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A practical method is given for finding the classes and
centralizers for arbitrary p’-elements in the automorphism
group of a Chevalley type group over a field of characteristic p.

1. Introduction. In the study of finite simple groups it is
important to know their conjugacy classes and the structure of the
corresponding centralizer subgroups. For the alternating groups the
results are well known; for the sporadic groups the calculations are
special to each group. In this article the authors will study the semi-
simple classes in Chevalley type groups. Different methods are required
for their unipotent classes.

Our approach is to work, as far as possible, in the algebraic group G
corresponding to the given finite Chevalley type group. If ¢ is a
semi-simple element in G then, in general, C;(¢) is not connected and its
component of the identity is not semi-simple but only reductive. Since
certain applications [3] require the structure of centralizers of pairs of
commuting semi-simple elements we are led to study the rather general
situation described in §2, 3, and 4. The underlying theory for these
sections is quite simple and is based on essentially two results; (i) the
algorithm which leads to the fundamental domain &, of 2.4, for this see
[2], [14] or Appendix 2, and (ii) a general result about algebraic groups,
see [14, §7], which allows one to reduce questions about semi-simple
elements in G to linear algebra problems in certain lattices. In a given
case, once the situation in G is clear, the step down to the finite group is
easily done by application of Lang’s theorem, see [11], [13] and §5 below.

In two unpublished notes [4], [5} this approach was used to calculate
(i) the classes of involutions at odd characteristic and (ii) the 3-elements
at even characteristic in Aut(L) for all finite Chevalley type groups
L. We also described the layer of C;(¢). Rather than reproduce these
results, we include, in Appendix 1, the structure of certain centralizer
subgroups that are of interest for current work on simple groups of
component type, see for example [7], [9].

We are indebted to the fundamental paper of Steinberg [14] for the
basic theory. Earlier work on these question occurs in Abe [1], Ree [12]
and Iwahori [10]. In fact the starting point for our work was the attempt
to put the ideas of [10] in a form which would give rapid and explicit
answers to the sort of questions which arise from finite group theory.

Our notation for finite groups follows [8] and for algebraic groups [6]
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and [14]. In particular, if C is an algebraic group then C° denotes its
connected component of the identity. All homomorphisms in §2 are
algebraic.

2. Reductive groups.

2.1. Some standard notation. G is a connected reductive algebraic
group over the algebraically closed field k. T is a maximal torus of
G. Put N=Ngz(T)and W= N/T. If n € N let w(n) denote its image
in W. '

Let X = X(T)=Hom(T,k*) and I'=I'(T)=Hom(k*, T), where
k* is the multiplicative group of k. They are Z-lattices of rank
r = dimension of T. Identify I' with the Z-dual of X by putting
x(m()=¢"%, where yEX, n €T, {Ek*.

The root system of G relative to T is denoted by X and consists of all
a € X for which there exists an isomorphism x, of the additive group k.
into G satisfying tx, ()" = x,({a(t)) for t €T, { E k.

If @ €3 the subgroup U, = x,(k.) is uniquely determined. Let
T.=TnN(U, U_,), a one-dimensional torus, and define the co-root
a€lby ¢(k*)=T, and a(a)=2. If N, = NN (U, U._,) there exists
n, € N such that N, =(T,, n,). Let w, = w(n,) then W =(w,: a €3)
and w, permutes X as follows: w,8 = 8 — a(B)a

If B is a Borel subgroup of G which contains T let IT denote the
resulting set of simple roots in % and %" the corresponding positive roots.

Let E = E(G) be the unique maximal connected semi-simple sub-
group of G and F = F(G) the unique torus in G satisfying EF = G,
[E,F]=1. Note that FC T.

2.2. Lattices and tori. Let X“ be the sub-lattice of X spanned by
alla €3%. Let X be the unique smallest sub-lattice containing X* and
such that X/X* is torsion free. Put X' ={y € X: ¢(x)=0 all « €X};
then X/X' is torsion free, X* N X’ =0 and X/X° + X’ is finite.

Let I' be the sub-lattice of " spanned by all @ where « €3. LetI™
be the smallest sub-lattice containing I'* with I'/T"* torsion free. Put
IM={n €Tl:n(a)=0 all @« €3}. The pairs X I'' and X', T are
orthogonal complements, i.e. X°={y € X: n(x)=0 all n €T}, etc.
This gives a useful way to compute X°.

If Y is any sub-lattice of X define AnnY={t€T: xy(¢t)=1 all
x € Y}. Then Ann Y is always a closed subgroup of T and is a torus if
X/Y is torsion free. For example, TNE =AnnX’ and F=
Ann X°. Hence, we have the natural isomorphisms, X(T N E) = X /X",
I'(TNE)=TI* and X(T/F)= X*, I(T/F)=T/T".

Note that ENF =1 if and only if X+ X/ = X
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2.3. Morphisms. 1If f is a morphism of G onto itself which
stabilizizes T then f induces endomorphisms f, on X and f on I' as
follows: if yEX, n €T, t €T, { € k™ then f,x(t)= x(ft) and fn({) =
f(n(£)). Thus (ff')«= fifs and fn(x) = n(fxx)

An example is f = i, where n € N and i,g = ngn™' for g€ G. If
w = w(n) we put i,n = wn for n €I'. This gives a representation of W
on I'' If «a €% one has w,n =71 —n(a)é. We adopt a common
convention by letting w also denote the action of W on X induced by the
permutation of % given in 2.1, together with trivial action on X”; thus
wex = x — a@(x)a for y € X. Then (i,)« = w ' and so wn(wyx) = n(x).

