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There are several definitions of polyhedrality for infinite
dimensional convex sets. We consider each of these in turn and
ask whether infinite dimensional cubes are examples. We find
that only the concept of polyhedrality put forth by Alfsen and
Nordseth admits infinite dimensional cubes as examples. In
some sense this concept of polyhedrality is singled out as the only
one which properly generalizes the finite dimensional notion of
polyhedrality.

1. Cubes. By a cube we shall mean the unit ball of an
M -space of Kakutani with unit or any affine isomorph. All cubes are
affinely equivalent to the unit ball, [J(X), of € (X) for a suitable compact
Hausdorft space X or to (J°(X) = (X) N €*(X).

By a compact cube we mean a cube which is compact under some
Hausdorff locally convex topology. [J(X) is compact iff €(X) is a dual
Banach space by a theorem of Dixmier [5], [17). The predual of € (X) s
unique by a theorem of Grothendiek, [21, Theorem 27-4-1]. X must be
hyperstonian by another theorem of Dixmier, [6]. Consequently, X is
extremally disconnected or Stonian, [6], and the signed normal measures,
N (X), on X must separate €(X). The unique predual to € (X) is the
L-space ¥ (X) [21, Theorem 27.3.1]. The topology on [J(X) making it
compact is the weak topology o(€(X), ¥(X)). (In general by o(S,A)
we mean the coarsest topology on the set S rendering all functions in A
continuous on S).

An alternative characterization of a compact cube is as the unit ball
of L*(S, %, n) for a localizable positive measure space. This is because
L~ is an M-space with unit which is the dual of L'(S, 2, u) because of
localizability, [20]. Hence the unit ball of L® is a compact
cube. Conversely, if X is a compact Hausdorff space with [1(X) a
compact cube N (X) may be represented, via Kakutani’s representation
theorem for L-spaces, as L'(S,3, u) for a localizable positive measure
space. In fact S may be taken to be a dense open set in X, 3, the locally
Borel sets and p a positive Radon measure on S built from normal
measures on X. This was done in essence by Dixmier in [6].

One example of a cube which isn’t in general compact is the unit ball
of the B(S, %) of all bounded 2-measurable functions on the measurable
space (S,3). B(S,3) equipped with the uniform norm is an M-space
with unit which is o-reticulated or Dedekind o-complete, [21]. It may
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be represented as €(X) for a compact Hausdorff X. The Dedekind
o-completeness of €(X) is equivalent with the property of X known as
basic disconnectedness. X is basically disconnected, [9] or w-
extremally disconnected, [21], iff the closure of every Baire open set is
open, iff the interior of every Baire compact set is compact.

Every basically disconnected space X is totally disconnected in that
it possesses a base of clopen sets. A compact Hausdorff space X is
totally disconnected iff it is the Stone space of its Boolean algebra of
clopen sets iff [J(X) is the norm closed convex hull of its set, £((J(X)), of
extreme points. Such cubes will be called Boolean cubes.

2. Polyhedrality. If anything should be an infinite dimen-
sional polyhedron a compact cube should be. We might also expect that
a Boolean cube be an infinite dimensional polyhedron under a suitable
concept of polyhedrality. We don’t believe that the other cubes should
be called ‘“‘polyhedral” since they don’t have enough extreme
points. We examine the concepts of polyhedrality extant and determine
whether or not cubes are examples. We shall be primarily interested in
compact cubes.

Phelps, in [18], defines two classes of polyhedra which contain
Choquet simplexes. These are the a-polytopes and the pB-
polytopes. An a-polytope is defined as finite codimensional slice of a
Choquet simplex. A B-polytope is defined as an affine image of a
Choquet simplex under a map with finite dimensional fibers. Phelps
shows that no infinite dimensional centrally symmetric convex compact
set is either an a-polytope or a B-polytope. Hence we have the
following proposition.

PROPOSITION 1. No infinite dimensional cube is either an a-polytope
or a B-polytope.

REMARK. Phelps shows in [18] that the polyhedra of [2] are
B-polytopes.

