ]
< 2R (seF;0=t=1,7=1,2,+--,m)

which implies (iii). Finally, by (1.4) we have ||n(s, 1) — f(s)|| < ¢
(se F).

THEOREM 3. Let O be an open subset of a complex Banach space
X and let FCod be a closed set of measure 0. Let f: F— O be o
continuous function and assume that O is locally connected at each
point of f(F). Then there exists ¢ homotopy p: F x I— O satisfying

(1) »(s,0)€e0 (seF;0<t <)

(ii) p(s, 1) = f(s) (se F).

Proof. Observe first that f(F) being compact O is ULC on f(F)
by Lemma 2. Let e+ d(¢) be a modulus of ULC of O on f(F.)
Choose a decreasing sequence {R,} of positive numbers converging
to 0 and a strictly increasing sequence {¢,} of nonnegative numbers
converging to 1 where ¢, = 0.
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Assume for a moment that there exists a continuous funection
p: F x (I — {1}) — O satisfying

2.1) 1 o(s, t) — f(s)]| < 2R, (seF;t, <t <1l,neN).

Since {R,} converges to 0 we have lim,., o(s, t) = f(s) uniformly for
scF. Since f is continuous on F it follows that the extension
p: Fx I— 0 of p defined on F x {1} by n(s, 1) = f(s) (s€ F) is con-
tinuous on F x I and satisfies (i), (ii) above.

To prove the existence of p satisfying (2.1) we first prove that
there exists a sequence of homotopies 7,: F x I— O (n € N) satisfying

(2.2) Toi(s, 0) = m,(s, 1) (se F,neN)

(2.3) I7u(s, 1) — ()l < 6(R,..)/2  (seF,neN)
and

(2.4) (s, t) — f(8)Il < 2R, (seF,0=<¢t=<1,meN).

To define 7, observe that FF = |, F;, where F, (1t =1,2, .-+, m) are
disjoint compact sets such that

(2’5) ||f(§)—f(7))H <5(R1)/4 (E; 7]er,7/: 17 2, ""m)

Choose (,eF, (1=1,2,--+,m). Since AAF)cO there exist 2,€0
=12, -+, m) satisfying

(2.6) o, — fE)I < o(R)4  (1=1,2 -+, m).

Define g(s) =z, (s€ F;,1=1,2, .-+, m). Then ¢g: F— O is a continu-
ous function which satisfies ||f(s) — g(s)l] < d(R)/2 (s€F) by (2.5)
and (2.6). By Lemma 5 applied to f, g, R = R, and ¢ = 4(R,)/2 there
exists a homotopy 7,;: F X I — O satisfying [|7.(s, 1) — f(s)|| < 0(R,)/2
(seF) and ||z (s, t) — f(s)|| < 2R, (se F,0 =t < 1).

Agsume that there exist #, (n =1, 2, .-+, l) satisfying (2.2) for
1<n=<l-—1 and (2.8), (2.4) for 1 =n <. By Lemma 5 applied
to f, to s—g(s) = w(s,1) (se F), to R = R,,, and ¢ = 6(R,,,)/2 there
exists a homotopy 7,.:F X I— O satisfying (2.2) for n =1 and
(2.8), (2.4) for n=1+1. Now the existence of {7,: n ¢ N} satisfying
(2.2), (2.3) and (2.4) follows by induction.

Now define p(s, t, + t(t,y, — t,) = 7(s,t) (s€e F,0 <t £ 1, ne N).
It is easy to check that p has all the required properties.

LEMMA 6. Let O be an open subset of a complex Banach space
X. Let BCodd be a relatively open set, HC B a compact set of
measure 0 and G C B a relatively closed set of measure 0, disjoint
from H. Suppose that w: Hx I— 0O 1is a continuous function
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satisfying
diam {#n(s, t): 0=t =1} = M (se H)

Jor some M. Let Uc 4U B be a neighbourhood of H and let ¢ > 0
be arbitrary. Assume that h: 4U B— O is a continuous function
such that

(a) h(s) =7(s, 0) (se H)

(b) there exists T > 0 such that

M4UB) + B(X)cO.