2.4. Action of W on I'. Let d be a fixed, positive integer
and put dI'={dn:n €Tl}. Consider the group &, =;(W,T)=
{a(w,A): w € W, A € dI'} of all affine motions a(w, A)u = wu + A where
uw €F. We wish to describe the orbits of &, on I'.

Let &5 = of,(W,I*) and note that &/ < of,. A standard result, [2],
[14, §1], or Appendix 2, states that a fundamental domain for &/ on I' is
given by the set

F,=F)={pel0=pu(a)=d all a €3}

Using this result we next describe a fundamental domain for &,.

Let IT* denote the extended system of simple roots obtained by
adjoining to II all lowest roots in X; one such root for each connected
piece of the Dynkin diagram. Let V denote the stabilizer in W of I1*;
its elements are completely characterized by their action on the subset
[T*-I1. Put, for d =1, ¥ =%, and to each 6§ € ¥ associate a unique
v, €V by: vyay = ay if 0(ay)=0 for a, € II* -1, otherwise v,a, = @
where « is the unique element in the orbit of « . under V which satisfies
0(a)=1. :

F is a set of coset representatives for ' inI'. If n€Tl'let 6, € %
satisfy 8, —m €I'*.  We define a map §, of " into &, by 8,m = a(v,, db)
where 6 = 6,. Since W centralizes I'/T* we see that 8, is a homomor-
phism with kernel I'* (e.g. 8,(n + n') = 8,(n)d8.(n")). Itis easy to verify
that the group €, = €,(I') = 8,1 stabilizes %, and is a complement to &
in &, Thus,

PROPOSITION A. Any fundamental domain for €, on %, is also a
fundamental domain for o, on T'.

Now consider a fixed u € %, and define the subgroups W(u)=
wewW:(1-w)nedl}, Wkuy={wewW:(1-w)uedl'*} and
V(n)={v, € V: (1—v,)u = d8}. Using Proposition ‘A and the connec-
tion between ¥ and I' and, for (ii), a result in [14, §1], we have
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ProprosiTiON B. (i) W(w)* < W(n) and V(u) is a complement.
(@) W)y =w,:a €3 u(a)EdZ).

Define the homomorphism & of T' into V by &n =uv, where
6 =6, Since I"C %, and v, = v, if and only if 0§ — ¢ EI, we have
Kerd =T*+I" Let I'(u)={n€Tl:(8m)u =pn}, ie such that
v +d6 = u where 6 = 6,. Then 6I'(n)= V(w).

Since 4, is abelain V(w) and I'() depend only on the €,-orbit of u
in %, Note that V(u)=1 in three particular cases, (i) d =1 with
arbitrary I, (ii) I'* = I'"* with arbitrary d, and (iii) p =0.

3. Semi-simple classes.

3.1. Automorphisms. Let ¢ be an algebraic automorphism of G
and assume ¢ has finite order, equal to a. We assume that a is
relatively prime to the characteristic of k. By [14, §7] we may suppose
that ¢ stabilizes a maximal torus T and a Borel subgroup B containing
T. Thus ¢ induces a permutation 8 — () on both X and I1, defined
by U, = U, for B EX.

If ¢ is multiplied by an inner automorphism, defined by a suitable
element of T, we may suppose that (x,«({)) = x.({) for all { € k*,
+a €. From now on, we assume that ¢ is always in this “‘standard
form” relative to T and B.

The possible actions of s on G are easily described: if {E,, - - -, E,} is
a y-orbit of simple components of E = E(G) then ¢°E,= E, and §°# 1
on E,only if E,isof type A, D, or E,. The restriction of  to F = F(G)
defines an element of GL(f, Z)= Aut F where f = dimension of F.

Let (G, ¢) be the semi-direct product defined by ygy ™' = ¥(g) and
¢*=1. We wish to describe the classes of semi-simple elements of
finite order in (G, ¢). It suffices to describe those classes in the coset Gy
under conjugation by G.

In practice, ¢ =1 is the most important example. Many of the
following calculations simplify considerably in this case.

3.2. The root system 3., ¢ induces endomorphisms on X and I'
(as in 2.3 but, for convenience, we use ¢ instead of ¢,). The action on
X is consistent with the permutation of 2. Put C,=¢ -1 and S, =
1+ +---+¢* " Define X, ={y €EX: Cx =0}, X, ={xy € X: S;x =0}
and I, T'; similarly. Note that X, and [ =TI, are natural Z-duals via
n(x)=(n+I)(Xx)=n(x) for x € X..

Let T, ={t"'¢(¢): t € T}, then T, = Ann X, is a sub-torus of T. Put
T = T/T, then we have the natural isomorphisms X(T)= X, I'(T)=T.

If neN define Y(whn)=¢n)T and let W,=
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{w€E€ W: ¢(w)=w}. W, acts as a reflection group on T and hence on
X, T (see [14, §1] and below).