Before we examine other notions of polyhedrality let us recall, from
[1], the notion of a face of a convex set S. A convex subset F of S is a
face of S iff whenever {x,y}CS and a € (0,1) are such that ax +
(1— a)y € F then{x,y}CF. Thus F contains any closed line segment in
S for which it contains an interior point. The extreme points, £(S), are
precisely those x € S with {x} a face of S. Both ¢ and S are faces of
S. Faces are preserved under arbitrary intersection and under increas-
ing unions. The faces of S form a complete lattice when ordered by
inclusion. There is for any A CS a smallest face of S, face(A),
containing A. If x € S, face(x) is defined to be face({x}). Anyfaceofa
face of S is a face of S. If f is an affine function on S the set
{f =supsf}CS is a face of S. In particular if H is a supporting
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hyperplane to S in the ambient vector space then H N S is a face of S
and all faces arise in this fashion. If S is given an affine topology 7
rendering convex combination continuous the r-closed faces of S are an
important object of study. 7-closed faces include ¢ and S and are
closed under arbitrary intersection. The set of 7-closed faces of § form
a complete lattice when ordered by inclusion. If A CS cl.face(A)
denotes the smallest 7-closed face of S containing A. If x €A let
cl,face(x) = cl,face({x}). If 7 is T, all elements of £(S) give rise to
7-closed faces of S. If f is a 7-continuous affine function an S the face
{f = supsf} is 7-closed but in general not all r-closed faces of S arise in
this manner.

Klee, in [11], defined a convex set S to be polyhedral, or Klee-
polyhedral, ifft S N M is a polyhedron in M for every finite dimensional
affine variety M in the ambient vector space. In [16], Lindenstrauss
defines a Banach space to be polyhedral iff its ball is Klee-polyhedra. In
[16]), Lindenstrauss shows that no dual Banach space is
polyhedral. Thus, no infinite dimensional compact cube is Klee
polyhedral. 1In [15], Lazar shows that a Lindenstrauss space E (i.e. one
whose dual is isometric to an L-space) is polyhedral iff it contains no
subspace isometric with € (N U {»}) (where N U {»} is the one point
compactification of the positive integers N). Furthermore Lazar shows,
in [15], that the Lindenstrauss space E is polyhedral iff the unit ball of E’
has no proper infinite dimensional o(E’, E) closed faces.

PRrRoPOSITION 2. (a) No infinite dimensional cube is Klee polyhedral.

(b) If X is an infinite compact Hausdorff space then €(X) isn’t
polyhedral.

(c) A Lindenstrauss space E is polyhedral iff it contains no subspace
isometric with €(X) for any infinite compact Hausdorff space X.

(d) If Xis an infinite compact Hausdorff space € (X) has a subspace
isometric to € (N U {o}).

" Proof. (b). The positive face of the unit ball of #(X)=[€(X)]'
consisting of positive Radon measures on X of norm 1 is known to be
o(M(X), €(X)) closed, is infinite dimensional since X is infinite, and is
proper. This suffices, in view of Lazar’s results, to establish (b).

That (b) implies both (a) and (d) is immediate hence both (a) and (d)
are valid.

(c) If a Lindenstrauss space E contains a subspace isometric with
€ (X) where X is an infinite compact Hausdorff space it must contain a
subspace isometric with € (N U {=}), since € (X) isn’t polyhedral. This
establishes one implication of (c). The other implication is immediate.

To proceed further with our examination of polyhedrality of cubes
we need to examine the facial structure of cubes. In particular we are
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interested in norm closed faces of cubes, and compact faces of compact
cubes. We are interested in faces F which are centrally symmetric in
that there is a center ¢ such that the reflection, 2¢ — F, of F in ¢ is equal
to F. Finally, we are interested in determining face(x) and cl,face(x)
where 7 is either the norm topology, n, or a compact topology on the
cube.

To facilitate the discussion of the faces of a cube it is convenient to
use the notion of an order interval in a partially ordered set (X, =). A
closed order interval is of the form [a,b]={x € X:a =x =b} for
{a, b} C X while an open interval is of the form (a,b)={x €E X:a<x <
b}. By an interval we shall mean a subset Y such that Y is both an
increasing and a decreasing family in X and such that if {a, b} C Y then
the closed interval [q, b] is a subset of Y. In general open intervals may
fail to be intervals only because they aren’t increasing or decreasing. If
the partially ordered set has the Riesz Interpolation Property so that
x <b, and y <b implies the existence of a z with x =z <b and
y=2z<b and x > a, y > a implies the existence of a z witha <z =x
and a < z =y then open intervals are intervals. If X is a lattice it has
the Riesz Interpolation Property. This is the case for X = €(Y) with Y a
compact Hausdorff space.