Then there exists g € Hy(d, X) satisfying
(1) (h+g)s)=7(s,1) (seH)

(ii) g(s)=0 (se@)

(iii) llg(@)ll <e (ze(4UB)— U)

iv) gl <M+¢ (zed4UB)

(v) there exists 6 > 0 such that

(h + 94U B)+ B{(X)CO.
Proof. By the assumption n: H X I— O is continuous hence

w(H x I) is a compact set contained in O. Consequently by (b) there
exists 0 > 0 which satisfies

(3.0) 0 <¢/3

(3.1) h(4 U B) + B(X)c O
and

(3.2) o(H x I) + B, (X)cO.

By the properties of H
.H = Lm_J Hj

where H; (7 =1, 2, .-+, m) are disjoint compact sets such that

17§, 0) — =(, 0)|| <o
|5, 1) — =(y, DI <0

Since h is continuous on 4 U B there exist disjoint neighbourhoods
V;c U of the sets H; (=1, 2, ---, m), respectively, such that

(3'4) Hh(s)—h(vﬂl <0 (5’ 77€Vji.7"—‘1, 2' "',7’)’1/).

Let 1 <7 <m. Choose &;¢ H; and consider the set

(3‘3) (E:yieFi:j:]ﬂz;"'y/'n)‘

P; = —n(&;, 0) + {m(§;, 1): 0 = ¢ = 1} + Bi(X) .
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By the continuity of 7, p; is an open connected set in X containing
the point 0. By (3.3) we have

7(s, 0) e w(&;, 0) + By(X)

25, 1) e (e, 1) + Bux)] & H)

and it follows that n(s, 1) — n(s, 0) € P; (s€ H;). Hence s—7n(s, 1) —
(s, 0) is a continuous function from H; into P;. By Lemma 3 there
exists g; € Hp(4, X) satisfying

(3.5) 9i(s8) = n(s, 1) — n(s, 0) (se Hj)
(3.6) gi(s) =0 (seG U (H — Hy)
(3.7 lg:2)|] <o/m  (ze(4UB)—V))
(3.8) g{(4UB)CP;.
Define
g = g gi -

By (3.7) we have
(3.9) l9(2)]| < 6 (ze(AuB>—jQVf).

Since V;cU (=12 :--,m) it follows that |lg(z)]| <o
(ze(4U B) — U) and by (3.0) (iii) is satisfied.

If ze V; for some j, 1 =< j=<m then 2z¢V, (k= j,1 =<k < m).
Consequently we have by (3.7) and (3.8)

9(2) = g4(2) + ;Z; 9:(2)

(3.10)
€ P; + By(X) (:eV;3=12 -, m)

By the assumption diam {7(s, t):0 <t <1} £ M (s € H) which implies
that

sulpliylléMJrza =12 ---,m).
Vej

By (3.0), (3.9) and (3.10) (iv) follows.
Now, (3.9) implies that

hz) + g(z)eh(4U B) + B(X) (2e(4UB)— (j V)
and by (3.1) it follows that

3.11)  h(z) + 9(2) + B{(X)cO (2€(4UB) — Q V).
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If zeV; for some j, 1=j=m then z¢V, k=7,1Zk=m) so
by (a), by (3.4) and by (3.10) it follows that

W(z) + g(2) € h(&;) + By(X) + P; + By(X)
= &) + By(X) — w(&;, 0) + {m(&;, 1): 0 < ¢ = 1} + Byy(X) + By(X)
ca(F x I) + B(X).

Now (3.2) implies that A(z) + g(z) + B,(X)c O (ze U™, V;), which,
together with (3.11) gives (v).

By the properties of g; (1 < 7 < m) it is easy to see that (i) and
(ii) are also satisfied.

THEOREM 4. Let O be an open connected subset of a complex
Banach space X. Let BC 04 be a relatively open set and FC B a
relatively closed set of measure 0. Assume that p: Fx I—0 is a
continuous function satisfying (s, 1)€0 (se F, 05t < 1).

