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For a dual action 8 of a locally compact group G on a von
Neumann algebra N we define the essential spectrum ['(3) as the
intersection of all spectrum sp 37 of the restriction 87 of 8 to N,
when p runs over all nonzero projectionsin N*. T'(8) is then an
algebraic invariant for a covariant dual system {N, 8}. ['(B)is
a closed subgroup of G (Theorem 3.7). We introduce three
kinds of concept for 3 such as integrable, regular and dominant
(884, 5). The former concepts are weaker than the
dominance. If 3 is regular, I'(8) coincides with the kernel of
the action 3 on the center of the crossed dual product N Q4G
(Theorem 6.1). I B is regular, ['(8) is normal and ['(8) =
I'(B). If B is ergodic on the center Z(N) and I'(8) = G, then
N®4G is a factor and vice versa (Theorem 6.4). If 3 is
regular, I'(8) = G is equivalent to Z(N?®)C Z(N) (Proposition
6.3). If B is integrable on a factor N and if I'(8) = G, then
there is a lattice isomorphism between the closed subgroups of G
and the von Neumann subalgebras of N containing N’
(Theorem 8.4). Moreover, by NX4(H\G) we mean the von
Neumann algebra generated by 3(N)and | Q (L"(G) N A'(H)'),
where H is a closed subgroup of G and )\’ is the right regular
representation of G. N&;(H\G) coincides with the set of
x € N®:G such that B,(x)=x for all t € H (Theorem 7.2).

0. Introduction. In our previous paper [17, 16, 21] we have
generalized Takesaki’s duality to a general locally compact group in
terms of a dual action and a crossed dual product as the following:

M. G)RiG~MKQB(L(G))
(N®:G) R G~N & B(L*(G)).

In this paper we continue our study on dual actions and Takesaki’s
duality obtained in the above from the view point of covariant systems
{M, o} and covariant dual systems {N, 8}. Then we naturally raise some
questions:

a. What is an invariant of equivalent covariant dual systems?

b.  When does Takesaki’s duality hold as a covariant (dual) system ?
Using the spectrum of B given in [17, §5], we can define the essential
spectrum I'(8) of B in §3 by the same manner as S set. Then I'(8) is a
closed subgroup of G and an algebraic invariant of dual actions on a
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given von Neumann algebra. Therefore we can classify the dual actions
into the family of closed subgroups of G.

c. IncaseofI'(B) = G, what can we say about 8, N® and NQ5G ?
For these questions Connes and Takesaki have obtained several interest-
ing results in their paper [6] from the stand point of nonabelian
cohomology in properly infinite von Neumann algebras. Following
these ideas, we try to reproduce their Chapter I1I in terms of covariant
(dual) systems. Our contents consist of following nine sections:
Introduction
Preliminary
Takesaki’s duality
Essential spectrum I'(B)

Integrable actions and dual actions
Regular actions and dual actions
Ergodic actions and dual actions
Subgroups and subalgebras

Galois correspondence

9. Appendix

More precisely, in §4 we shall recall two equivalent conditions given
by Connes and Takesaki for an action to be integrable. The dual
version of one of the conditions is utilized to define the integrability of a
dual action. However, we are still unclear, whether the both dual
versions of the above two conditions are equivalent or not.

In §5, for the sake of convenience, we call an action or a dual action
to be regular when it is dual to some dual action or some action. The
regularity is then stronger than integrability. Their characterizations
are already given by Landstad and others, [15, 17, 16, 21]. Furthermore,
we call a (dual) action to be dominant if it is regular and of infinite
multiplicity. The dominance in our paper is a generalization of the one
given by Connes and Takesaki to a non separable case. The utility of
regularity and dominance will become clearer in our later sections as we
analyze the equivalence class of covariant (dual) systems.

In §6, I'(@) turns out to be the set of all t € G such that ¢, is trivial on
the center of M. Therefore, if B8 =a, I'(B) = H is characterized by the
fact that H is the largest closed subgroup satisfying that the center of
N ®4G commutes with 1@ A'(H), where A’ is the left regular represen-
tation of G. Further, if B is ergodic on the center of N, then N? is a
factor, in addition, if I'(8) = G, then N ®2G is a factor.

Let M@, H be the von Neumann algebra generated by « (M) and
1®A(H), and let NQ4(H\G) be the von Neumann algebra generated
by B(N) and ¥*(H\G), where £*(H\G)=L*(G)NA'(H). In §7 we
shall characterize these von Neumann subalgebras, namely, MQ, H is
the set of y in M), G with @(y) CN Q A(H)" and NQR4(H\G) is the set
of x in N®4G with B,(x)=x for all t € H.

