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Let 7 denote a separable, infinite dimensional complex
Hilbert space, and let £(%) denote the algebra of all bounded
linear operators on %. An operator X in () is a quasiaffi-
nity (or a quasi-invertible operator) if X is injective and has
dense range. An operator A on ¥ is'a quasiaffine transform of
operator B if there exists a quasiaffinity such that BX =
XA. A and B are quasisimilar if they are quasiaffine trans-
forms of one another. The purpose of this note is to study the
quasisimilarity orbits of certain subsets of £ () containing
quasinilpotent, spectral, and compact operators.

In response to a question of E. Azoff [5], we show in §2 that each
countable direct sum of spectral operators is quasisimilar to a spectral
operator. This result is used in §5 to give a sufficient condition for an
operator with a family of spectral parts to be quasisimilar to a spectral
operator. In §3 we give two examples concerning the problem of
characterizing membership in 2, the quasisimilarity orbit of the set of all
quasinilpotent operators in £(3) (cf. [11]). Let T and S denote
quasisimilar operators. In [21], Sz.-Nagy and Foias proved that if S is
unitary, then Lat, (T), the lattice of hyperinvariant subspaces of T,
contains a sublattice that is lattice isomorphic to Lat, (S). In §4 we give
a generalization of this result to arbitrary operators from which the result
of Sz.-Nagy and Foias is easily recovered. For the case when S is
spectral, we obtain an analogous result involving the lattice of spectral
subspaces of S. We show that in the general case Lat,(T) always
contains a sublattice that is lattice isomorphic to the Riesz lattice of
S. 1In §5, as another application, we determine the quasisimilarity orbit
of a class of compact operators.

For T in #(¥), o(T), p(T), and r(T) denote, respectively, the
spectrum, resolvent, and spectral radius of 7. We will use basic facts
about essential spectra from [12] and about quasitriangularity from [7].

The author is grateful to E. Azoff, F. Gilfeather, and D. Herrero, for
their many helpful comments and suggestions. The author is also
grateful to Professors Moore and Nordgren for the opportunity to attend
part of the N.S.F. summer research institute in operatory theory, held at
the University of New Hampshire, during which this paper was written.

2. Quasisimilarity and direct sums of spectral
operators. In [15] F. Gilfeather proved that each direct integral of
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quasinilpotent operators is unitarily equivalent to a countable direct sum
of quasinilpotent operators, and in [11] it was proved that each such
direct sumisin 2,. E. Azoff [4] extended Gilfeather’s result by proving
that each direct integral of spectral operators is unitarily equivalent to a
countable direct sum of spectral operators. The following examples of
such direct sums were pointed out in [4]. Each operator in a finite type [
von Neumann algebra is a direct integral of operators acting on finite
dimensional spaces, and is thus a direct sum of spectral operators by
Azoff’s result. In [14] it was proved that each root of an abelian analytic
operator-valued function is unitarily equivalent to a countable direct sum
of spectral operators (see [14] for terminology and details). We now
show that each direct sum of spectral operators is quasisimilar to a
spectral operator.

Recall that by a theorem of Dunford (see, for example, [18, §2]) an
operator S in £(J) is spectral if and only if S = R™'NR + Q, where R is
invertible, N is normal, Q is quasinilpotent, and Q commutes with
R'NR. This decomposition is unique and is called the canonical
decomposition of S; moreover, if S is spectral, then o(S)= o(N).

THEOREM 2.1. The countable direct sum of spectral operators is
quasisimilar to a spectral operator.

Proof. For each i =1, let S, = R7'NR, + Q; denote the canonical
decomposition of the spectral operator S; acting on the complex Hilbert
space ,; the norm || |; on &, is induced by the inner product (,). We
will prove that if {|S.|}} is a bounded sequence, then the operator
S =26 S actingon ¥ = 2@ ¥, is quasisimilar to a spectral operator.

For each i=1, let T, denote the quasinilpotent operator
iR.QR;'. We define a new inner product (,),, on % by (x,y),=
25-0(Tix, T?y): foreach x and y in %, Itisshown in[17, page 278] that
the preceding series converges and induces a complete norm | ||;p on %,
that is equivalent to | ||. Let %, denote ¥, equipped with this new norm
and let J;: ¥, — ¥, be defined by Jx = x for each x in #. Itisshownin
{17} that J; is bounded and that ||[JTJ ', <1 (where |||, now also
denotes the operator norm on Z(#,)).