There exists fe Hy(4, X) such that

(a) f(s)=p(s,1) (seF)

(o) f()eO (2e(4U B)— F).

REMARK. In particular, Theorem 4 implies the following: Let
O, B and F be as above and let u: F— O be a continuous function.
If there exists a peak continuous extension of u, i.e., a continuous
extension v: 4 U B— O of u satisfying #((4 U B) — F)c O then there
exists a peak analytic extension of u, i.e. a continuous extension
w: 4U B— O of u, analytic on 4 and satisfying w((4 U B) — F)cO.
To see this, put p(s, t) = v(st) (s€ F, 0 <t £ 1) and apply Theorem 4.

Proof of Theorem 4. We consider only the case when F is not
compact. It is easy to see how to simplify the proof below in the
case of compact F'; note that in the latter case the proof is consider-
ably simpler.

Part 1. With no loss of generality we may assume that 0¢O.
As in [8] write

F:GFJ

where F;C 4U B (5 € N) are compact sets infinitely many of which
are not empty, such that there exist disjoint open sets 0;,C4U B
(j e N) with the property that F;c0; (j € N) and such that every
compact subset of 4 U B misses all but a finite number of the sets
0;,. Passing to a subsequence if necessary we may assume that all
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sets F; (€ N) are nonempty. Passing to a smaller 0, if necessary
we may assume that 0, is contained in a compact subset of 4 U B.

By Lemma 4 there exists for each j € N a homotopy p;: F x I— 0O
satisfying (s, 0) =0, p;(s,1) = p(s,0) (seF;). With no loss of
generality we may assume that p(s,0) =0 (s€F) (otherwise we
replace p by = defined as follows

ﬂ(s’t):pj(syzt) (Oétél/zysth jeN)
(s, 8) =p(s,20 —1) (2=t =<1, seF)

by the properties of the sets F,; (jeN) it is easy to see that
7: F x I — 0 is continuous).

By the compactness of the sets F; (€ N) and by the continuity
of p there exists for each je N an increasing sequence {¢;;: 7€ N},
0 <t,; <1 (1€ N), converging to 1 and satisfying

(4.1) diam {p(s, ©): t;; < t < 1} < 1/2%* (seF;,jeN,ieN).
Part 2. In the sequel we will prove the following:

(A) for each j € N there exists a decreasing sequence U,; C 4 U B
(1€ N) of neighbourhoods of F; contained in 0; and satisfying

AU;=F, (jeN)

(B) there exists a decreasing sequence {¢;} of positive numbers
where

(4.2) B.(X)cO
such that

(C) there exists a sequence {g,} C Hy(4, X) satisfying
(1) (=i 9a)(s) = p(s,t:5) (seF;, 1 <75 =14,1€N)
g(s)=0 (seF;,j>1,5eN,ieN)
(ii) Jlg2)| <1/2° (2€(4UB) — Uy 1€ N)
(i) g2l <&/2" (ze(4U B) — Uj= Uy, i€ N)
(iv) n=19)dUB) +¢, (X)cO (ieN).
Assume for a moment that we have proved (A), (B), (C) above.
Define

f@) =29z (2€4UB).

We show that f has all the required properties.
Since each compact of 4 U B misses all but a finite number of
the sets 0;, (C) (ii) implies that the series converges uniformly on
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each compact subset of 4 U B. Consequently fe Hy(4, X). By (C) (i)
and by the continuity of » we have for all je N and for all se F;

F) = Tim 35 g(s) = lim 3 9.(s) = Lim p(s, £..) = p(s, 1) -

N—r00 1= R—>00 1=

n>j

Consequently f(s) = p(s, 1) (s F) so (a) is satisfied.

