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This paper treats the problem of determining which un-
oriented cobordism classes have a representative which is
the total space of a fiber bundle over a sphere. We are
looking for a necessary and sufficient condition for a closed,
compact, differentiable manifold to be cobordant to the total
space of a fiber bundle over S*.

Our results on bundles over S* and S® extend the results
of P. E. Conner [3,4], E. E. Floyd [4], R. O. Burdick [2],
W. D. Neumann [6], R. L. W. Brown [1] and R. E. Stong [7].

The following definition will facilitate the discussion.

DEFINITION 0.1. If a represents an unoriented cobordism class,
. we say that « fibers over S* if @ contains a representative which is
the total space of a fiber bundle over S*.

It has been shown (see [4] and [1]) that [M"] fibers over S' if
and only if {(w,, [M"]), which we will abbreviate by w,[M"], is zero,
and [M"] fibers over S* if and only if

w,[M"] =0 if n is even
W, W[ M*] =0 if n is odd .

The last condition is also sufficient for the cobordism class of a
manifold to fiber over any particular N?, since Stong has shown that
if [M"] fibers over S*, then it fibers over any manifold of dimension
less than or equal to k& (see [7]).

Our main results are as follows.

THEOREM 1. There are generators of . which fiber over S* in
all dimensions greater than or equal to 8 except 11 and, of course,
those of the form 2/ — 1.

CoROLLARY I. We can choose generators of M, = Z,Jx; |1 +# 28 — 1]
so that an element of either ome of the following subalgebras will
fiber over S* if and only if the Stiefel-Whitney numbers associated
with w, and w,_,w, are both zero. The subalgebras are:

I= ZjJx,|i+5,6,11 or 2/ —1]
J = Z,Jx; |1+ 4,5, 11 or 2/ —1}.

THEOREM 1I. No indecomposable 1l-dimensional class fibers
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over S'. Also, the cobordism classes of xx; and x} (where z, = [P}]
and z; = [Pi] are classes which fiber over S* (see [1]) and =, is the
indecomposable 5-dimensional class) do not fiber over S*. (This result
is a composite of Propositions 4.2, 5.1 and 5.2.)

Certain remarks should be made concerning these results.
Theorem I leaves several open questions. For example it is not
known whether classes like x,,x, or «2 fiber over S*, although it is con-
jectured that they do not. Theorem II can be regarded as somewhat
surprising, since it is known that Stiefel-Whitney numbers involving
high dimensional (>6) Stiefel-Whitney classes for any indecomposable
%, are zero, and just such a condition is sufficient for a cobordism
class to fiber over S? or S'. Although it is not very surprising that
a2 fails to fiber over S* (since x, does not fiber over S%), it is rather
surprising that z,2; fails to fiber over S*. For R. L. W. Brown has
shown that the cobordism class of a product of manifolds which
fiber over S' must fiber over S?% and that if M fibers over S? then
[M x M] fibers over S* [1]. So it would have been natural to conjec-
ture that if M and N both fiber over S?, then [M x N] fibers over
St

Several other results are worthy of note. In §3 we construct
a 9-dimensional manifold which fibers over S* and is cobordant to
the 9-dimensional Dold generator. In §5 certain results concerning
the fibering of 15-dimensional classes are proved using the results
of a computer study in that dimension. Finally, generators of
unoriented cobordism which fiber over S® are given for even dimen-
sions greater than or equal to 16 and odd dimensions greater than
or equal to 25.

1. A necessary condition. As is well known, if M* is the total
space of a fiber bundle over S* with fiber, F, then we can write the

tangent bundle to M* as follows:
TM* = p*tSPTF**

where TF"* is a bundle over M* such that ¢*TF** = ¢tF** for each
fiber. But W(S*) = 1; so by the Whitney product formula,

WM™y = WEF~*),

which implies w,(M") = 0 if ¢ > n — k. From this we can conclude
that Stiefel-Whitney numbers associated with monomials divisible by
Wy Woyy +++, and w,_,,, must be zero. R. L. W. Brown [1] has
shown that if » is odd and M" fibers over S? then w,_, also vanishes.
This result can be generalized for all even dimensional spheres.
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ProrosiTION 1.1. If M** 4s cobordant to N*** which fibers
over S*, then Stiefel-Whitney numbers associated with monomials
divisible by Wy, ., ., must be zero.

