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Let J( ) denote the intersection of the maximals ideals of
a ring. The following properties are studied, for a ring R
torsion-free over its center C: (3)J(R) N C = J(C); (ii) ““Going
up’’ from prime ideals of C to prime ideals of R; (iii) If M
is a maximal ideal of R then MNC is a maximal ideal of C;
(iv) if M is a maximal (resp. prime) ideal of C, then M=MREnC.
Properties (i)-(iv) are known to hold for many classes of
rings, including rings integral over their centers or finite
modules over their centers. However, using an idea of
Cauchon, we show that each of (i)-(iv) has a counterexample
in the class of prime Noetherian PIl-rings.

Let R be a ring with center C. Throughout this note, we assume
that R s torsion-free as C-module, i.e., r¢ = 0 for all nonzero 7 in
R, ¢ in C. (In particular, this is the case if R is prime.) Let
J(R) = N {maximal ideals of R}.

R is a PI-ring if there exists a noncommutative polynomial
X, .-+, X,) with coefficients +1, such that f(r, ---, r,) = 0 for all
r; in B. The basic facts about PI-rings are in [6, Chapter X], as
well as in [10]. Kaplansky’s theorem implies that if R is a PI-ring,
then J(R) is the Jacobson radical of R, so clearly J(R)N C < J(C).
A natural question is, “Under what conditions does J(R) N C = J(C)?,”
or, more generally, “Is there any general correspondence between
J(R) and J(C)?” An answer for PI-rings given in [12, Theorem 5.9],
is that J(R) = 0 implies J(C) = 0. The object of this note is to tie
this question in with other notions which often arise (especially in
PI-theory). Then we give some pathological examples, which show
that many interesting negative properties (including J(R)NC = J(C))
oceur in such natural classes as the class of prime Noetherian PI-
rings., Seme easy theory is developed to cast some light on the
sharpness of these counterexamples. (Although the counterexamples
are associative, one may note that associativity is not needed in the
positive results.)

Call an ideal A of C contracted if A = A’ N C for some ideal A’
of R. (By [11, Theorem 2], semiprime PI-rings have a wealth of
contraeted ideals of the center.)

LEMMA 1. An tdeal A of C is contracted, iff ARNC < A.

Proof. Suppose A is contracted, i.e. A = A’NC. Then ARC A4,
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so ARNCCA'NC=A. Conversely, if ARNCZA, then ARNC = A,
so A is contracted.

Lemma 1 gives us a useful way of characterizing contracted ideals
of C and shows that any chain condition on the lattice of ideals of
R induces the corresponding condition on the lattice of contracted
ideals of C. However, it is often hard to apply lemma 1 to determine
the precise make-up of {contracted ideals of C}. Some specific
information can be obtained.

REMARK 2. Every principal ideal of C is contracted.

Proof. We wish to show ¢cRNC Z ¢C for every nonzero ¢ in
C. But if ¢reC then 0 = [¢r, 2] = ¢[r, 2] for all z in R, implying
redC.

REMARK 3. If C is a valuation domain, then every ideal of C
is contracted.

Proof. Recall that, given © and y in a valuation domain C,
either z divides % or y divides 2. Hence, if A is an ideal of C and
if e=3},ar,€ ARNC, then (by induction on t) some a; divides
every a, 1 <i=<1t. Write a;, = a;a;. Then ‘

C=a; Z a,r; € a,-R N C < G,jCA
(cf. Remark 2). Thus, ARNC < A4, so A is contracted.

To examine contracted ideals further, we use central localiza-
tion (cf. [12]), which is briefly described as follows: Given a
multiplicatively closed set S © C containing 1, let R; be the classical
localization (as C-module) of R respect to S; Ry~ R@,Cs. If
T £ R, we write T for {xs'|zeT}. If P is a prime ideal of C,
then we write R, for R,_,; note that C, has a unique maximal ideal
P.. There is a canonical injection +rs: R — Rs, given by 7 —rl7,
and Cy = Cent (Rs). Moreover, R; is always torsion free over C;. If
P is a prime ideal of C, write +» for +,_» and note that «z' is a
lattice injection of {prime ideals of R,} into {prime ideals of R}.
For S = C — {0}, call Ry the ring of central quotients of R.

LemMmA 4. (i) If A is a contracted ideal of C, then Ay is a
contracted ideal of Cg. (ii) If B is a contracted ideal of Cg, then
Vs'(B) is a contracted ideal of C.

Proof. (i) If es*eCsN AsRs, then, for some s, in S, e¢s, €
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ARNC S A, implying c¢s™' = (cs,)(ss) ' € As.

