RATIONAL APPROXIMATION AND THE GROWTH OF ANALYTIC CAPACITY

CLAES FERNSTRÖM
RATIONAL APPROXIMATION AND THE GROWTH OF ANALYTIC CAPACITY

CLAES FERNSTRÖM

Let \(X \) be a compact set in the complex plane \(\mathbb{C} \). Denote by \(R(X) \) the closure in the supremum norm of the rational functions with poles off \(X \) and by \(A(X) \) the set of continuous functions, which are analytic on the interior of \(X \). The analytic capacity of a set \(S \) is denoted by \(\gamma(S) \). For the definition of \(\gamma \) see below. Let \(B_z(\delta) = \{ \zeta \in \mathbb{C}; |z - \zeta| < \delta \} \) and let \(\partial X \) denote the boundary of \(X \). Vitushkin has proved that \(R(X) = A(X) \) if

\[
\lim_{\delta \to 0} \frac{\gamma(B_z(\delta) \setminus X)}{\delta} > 0 \text{ for all } z \in \partial X.
\]

Let \(\psi \) be a function from \(\mathbb{R}^+ \) to \(\mathbb{R}^+ \). We now ask the following questions. If \(\lim_{\delta \to 0} \psi(\delta) = 0 \), is it possible to find a compact set \(X \) such that \(R(X) \neq A(X) \) and such that \(\frac{\gamma(B_z(\delta) \setminus X)}{\delta} \leq \psi(\delta) \) for all \(z \in \partial X \) and for all \(\delta, 0 < \delta < \delta_z \)? If the answer is yes, can the answer still be yes, if \(\lim_{\delta \to 0} \psi(\delta) = 0 \) is replaced by \(\lim_{\delta \to 0} \psi(\delta) > 0 \)? The answers of these questions can be found in Theorem 1 and Theorem 2.

Definition. Let \(K \) be a compact subset of \(\mathbb{C} \). Then \(\gamma(K) = \sup |f'(\infty)| \), where the supremum is taken over all functions \(f \) such that \(f \) is analytic on the unbounded component of \(\mathbb{C} \setminus K \), \(|f(z)| \leq 1 \) for all \(z \in \mathbb{C} \) and \(f(\infty) = 0 \). Let \(S \) be an arbitrary subset of \(\mathbb{C} \). Then \(\gamma(S) = \sup \gamma(K) \), where the supremum is taken over all compact subsets of \(S \).

For further information about this capacity see for instance [2], [3], [4] and [5].

Theorem 1. Let \(\delta_n \searrow 0 \) when \(n \to \infty \). Suppose that

\[
\lim_{n \to \infty} \frac{\gamma(B_z(\delta_n) \setminus X)}{\delta_n} > 0 \text{ for all } z \in \partial X.
\]

Then \(R(X) = A(X) \).

Theorem 2. Let \(\psi \) be a function from \(\mathbb{R}^+ \) to \(\mathbb{R}^+ \). Suppose that \(\lim_{\delta \to 0} \psi(\delta) = 0 \). Then there exists a compact set \(X \) such that
(a) \(R(X) \neq A(X) \)

and

(b) \(\gamma(B_z(\delta) \setminus X) \geq \psi(\delta) \delta \) for all \(z \in \partial X \) and for all \(\delta, 0 < \delta < \delta_z \).

Remark. Theorem 1 gives the following. Let \(\psi \) be a function from \(\mathbb{R}^+ \) to \(\mathbb{R}^+ \). Suppose that \(\lim_{\delta \to 0} \psi(\delta) > 0 \) and suppose that \(\gamma(B_z(\delta) \setminus X) \geq \psi(\delta) \delta \) for all \(z \in \partial X \) and for all \(\delta, 0 < \delta < \delta_z \). Then \(R(X) = A(X) \).

2. **The proofs.** Theorem 1 can be proved in the same way as the theorem of Vitushkin mentioned in the introduction. See [4], Ch. 2, §4. We omit the proof.

In [1] A. M. Davie constructed a compact set \(X \) such that every point of \(\partial X \) is a peak point for \(R(X) \), but \(R(X) \neq A(X) \). Our proof of Theorem 2 is a refinement of Davie’s construction. We start by formulating two lemmas. The first lemma is well-known (see for instance [2], p. 199). The second lemma is due to Carleson. For a proof see [1].