For a €% let 0, ={a, Yo, - - - } denote the orbit due to the action of
. Let 0, 0’ be two such orbits in 3, if a €0, ' €0 and a +a’' €2
define 0+ 0" = 0,,,. This sum is well-defined; i.e., it is independent of
the choice of the representatives «, a’. The orbit 0 is called ‘good’ if
there does not exist an orbit 0’ such that 0’ + 0’ = 0 (‘bad’ orbits can only
occur if E(G) contains components of type A of even rank).

Let 0, be a good orbit, put

_{2(a+(/1a+-'-) if 0, +0, exists
* latygat--) otherwise,
and then define 2, = {A,: a« €2, 0, a good orbit}. 3, is a root-system
in X, with @ + T, €T the co-root corresponding to A.,.

If 0, +0, exists, there is a unique a’ = ¢’a €0,, where |0, | = 2s,
such that a + a’ € 3. Define

™

WeiaWyaray®*+ 1f 0, +0, exists
Wi =
WeWyy " ** otherwise.

The products depend only on 0, and not on the order. From [14, §1] we

have W, =(w,: A €%,). Note thatif A = A, and y € X, then wax =

x—a(x). Letll,={A,€3,:a€l}and 3;={A, €EZ,: a EX*}.
When G is simple and ¢ # 1 the type of X, is:

%, |G B C., F, G

If G =E(G) and I' =T* then I is spanned by the elements & +I', and
hence is the ‘simply-connected’ lattice for T and 3,

3.3. Reductionto T. ftET let t =tT,€T.

ProrosiTioN C. (i) Any semi-simple class in Gy intersects Ti.
_ (i) Ift, '€ T then tf is conjugate to t'y under G if and only if
wt = t' for some w € W,
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Proof. (i) Let g € G and suppose gy is semi-simple. By [14, §7]

gy fixes T* and B* for some x € G. Since ¢ stabilizes T and B and

y(x)= yxyp~" we have xg(x )€ BN N. Hence xgy(x)=t € T and
gy = ()"

(i) We first show that if w € W, then we can choose n € N so that
w=w(n) and ¢n =n. It suffices to do this for w =w, where
A €1l,. For any a €II define n, = x,(1)x_,(—1)x,(1). We may as-
sume that x,, x_, are chosen such that n, € N. Then w(n,)= w, and,
since ¢ is in standard form, Yy (n,)=n,. If wa=ww, --- put ny =
n.ny. - - -. In this case, if @, B are distinct elements in 0, then [U,, Us] =
1 and hence [n,, ns] =1. Thus ¢yn, = na. If wa = WaroWyesay® " * (the
case where 0, + 0, exists) let ny, = (n,n,n,)--+. Now a direct calcula-
tion shows that n,n, n, = n,n,n, and since, as above, distinct terms in n,
commute we again have yn, = n,.

To prove (ii)) use the Bruhat normal form for the conjugating
element. Thus, in an obvious notation, (usnv)ty = t'¢(usnv). This
yields w(n) € W, and by the previous paragraph we may now suppose
that yn = n. Thus, if w = w(n), wt = t's 'Y (s) and hence wt = t'.

3.4. Computation of the classes. Let J be a class of semi-simple
elements of order d in G¢. Thus d is a multiple of a (= order of ) and
is also relatively prime to the characteristic of k. These are the only
restrictions on d.  Choose &, € k™ a fixed primitive dth root of unity.

Let T, ={t€ T: (&))" =1} and put Td for its image in T. Let
Tw={t €T: t*=1} and note that T, C T

For i €T define 7(&)€ T by (&)= (&) (=u(&)Ty) where
w €T is any inverse image of g. The map g — (&) is a homomor-
phism of T onto T, with kernel dT". Let T, denote theimage of T', inT.

PROPOSITION D.  The homomorphism i — i (&,) maps T, onto T,.

Proof. Let w€Tl. and e =d/a then (u(&)¥) = eS,u(é)=
du(&,)=1and hence ji(£,) € T,. Conversely, suppose u(£,) € T, then,
as above, eS,u € dI'. Thus eS,u = dA some A €I'. Since ¢S, = S,¥
we have A €', and hence dA = eS,A. Therefore u —A €T, as re-
quired.

Thus the semi-simple classes, of order dividing d, in Gy are in 1:1
correspondence with the orbits of «£,(W,,T)onT.. Using proposition A
these orbits are easily found.

We have Z,(N)={g €T: 0= a(A,)=d all A, €33}}. If{a,---}is
a €,()-orbit in F,(T)NT, let w €T, be an inverse image of i. A
representative for the class corresponding to {@, -} is u(&)y. Since
I, NT.=0 p is uniquely determined by g4 ; also [u (&), ¢]=1.
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3.5. Examples. Let G be simple of type D,, with r = 4 and even,
and suppose X = X*. Let ¢ be of order a =2.
Index the simple roots I ={a,,- -, a,} as follows,

10
0 —_— O =0
/3 4

Let {n,}ET be a dual basis to II, i.e. n;(e;) = 6;. We have ¢a, = a,,
Yo, = a, Yo = o, for i Z3 and similarly for ¢m; Thus I, = (n,— 1),
Fe=(m+m,n,--,m) and so TI'=(q,7,--%) and I.=
Q0 T3yt o5y o) I, ={ay+ az, a3, - -, a,} and A=
~(a;+ a;+2a;+ -+ +2a,) is the corresponding low root in %,. Thus
F(@)=1{0,7,} and so €,(T)={1,a(v,d7,)} where v € V, (see 4.2), is
defined by v, = — 7y, v, = =271+ Ny fOr 3=j=r.