(ii) Suppose ceys'(B)RNC. Then c¢l'eBR;NCs< B, so0
¢ € y5'(B).

PrOPOSITION 5. If C is Prufer, then every prime ideal of C is
contracted.

Proof. Let P be a prime ideal of C. Then C, is a valuation
domain, so P, is contracted (by Remark 3). But P is then contracted,
by Lemma 4 (ii).

Of course, if every prime ideal of a ring is contracted, then
every semiprime ideal of the ring is contracted. Another property
of interest is “going up”. We say that R satisfies GU(P, P,) if,
for every prime ideal P’ of R with P = P’ N C, there exists a prime
ideal P, 2 P/, with P, = P,NC. GU(P, P,) occurs to some extent in
every prime PIl-ring (cf. [12, Theorem 4.16]); letting GU denote
GU(P, P,) for all prime ideals P S P, of C, it is natural to ask under
what conditions R satisfies GU.

All the ideas discussed so far can be related through central
localization, as follows:

PROPOSITION 6. Let 2 be a class of rings, such that, if Rec .2
and P is any prime ideal of R, then Rpc <. Consider the follow-
ing sentences:

(i) J(C)=JR)YNC for all R in 2.

(ii) J(C) € J(R) for all R in A.

(iii) GU for all R in 2.

(iv) For every R in <2, if P’ is a mawimal ideal of R, then
P'nC is maximal in C.

(v) Forevery R in 2, each maximal ideal of C is contracted.

(vi) For every R in & ecach prime ideal of C is contracted.
We have (i) = (ii) = (iii) = (iv) = (v) = (vi).

Proof. (i) = (ii). Trivial.
(ii) = (iii), Let P, < P be prime ideals C, with P, = P,nC.
Take a maximal ideal B of R, containing (P}),. Then

P.=J(C,) < JR,) S B,

so P = 4:z(B)NC; letting P’ = 3 (B) =2 P;, shows that GU(P, P)
holds.

(iii) = (iv) Clear.

(iv)=1(v). Let P be a prime ideal of C. Then P, is the only
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maximal ideal of C,. Thus, for any maximal ideal B of
R,, P, = BN C,, by (iv), implying P = 43}(B) N C.

(v) = (vi). Immediate; localize at the given prime.

(vi) = (v). Trivial.

(iv) and (v)=(). J(C)= N {maximal ideals of C} =C N (N {maxim-
al ideals of R}) = C N J(R).

For the rest of this mote, (1)-(vi) refer to the semtences given
in Proposition 6. Sentences (v) and (vi) do mot imply (i)-(iv), as
evidenced by an example (Bergman-Small [1, §1]) of a prime Pl-ring
whose center is a valuation domain, but which does not satisfy GU.
Hence, by Remark 3, we have (vi), but (iii) fails (and thus (i)-(iv)
fail in various central localizations). The following remarks are
easy and well known.

REMARK 7. The usual proof of the Cohen-Seidenberg theorem
can be modified to show that any integral extension of an integral
domain satisfies GU. (This fact was observed in [2] and extended
in [13].) Since “torsion-free over C” implies C is a domain, we see
that {R integral over C} satisfies (i)-(vi).

REMARK 8. If R is finitely spanned as a C-module then R is
integral over C, of bounded degree. This is is seen via [8, p. 238
and p. 335]. Hence, any ring of this form satisfies (i)-(iv). (R.
Snider showed me a proof of (ii) even in the non-torsion-free
case.)

REMARK 9. If R has a unique maximal ideal, then C is local
and (i), (ii), (iv), and (v) hold. Indeed, let M be the maximal ideal
of R. For any noninvertible element ¢ in C, clearly ¢cC £ M. Thus,
{nonunits of C} is the unique maximal ideal of C, equal to M N C,
so (i), (ii), (iv), and (v) follow easily. (Of course this class of rings
is not closed under central localization.)

There is also the following general situation where (v) holds:

ProrosiTION 10. (i) Ewvery prime ideal P of C, minimal over
a contracted tdeal A of C, is contracted. (ii) Every minimal prime
ideal of C is contracted.

Proof. (i) f{ideals B2 AR|BNC C P} is nonempty, and this
has a maximal element P, which is clearly prime. Since PN C is
prime in C and A PN C < P, we have P= PnC.

(ii) Every minimal prime ideal of C is minimal over a suitable
principal ideal, which is contracted (by Remark 2).
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Hence, any prime ring whose center has Krull Dimension 1 (no
two nonzero primes are comparable) satisfies GU, so (i)-(vi) hold in
this instance. An example of such a ring is the free noncommuta-
tive algebra over a commutative domain of Krull Dimension 1.