NN WD =O
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In §8 we shall give a Galois type correspondence between the closed
subgroups of G and the von Neumann subalgebras of a factor N
including N* under the assumption that G is separable, 3 is integrable
and I'(8) = G. Let B? be a dual action of G on N®:G given by
(1.8). If N®XiG is a factor and if L is a B¢ invariant von Neumann
subalgebra of N®j§ G including B(N), then L is of the form NQ§(H\G)
for some closed subgroup H of G. Conversely, NQ§(H\G) is B¢
invariant.

In the Appendix we shall give a sufficient condition for an action of
a locally compact abelian group to be regular.

The author wants to express his sincere gratitude to Professors M.
Takesaki and Y. Oka for their valuable discussion and to Professor M.
Tomita for his encouragement.

1. Preliminary. Let G be a locally compact group, dt the
Haar measure, t = A(t) the right regular representation of G on L*(G)
and R(G) the von Neumann algebra generated by A(G). Let J be the
antiunitary involution on L*(G) defined by (J¢)(t)=A(1)"¢(t7") for
E€L¥(G)and A'(r)=JA(r)J<, where A is the modular function. Then
A’ is the left regular representation:

(A'(NE) (1) = A(r)"&(r ).

Let M and N be von Neumann algebras acting on Hilbert spaces #
and J7, respectively. vy and & are isomorphisms R(G)— R(G)Q R(G)
and L(G)— L(G) R L"(G) satisfying

YA() =X )@A(r) and (&f)(s. 1) = f(st)

for f€ L(G). An acti na of G on M is an isomorphism of M into
M Q) L*(G) satisfying

(1.1) aQ@Qiea=1Qdeq,

where ¢ denotes the identity automorphism and the association of the
tensor product ) is stronger than that of the composition . By [17,
Theorem 2.1} an action « is induced from an action ¢ » «, of G on M in
the usual sense by (a(x)&)(t)= a.(x)é(t) for EE€EH R L(G). As
ala(x)=Ad1RQA(t)(a(x)) for all t, {M, a} is a covariant system. A
dual action B of G on N is defined as an isomorphism of N into
N & R(G) satisfying

(1.2) BRueB=1tQyep

Such a pair {N, B} is called a covariant dual system.
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The crossed product MR, G of M by G with respect to « is the von
Neumann algebra generated by a (M) and 1 Q R(G). The crossed dual
product NQ§iG of N and G with respect to f is defined as the von
Neumann algebra generated by B(N) and 1 Q) L*(G).

Now we define a unitary W on L}(G)&® L(G) by

(WE) (s, 1) = &(s, 15).

Then W*= AdJ ®1(W), where (JE)(1)=A(t)"¢(t™") for € € LY(G).
We set

W=Ad1QJ(W), V=0c(W) and V'=o(W),

where o denotes the symmetric isomorphism

xQyryQx.

These unitaries satisfy (W'&)(s,t) = A(s)"?&(s,s7't), (VE)(s,t)= &(st, 1)
and (V'&)(s,t) = A(t)"?&(¢7's, t). Therefore (1.1) and (1.2) are of the
forms

aQiea(x)=Ad1QRQ V(ia(x)R1s)
BRuep(y)=Ad1QW*(B(y)&®1s).

On the other hand, since

(1.3)

AdT@WH*a(x)R1s)=a(x)R 1,
AdTR@ WA (r)R@1s)=Ai(r) R A(r)
AdIQV'(BY)R1s)=B(y)&1s,
AdIQRQVIRf®1)=1Q¢f,

where A(r)=1QA(r) and (ef)(s,t)=f(t7's), it follows that

AdIQWHME.G)®1:) C(MX.G)QR(G)

0 1@ VIN®L6)® 1) C(N®EG) D LAG).

We denote their restrictions by & and B:

G(x)=Ad 1R W*(x ®14)

(1.5) .
B(y)=Ad1RQV'(y ®1s)

for x EME.G and y € NQ:G. Since
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W Rle(tQa) W R1s)=Ad1s @ WHW*®15)
VRILCR)NV' ®ls)=Ad1le @ V(V' ®1s),

it is shown in [17, Theorem 2.3] that & is a dual action of G on M. G
and B is an action of G on N®:G. & and § are said to be the dual
action dual to o and the action dual to B We denote the action dual to &
by & or @ and the dual action dual to 8 by B or B.

We know from (1.3) that

(1.6)

Ad1® V(a(M)®1s)Ca ® (M ® L(G))
(1.7) Ad1Q WHB(N)R14)CB R (N ®R(G)).