Lemma 1. Let \(L \) be a compact set on a line. Then

\[\gamma(L) \geq \frac{1}{4} \{ \text{the length of } L \} \]

Lemma 2. Let \(E \) be a a perfect subset of the real line and \(I \) the closed interval \([0,1]\). Then we can find a continuous function on \(\mathbb{C} \), analytic outside \(I \times E \), such that \(f(\infty) = 0 \), \(f'(\infty) = \frac{1}{4} \) and \(|f(z)| \leq 1 \) for all \(z \in \mathbb{C} \).

If \(x \in \mathbb{R} \), let \([x]\) denote the greatest integer less than or equal to \(x \).

Proof of Theorem 2. We may assume that \(\psi(\delta) \) is a strictly increasing function. Put \(a_n = 16\psi(2^{-n+1}) \), \(n = 1, 2, 3, \ldots \). Then \(a_n \searrow 0 \) when \(n \to \infty \).

Let \(f \) be an increasing function such that \(f(-2 - \log a_n) = n \). Put

\[b_0 = 1 \]

and

\[b_n = \min \left(e^{-f(n)}, \frac{1}{4}b_{n-1} \right) \quad \text{for} \quad n \geq 1. \]

Let \(E \) be the usual Cantor set on the real axis such that the set \(E_n \) obtained in \(n \)th step consists of \(2^n \) intervals of length \(b_n \). Let \(I = [0,1] \).

Let \(n \) be fixed for a moment. There exists an integer \(k_n \) such that

(1) \[b_n \geq 2^{-k_n}. \]
Denote the intervals in E_n by $I_{n,i}$, $i = 1, 2, \ldots, 2^n$. In every $I \times I_{n,i}$ choose open disjoint discs with radius $2^{-k_n-3}e^{-n-1}$ in the following way. Every disc must not intersect $I \times E_{n+1}$ but every disc must touch $I \times E_{n+1}$. Moreover, the discs are arranged such that the centres of the discs lie on two horizontal lines in every $I_{n,i}$. There are 2^{k_n+3} centres on each line and the distance between two successive centres is 2^{-k_n-3}. Call the chosen discs $U_{n,i}$.

Repeat the construction for all n, $n = 1, 2, 3, \cdots$. Put

$$X = \overline{B_0(2)} \backslash \left(\bigcup_{n,j} U_{n,j} \right),$$

where $\overline{B_0(2)}$ denotes the closure of $B_0(2)$. X is a compact set and

$$\partial X = \partial B_0(2) \cup \left(\bigcup_{n,j} \partial U_{n,j} \right) \cup (I \times E).$$

It is easy to see that $\Sigma_{n,j} \text{diam } U_{n,j} < \infty$. Lemma 2 and a standard argument give

$$R(X) \neq A(X).$$

See [2], p. 220.

(i) Let

$$z \in \partial B_0(2) \cup \left(\bigcup_{n,j} \partial U_{n,j} \right).$$

Lemma 1 gives for all $m \geq m_z$

$$\gamma \left(B_z(2^{-m}) \backslash X \right) \geq \frac{1}{4} 2^{-m} \geq \frac{1}{4} a_m 2^{-m}.$$

(ii) Let $z \in I \times E$. Let m be a positive integer such that $a_m < e^{-2}$. The definition of f gives $f(-2 - \log a_m) = m$. Fix n such that $n = \lfloor -\log a_m \rfloor - 1$. If we use that f is an increasing function and the definition of b_n, we obtain

$$2^{-m} = e^{-f(-2 - \log a_m)} \geq e^{-f(1 + \lfloor -\log a_m \rfloor)} = e^{-f(n)} \geq b_n.$$

Thus

$$2^{-m} \geq b_n.$$

One now easily shows that $B_z(2^{-m})$ contains disjoint discs $U_{n,j}$, $i = 1, 2, \cdots, 2^{k_n+2}2^{-m} - 2$, such that their centres are on one straight line. Lemma 1, (1) and (2) give
\(\gamma(B_z(2^{-m}) \setminus X) \geq \gamma \left(\bigcup_{i} U_{n,i} \right) \geq \frac{1}{4} \{2^{k_n+2^{-m}} - 2\} 2^{-k_n} e^{-n-1} \)
\[= \frac{1}{4} e^{-n-1} \{2^{-m} - 2^{-k_n-1}\} \geq \frac{1}{4} e^{-n-1} \{2^{-m} - \frac{1}{2} b_n\} \]
\[\geq \frac{1}{4} e^{-n-1} \{2^{-m} - \frac{1}{2} 2^{-m}\} = \frac{1}{8} 2^{-m} e^{-n-1}. \]