Having seen some situations in which some all of the sentences
in Proposition 6 hold, we shall now look for counterexamples to (V).
Example 11(b) will be “generic” in flavor, whereas Example 13 will
be Noetherian. Incidentally, in view of Remark 9, this will indicate
one of the complications of noncommutative localization of Noetherian
Pl-rings.

ExampLE 11. (a) Let &%, 1<14,5=<n, k=1,2, be commuta-
tive indeterminates over a field F, and let F(¢) be the field generat-
ed by all & over F. Let T be the n X n matrix ring M, (F(9)),
with matric units {¢;;|1 <4, § < n}, and let X, be the “generic”
matrix 3;;&%e,;. The ring R, generated by F, X,, and X,, is the
famous “ring of generic matrices,” and, by a theorem of Small, R,
satisfies GU. Moreover, every central localization of R, satisfies GU
(and thus (i)-(vi)), by [12, Theorem 4.24]. In fact, this class can
be expanded to {rings whose central kernel is a maximal ideal of
the center}, ef. [12, Theorem 4.24]. This example makes the follow-
ing example quite surprising:

(b) Notation as in (a), let X = X,, and let g, ---, ¢, be the
characteristic values of X, Define a, = >0, tt, @ = Siici Mlliy =+,
a, =ttt -+ tt,. We claim that R, the subring of T generated by
R, and «,, ---, @,, is a counterexample to (v).

Let C =Cent(R) and let A =3, a,C. Clearly AR = R (since

» (=1 e, X' =1). We will prove the claim by showing A += C.
The starting point is Procesi’s observation that the characteristic
values of X are algebraically independent (seen by specializing all
£ to 0 for 7 + j). Hence the p, are algebraically independent, and
the theory of symmetric polynomials in commutative indeterminates
(cf. [8, pp. 133-4]) will be applied to «,, ---, @,.

Let C, = Fla,, --+, @,] and let D be the subring of R generated
by X and C,. Note that X! = 3» (—1y'a,X""'e D. Suppose there
are ¢; in C such that 3, a,c, = 1. Specializing all &2 to 0, we may
assume that each ¢,eCND. Since «, .-+, @, are algebraically
independent, we will have reached a contradiction once we prove
that CND =C..

So suppose ¢ = Si_, fu(@)X* € C N D, where each fi(@)cC,. Write
¢ in this form, with ¢ minimal. First we show that ¢ < 0. Other-
wise, assume £>0. Write r, = X._, fi(@)X*. Diagonalizing, we may
assume X' = >7* e, Let g(X™) =>r (-1, ., X", where
a, =1, Clearly g(X™*) = «,X, so we can write
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ale = akr, + i al P f(e)g(XH
k=1
t—1
= afar, + kzzlaff’”“'fk(a)g(X‘l)’“) + fla)g(X),

a matrix with entries in Ffg, ---, #.], a polynomial ring. Now
g(XVe;; = (4« i i+ t)'€;;. Examining the entry in the
J, 7 position, for ¢ # j, we see that , divides both «, and f,(a)g(X),
implying #, divides aic. By symmetry, g, -+ t,|ale; reversing steps
shows that r; | fila)(tt - -+ p5 ity -+ 1), Hence p;|fi(a) for each j;
By symmetry, fi(a) = a,h for some element h in F[y, ---, 1]

Since # is symmetric in g, -+, &, & 18 in D; hence, we can
write ¢ = D% fi(@) XY + (fi_(a) + hg(X7)) X', contrary to the choice
of ¢ minimal. Thus, ¢t £ 0, after all.

In other words, ¢ is a polynomial in X' and the a,, Write
e = >, f(tty <+, tt)e,;. Switching g, and pg; merely interchanges
the (equal) coefficients of ¢,;, and ¢;;,, so we see that f is symmetrie
in the p,. Therefore ccC,, as desired.

Examples 1la and 11b show, in particular, that any of the
sentences (i) through (vi) may hold in some prime PI-ring, but fail
in a finitely generated central extension. Also, 11b is in fact affine,
that is, finitely generated (as a ring) over a field. However, {affine
prime PIl-rings} is not closed under central localization at prime
ideals of the center; in fact, Amitsur proved that all affine prime
PI-rings are semiprimitive (cf. [10, p. 102]), so (i) holds in this class.