To check (b), let 264U B ~ F. Let first ze(4U B) — U, Uy;.
Now (C) (iii) implies that [|f(z)|| < e, and by (4.2) it follows that
f(2) 0. Now, let ze U,; for some je N. Then z¢ U, (k+* j, ke N).
Further, since z¢ F; it follows that there exists 1€ N such that
2e Uy, z¢ U,,;. Consequently ze(4U B) — Ui Uiyr,sy so that
2€(4U B) — U, U,; for every keN, k=+¢+ 1. By (C) (iii) it
follows that

13 0l < e
which, by (C) (iv) implies that f(z) € O.

Part 8. It remains to prove (A), (B), (C) above and we do this
by induction.

First, choose ¢, > 0 such that (4.2) holds and put U, = 0.
Choose a decreasing sequence {U,} of neighbourhoods of F, in 41U B
contained in 0, and satisfying Nz, U,, = F.. By Lemma 3 there
exists g,e Hy(4, X) satisfying g¢(s) = 0(s,t.) (seF), gfs)=0
(seF— F), g(4UB)cO and

(4.3) lg:(2)[] <min{1/2,¢/2}  (ze(4UB)—U,).

Now 0, is contained in a compact subset of 4U B. Consequently
9.(U.,) is contained in a compact set contained in O by the continuity
of g,. It follows by (4.2) and (4.3) that there exists ¢, 0<e¢, <e¢g
satisfying ¢4 U B) + B (X)C O. So we have proved the existence
of a sequence {U,, ke N} ¢,¢, <e¢, and g, Hy(4, X) satisfying (A)
and (C) (i)-(iv) for ¢ = 1.

Assume that we have proved the existence of the sequences
{U,;, ke N} 1 =<7 =<mn), of a decreasing sequence {¢,, 1 <k < n + 1}
of positive numbers and of a sequence {g,, 1 < ¢ < n} < Hy(4, X) such
that (A) is satisfied for 1 < j < x and (C) (i)-(iv) is satisfied for
1=<¢=n. We show below how to choose a sequence {U, .., k€ N}
to satisfy (A) for j = » + 1 and then how to choose ¢,,,:0 < ¢, , <
€nsr and g,., € Hy(4, X) to satisfy (C) (i)-(iv) for 1 = n + 1.

By the compactness of the set »(#,,. X [0, £,..,.+.]) there exist
6 >0 and ¢ > 0 satisfying

(4.4) D(Fois X [0, topsnn]) + Bu(X) <O
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(4.5) 40 < &,y
(4.6) d + & < 1j2mH — 1/2m+
4.7) 0+ & < g, /20,

We choose {U,,,..1, k€ N} as follows: >%_, g, is continuous on 4 U B
and by (C) (i) Clnz19)(8) =0 (s€ F,,,). Consequently there exists
a neighbourhood U,,, .., <0,,, of F,,, in 4U B such that

4.8) I 0@ <8 (@e Unns) -

Now choose a decreasing sequence U,,,., C0,,, (k€ N) of neighbour-
hoods of F,,, in 4U B satisfying U, ,.,, = Ussrn (€N, k< n) and
Ni-. Unyr = Fayyy so that (A) is satisfied for j =n + 1.

By Lemma 3 there exists e € Hy(4, X) satisfying

(4.9) e(s) = (s, turins)  (SE€F,p)
(4.10) es) =0 (seF,keNk#n+1)
(4.11) lle(2)|| <o (2€(4U B) — Unsinss)
and

(4.12) e(4U B) T p(Fass X [0, tays,n]) + By(X)

since P(F,., X [0, tusrnnl]) + Bs(X) is an open connected set which
contains 0 and the set {p(s, t,i1,ns1) S € Fopi}e

Consider the function o = X%_, g,. + ¢. Since (C) (iv) holds for
i =n it follows by (4.5) that (G-, 9.)(4 U B) + B,(X)c O which,
by (4.11) implies that

(4.13) hz) + By(X) <O (2€(4U B) = Unsinsd) -

Now let z€ U,yins. By (4.8) and (4.12) we have h(z)e p(F,4; X
[0, t,1141]) + Bex(X) which, by (4.4) implies that h(z) + B,(X)< O
(2€ Uyy1,ne1) and by (4.13) it follows that