Since N, is a normal operator that commutes with T, Fuglede’s
Theorem [19, Cor. 1.18, page 20] implies that T, commutes with
N*. Thus, for each x and y in ¥, we have

(]iMJi_lxa )’)i,o = (MX, }’)i,o =2 (T?MX, Ti"y )i =2 (MT?)C, T?y )i
=Z(Tix, NiT?y) =Z(Tix, TIN%y): = (x, N3y )io

= (x, INTT'Y Dio-
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This identity implies that (JNJ;")* = JN*J;', and thus JNJ;' is a normal
operator in £(¥#,,). In particular, we have

[INT o = r(INJ ) = r(N) = r(S) =I5

so we may define the normal operator N = 2P JNJ ;"' in L(¥,), where
Hoy=2 D K.

If A, =JRQR;J, then | A | =Ji(1/i)T.J: o< 1/i, and it fol-
lows that Q =2 A, is quasinilpotent. Indeed, for z € C—{0}, let n
be a positive integer such that 1/n <|z|. Fori>n,||A ],=1/i<1l/n<
|z| and thus .

A = 2) o=z =A< (z|=1/)" <(z|=1/n)".

Now
supl|(A, = 2)" o = max ( sup (A, = 2) o, (| 2] = )" ) <=,

and thus z € o(Q). Since N commutes with Q, S = N + Q is a spectral
operator. To complete the proof, we note that since S, is similar to
JNJ '+ A, for each i, then [18, Theorem 2.5] implies that S is quasisimi-
lar to S,.

REMARK. We note several relationships between the spectrum of a
direct sum of spectral operators and that of any spectral operator
quasisimilar to it. Let T=2& S denote a direct sum of spectral
operators and let S be a spectral operator quasisimilar to T. If
o= U,o(S), then [11, Corollary 2.12] implies that ¢ C o(S) Co(T), and
[10, Lemma 2.1.] implies that each nonempty closed-and-open subset of
o(T) has nonempty intersection with o.

3. Examples concerning quasisimilarity and
quasinilpotent operators. In[11, Theorem 3.1} it was proved that
if T is in 2, then T satisfies the following properties: 1) o(T) = 0.(T),
2) if P is a nonzero projection such that (1— P)TP =0, then o(T | P¥) is
connected and contains 0; if additionally P# 1, then o((1-P)T]|
(1- P)¥) is connected and contains 0, 3) T and T* are quasitriangular;
4) (T | P¥)* is quasitriangular (P as above). It follows from the spectral
characterization of quasitriangular operators [3] that the preceding
conditions are equivalent to the following one: if P is a non-zero
projection and (1~ P)TP =0, then 0 € o (T | P%); if additionally P# 1,
then0E€ o((1— P)T | (1— P)%). In the following example we show that
a.(T | P%) need not contain 0 and may be disconnected, and that T | P¥
may be nonquasitriangular.
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ExampLE 3.1. Let {e,}7-, denote an orthonormal basis for ¥ and
let k, =n(n+1)/2(n=1). We define an operator A by the equations
Ae =¢., if k,=j=k,,—2 (nz=1), and Ae=0 if j=k, —1
(n=1). Since A is a direct sum of nilpotent operators, A is quasisimi-
lar to some quasinilpotent operator B. Let a,=1/2"" (nz1), x =
2r i a.e., and M =(A"x);.,. We will show that A | is non-
quasitriangular. Let f, = A”x (n=1). Then (f, f.)=0 for n# m, and
IfulP = 2f,at=27,1/2"=1/2""(n21). Mg, =(1/|f.IDf. then Ag, =
U fesi MU F Dgwsr = (1/2"%)g,.; (n = 1).  Let U be the unilateral shift on
defined by Ug, = g,.. (n=1). Since A | M = (1/2*)U, A | M is non-
quasitriangular and o, (A | #) ={z ||z | = 1/2"?}. To show that a part of
an operator in 2,, may have disconnected essential spectrum we may
consider A P (aA) for |a|#1.