Consider the case d =2. Proposition A gives the following %)
orbits in F,(I'): {0,279:}, {7}, {75, ﬁr},_{ﬁm Teth % {ﬁp’ ﬁpﬂ} where p =
(r+2)/2. Except for {7}, all lie in I'.. Thus there are r/2 classes of
involutions in Gy. Representative elements are ¢, n5(— 1),
= Dy -+, 1y (— 1)

If r =4 and ¢ is of order 3 a similar calculation with d = 3 gives two
classes, with representatives ¢, (&)

Calculations for other G, ¢ are entirely similar. The only require-
ment is a practical description of II, I1*, X, I' and V.

4. Centralizer subgroups.

4.1. The component of the identity. We continue with the notation
introduced in §3. Let w €T, and g € %,(T) then ¢ = u (&)Y is a
typical semi-simple element in Gy with order dividing d. We put
C = Cs(¢) and will begin by describing the structure of C°. From [14,
§8] we know it is reductive (see also our proof of proposition E).

Put T, ={t € T: ¢t =t} then T is a maximal torus of C°. Since
T, = Ann X, we have the isomorphisms X(T}) = X/X, = X and I'(TY) =
. If «a€3 let @ denote its image in X and put 3(¢)=
{a: n(A)EdZ A, €L}

ProposITION E.  3(¢) is a root system for C° in X.

Proof. Let a €3 and 0, a good orbit (see 3.2) and suppose first that
0, +0, does not exist. Choose x, and then define x,,, Xy, '+ by
Y (Xya)=xp-, for i=1,2,---,5s—1 where s =|0,|. A simple argu-
ment, using induction on the height of a and the fact that  is in standard
form, shows that ¢x, = x,-1,. This is the key-point. Since
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(@ +Ya+-- (&)= €4 we now find that

1 if w(A,)g&dZ

Cﬂ(Uan---)={
U. if u(A)€EdZ

where U, = x;(k.) and x:({) = X.({)Xuu(€:0) " - Xy a(€1() for L EK
and € = ¢, with e, = u(a+ Ya+ -+ ¢ 'a). If tE€TY then a(t)=
ga(t)=---= a(t), hence tx;({)t™' = x;({a@(t)) and so & is a root.

If 0, + 0, exists the argument is completely similar but slightly more
involved. The case where G is simple of type A, and ¢ # 1 is quite
typical. In this case suppose Il = {a, B8} and ¢ # 1. Using the commu-
tation rules in U and the fact that ¢ is in standard form we get

P (Xa (8a) X6 (86 Xars (£)) = Xa (46X (da)Xavs (€4afs = £)

where € = = 1.
Since u(A.) = u2(a + B)) we have £4*P = =1 for u(A,)€E€ dZ
Thus

1 if wu(A)€dZ
CnU:{
U, if w(A)EdZ

where the form of U, = x,(k.) depends on whether or not u(A,)€E
2dZ. We find x;({)=x..5(0) if wu(A,)€2dZ and x,({)=
Xa (%6 (§60) X0 (e£012) if p(AL) € 2dZ.

The co-root in T, corresponding to @ € (¢ ) is denoted by A, andis
given by replacing the a’s by &’s in the definition of A..

Using the Bruhat normal form in G we have C=(C N U,CNN)
where U is the unipotent radical of B. Thus the above proof shows that
C'=(U, T}, a €3(¢)). Hence its Weyl group is (C°NN)/T{=
(Wa: n(A)EdZ AEZ,).

The structure of C° may be described by the methods of 2.1 and 2.2
using X, T, S(¢) in place of X, T', 3. The fact that {a@ € 3(¢): A, € [1%}
contains a set of simple roots for %(¢) is very useful in calculations.

4.2.  Structure of C/C°. We will use proposition B but with W, I'
replaced by W,, I'. Thus V, will denote the stabilizer in W, of the
extended root system [1% corresponding to II, in %,.

Observe that C=C(CNN) and if n€CNN then w(n)eE
W,. Let e denote the homomorphism of C NN into W, given by
e(n)=w(n). A simple calculation, using the proof of part (ii) of
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proposition C, yields that Kere = T, and Ime = W,(a). Now the
results of 4.1 together with proposition B imply that e(C° N N) = W, (a2 )«
and hence (CNN)/T,(C°NN)=V,(ir).

Since T, = Ann C,X and Z(G)= Ann X* we have T, N Z(G) =
Ann(C,X + X*) and thus TYT, N Z(G))=Ann(X, N (C,X + X*)).
Since ¢ permutes the simple roots I1 and X* = ZII we have C,X* =
X“ N X, and hence find that T)(T, N Z(G))= T, Thus,

ProrositTioN F. (i) C = C'(C N N) where C'= CY(T, N Z(G)).
() C/C'=V,(i) and C'/C°= X./C,X.
In particular | C/C"| is finite and relatively prime to the characteristic of
k. If y =1 then C'=C° and C/C°= V(u)=T(u)/T* +T’, as in 2.4.

The action of C/C° on C° is found from the permutations induced
on 2(¢) by V (). In general C will not split over C° however in
certain cases it does: an example is G simple, X = X* ¢ =1 and
d=2. We will not prove this result but the example below should
indicate the line of argument.