The proof is almost identical to the one given by Brown for S?
and will be omitted. As a consequence of 1.1, if [M"] fibers over
S, then Stiefel-Whitney numbers associated with monomials divisible
by

Way Wty ***y Wy ges 1O 7 €Ven
Wy Weeyy "y Wa_p,  Tor n odd

are zero.

2. Generators for unoriented cobordism which fiber over S*
In this section we will prove the first of the two main technical
results needed for Theorem I. TFirst we recall the manifolds
introduced by Conner and Floyd and R. L. W. Brown (see [4] and

[1]):
Py = RP(H, @ (m — 3)R)
and
P(m, n) = RP(H, X TP" @ (m — 3)R),

where H, is the canonical twisted quaternionic line bundle over
QP = S, considered as a real vector bundle. Notice that P(m, n)
has dimension m + 2n + 4.

LEMMA 2.1 [1, Propositions 3.2 and 3.4]. If m s even, then
[Pr+*] is indecomposable, and [P(m, n)] is indecomposable if n is
even and

(m+n+3

)E 1mod2.
"

PROPOSITION 2.2. There exist generators of N, which fibers over
St in even dimensions =8 and odd dimensions =13.

Proof. First, it is easy to see that even dimensional generators
which fiber over S* are taken care of by:

{[Pr**]lme2Z and m < 4}.
Now suppose 4 is odd and not of the form 2/ — 1. Let
1=229 +1)—1,
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where p, ¢ > 0. The unoriented cobordism class of
P(2" — 5, 27q)

is indecomposable for p > 2, and therefore gives a generator for all
odd dimensions except those of the form 4q + 1 and 8¢ + 3.
For dimensions of the form 4¢ + 1, we use the manifolds,

P49 —17,2).

These manifolds clearly have the proper dimension and satisfy both
conditions of Lemma 2.1. However, it is clear that ¢ must be greater
than 2, for otherwise the definition of P{4q — 7, 2) would be meaning-
less. In other words, we have “missed” dimensions 5 and 9.

For dimensions of the form 8¢ + 3, we use the cobordism classes
of the manifolds,

P8 —9,4).

The obvious restriction this time is ¢ > 1, so that we miss dimension
11. Altogether then, we have indecomposable generators which fiber
over S* in all dimensions =8, which are not of the form 2/ — 1,
except 9 and 11. The next section is devoted to a construction of
a 9-dimensional manifold over S* whose cobordism class is indecom-
posable, thus completing the proof of Theorem I.

Proof of Corollary I. Let x, = [Pi] and z, = [Pj] and thereafter
choose w, so that it fibers over S'. We will prove the result for I
only, since the proof is similar for J. Now suppose [M"] is any
cobordism class belonging to the subalgebra I, for which w,[M*] =
W,_ W ]M"] = 0. Suppose furthermore that n = 2% (for if n odd, it
fibers trivially). Then we can write

{M"] = [N"] + raf + sab?w, ,
where [N*] fibers over S* and #»,seZ,. Applying w, to both sides

forces » = 0, and then applying w,_,w, to both sides forces s = 0.

3. A 9-dimensional generator which fibers over S* Since
bundles over S* are eclassified by 7(G), where G is the structure
group, we must construct a map from S° into Diff (F*) where F,
the fiber, is defined by:

F=RxCP/r,z)~(s,z) if r=s5-+1,
(where, if z = (2, 2., 2;), then z = (2, 2, 7:)). If @S we let

a(t, z) = (L, 6(a)-2)
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define a left action on F, where 4(a)ec GL(2, C), and its action on 2
is defined as follows. Let & = A + Bj where A and B are complex.
Then

cosﬂ——t sinﬂ-t co:s7—r—1é —sin e

o) = 2 2 (A ~B) 2 2
(). = . -

. Tt 7wt [\B A 7t Tt

—8in == cos == i eos =

2 2 S 2/

and 6,(a)-(z, 2, 2:) = T“(ﬁt(a)@ 1), z3>, where 7T(z, 2,, 2;) = ((gl), z3>
defines the obvious bijection between CP* and C* x C — {0} with the
proper equivalence relation. It is straightforward to check that this
action is well-defined. Finally we let M° be the total space of the
bundle so constructed.