LEMMA 3. Let X be a compact Hausdorff space and let [] denote the
unit ball of €(X).

(1) If ACBCX the order interval Oap={fixa —xa-=f=
Xs — Xs<} is a norm closed face of (0. All norm closed faces of [1 arise in
this fashion.

(2) If F is a face of OO, B= U{{f=1}:f€F}, and A°=
U{{f= —1}: f € F} then A is a closed set in the open set B and [, is
both the norm closure of F and the smallest norm closed face of [J
containing F. If C is a closed subset of the open set D and (cp = s
then C= A and D = B.

(3) Any face of O is an order interval.

(4) The closed order interval [f,g]| in (O is a face of O iff f=
Xa — Xac and g = xs — Xs- where A C B are clopen sets.

(5) The centrally symmetric faces of [ are precisely the faces [
with A CB clopen sets.

(6) If O is compact under a separated affine topology t the 7-closed
faces are just those faces [, with A CB clopen sets.

(7) Letfel, A={f=1}, B={f> —1}. Let n denote the norm
topology on [J and 7 a separated compact affine topology on (1.

(a) cl.face(f)=Uas.
(b) cl face(f) = Uaops

(8) IfFisany face of (1 the norm closure of F is a face of O and, if
is a separated compact affine topology on O3, the 7-closure of F is a face
of L.
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Proof. (3) If Fisafaceof Jand{f, g}CF theni|fvg+fag]=
I[f+gl€F. Consequently {fvg,frg}CF. Thisshows that F is both
increasing and decreasing in the order of €(X). If f=g arein F and
f=h =g for some h €[] the reflection, (f+ g)—h = h', of h through
J[f+ g] also satisfies f=h'=g. Consequently }[h + h']=][f+g]EF
so {h,h'} CF. Thus, since h is arbitrary, F contains the entire closed
order interval [f,g]. This suffices, by the arbitrariness of f and g, to
establish (3).

(1) That (5 is uniformly closed is immediate. Let f€ 1,5 be
equal to af, + (1 — a)f, for some a €(0,1) and {f,, .} COJ. We have

fiza'f-(l-a)afizlaf-(I-a)a'f]v(-1)
Zla'xa—ayaa—(1—a)a ' -1]v(—1)
= Xa — Xa-

Similarly fi = xs — xs s0 fi€[ap. In a similar fashion we may show
that f,€ s Since, f, fi, f,, @ are arbitrary [, is a face of [J. This
establishes the first assertion of (1). The second assertion of (1) follows
from (2).

(2) We first establish the uniqueness assertion. If [(Jap =Oep
then xa—xa=f=xs—xsc ff xXc—~xe=f=xp—xp for f in
€(X). Since ya — xac is upper semi continuous and yp — xs- is lower
semi continuous Y. — xac is the pointwise infimum of [J, 5, by known
“betweenness’”’ theorems for semi continuous functions on
compactspaces. Similarly xc — xc- = inf(Lcp). This easily implies that
Xa — Xac = xc — Xc- hence that A = C. Similarly B = D.

Under the ordering of €(X) F may be considered as either an
increasing net or a decreasing net. We will show that inf(F) = y. — xa-
and that sup(F) = xz — xs- It follows from this that [(J, 5 is the uniform
closure of F. To see this observe that if h E[,5 and f=g are in F
then fv(h ng) is in F. Dini’s lemma implies, since h A g is the
pointwise infimum of f v (h A g) as f decreases in F, that h A g is in the
closure of F for any g in F. Since h is the pointwise supremum of h A g
as g increases in F Dini’s lemma shows that A is the uniform limit of
h A g as g increases in F. Thus h is in the uniform closure of F and,
since h is arbitrary, [, 5 is in the uniform closure of F. Since F C[, 5
so is its uniform closure. This establishes our assertion.