4.3. Examples. Suppose G is simple of type D,, X = X“ and
 =1. We use the notation in 3.5 and consider the involution 7;(— 1) in
G. We wish to describe the structure of C = Cs(ns(— 1)).

Since d=2 and a,= —(a;+ta,ta,+2a;) we find II*N
3(ni(— 1) ={ay, a, as, @y} as a set of simple roots for C°. Since
—a;=(a;+ a,+ a,;+ a,)/2 we see that C° is a central product of four
SLy(k)'s (and Z(C°) = (ny(— 1))

In D,; % ={0, n,, m2, ma} and if v, = v,, we have v, = —2n, + 7, for
i=1,2,4. Thus V(n;)=V and hence C/C°=Z,X Z, and acts as a
regular permutation group on the four components of C°.

If n, lies in the coset v, € W, it induces an algebraic (outer)
automorphism of C° and we may choose n, so that it is in standard form
(see 3.1) relative to the simple roots {a;, @, a,, a4}. Thus ni will
centralize C°. Now n;x;({)ni'=xy(*x{) and hence n} centralizes
U,. Since (C° U,)= G we conclude that ni=1. Choose n, similarly,
so that n3=1, and put n,= n,n,. Since n,, n, are in standard form so
also is n, and thus n;=1. This implies n,n, = n,n, and so {(n,, n,) is a
complement to C° in C and the extension splits.

As a further example we describe the structure of C when G is
simple, X = X“ ¢# 1 and where ¢ runs over the classes of order d = a
in the coset Gy. A typical calculation of these classes was given in
3.5. Wefind that C°is always semi-simple; the following table describes
the various cases.
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G a c®

A, 2 B,

Asy rz2 2 G, D,

D,  r=z4 2| BB xB,_.: for i=12-- [';1]
D, 3 G., A,

E, 2 F., C,

The lattice for C° is always adjoint and C = C° with two exceptions:
(1) G = A,.,, C°= D, when C =(C° n) where n is the automorphism
interchanging «, and @, and n’=1, (i) G=D, r=o0dd, C°=
B-1y2 X Bi-1y, when C =(C° n) where n interchanges the two compo-
nents and n’=1.

5. The finite groups.

5.1. Endomorphisms of finite type. Let o be a morphism of G
onto itself with kero =1 and such that G(o)={gE G: og =g} is
finite. If E(G)#1 the existence of such a o implies that the charac-
teristics of k is p# 0 and that o' is not a morphism (although o is an
automorphism of G considered as an abstract group). The possibilities
for o are well known, see [14, §11].

We may suppose that o stabilizes T and hence that o induces a
permutation on 2. This permutation is consistent with the action of o
on X as defined in 2.3. If n € N and p = i,o then p, = o,w™" where
w=w(n) (and p = wo on I'). Using a theorem of Lang [11] we may
find h € G such that ho(h™') = n and hence g — i,g gives an isomorph-
ism of G(o) onto G(p).

5.2. Structure of G(o). Put L =0°(G(o)) where p is the charac-
teristic of k. 0°(X) denotes the normal subgroup of X generated by all
elements of order p. Thus L is that subgroup of G (o) generated by all
the unipotent elements. Put J = C5,(L), Z=J N L and D = G(o)/JL.
Then J=Z(G(0)) and Z =Z(L) and D induces ‘diagonal type’ au-
tomorphisms of L. If we make allowance for the usual 8 exceptions
(A1(2),Ax2), C(2),’C2), GA2),’F(2) and A(3),’G4(3)) then L is the
layer of G(o), i.e., L/Z is a direct product of simple components.
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The components in L/Z can be immediately described once the
action of o on 3 (or on II) is given. To describe J we introduce
7+= 04— 1 and note that it is always nonsingular on X. Then T(0) =
{teT:o0t=t}=Annt,X. Since Cs;(L)= Cs;(E(G)) we have J=
Ann(7.X + X*) and hence J = X /7, X + X

We now describe Z and D. Let E* be a simply-connected
covering group of E = E(G) and let 7 be the natural isogeny of E* onto
E. Choose T* a maximal torus of E* so that #T* =TNE. Let m,
denote the natural homomorphism of X into X* = X(T*) induced by
m. We have Kerm,= X’ and Kerm = Ann(Im 7). Define A* =
A(G)= X*/m,.X*; this is a finite group, in fact just the ‘weight
lattice/root lattice’ for the root system 3.

We may extend o to E* so that o = 7o (see [14, §9]). Hence 7.
is defined on X* and so on A*. We use the notation Kerr,, Im7, to
denote the kernel and image for the action of 7. on A*. Let A, A°
denote the images of X, X° respectively in A*.

ProrosiTioNn G. Z=A/ANImr7,. and D =Ker 7./A° NKer 7.

Proof. TNL=a(T*(0s)) and so TNL =AnnY where Y =
7 (7« X N X). Thus, using 7, XCY,wefindZ=JN(TNL)=
Ann(Y + X*“) and J(TNL)=Ann(r.X +X““NY). Hence

Z=X/(Y+X*)
and

D= (r,.X+X“NY)r.X=(X“NY)/X“N7,X).