It now remains to determine the Stiefel-Whitney numbers of AM°,
First, we claim that H*(M®) = El(e,) ® P(e,) @ El(e,)/e; = ee,, Where
E(e,) denotes an exterior algebra on a k-dimensional generator and
P(¢,) denotes a polynomial algebra on a k-dimensional generator.
This follows from the associated Serre Spectral Sequence and the
fact that CP(H, P C) is a subbundle. For H*(CP(£)) is determined
by

Z'(__l)k+1—jp*(cj)tk+1—j =0

(where & is any complex (k + 1)-plane bundle, ¢ is the characteristic
class of the canonical line bundle » — CP(¢), and ¢; is the j™ Chern
class), and in this case

e; + p*(c)e, = 0.

But p*(¢,) = e, since ¢, is the generator of H*S* Z). To determine
the Wu classes, it suffices to note that Sg*(e.e,) = 0 and Sg*(eel) =
e.6t = eele,, and so v, = ¢,; Sq’%: =0 and Sq¢’ee, = 0, so v, = 0; and
finally, Sq’¢.e = eele,, so0 v, =e¢, Since the fiber is oriented,
w,=v,=0. Now, according to Wu’s formula, W = SqV, we
conclude: w, = 0, w, = ¢,, w; = e, and w, = ¢, + ¢5. It is clear that
the only nonzero Stiefel-Whitney number of M® is w,wiM°] which
implies that M® belongs to the same cobordism class as the Dold
generator, P(1, 4). Thus a nine dimensional generator of %, which
fibers over S* has been found.

4. Non-existence of a generator over S* for dimension 11.
In this section we will prove that there are no indecomposable 11-
dimensional classes which fiber over S:. The proof rests on the fact
that, if M" is the total space of a fiber bundle over S*, then v, (M")
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is the pull-back of the generator of H*(S*). First, we need the
following well-known lemma.

LEMMA 4.1. If n = 27, then w, can be expressed as v, + (terms
involving products of lower dimensional Stiefel-Whitney classes). In
particular, it is easy to show,

w, = v, + waw, + wi + w; .

PROPOSITION 4.2. There does mot exist an indecomposable 11-
dimenstonal cobordism class which fibers over S.

Proof. Suppose Fr L Mv 2 8 is a fiber bundle and that [M*]
is indecomposable. First, we claim v,(M) = p*(x), where x is the
generator of H*S*). For let », = r,p*(x) + 7y, where r,€ Z, and let
*(y)e H(F). If ry # 0, then v(F) = r,i*(y) # 0, which is nonsense
since F'is only 7-dimensional. Hence, 7,y = 0. (Note that », cannot
also be zero because v, is nonzero.)

Now, since [M"] is assumed indecomposable, s,[M] == 0, but
sulM] = Sq¢'s[M] = vs,[M] = {p*(®) U s, [M]) = {s;, p*(x) N [M]) =
(81, 14[F) = {(i*(s;), [F]) = s;[F] = 0, since all 7-dimensional classes
are decomposable.

5. Investigations in the 10™ and 15™ dimension. It is in
dimension 10 that some of the most appealing patterns first break
down. For 4 <n <10, it is.true that [M*] fibers over S* if and
only if Stiefel-Whitney numbers involving monomials divisible by
Wy, Wy, W, and w,_, are all zero. However, there is a problem
when we consider 2. It is true that Stiefel-Whitney numbers
involving w,, w, W, and w, are all zero, and therefore, applying a
theorem of Strong (see [7, 7.2]), one can conclude that x? fibers
over (S'). But we also have the following.

PROPOSITION 5.1. The cobordism class, x%, does not fiber over S*.

Proof. Suppose F°®— M?*— S* is a fiber bundle and that M is
cobordant to the square of the 5-dimensional generator. Recall that
according to the well-known results of C. T. C. Wall and J. Milnor,
Stiefel-Whitney numbers divisible by odd w, are zero, so
wyw,w,[M] = 0. But also, waw,w,[M] = wv, + waw, + w: + wHhHw,[M] =
wyw,w,[M] = waw,[F], as in the proof to 4.1, so we conclude that
wsw,[F] = 0.

However, w,w,[M] = w,w,[z;] =1, and again replacing w, by
v, + w; + w,w, + wi, we obtain
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W[ F] + wewi M| + waw,w,[M] + wawiM] = 1.

The last two terms on the left must vanish, and wwiM] = ww?ix;]
is also zero. Hence wJ]F] = 1. But this is absurd since

W F] = Sq*v,[F] = Sq'Sq*v:[F] = w.(Sq*v,)[F] = w,wi[F] .