For T in £(%) we set M(T)={x € ¥:| T x|'""—0}; also 2, =
{TEL(¥): T is a quasiaffine transform of some quasinilpotent
operator}, and 2%,={T € L(¥): T*€ 2,}. In [2] C. Apostol proved
that if M(T*) =3, then T is in 2,, and in [11] we asked whether
Q4 =24 N 2%, or equivalently, whether M(T) = M(T*)" = F implies
that T isin 2,. If T is decomposable and #M(T*) = &, then T isin 2,
and (11, Corollary 2.12] implies that T is quasinilpotent. If T is
hyponormal and #(T) = ¥, then T* is in 2,, and [11, Theorem 3.6]
implies that T =0.

For injective weighted shifts the situation is different. In the
following example we show that there is an injective weighted shift T
which is not quasinilpotent but for which M(T) = M(T*) =K. We
are unable to decide if T is quasisimilar to a quasinilpotent operator.

ExampLE 3.2. For  each integer nz1 let m(n)=
n{(n+1)2+n. Let T be the injective weighted shift defined by Te, =
ae., (i=1), where {e}~, is an orthonormal basis for &, « =1 if
i#m(n) for all n=1, and a, = 1/n"""" (n=1). Since the weight
sequence {a;} contains arbitrarily long strings of consecutive 1’s, it
follows that o(T) is the closed unit disk. Since T*"¢, =0 for n=1,
M(T*) = %. A calculation shows that for i = m(n), || T'e,||" = 1/n, and
thus e, is in  JM(T). Using the relation | T'e..,|" =
(1 )"V T e ||+ it follows by induction that each e, is in
M(T), and thus M(T) = X.

4. Quasisimilarity and hyperinvariant subspaces. We
recall two simple facts concerning the similarity of two operators A and
B: (i) if J is an invertible operator such that AJ = JB, then a subspace
is invariant for B if and only if J/( is invariant for A ; (ii) the restriction of
J to a B-invariant subspace # induces a similarity between B | # and
A | JM. 1In this section we examine the extent to which (i) and (ii) have
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analogues for quasisimilarity. If we persist in considering arbitrary
invariant subspaces, the analogue of (ii) cannot be obtained, for there
exist quasisimilar operators A and B, and an A -invariant subspace /,
such that A | is not quasisimilar to any part of B. To see this,
consider the operators A and B of Example 3.1. Now A |/ is
nonquasitriangular, while each part of B is quasinilpotent; thus [11,
Theorem 3.1] implies that A | # is not quasisimilar to any part of B.

The principal occurrence of quasisimilarity in the literature is in
relation to Hoover’s result [18] that if A and B are quasisimilar
operators and A has a nontrivial hyperinvariant subspace, then so does
B. However, as is discussed in [8], the structure of an operator is not
likely to be revealed by the presence of a single nontrivial hyperinvariant
subspace for B, but more likely by the presence of a collection of
hyperinvariant subspaces {#,},c; for which the structure of B|., is
well understood. Thus the ultimate value of the quasisimilarity relation
may lie in the extent to which it preserves the lattices of the hyperin-
variant subspaces of quasisimilar operators. In [21, Prop. 5.1, pg. 76] it
was proved that if A is quasisimilar to a unitary operator B, then there
exists an injective mapping of Lat, (B) into Lat, (A) which respects the
lattice structures. In [18] this result was extended to the case when B is
a normal operator. Using the proofs of these results as motivation, we
next give a generalization of these results to non-normal operators.

For T in #(%), let (T) denote the commutant of T, i.e. (T) ={X in
F(¥): TX = XT}, and let (T)" denote the second commutant of T, i.e.
(TY'={Y in £(¥): YX = XY for each X in (T)}. Let ¢ () denote
the set of all closed subspaces of #, and let y(T) denote the set
{ME (%) M= Qu3 for some operator Q, in (T)"}.

ProposiTiON 4.1. If T is in L(), then y(T)CLat,(T). If S is
quasisimilar to T, then there exists a function q: y(T)— ¢ (¥) such that
the following properties are satisfied.

(1) q(M) is a hyperinvariant subspace of S for each M in y(T).

(2) gq is injective.

3) (o) ={0}; q(36) = %

@) if M, N € y(T) and M CN, then q(M)Cq(N).

(5) if {M.}ees Cy(T) and N M, = {0}, then M .q(M,.)={0}.

6) if{M}oc: Cy(T)andV M, E y(T), thenq(V M) =V .q(M,).

(7) S |q(M)is aquasiaffine transform of T | M for each M € y(T).