Now Im 7, = (7. X* + 7, X*)/m  X* and, since 7, is nonsingular
on X*, Ker7,=(X*Nrm,X*) 7, X* Using the above expres-
sions for Z and D and the fact that X N 7' X* =X N7 X* we
immediately obtain the required formulas.

In practice the action of 7, on A* is easily found and the above
expression for J, Z, D give a most useful and easy method for describing
G(o); see for example [S]. To find the explicit extension of G (o) over
JL use the description of J(T N L) given in the proof. Note that A*
may be replaced by 0,(A%).

The above results extend to the disconnected case as follows:
suppose G* =(G, Y, Y, - - - ) where the ¢, are automorphisms of G. If
o acts on G* it permutes the cosets Gy¢,. Using [11] we see that
G (o)N Gy # ¢ if and only if o fixes Gi.
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5.3. Classes and centralizers in G(o). Let ¢ be as in 3.1 and put
G"=(G, ¢). We suppose that o is as described above and acts on
G*. Wealso assume that o(¢) = ¢. This is a minor restriction which is
justified by the applications (by putting ¢ and o in standard form we may
always assume o (¢) = z¢, where z € Z(G); it is not difficult to extend
the following arguments to this case). Using the results of §3 and §4
together with Lang’s theorem see [13, §2, 3], we will now describe the
semi-simple classes in G*(o), under conjugation by G(o), and the
structure of their corresponding centralizer subgroups in G(o).

Let J be as in 3.4 and suppose w(& )y € X where uw €T, and
p € F,(I'). For convenience, we put J = [u ], with the understanding
that ¢, d, ¢, are fixed.

Now [u] N G*(o) # ¢ if and only if o[ ] = [u], which is equivalent
to oz and g lying in the same sf,(W,,T) orbit. The proof that %, is a
fundamental domain for &/ yields a practical algorithm for finding the
representative in %, of any & orbit (see Appendix 2). Thus proposi-
tion A will determine whether [u ] intersects G*(o). Suppose now that
G'(o)N[u]# ¢, then the algorithm yields a w € W, such that
(wo—1)a €dl. Let w=nT and put p =i,0. Thus (p— 1)z €dT
which, since dT NI, = dT,, is equivalent to u(&)€ G(p) and hence
r (&) € G*(p).

Assume u(&)€ G(p). The set [u] N G*(p) will, in general, split
into several classes under conjugation by G(p). Let C= Cs(u(&)¥)
and put [C,p] ={c"'p(c): c € C}. By[11][C, p]D C° and hence [C, p]
is a group and the quotient C = C/[C, p] is finite and abelian. Choose
¢ € C, then by 4.2 we may find m € ¢ N N and may choose h € G such
that h7'p(h)= m. Then, again using [11], the G(p) classes in [u]N
G*(p) are in 1: 1 correspondence with the elements of C: ¢ corresponds
to the class containing hu(&)yh™". It is easily checked that this
correspondence is independent of the choices of m,h. Note that
hu (&)Yh™€ G*(p) since p(h)= hm and m € C.

In practice it is not necessary to compute m, h. Instead, define
pn =Izp  then, since i, (G(p.))=G(p) we may replace
hu(€&)yh € G(p) by n(é&)Y¥ € G(pn). Thus we describe the G(p)
classes in [u ] N G*(p) by the pairs [u, p], [, pn ], - - - Where m runs over
coset representatives for [C, p] in C.

If [, p ] is such a class the centralizer in G(p) of an element of this
class is isomorphic to C(p,,) (Where C = Cs(n(&:)¥)). The structure of
C(pn) is determined by the methods of 5.2. Note that we only need
w(m) for these calculations.

5.4. The semi-simple case. Throughout this subsection we assume
that G is semi-simple. Thus X°* = X, X’ =0, etc. We introduce the
symbol G(un)* in place of 0°(G(o))=L of 52. G(o)" is generated by
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the unipotent elements (= p-elements) in G(o). If X = X* and G is
simple then G(o)* is, with the usual 8 exceptions, a non-abelian simple
group.

The expression for J in 5.2 may be simplified to J=
A/ A. Together with A=A and the formula for D this yields
|G(0)|=|G(0)“/Z|-|Ker74|. In particular, | G(co)| depends only on
2 and o and not on X.

We now consider two questions: first, if [x ] is a semi-simple class in
G and G(o)N[u]# ¢ when is G(o)* N[n]# ¢? and second, if
C = Cs(u (&) what is the structure of C N G(o)“? We have phrased
these questions for the case ¢ =1 but their extension to ¢# 1 is quite
obvious.

To answer the first question we may suppose u € %, and (o — l)u €
dl', and hence u (&) € G(o). Then,

ProrosiTioN H. u(&)€ G(o)* if and only if (1/d)(oc—1u €
(c—-Dr+re=

Proof. Let ¥={u—df: 0 € F}. By proposition A the set &
contains a set of representatives for those & orbits which lie in the &,
orbit containing u. There is a positive integer e such that en €I'* for
all ne ¥. Choose { € k* a primitive (ed)th root of unity such that
{=¢. Let G* be the simply connected covering group of G and =
the isogeny of G* onto G. We may identify I'* with the I'-lattice for
G*. Then since kerw ={edd({): 6 € F(I')} we have 7 '(u(&))=
{en(@):me FtCG™

Since w(G*(o))= G(o)" we see that u(¢&,) € G(o)" if and only if
en({)€ G*(o) for some n € &, i.e., if and only if (o — 1)e(n —db)E
edI'* for some 6 € . This gives the required result.

