ON THE MEASURABILITY OF CONDITIONAL EXPECTATIONS

Albrecht Irle
ON THE MEASURABILITY OF CONDITIONAL EXPECTATIONS

Albrecht Irle

It is shown that for a measurable stochastic process \(V \) and a nondecreasing family of \(\sigma \)-algebras \(\mathcal{A} \), there exists a measurable stochastic process \(V^* \) such that \(V^*(t, \cdot) \) is a version of \(E(V(t, \cdot) \mid \mathcal{A}_t) \) for all \(t \).

Let \((\Omega, \mathcal{A}, P)\) be a probability space (not necessarily complete), \(T \) an interval (bounded or unbounded) of the real line and \(V \) a real-valued stochastic process defined on \(T \times \Omega \) which is a measurable process, see Doob [3, p.60]. Let \(\mathcal{A}_t, t \in T, \mathcal{A}_t \subset \mathcal{A} \) form a nondecreasing family of \(\sigma \)-algebras. We shall prove in this note that under some boundedness condition on \(V \) the conditional expectations with respect to \(P, E(V(t, \cdot) \mid \mathcal{A}_t) \) can be chosen as to define a measurable process on \(T \times \Omega \). A similar statement appears in a paper by Brooks [1] but there it is additionally assumed that the family of \(\sigma \)-algebras is left-continuous, and the proof given there does not seem to carry over to a general nondecreasing family.

Theorem. Suppose for each \(t \in T \): \(V(t, \cdot) \geq 0 \) \(P \)-a.s. or \(\int |V(t, \cdot)| \, dP < \infty \). Then there exists a measurable process \(V^* \) such that for each \(t \in T \), \(V^*(t, \cdot) \) is a version of \(E(V(t, \cdot) \mid \mathcal{A}_t) \).

Proof. Since for any \(t \in T \)

\[
E(V(t, \cdot) \mid \mathcal{A}_t) = E(V(t, \cdot)^+ \mid \mathcal{A}_t) - E(V(t, \cdot)^- \mid \mathcal{A}_t)
\]

we may assume without loss of generality that for each \(t \in T \) \(V(t, \cdot) \geq 0 \) \(P \)-a.s. Using the linearity and monotone convergence property of conditional expectations the theorem now is easily reduced to the case that \(V \) is the characteristic function \(I_D \) of some subset \(D = B \times A \) of \(T \times \Omega \) with \(A \in \mathcal{A} \) and \(B \) belonging to the Borel sets of \(T \).

Since \(E(I_D(t, \cdot) \mid \mathcal{A}_t) = I_B(t)E(I_A \mid \mathcal{A}_t) \) holds it is enough to show that \(E(I_A \mid \mathcal{A}_t) \) can be chosen to form a measurable process. Let \(\mathcal{M} \) denote the set of all random variables on \((\Omega, \mathcal{A}, P)\) taking values in \([0,1]\) with random variables that are equal \(P \)-a.e. identified. Then \(\mathcal{M} \) is a metrizable topological space under the topology of convergence in
probability. By Theorem 3 in Cohn [2] it is now sufficient to show that the mapping $E_A: T \to M$ with $E_A(t) = E(I_A \mid \mathcal{A}_t)$ has separable range and is measurable with respect to the Borel sets of M. $E(I_A \mid \mathcal{A}_t)$, $t \in T$, forms a uniformly integrable martingale and so it follows from Theorem 11.2 in Doob [3], p. 358, that E_A is continuous at all but countably many points of T. This yields at once that E_A is measurable and furthermore—since T is separable—that the range of E_A is separable. This concludes the proof.

If the condition $\forall (t, \cdot)^0 \geq 0 \ P\text{-}a.s. \ or \ \int |V(t, \cdot)|dP < \infty$ is only required to hold for μ-a.a. $t \in T$, μ being any measure on the Borel sets of T, then obviously there exists a measurable process V^* which is a version of $E(V(t, \cdot) \mid \mathcal{A}_t)$ for μ-a.a. $t \in T$.

REFERENCES

Received February 25, 1975 and in revised form February 22, 1977.

Institut für Mathematische Statistik der Universität Münster, Roxeler Str. 64, West Germany
William H. Barker, *Noether's theorem for plane domains with hyperelliptic double* ... 1
Michael James Beeson, *Non-continuous dependence of surfaces of least area on the boundary curve* .. 11
Horst Behncke, *Functions acting in weighted Orlicz algebras* ... 19
Howard Edwin Bell, *A commutativity study for periodic rings* ... 29
Peter Botta and Stephen J. Pierce, *The preservers of any orthogonal group* ... 37
Douglas S. Bridges, *The constructive Radon-Nikodým theorem* ... 51
James Dennis Brom, *The theory of almost periodic functions in constructive mathematics* 67
N. Burgoyne and C. Williamson, *Semi-simple classes in Chevalley type groups* ... 83
Douglas Cameron, *A class of maximal topologies* ... 101
L. Carlitz, *Enumeration of doubly up-down permutations* ... 105
Paul Robert Chernoff, *The quantum n-body problem and a theorem of Littlewood* ... 117
Jo-Ann Deborah Cohen, *Locally bounded topologies on F(X)* ... 125
Heinz Otto Cordes and Robert Colman McOwen, *Remarks on singular elliptic theory for complete Riemannian manifolds* ... 133
Micheal Neal Dyer, *Correction to: “Rational homology and Whitehead products”* ... 143
Robert Fernholz, *Factorization of Radonifying transformations* ... 145
Lawrence Arthur Fialkow, *A note on quasisimilarity. II* ... 151
Harvey Charles Greenwald, *Lipschitz spaces of distributions on the surface of unit sphere in Euclidean n-space* ... 163
Albrecht Irle, *On the measurability of conditional expectations* ... 177
Tom (Roy Thomas Jr.) Jacob, *Matrix transformations involving simple sequence spaces* ... 179
A. Katsaras, *Continuous linear maps positive on increasing continuous functions* ... 189
Kenneth Kunen and Judith Roitman, *Attaining the spread at cardinals of cofinality w* ... 199
Lawrence Louis Larmore and Robert David Rigdon, *Enumerating normal bundles of immersions and embeddings of projective spaces* ... 207
Ch. G. Philos and V. A. Staïkos, *Asymptotic properties of nonoscillatory solutions of differential equations with deviating argument* ... 221
Peter Michael Rosenthal and Ahmed Ramzy Sourour, *On operator algebras containing cyclic Boolean algebras* ... 243
Polychronis Strantzalos, *Strikt fast gleichgradig-stetige und eigentliche Aktionen* ... 253
Glenn Francis Webb, *Exponential representation of solutions to an abstract semi-linear differential equation* ... 269
Scott Andrew Wolpert, *The finite Weil-Petersson diameter of Riemann space* ... 281