Thus
\[\gamma(B_z(2^{-m}) \setminus X) \geq \frac{1}{8} 2^{-m} e^{-n-1}. \]

If we use that \(n = \lceil -\log a_m \rceil - 1 \), we obtain
\[e^{-n-1} = e^{-\lceil -\log a_m \rceil} \geq e^{\log a_m} = a_m. \]

Thus
\[\gamma(B_z(2^{-m}) \setminus X) \geq \frac{1}{8} a_m 2^{-m}. \]

Now (i) and (ii) give that for all \(z \in \partial X \) there is a constant \(m_z \) such that
\[\gamma(B_z(2^{-m}) \setminus X) \geq \frac{1}{8} a_m 2^{-m} \text{ for all } m \geq m_z. \]

The definition of \(a_m \) gives for all \(z \in \partial X \) and for all \(m \geq m_z \)
\[\gamma(B_z(2^{-m}) \setminus X) \geq 2\psi(2^{-m+1}) 2^{-m}. \]

If we use that \(\psi \) is increasing, we get
\[\gamma(B_z(\delta) \setminus X) \geq \psi(\delta) \delta \]
for all \(z \in \partial X \) and for all \(\delta, 0 < \delta < \delta_z. \)

References

Received August 31, 1976 and in revised form January 20, 1977.
PACIFIC JOURNAL OF MATHEMATICS
EDITORS
RICHARD ARENS (Managing Editor)
University of California
Los Angeles, CA 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, CA 90007

R. A. BEAUMONT
University of Washington
Seattle, WA 98105

R. FINN AND J. MILGRAM
Stanford University
Stanford, CA 94305

C. C. MOORE
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS
E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA
STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF HAWAII

UNIVERSITY OF CALIFORNIA
UNIVERSITY OF OTTAWA

MONTANA STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY

UNIVERSITY OF NEVADA
UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY
* * *

OREGON STATE UNIVERSITY
AMERICAN MATHEMATICAL SOCIETY

OSAKA UNIVERSITY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate, may be sent to any one of the four editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Jerusalem Academic Press, POB 2390, Jerusalem, Israel.

Copyright © 1977 Pacific Journal of Mathematics
All Rights Reserved
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A generalization of the Chinese remainder theorem</td>
<td>289</td>
</tr>
<tr>
<td>Polyhedrality of infinite dimensional cubes</td>
<td>297</td>
</tr>
<tr>
<td>Continuous images of weakly compact subsets of Banach spaces</td>
<td>309</td>
</tr>
<tr>
<td>Curvature functions on Lorentz 2-manifolds</td>
<td>325</td>
</tr>
<tr>
<td>Shear distality and equicontinuity</td>
<td>337</td>
</tr>
<tr>
<td>Rational approximation and the growth of analytic capacity</td>
<td>347</td>
</tr>
<tr>
<td>On some new generalizations of Shannon's inequality</td>
<td>351</td>
</tr>
<tr>
<td>Quasi-affine transforms of subnormal operators</td>
<td>361</td>
</tr>
<tr>
<td>Unbounded representations of *-algebras</td>
<td>369</td>
</tr>
<tr>
<td>A note on Drazin inverses</td>
<td>383</td>
</tr>
<tr>
<td>Countable spaces without points of first countability</td>
<td>391</td>
</tr>
<tr>
<td>Completeness properties for convergence spaces</td>
<td>401</td>
</tr>
<tr>
<td>Square integrable primary representations</td>
<td>413</td>
</tr>
<tr>
<td>On preservation of E-compactness</td>
<td>429</td>
</tr>
<tr>
<td>Essential spectrum Γ(β) of a dual action on a von Neumann algebra</td>
<td>437</td>
</tr>
<tr>
<td>Normal congruence subgroups of the Hecke groups G(2^{(1/2)}) and G(3^{(1/2)})</td>
<td>481</td>
</tr>
<tr>
<td>On the prime divisors of zero in form rings</td>
<td>489</td>
</tr>
<tr>
<td>Ergodic actions of product groups</td>
<td>519</td>
</tr>
<tr>
<td>Infinite decomposition bases</td>
<td>549</td>
</tr>
<tr>
<td>Sums of invariant subspaces</td>
<td>567</td>
</tr>
</tbody>
</table>