(4.14) h(4U B) + B, (X)CO.
Now, put

H=UF., G=F-H,
=1

p(S, tni + t(t'n—H,.’i - tnj) (S € Fi; 1 é .7 é 'n')
p(s’ tn+1,n+1) (S € F’IL+1) 9

n+1

U=U U, M=12"2,
k=1

(s, t) =
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Observe that by (C) (i), (4.9) and (4.10) w(s, 0) = h(s) (s € H). Note
also that by (4.1) diam {n(s, ), 0 =t £ 1} < M (s H). Now Lemma
6 applies to show that there exists ge Hy(4, X) with the following
properties:

(4.15) (b + g)s) = 7(s, 1) = p(s, tasrg)  (s€F;1=j=n+1)

(4.16) 9&) =0  (cF,jeNjzn+2)
(417) @] <e  Ge@UB) = U Ui
(4.18) llg(x)[] <1/2*** + ¢  (2e4UB),

and that there exists ¢,,,, 0 < ¢,,, < é&,., such that
(4.19) (h +9)4UB)+ B, (X)cO.

Define g,., = ¢ + g. Clearly ¢,., € Hz(4, X). By (4.15) and (4.16)
it follows that (C) (i) is satisfied for ¢ = » + 1. Further, by (4.19)
(C) (iv) is satisfied for ¢ = n -+ 1. -

Let ze(4UB) — U,...,... By (4.11), (4.18)-and (4.6) we have
g = Mle@)]] + [[g(@)]| <6 + e+ 1/2¢"* <1/2""  which implies
that (C) (ii) is satisfied for 7 =% + 1. Finally, let ze(4 U B) —

4 Upir,s. By (4.11), (4.17) and (4.7) it follows that

19,2l <0 + & <e,uf2"
which implies that (C) (iii) is also satisfied for 7 = n + 1.

Proof of Theorem 1. Clearly (C) = (B)=(A). By Lemma I,
(A)= (D). To show that (D) implies (C) assume that Pc Int P and
that Int P is connected and locally connected at every point of P.
Let BC o4 be a relatively open set, F'C B a relatively closed set of
measure 0 and f: F— P a continuous function. In the case of non-
compact F write F' = U7, F; where F'; (j € N) are nonempty compact
subsets of 4U B such that there exist disjoint open sets 0,C 4U B
(7 € N) satisfying F;C0; (eN) (8], see also Part 1 of the proof
of Theorem 4). For each je N, f; = f|F; is a continuous function
from F; to P. Now Theorem 3 applies to show that by the proper-
ties of P there exists for each 7€ N a homotopy »;: F; x I— P
satisfying p,(s,t)eInt P (se F;, 0 = ¢t < 1) and p;(s, 1) = fi(s) (s e F,).
Define p: FF X I— P by p|F; x I = p; (j€N). By the properties of
p; and F; (jeN) p is continuous and satisfies p(s, t)eInt P (se F,
0<t<1)and p(s,1) = f(s) (se F). In the case when F' is compact
the existence of such a p is immediate by Theorem 3. Now by
Theorem 4 there exists fe Hy(4, X) satisfying f\F =f and
F{(4U B) — F)c Int P.
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Proof of Theorem 2. Clearly (C)= (B)=(A). It remains to
prove that (A) implies (C). Assume that there exists a closed set
Fco4 of measure 0 with infinitely many points such that every
continuous function f: F— P admits an extension f ¢ A() satisfying
A cP.

Let fi: F— P be a nonconstant continuous function. By the
e}“bove assumption there exists a necessarily nonconstant extension
FeA(d) of f satisfying f(J)c P. Since every nonconstant complex-
valued analytic function is an open map [20] we have f(4)CInt P.
Consequently (s, t) — (s, t) = f(st) is a continuous function from
F x I to P satisfying

o(s, t)eInt P (seF,0=5t<1)
p(s, 1) =f(s) (sekF).