To show that inf(F)=yxs—xac we show that A =
N{f=1}:f€F}. Since A<= U{{f= —1}:f€ F} this will establish
both this statement and the assertion that A is closed. Let x € X and
f € F with f(x)<1. We set f,=f and inductively define a decreasing
sequence {fo, -, f.,} CF which terminates when f,(x)=—1. 1If
{f., ", f_i} have been defined and f,_,(x)> —1 set f* = fi,+1—|fiul
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and f, =fi,—1+|fi]. We have 1=Zzf*=fi,=Zfi=z -1 and fi,=
Hf*+f]EF. Thus, since F is a face of (I, {f* i} CF. If fi(x)> -1
then feei(x)>0 and fia(x) = fu(x)=1- fioi(x). Similarly,
fri(x)=fi(x)=1-f_(x) for all 1=j=k. We have 1-fi(x)=
[1=fioi()] + [fici(x) = fi(x)] = 2[1 — fi-i(x)]. By induction we have 2 >
1-fi(x)=2*[1-fi(x)]. Consequently, if fi(x)>—-1, then k<
log,(2[1 - fo(x)]™"). This shows that the inductively defined sequence
{fo, -, .} terminates in at most n = [log,(2[1— fo(x)]™)] + 1 steps with
fu.(x)= —1. Thus, we have x € A° if f(x) <1 for some fE F. Thisis
enough to show that A = N{{f=1}:f € F} hence that x, — xa- =
inf (F).

In a similar fashion we may show that B° is the closed set
N{{f = — 1}: f € F}, that B is the open set U {{f > — 1}: f € F}, and that
sup(F) = xz — xs~ This establishes (2).

7 (a) is easily established by the same means as we used to
establish 2.

(4) If[f,g]is afaceitis norm closed. By the proof of 2, [f, g] is of
the form (ap with x4 — xac = inf([f, g]) = f and x5 — xz = sup([f, g]) =
g. Thus . — xa< and xs — xs< are continuous, hence A CB are clopen
sets.

(5) Let F be a symmetric face of [J with center y. The norm
closure, F of F is a centrally symmetric face of [J with center y. It is
immediate that face (y) = F but face(y) CF so F = F. Consequently F
is norm closed and of the form [J,z with y4 — xac =inf(F) and
Xs — Xxsc =sup(F). Since F=2y—F yg—xp=supy—F)=
2y —inf(F) =2y = (xa = Xxac). Thus, 2y = X8~ Xpc t Xa ~ Xac =
2xa —2xs-. Since y is continuous A and B° are clopen sets.

If A CB are clopen sets and xy, — xac = f = xz — xs° it is easily seen
that the reflection, f’, of f through y = ya — x< also satisfies ya — xac =
f'= xs — xs~ Thus (1,5 has center 7.

(6) If 7 is a compact Hausdorff affine topology on [J it is of the
form o (€ (X), ¥ (X)) where /' (X) is the predual of €(X). Considering
N(X)as L'(n) and 6(X) as L*(n) for some localizable measure u, 7 is
of the form o(L*(n), L'(x)). Any bounded monotone net in L*(n) is
o(L*(w), L'(n)) convergent. Consequently if F is a 7-compact face of
O, {sup(F), inf(F)}CF. When F is a 7-compact face of [ it is a norm
closed face of [ hence sup(F)= xs — xs- and inf(F)= x. — xac Where
A CB. Since {xa — xas xs — xs<} Cf C[J, A and B are clopen sets.

If ACB are clopen sets the face Oas =
[(xa = xac)+20°1N [xs — xs:)—20]. Since OJ is r-compact so are
200" and O4p.

7 (b) If O has a compact topology X is extremally dis-
connected. If A is closed in the open B then A° and B are clopen
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sets and [Jao5 is a 7-closed face of [J which is the smallest containing
Oas = cl.face(f). This shows that cl face(f) = [0 5.

(8) That the norm closure of any face is a face follows from (2). If
F is a face let [1.p be its norm closure with A closed in the open set
B. If 7 is a compact topology on (] we must show, after the proof of (7),
that [(J,0 5 is the 7-closure of (1, 5 which will show that it is the r-closure
of . Now 7= co(%(X), N (X)) and all of the elements of & (X) are
normal measures which annihilate sets of first category in X. If u €
N(X) then u(dA)=u (A\A")=0=pu (B\B)=u(dB). The increas-
ing net [J,p has limit yz — yg~. Consequently the limit, for all u in

N(X), as f increases in [l,p of J'(Xg—)(gf)‘fdu is zero. Thus

X5 — Xy €EUap  Similarly  xao— x@ao € Dap. Finally, a similar
analysis shows that when h € (405 then h is the 7-limitof f v (h A g)asf
decreases in [,z and g increases in [Ja5. Consequently, (5= aos
which establishes (8).