(8) if R is a nonzero part of S| q(M), then each nonempty closed-
and-open subset of o(R) has nonempty intersection with o(T | M).

(9) if Vis a nonzero part of T | M, then each nonempty closed-and-
open subset of o(V) has nonempty intersection with o(S | g(M)).

We acknowledge at the outset that the proofs of (1) and (3)-(6) are
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essentially the same as the proofs of the corresponding results in [6,
Theorem 4.5, page 56] and [21, Prop. 5.1, page 76]; they are included
here for the sake of completeness. We note also that the case y(T) =
{#} may arise. In [13] Gellar and Herrero give examples of weighted
shifts T such that for each A # 0 commuting with T, A is injective and
has dense range; clearly y(t) ={%}. We will repeatedly use the simple
fact that if # C ¥ and U is in £(¥), then U¥X = UX.

Proof of Proposition 4.1. For M in y(T) we have M = Q. ¥ for
some Q4 in (T)". If R commutes with T, then

RM = ROM%C RQM%= Roﬂ%: Q,“R%C QM%Z -/%,

and thus # is a hyperinvariant subspace for T.

Suppose that X and Y are quasi-invertible operators such that
SX=XTand TY = YS. For M in y(T) we set q(M) = V reisy RXM; it
is clear that g satisfies (1), (3), and (4), and the proofs of (5) and (6) are the
same as in the case when T is unitary (see [21]). To show that g is
injective it suffices to verify that Yq(#) = M for each M in y(T). First,
note that if R is in (S)’, then YRX is in (T, since YRXT = YRSX =
YSRX = TYRX. Let Q4 in (T)" be such that Q,# = .M. Now

Yq(#)=Y v RXMCy YRXM=y YRXQ,¥=y YRXQ.¥
R R R

RE(S)

R R R

Thus Yq(M)C M and so YXM= YXMC Yq(M)CM Since we also
have

YXM= YXOQu# = YXQuH = QuYXH= Qu,YXH= Qu¥ =M,
it follows that Yq(#)= M.

Thé identity Yq(#)= A shows that Y |q(M): g(M)— M is a
quasiaffinity, and we have (T |#)(Y | q(M))= (Y |q(H))(S |q(M));
also, X | is an injective mapping of # into q(#) and (S|q(M))
(X | M)=(X|M)(T| M). Properties (7)-(9) now follow from the pre-
ceding identities and [11, Theorem 2.5].

REMARK. The preceding result includes Hoover’s as a special case,
since when T is normal y(T)= Lat,(T). Indeed, suppose # is in
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Lat, (T') and let P denote the projection onto . 1f S commutes with T,
then Fuglede’s Theorem implies that $* commutes with T, and thus S
commutes with P. Since P# = M and P is in (T)", M is in y(T).

Let T be an arbitrary operator in Z(#). If f is a function that is
analytic in a neighborhood of o (T), then f(T), as defined by the Riesz
functional calculus, is in (T)" (see [19, pages 26-32]), and thus f(T)# is in
y(T). It follows that y(T) contains the Riesz lattice of T defined by
{E,%: o is a closed-and-open subset of o(T)}, where E, = x,(T) and x,
is the characteristic function of . In view of these remarks, Proposition
4.1 implies the following result.

COROLLARY 4.2. IfS and T are in £(3) and S is quasisimilar to T,
then Lat, (S) contains a sublattice that is lattice isomorphic to the Riesz
lattice of T. If q: y(T)— Lat, (S) is a function that is given by Proposi-
tion 4.1, and o is a closed-and-open subset of o(T), then S |q(E,¥) is a
quasiaffine transform of T |E,.

CoRrOLLARY 4.3. If S is quasisimilar to T and M is a finite dimen-
sional subspace in y(T), then S| q(M) is similar to T | M.

Proof. We retain the notation of the proof of Proposition
41. Since Yq(M)=M and Y is injective, q(M) is finite
dimensional. Now Ygq(A) is closed, so Yq(#)= M, and in particular
dim(q(M))=dim(M). Since X(AM) is a .subspace of q(#) and
dim (X (#)) = dim (M) = dim (q(#)), we have X (M) = q(M), and thus
X | M: M— q(M) induces a similarity between S | q(#) and T | M.