In view of Remarks 7 and 8, and [5], clearly (i)-(vi) hold for
large classes of Noetherian PI-rings, and it is natural to ask whether
(vi) holds for all prime Noetherian PI-rings. First let us examine
the idea of example 11b. It is well-known that a prime PI-ring can
be embedded in a matrix ring over a field. Example 11b “works”
because there is a suitably general matrix (X) which is not integral
over the center, but for which we have the coefficients of the
characteristic polynomial of its inverse. But for Noetherian rings,
Schelter proved [13, Theorem 2]: If R is a prime Noetherian PI-
ring then, for any 7 in R, every characteristic value a of r satisfies
an equation of the form a® = Yzl a‘*r, for suitable r, in R.

Thus, if a*e R then, multiplying by a'%, we conclude that
aeR. In particular, for an element #» in an arbitrary prime
Noetherian PI-ring, if det(r*)e R then det(r™?) is a unit in R.
Hence, the idea of example 11b fails for prime Noetherian PI-rings.

Now we give in an example of a prime, affine Noetherian PI-
ring which does not satisfy (v). Of course, such an example cannot
be integral over its center, by Remark 7, and until recently, all
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known prime Noetherian PI-rings were integral (over their centers).
Cauchon [3] and Schelter [13] have discovered non-integral, prime
Noetherian PI-rings. Although, as can be seen, both examples
satisfy (vi), Cauchon’s example is representative of a wide class
including counterexamples to (v). (Small informed me that, using
an approach similar to that of Schelter [13], he has also obtained a
counterexample to (v).) Let us start by considering Cauchon’s
example in its general setting. Recall that a derivation of a ring
R is an additive map D: R— R satisfying (2y)D = (D)y + z(yD)
for all z, ¥ in R.

ExampLE 12. Let L be a commutative domain with derivation
D, and let ey, €., €,, €, be matric units of M,(L). For any element
e in L, let o = ale, + e») + (aD)e,. H = {e¢'|a €L} is a commuta-
tive ring isomorphic to L (via the map a¢+ a'). Choose = in L, and
let R be the subring of M,(L) generated by H and zM,(L). As
shown in [3], R is a finitely spanned left (and right) module over H,
with generators ze;;, 1 = 4, 7 < 2. Since the ring of central quotients
of R is the (simple) ring of matrices over the field of fractions of
L, R is prime. Clearly H N Cent (R) = {a’'|aD = 0}.

ExamPLE 13. A prime, affine Noetherian PI-ring R which does
not satisfy (v).

Let L, be the field generated over Q@ by the indeterminates
%, Y, Yu 2, and z,, and let L be the Q-subalgebra of L, generated
by x, Y., Y. %, 25 and (1 — yz)z7'. Let L, = Q[x, 2,](z,), and we
extend the zero derivation on L, to a derivation D on L[y, y,] via
the conditions ¥,.D = ¥,2, and ¥%,D = y2. By restriction, D is also a
derivation on L.

We claim LN L, ={geL|gD = 0}. Indeed, suppose gD = 0 and
g =" fi{y,)y: for suitable f.(y,) in L,]y,], chosen such that ¢ is
minimal. The coefficient of %! in gD is (f(¥,))D, which is thus 0; it
follows easily that f.(y,) equals some element g in L,. If ¢ > 0, then
the coefficient of %! in ¢gD is (f,_.(y.)D + tty.,z,) = 0; hence 1 =0,
contrary to the minimality of ¢. Therefore ¢t =0, and g = e L,,
proving the claim.

Now let R be built from L, using the construction and notation
of Example 12. Since L is Noetherian and R is a finite L-module, R
is left and right Noetherian. Also, R is clearly affine, as well as
prime (cf. Example 12). We claim that R does not satisfy (v).
Indeed, with C = Cent R, let A = 2/C + z;C. Since

1=zy + 21 — y2z)2") € AR,
it suffices to show that A =+ C. Suppose to the contrary that
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zi¢, + z¢, = 1, for suitable ¢, in C. Taking the parts of degree 0
in 2, we may assume ¢, c,€ H. Then we can write ¢; = d; for
suitable d;, in L. By Example 12, d,D =0, so d,€ L N L,, implying
d; € Q[z](z,). Now z.d, + z,d, = 1, which we assert is an impossibility.
Well, taking homogeneous components in terms of z,, we may assume
that d, = h(z) and d, = hyz,)2;* for suitable h(z,) in Q[z]. Since
d,e L, it follows that d, = (0 — y.2)%:')d for some element d in
L. Viewing d, as a polynomial in y,, with coefficients in L,, we see
that d, must have degree =1. But this contradicts the fact that
d,e L,. We conclude that A == C, as wanted.
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