ReEMARks. (1) If (Jis an infinite dimensional cube there are faces
which aren’t norm closed and norm closed faces which aren’t centrally
symmetric. The second assertion follows from the existence of open
sets in X which aren’t closed. The first assertion follows upon the
observation that a strictly increasing sequence of open sets {B,} exists in
X. The faces F, = [, 3, are norm closed and increasing so U:z.,F, isa
face. If F= Uj;_,F, were norm closed it would be (0,5 where
B= U7, B, One may find g, € F, with g, not identically 0 in
B,\B,_,. The function g = Z;_,27"g, lies in F but not in any F.,.

(2) One criterion for the total disconnectedness of X is that [] be
the norm closed convex hull of £ ((J). Another characterization in terms
of faces of [J is that any norm closed face be the norm closure of an
increasing union of symmetric faces.

(3) Any centrally symmetric face of a cube is a cube. The
compact faces of a compact cube are compact cubes.

We now return to our examination of the polyhedrality of
cubes. In[19], Rajagopalan and Roy introduced a generalization of the
notion of a B-polytope. They called the members of this class of convex
sets generalized polytopes. We shall call them generalized S-
polytopes.  Under their definition a compact convex set is a generalized
B-polytope iff for any point x there is a maximal representing measure,
Ur for x such that, in the convex compact set ., of representing
measures for x, face(u,) = ... Such u, are called maximal core repre-
senting measures. They show that all B-polytopes are generalized
B-polytopes and that no infinite dimensional centrally symmetric com-
pact convex set is a generalized B-polytope. The following proposition
follows immediately.
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ProrosITION 4. No infinite dimensional cube is a generalized B-
polytope.

Lau, in [12], introduces a generalization of the notion of
an a-polytope. These are called L-polytopes. Up to affine
homeomorphism L-polytopes are obtained in the following
manner. Take the unit ball  of a dual L-space with its weak ™ topology
(Such balls could be called compact octahedra). Select {h,, -, h,} a
subset of A (<), the continuous affine functions on ¢. The subset of
O given by M {h, =0} is an L-polytope. Lau shows that all
a-polytopes are L-polytopes. He also shows that no maximal proper
face of an L-polytope is centrally symmetric. If K = M7, {h; = 0}isan
L -polytope and K is a proper closed face of K. Lau shows, after Lazar,
that there is a proper closed face A of ¢ such that K,=A N K. Since
Lau also shows that all proper closed faces of A are Choquet simplexes,
K, is an a-polytope. Consequently, from Phelps’ result on a-polytopes,
if § is a compact convex set with an infinite dimensional proper closed
centrally symmetric face it isn’t an L-polytope. These facts make the
proof of the following proposition simple.

PROPOSITION 5. No infinite dimensional cube is an L-polytope.

Proof. We need only consider compact cubes [J. Let X be a
compact Hausdorff hyperstonian space with [J the unit ball of €(X)
under its compact Hausdorff affine topology. Select A an infinite
proper clopen subset of X. By (5) and (6) of Lemma 3, the proper closed
face [J,4 of [J is centrally symmetric hence [J isn’t an L-polytope.

In [4], Bastiani introduced a notion of polyhedrality for convex sets
in a separated locally convex space (E, 7). Of particular importance was
the case when 7 is the finest locally convex topology on E. In this case
all linear functionals on E are continuous and any face of a convex set is
relatively closed. If S is a convex set and s € S the set cone(s, S) is the
smallest convex cone with vertex s containing S. If (E, 7) is separated
and locally convex S is Bastiani polyhedral for = iff cone(s, S) is 7-closed
in E for all s€S8. If cone(s,S) is 7-closed so is its reflection,
cone(s,2s — S), through s. The set cone(s,S)Ncone(s,2s—S)NS is
easily verified to be face (s). Consequently if S is 7-closed and Bastiani
polyhedral for 7 every face of the form face(s) with s €S must be
7-closed. We use these facts to establish the following propositions.