In the case when f: F— P is a constant, say f(s)=2 (se€F)
write F'= F, U F, where F,, F, are disjoint compact sets. By the
assumption P consists of more than one point so that there is a
yeP, y ==z  Further, by the above assumptions there exist
necessarily nonconstant functions f,, f,e A(4) satisfying f(F) =
FAFy) = {&}, fu(Fy) = f(F) = {y} and f(4)C P, f(4)C P. Now define
p: F x I— P as follows

(5.1)

fi(st)  (seF,0=t=1)

PO =15t)  (seF,0=t=1).

Since f, and f, are open maps p is a continuous function satisfying
(5.1).

Having proved the existence of a continuous function p: FXI—P
satisfying (5.1) Theorem 4 applies to show that there exists g€ A(4, X)
satisfying g|F = f and g(4d — F)cInt P. Since f was arbitrary it
follows that (A) in Theorem 1 is satisfied for our F and P. Con-
sequently (C) follows by Theorem 1.

3. Application and remarks., Given any set PcC home-
omorphic to 4 there exists /¢ A(4) satisfying f(4) = f(04) = P. This
is a consequence of Rudin’s theorem. Below we present some
generalizations of this result. The existence of fe A(4) such that
f(04) fills some square had been proved before Rudin’s theorem and
had raised certain interest [16]. Church [5] gave a complete topo-
logical description of the sets f(d4), fe A(4).

APPLICATION 1. Given any nonempty compact set P C satisfy-
ing P = Int P and such that Int P is connected anleocally gonnected
at every point of P, there exists fe A(4) satisfying f(4) = f(34) = P.
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Proof. Let FFC o4 be a Cantor set of measure 0. By the com-
pactness of P there exists fe C(F) satisfying f(F) = P [13]. Now
by Corollary 1 there exists an extension fecA(4) satisfying
f(4)c P. '

APPLICATION 2. Given any nonempty set PcC C satisfying P =
Int P and such that Int P is connected and locally connected at every
point of P, there exists a continuous function f: 4 — {1} — C, analytic
on 4 and satisfying

F@-)n ) =Ff@4—-)nU)=P
for every neighbourhood U C of the point 1.

Proof. Let {V,:neN} be a sequence of disjoint open arcs in
04 such that for every neighbourhood U of the point 1 there exists
nge Nsuchthat V,c U@neN,n >ny). For eachneNlet F,cV,
be a Cantor set of measure 0. It is easy to construct a function
a: N— N satisfying

Nca({n,n+1,---} (rneN).

Write P= U;., P, where P, are compacut sets. For each neN
there exists f, € C(F,) satisfying f.(F,) = P.., [13]. Put F=U;.. F.
and define f: F—P by f|F,=f, (neN). Clearly f is a continuous
function. By Theorem 1 there exists a continuous extension f: 4 —
{1} — X, analytic on 4 and satisfying f(4d — (1)) cP. It is easy to
see that f has all the required properties.

The following application to vector-valued functions is perhaps
more interesting. Its proof is the same as the proof of Appli-
cation 1.

APPLICATION 3. Given any nonempty compact set P in a finite
dimensional complex normed space X satisfying P = Int P and such
that Int P is connected and locally connected at every point of P
there exists fe A(4, X) such that f(4) = f(04) = P.

REMARK. Note that in Application 2 we can replace C by any
finite-dimensional complex normed space.

Note that in the case when X is infinite-dimensional one can not
fill a subset of X having nonempty interior with f(4 U B) for some
fe Hy(4, X) since f(4U B) is always a countable union of compact
subsets of X and consequently its interior is empty. For the results
about cluster sets in this case see [8, 9].
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REMARK. If X = C then by Theorem 2 a set PcC X containing
more than one point has AEP if and only if it has PAEP. If
dim X = 2 this is no longer true since there exist subsets P of X
having AEP whose interior is empty. An example is P = 4z where
zeX, x # 0.

PROBLEM. Give an example of a nonempty set P c C*? satisfying
P = Int P which has AEP but not PAEP.

REMARK. The results of the present paper give a partial solu-
tion to Problem 8 in [10].
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