PROPOSITION 5.2. The cobordism class, xzx, (where x; = [PS] and
x, = [P3]), does not fiber over S.

Proof. Suppose a representative, M, of xx, fibers over S* with
fiber F. Direct calculation shows that wew,[M] = 1, from which it
follows as before that wF] = 1. However w,w[F]| = wwwv[M] =
wyww, [M] + waw,wiM] + wawiw,[M] + w,wi[M] = 0, which is again
a contradiction.

Unfortunately, there is still an unanswered question in dimension
10. It is not known whether x? + x,2, fibers, although it is easy
using the above techniques, to prove the following interesting result.

ProroSITION 5.3. If 2!+ zx, admits a representative which
fibers over S* with fiber F, then F is null cobordant.

The question of which cobordism classes fiber over S* becomes
especially complicated in the 15™ dimension. In particular, it would
be nice to know whether i, x,,22, or z,x, fiber—for any choice of x,
and x,. It seems reasonable to conjecture that x! and z,x2 do not
fiber over S% but the techniques used earlier are useless here, since
v(F) need not be zero.

However, there is at least one method for getting some addi-
tional information. We can construct other manifolds which do fiber
over S* and then express them in terms of a chosen set of genera-
tors. For example, P,3,4) = RP(H, X tP*) is a 15-dimensional
manifold which fibers over S*. An IBM 860/67 was used to compute
the Stiefel-Whitney numbers for P,(3, 4) and basis of 9M,;. The out-
come was as follows:

[P 4(3; 4)] = 2} + X1gLs + Teksly + Toks + Lok, 2,
+ XXk, + XelsTs + Xxh + 25,

where z, = [P}], s = [Pi], %, is the Dold generator, x, = [RP®], and
x, = [RP*]. Since 2,&; + %22, + 2.2, + Zox,x, fibers over S, it follows
that a2 + xexex, + Texs2; + 22,2 + 2,25 also fibers over S I see no a
priort way of knowing this. An easy computation shows that
Xeks, + Telss + T2 x5 + X2 = x[P3][P:], so we have,

PROPOSITION 5.4. The cobordism class x fibers over S* if and
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only iof x[Pil[P3] fibers over S

6. Some results on bundles over S®. It should be apparent
that may of the tools we have developed here can also be useful in
the study of bundles over S°.

PrROPOSITION 6.1. There exist generators for N, which fiber
over S® im even dimensions =16 and odd dimensions =25.

Proof. For even dimensions =16, we use the manifolds
{P7*®* = RP(H; + (m — T)R)|m € 2Z}

where H, is the underlying real bundle of the canonical twisted
Cayley line bundle over KP' = S&.
For odd dimensions, consider manifolds of the form

Py(m, n) = RP(Hy; X TP" + (im — T)R)

of dimension m + 2% + 8. For dimensions ¢ = 27(29 + 1) — 1, where
p > 3, the following classes are indecomposable:

[Ps(27 — 9, 27)] .

Since p > 3, we must still find generators which fiber for dimensions
of the form 4¢q + 1, 8¢ -+ 3 and 16¢ + 7. These cases can be accounted
for by using Py(4q — 11, 2), Py(8q¢ — 18, 4) and Py(16g — 17, 8), although
we still miss dimensions 13, 17, 19 and 23, as in the proof to 2.2.

REMARK 6.2. Recall that, according to [7, 2.3], the existence of
generators which fiber over S°% S° in S’ in the above dimensions is
also guaranteed.

REMARK 6.3. Of course there is no 23-dimensional generator
which fibers, because if F**— M*— S® is a bundle, then

Sul M = S@s[M] = vesu[M] = (si, p*(@) N [M]) = s,[F] =0.

Therefore, it is still not known whether there are generators which
fiber over S*® for dimensions 12, 13, 14, 17 and 19.

7. Conclusion. One way of describing the problem dealt with
in this paper is to pose the following question. Is there a correspond-
ence between ideals in N, defined by means of algebraic conditions and
those defined geometrically. Eventually, an algebraic condition should
be found which neatly characterizes the geometric ideal composed of
cobordism eclasses which fiber over S*, but the nonexistence results
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of this paper seem to indicate that this algebraic condition will involve
something other than Stiefel-Whitney numbers for large values of k.
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