ProposITION 6. (a) No infinite dimensional cube is Bastiani
polyhedral for the norm topology.
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(b) No infinite dimensional compact cube is Bastiani polyhedral for
it’s compact topology.

Proof. Suppose that the unit ball [J of €(X) is Bastiani polyhedral
for the norm topology. Let A be a compact G; in X and let fE€ [
with {f =1} = A. We have face(f)=0,x by 7 (a) of Lemma 1. If A
isn’t a clopen set there are infinitely many nonempty 6, = {1 -2"" < f<
1-27""?. For 6, empty set g, =0. For 6, nonempty let g, € (1" with
lg.||=2"" and with supp(g.)C6. Let f=f—-37_,g,€ €(X). The
reader may verify that 1=f= —1. Thus f€[. Since f=f on A,
f= xa — xac. Consequently fE€[,x so fE face(f). There is some
€ >0 with f+e(f—f)€0. Consequently f+¢€-2%_,g, =1 on X for
some € >0. In 6, there is a point x, with f(x,)+e€ 25, g.(x.)=
f(x,)+ €g.(x,)=(1—2")+ €272 as long as 6,# ¢. Consequently € =
1-2"+€2™ if 6, is nonempty. For all n with 6, nonempty € =
272, Thus, 6, is empty if n> —2log,(e). Thus A is a clopen
set. Since all compact G;’s in X are clopen sets X is w-extremally
disconnected. Suppose that X is infinite so there exists a strictly
increasing sequence of compact-open sets {A,: n € N}. The union of
this sequence is an open K, whose complement is a compact G; hence is
a clopen set. Thus U ., A, is compact. There is a finite integer m
with A, = U5, A, This contradicts the strict monotonicity of
{A,:n € N}. Consequently, X is finite. Thus, if the unit ball of € (X)
is Bastiani polyhedral for the norm topology X is finite. This is
equivalent to assertion (a) of the proposition.

For (b) we note that if [J is an infinite dimensional compact cube
with norm topology n and compact topology 7 there is by (a) an f € [J
with face(f)&cl.face(f) Ccl.face(f).

Alfsen and Nordseth showed, in [3], that the only Choquet simplexes
which are Bastiani polyhedral are the finite dimensional ones. Lau, in
[12], has established the same result for L-polytopes. To render
simplexes polyhedral Alfsen and Nordseth weakened Bastiani’s condi-
tion and only required that for s an extreme point of the convex set S
cone(s, S) be closed. This definition was made for S which are compact
for some separated locally convex topology 7 on the ambient vector
space but may be made for arbitrary S. Such a convex set S will be said
to be Alfsen-Nordesth polyhedral for r. Lau, generalizing the result of
Alfsen and Nordesth for simplexes, shows in [12] that all L -polytopes are
Afsen-Nordseth polyhedral. We now establish the same result for
cubes.

PrROPOSITION 7. (a) All cubes are Alfsen—Nordseth polyhedral for
the norm topology.
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(b) All compact cubes are Alfsen—Nordseth polyhedral for their
compact topology.

Proof. We let X be compact and Hausdorff. The positive
cone €*(X) is affinely homeomorphic to cone(e, [J) for any e € £((J) for
the norm topology. To see this note that if e = x4 — yac for some
clopen set A, then f—e-f+1 is an affine isometry of €(X) carrying
cone(e,[J) onto €°(X). If €(X) is the dual of /' (X) then these maps
are o(€(X), N (X)) homeomorphisms as well. Thus, to establish a) we
need only show that €7(X) is norm closed, which is immediate. To
establish (b) we need only show that €7(X) is o(€(X), ¥ (X)) closed
which is well known.

Concluding remark. We see that the Alfsen—Nordseth criterion for
polyhedra is the only one extant which includes all cubes. It would
appear to define a universally acceptable class of polyhedra including
simplexes, L-polytopes and cubes. Dual to the L-polytopes we could
define a class of M-polytopes which are finite codimensional slices of
compact cubes. These are easily shown to be Alfsen-Nordseth
polyhedra and have in common with the L-polytopes only the finite
dimensional polyhedra. It would be interesting to determine whether
generalized [B-polytopes or Klee polyhedra are Alfsen—-Nordseth
polyhedral.
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