To answer the second question we first note that G (o) = G(0)"T(0)
and T C C’ This implies that C(a)/C%o)=C N G(a)*/C°N G(o)*
and thus we need only describe C°N G(o)“.

Let X*(n),X*(u), -+ denote the lattices in X associated with
C°. Thus X*(u) is spanned by Z(u) = {a@ € X: u(a) € dZ} (this is the
2(¢)of41)and X(n)= X. Let A* = A*(C") be defined as in 5.2 (but
for C° and let A, A° denote the images of X(u) and X°¢(u)
respectively. Both A and A° depend on X as it varies between X* and
X (the root and weight lattices of G). Let A(sc), A°(sc) denote their
values when X = X*.

Put L(n) and J(u) for the subgroups associated with C° as in
5.2. Since L(x)C G(o)* the structure of C°N G(o)* is determined
once J(u)=J(n)N G(o)* and D(p) = C°NG(o)*/L(n)J(n)" are
given. Now J(u)*=Ann(7,X*“N X+ X“(u)) and hence J(u)=
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X/(r«X* N X+ X*(u)). If C°issemi-simple this simplifies to J(u )" =
A/ANT,A(sc). A slight extension of the arguments in the proof of
proposition H gives D(u)* = Ker 7,/A°(sc) N Ker 7.

5.5. Field automorphisms. Let G be semi-simple. Suppose p is a
morphism of G onto itself such that p/ = o for some integer f=
2. Then p induces an automorphism of order f on G(o) whose
centralizer is clearly G(p) C G(o). We call the restriction of p to G (o)
a ‘field automorphism’. If X = X* the field automorphisms together
with those induced by G(o) (inner and diagonal) and by any ¢# 1
(graph) give a complete set of representatives for Aut(G(o)). If
X # X“ the only difference is that the diagonal automorphisms occur in
Ns(G(0o)).

An example may clarify the implications of our definition of a field
automorphism. Let G be of type E¢ (and X = X“) and let ¢ denote its
graph automorphism of order 2. Put o, for the Frobenius morphism of
G whose fixed points on k is the Galois field F(q), with ¢ =p™. We
may suppose that ¢ and o, are in standard form relative to a fixed II and
hence Yo, = ap. Put ’c, = Yo, then G(0)* = E«q) or *E¢(q) depend-
ing on o = o, or ’c,. Suppose m is even, then G(o,) has two field
automorphisms of order 2, namely o, and ’ov,; however G(*g,) has
none. Of course G(o,) and G(o,) both have two classes of graph
automorphisms of order 2 (see 4.3, the centralizers are isomorphic to
Fi(q) or Ci(q)).

Consider p as restricted to G(o), then (G(o),p) is a semi-direct
product (with p/=1). If g € G(o) and (gp) =1 an application of
Lang’s theorem shows that gp is conjugate to p under the action
of G(o).

In practice it is useful to know the structure of G(p) N G(o)*. If
X =X one need only determine the diagonal part D(p)* =
G(p)NG(0)*/G(p)“~ The usual lattice calculations give D(p)* =
Ker(pi—1)/Ker(ps—1)NIm(1+p,+ -+ pl™"), computed in A*(G).

5.6. Examples. We consider the D, example discussed in
4.5. Let o be in standard form relative to Il and suppose o a, = qa,,
O+ = qa,, 0,03 = qa,, oa,= qa, where q = p™, p = characteristic of
k. Thus G(o)* =’D,q). We assume g is odd and consider the
involution mn(—1); since (oc—=1)n;=(q—-1)n:€2' we have
n(—1)€ G(o). Since V(n))=V=2,x2Z, C=V/1-0)V giving
coset representatives 1, n;, where v, = w(n,). Hence [n;] splits into the
two classes [7,, o] and [, 0,] where o, = i, 0.

Since (o —1)n;€T* prop. H gives 7ni(—1)€ G(o)", however
o= Dms= —gqni+ (g —1D/2)ns=ni(modI'*) and, since n, &



SEMI-SIMPLE CLASSES IN CHEVALLEY TYPE GROUPS 97

(o= DI, ns(—1) & G(oy)*. Thus the class [7n;, o] is “inner” (in fact
central) while [7;, ;] is outer-diagonal.

We now describe the structure of C(o) and C(o,) where C is given
in4.5. We use the methods of 5.2. From the permutations induced on
{a, as,.aq, @y} by o and o, we have L/Z = A(q*) X Ai(q) X Ai(q) for o
and L/Z=A(q%) for o, Next let A*={(€,6€€,€, =
Z,X Z,X Z, X Z, where ¢ is the image of the fundamental weight
a,/2. Thus A=A°=(e;+€,+€,+€,) and (see 5.4) A(sc)=A°(sc)=
(€,+ €, €, + €, €.+ €4). We now calculate in A*;

Kerr Im7, 7,4 ANt A(sc)
o (e,+ €, €.t €,) (e, + €) 0 0
o, A A(sc) 0 A

Using proposition G and 5.4 we thus have:

V4 J D J D*

4 z, ZzZ, 2Z,XZ, | Z, Zz,

g, 1 Z, 1 1 1

So, for example, C%(0,) = As(q*) X Z, while C°N G(a\)* = A(q*).