Let E denote the spectral measure of a spectral operator T in
Z(%). The lattice of spectral subspaces of T is determined by
Lat, (T)={E(o): o a Borel set}. Since E(o) is an idempotent in
(T)" (see [18]), then Lat, (T)Cvy(T), and Proposition 4.1 yields the
following result.

CoROLLARY 4.4. If T is a spectral operator and S is quasisimilar to
T, then Lat, (S) contains a sublattice that is lattice isomorphic to the lattice
of spectral subspaces of T. If q: y(T)— Lat, (S) is a function given by
Proposition 4.1, and o is a Borel set, then S | q(E(o)¥) is a quasiaffine
transform of T | E (o).

ReMARK. For an analogue of Corollary 4.4 for the case when T is
only assumed to be decomposable, but the sets are closed rather than
Borel, see [6, Theorem 4.5, page 56].

5. The quasisimilarity orbit of a class of compact
operators. If K is a compact operator in £(J) and A is a nonzero
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member of o (K), let R(K,A)={x € #: (T — X)"x =0 for some integer
n=1}. Let € denote the set of all compact operators K in £(#) which
satisty the following properties:

(1) Vi, R = ¥ (where {A,}, is the sequence of distinct nonzero
members of o(K) and R = R(K, A));

) N, (Vi-i%) =10}

Each injective compact normal operator is in €; moreover, € is
closed under similarity. We next characterize the quasisimilarity orbit
of €. Following [1], we say that a sequence {/} of closed subspaces of
# is a basic sequence if M, and V ., M, are complementary for each i.

THEOREM 5.1.  An operator T in £(¥) is quasisimilar to an operator
in € if and only if T satisfies the following properties:

(1)  There exists a basic sequence {M};., of finite dimensional
hyperinvariant subspaces of T}

() o(T|AM)={Ar}, L,#0, and A, —0;

@ity N7 (Vziotly,) = {0}

We note that noncompact operators may satisfy (i)-(iii); if A;# 0,
A, —0, and if A, is the 2 X2 matrix <3’ /\1>, then A =27 P A, is
non-compact and satisfies (i)—(iii).

LemMma 5.2. If K is in €, then {R.}7-, is a basic sequence in y(K)
such that V4R, and V =, R: are in y(K) (k = 1).

Proof. Let f, denote the characteristic function of {A;}. Then f; is
analytic in a neighborhood of o(K) and E; = f,(K) is a finite rank
idempotent whose range is &, (see {9, p. 579], [20, p. 424]); in particular,
R is in  y(K). For i#k, (A—-f)f=f, so R=E¥H=
(1-E)EH C(1—-E\)H and thus VR C(1—E)¥# Since R, is
finite dimensional,

H =

%,’ = \/ gf, +g£k C(l_Ek)%+gik

=1 iFk

Since R, and (1-— E,)# are complementary, it follows that VR, =
(1- E,)# and is thus in y(K); this also shows that {®,}7, is a basic
sequence. To show that V.., &, is in y(K), it suffices to verify that
VieenRi=(1—-E,— -+ — E)d. For k =1 this identity follows from
above, so we assume that (1—E,— --+ — E,_)# = V2, R. Since R, is
finite dimensional, ViR = R + Vizea R, and since, from above,
Vizka R C(1— E, ), it follows that
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1-E) %+ v R)= y &
1zk+1

izk+1
Now E.E, = 8,E,, and thus
(1-E~—----—-E)#=(01-E)1—-E,— - —E.)¥
=(1- Ek)<i\g/k 978,) = v R,

1Zk+1

so the proof is complete.

LEmMMA 5.3. Let {M,}:-, be a basic sequence of subspaces of ¥, and
for each n, let P, denote the (bounded) idempotent such that P,% =M, and
ker(P)= Vizn M, Then N7 (Vi. M) ={0} if and only if there is no
non-zero vector x for which P,x =0 for each n.