The only coset of C/C° fixed by o (or o)) is n,C’. From the
standard form of n, we have [n,, o] = [n,, 0,] = 1 and so the structure of
C(o), C(oy) 1is easily computed. For example, put x.({)=
XX ) X0({)x (%) and define x_ similarly, then C%o,)=
(x(0): L EF(@)) X {ms(—1)). Since nx.({)ni'=x.({*) we have
C(0,) = FLy(q*) X Z, (see the first paragraph of Appendix 1 for notation).

APPENDIX 1. We list the pairs (L,t) where L is a finite simple
Chevalley type group over a field of odd characteristic and ¢ is an
involution in AutL such that the layer of C;(¢) consists of a single
PSL,-group. We also describe C,(¢). The classes are those occurring
under conjugation by G(o) where L = G(o)*. The results are given in
the table below. The notation is as follows: ¢ = p”, p some odd prime;

L,(q) = PSL:(q),
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PGL,(q) is L,(q) extended by diagonal automorphism

FL,(q?) is L,(q®) extended by field aut. (of order 2)

PFL,(q?) is L,(q?) extended by (field) x (diagonal) aut.
For example, if g =3, FL,(9) = 2¢ and PFL,(9)=M,. Z, and D, are
respectively the cyclic and dihedral group of order n. In the entry for
*‘D,(3) H is a four-dimensional orthogonal group; it has a subgroup H, of
index 2 with H,=SL,(3)*SL,(3) (a central product) and s flips these
factors.

We sketch the calculations: Let G be a simple algebraic group with

X =X and o a morphism so that L = G(o)*. We consider the
various involutions ¢ in AutL; (i) ¢t a field automorphism, then G is
either of type A, or we have the exceptional case G, as given in the table,

L t (1)
Axq%) | field q#3 PGL.(q)
*Giq) | inner q=3""" m=z1 Ly(q)%x Z,
A(q) graph q#3 PGLx(q)
*Ax(q) | graph q#3 PGL.(q)
C . 2 = ==
Aq) inner g=c@), q#3 (Lo(q)X Dy-o 7) | 7= 1,{L2(q), 7) = PGL:(q)
diagonal (Ly(@)*X Dysos ™) } (Dyzes T) = Dagzey
diagonal FL.(¢%)
’D.(q) | diagonal FL.(¢"%)
Axq) diagonal q=1(4) (LAG?)Y X Z gy 01| 07 =1,(Lx(q?), 0) = FLAq")
inner qg=-14) (LA(q®) X Z 4.1y, 8) | 6 inverts cyclic factor.
q=1(8) FL(q?)
graph q=3,7(8) PGL,(q%)
q=5(8) PFLy(q")
ZA, inner =104 LAg)xXZ,.,, 0
3(q) 4 q 4) { 2(‘1}) 1 0) 8 as for Ax(q).
diagonal q=-14) (LAq*) X Z(qo1yr20 6)
q=1,5(8) PGL,(q%)
graph q =3(8) PFL.(q%)
q=7@8) FL.(q%)
G,(3) graph 2G,(3) =(LA2%),f), f* =1, field aut.
Bi(3) diagonal PGL,(3) X FLAq).
2D,3) | inner (H X Lyq),s)s>=1,(Ls(9), s) = FL,(9)
(see text for H and action of s)
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(i) ¢ is a graph automorphism, then Table 4.3 shows that G is of type A,
or A;, (iii) ¢ is inner (in G), i.e., the case ¥ =1 in §3, 4, then it is easily
seen that G hasrank =4. At this stage it is necessary to list the various
cases, compute C°= C;(t)” and O"(C% o)), and see when the layer is an
L,-group. The calculations given in 5.6 are typical.

The authors wish to kindly thank M. Harris and L. Finkelstein for
pointing out errors in the original version of this table.

APPENDIX 2. We use the notation of §2, especially 2.4. For a
given u € I' we describe an algorithm which finds the unique A € %, such
that © and A lie in the same & §-orbit in I'. This algorithm is an
essential tool in practical calculations (especially if d > 3).

Without restriction we may suppose that the Dynkin diagram for . is
connected. LetIl ={a,, ', @} andlet{n,, -, n} be the dual basis for
I ie. n(e)=38, ThereisanaturalinclusionI'CI'* andifI' # I'* an
element n = Zem, (e, € Z) lies in I if and only if certain (easily found)
congruences hold. Let a,= —(m,a,+ -+ mue,) where the m, are
(known) positive integers then F,(I')={n€l':0=e all i and
(me+ -+ me)=d}.

Now suppose u = 2an, €T (a, € Z) the algorithm goes as follows
(let wi=w, and w,=w,);

(1) if some a, <0 replace u by wpu,

(2) ifalla =Z0but mya,+---+ ma, > d replace u by w,u — dé ..

By repeating these two steps we eventually obtain an element of
%, Note that (i) wn, =mn, if i#j while wn, =n—a, (i) wep =
w+(ma,+---+ ma)a, and (iii) the expressions for &; &, in terms of
the 7,’s can be read off from the extended Dynkin diagram.

The operation in steps (1), (2) are just reflections on the bounding
hyperplanes of %, Using result 1.16 of [14] it may be shown that we
have the best possible algorithm.
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