Proof. Since V., M,= 3, for each x in X we have x =
lim;.(Z}-, m;), where m, € M;, and where for each i, m, = 0 for all but
finitely many j. If P.x =0, then

0=Px=1lim> Pm; =limm,,
< 1

1>

and so x =lim,..2", m;.. Thus x is in V,.,#,, and by repeating this
argument inductively, it follows that if each P,x=0, then x is in
M7, (Vi M). Conversely, if x is in Vi, M, (CV,. M), then
P._,x =0; thus if x is in M7, ( V-, A), then P,x=0 for each i

Proof of Theorem 5.1. We retain the notation of the proceeding
results. Suppose that T is quasisimilar to an operator K in €. Let
q: y(K)— Lat, (T) be a function given by Proposition 4.1, and for i = 1,
let M, = q(R,). Since R, is finite dimensional, Corollary 4.3 implies that
T | M, is similar to K | R,, and thus 4, is finite dimensional, o (T | #;) =
o(K|R)={\L}, A,#0,and A, >0. Lemma 5.2 implies that V5_, %, is
in y(K); since N7, (Vi., %) = {0}, Proposition 4.1 shows that

B

0 ()= 0 a(y2)=0)

=1

Similarly, since &, and V,, R, are complementary elements of y(K), we
have

(v, )0t =q( y 2)0a(@) =0

1#k
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by the finite dimensionality of #(, we also have

M + v M = M v _¥k M = ‘\=/1 q(%R)

i#k

—q(v &)= q00)=%

Thus {A#};-, satisfies (i)-(iii).

For the converse, since ; is finite dimensional, T | A; is of the form
A; + N, where N, is nilpotent. Thus there is a Hilbert space #; and an
invertible operator S;: #; — %, such that || S;(N; | #,)S;'|| < 1/i. 1t fol-
lows that K = 27, S;(T | #;)S;" is in € (with respect to £(¥), where
H =2, ). Wenow procede as in [1] by choosing numbers a;, b, >
0 such that =7, aS7'<», = b]S||]|P] <>, and by defining
operators A: H — #, B: # — H by A(Dr-ih)=2,a87h (h; in )
and Bx = @7, bS.Px (x in ). Property (iii) and Lemma 5.3 imply that
B is injective, and it follows readily that A and B are quasiaffinities such
that TA = AK and KB = BT. Thus T and K are quasisimilar, and the
proof is complete.

In {1] C. Apostol proved the following characterization of the
quasisimilarity orbit of the set of all normal operators in Z(¥).

THEOREM 5.4. (Apostol[1]). Anoperator T in L(¥) is quasisimi-
lar to a normal operator if and only if there exists a basic sequence {M,} -,
of T-invariant subspaces such that T | M, is similar to a normal operator
and O (vr,M,)={0}if m =,

We next give a partial analogue of this result for spectral operators.

THEOREM 5.5. An operator T in £(3) is quasisimilar to a spectral
operator if there exists a finite or infinite basic sequence {M,}7., of
T-invariant subspaces such that (1) T|.M, is spectral and (ii)
mfn=1(vnm=i-/%n) = {0} if m= oo,

Proof. By a straightforward modification of Theorem 5.1, it follows
that if T satisfies (i) and (ii), then T is quasisimilar to a direct sum of
spectral operators. An application of Theorem 2.1 completes the proof.

Question 5.6. Is the converse of Theorem 5.5 true?
The proofs of the results in this section indicate the usefulness of

basic sequences of invariant subspaces in constructing a quasisimilarity
between a given operator and some reducible operator. In [18] Hoover
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showed that quasisimilarities can be produced by direct sums of
similarities and he also showed that not every quasisimilarity arises in this
way. Using a theorem of Sz.-Nagy and Foias [21], he showed that an
irreducible  operator may be quasisimilar to a unitary
operator. (Gilfeather [16] proved what may be regarded as a strong
converse to Hoover’s example: every normal operator N without point
spectrum, on a separable Hilbert space, is the uniform limit of irreducible
operators each similar to N.) Thus, in the constructions of all of the
quasisimilarities of this section, and in those of [1] and [18], at least one of
the quasisimilar operators is reducible. It is possible, however, for two
irreducible operators to be quasisimilar (but not similar). In Example
4.4 of [11] it is shown that there are injective bilateral weighted shifts that
are quasisimilar but not similar, and since the weight sequences of these
shifts are both nonperiodic, it follows that both shifts are irreducible (see
[17, page 83]).

Added in proof. (i). E. Azoff has given an alternate proof of
Theorem 2.1 based on the following observation of his: if Q is a
quasinilpotent operator and € > 0, there exists an invertible operator J in
the C*-algebra generated by Q such that || JQJ'|| < € (for the proof, with
e=1,let J=(Z;,0*Q")").
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