Since [V,A'(r)®f]=0 and [W,f®15] =0, it follows that

AdIQVIQR(G)®1:)CIQR(G)QL(G)
AdIQWH(IRL(G)R1:)=1QL(G)R1s.

Therefore

Ad1QV(IMR.G)Q16) C(MK.G)QLI(G)
Ad1Q WH(N®LG)®15) C(N®LG)QR(G),
which is compared with (1.4). If we define ¢ and B¢ by

a‘(x)=Ad1QRQV(xR1s)
B(y)=Ad1Q W*(y ®1s)

for x E MQ.G and y € NQ4;G, then a is an action of G on MK, G
and B¢ is a dual action of G on N®4G. Indeed, (1.3) for «* and B¢ is
proved by

(1.9 VRI1IRo)(VRILs)=Ad1l: QV(VRI1s)

and (1.6) for W.
On the other hand, since [V,1Qf]=0 and [W,1&A'(r)]=0, it
follows from (1.7) that

Ad1® V*(a(M)Y ®15)Ca(M) ® L(G)
Ad1@ W(B(NY ®15)CB(NY @ R(G).

(1.8)

If we define a’ and B' by

2'(x)=Ad1Q V*(x Q1s)

(1.10)
B'(y)=Ad1QW(y ®ls)
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forx € a(M) and y € B(N), then we have the following theorem due to
Landstad, [16, the proof of Lemma 1].

THEOREM 1.1. B’ is a dual action of G on B(N)' satisfying

@) (BIN)) =(NR;:G); and
(ii) there is an action a of G on (N®5G) satisfying

{BIN), BT~ {(N®:G) ®. G, a},
where (B(N))"'={y €B(N):B'(y)=y ®1s}.

As this theorem is important from the technical point of view, we
shall give a dual version, although it is unnecessary for our later use.

An isomorphism a of M into M @ L*(G) satisfying a QtLoa =
1 Q8 ca (6F=AdV'*(fR1s)) is called an action of G on M with
respect to R(G)', [17, Appendix].

THEOREM 1.2. «' is an action of G on a (M) with respect to R(G)
satisfying

) (aM))'=MRQ.G); and

(i) there is a dual action B° of G on (M &, G) with respectto R(G)'
such that

{a(M), a'}~ {(M®.GY @G, B}
Proof. Since

(V*QIh®a(VFQ1s)=Ad 1 Q VH(V* Q1)
we have
a'@iea’(x)
=AdIRQV*R1sot @ 1R AdIRQV*RQ1s(x X1 R15)
=AdIRI;RQV* o AdIRV*R1s(x X1 R16)
=1@6°a'(x),

where 6°(f) = Ad V'*(f Q 1) for f € L*(G). Therefore ' is an action
of G on a(M) with respect to R(G)'.

(i) Put N=(a(M))*. Since M is standard, we have a weakly
continuous unitary representation u of G on ¥ implementing «a,
[1,9]. (M ®.G) is then generated by M'Q1; and U1 Q R(G))U*,
where U is a unitary on ¥ @ L*(G) defined by (U¢)(s)=u(s)é(s),
[7,10,16]. As (M®Q.G) CN is clear, it suffices to show the converse
inclusion. For this we suppose that x € N. Then x € a(M)' and
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Ad1QRQV*(x ®1lg)=x Q1 Therefore

*®1IE(1IR®I QR(G) NAAIRQV* (1R®1s QR(G))
=(I1®R(G)®R(G))
and hence
x€EaM)NIQR(G))=(MR.G).

(ii)) Since a(M)=(MQR.G)* by (.79 and since a(M)=
M®.G)N(1QL*(G)) by Theorem 7.1, it follows that

a(M)'=(M&.G) U1 L(G))"
Moreover,
a(1Qf)=Ad1QA(1)*1KQf)
for f € L*(G). By|[16: 17, Theorem 8.3; 18] we have the desired result.
Finally, we recall the equivalence used in the above theorems. Let

a' (resp. B,) be an action (resp. a dual action) of G on M, (resp. N,) for
j=1,2. We denote

{M,, a't ~{M,, a’} (resp.{Ny, B} ~{N,, B:}),

if there exists an isomorphism p of M, (resp. N,) onto M, (resp. N,)
satisfying

pQrea’=a’ep (resp.p@t°pi=p:op).
Then it is direct from (1.1) and (1.2) that

{M,a}~{a(M),. ®8} and {N,B}~{B(N),t Qv}.

2. Takesaki’s duality. In this section we shall give a few
supplements to our previous results obtained in [17].

We begin by recalling Takesaki’s duality [16, 17, 18]. If my is an
isomorphism of M into (M. G)XiG given by

()= Ad1® VHa(x)Q 1)

for x in M, then (MQ,G)R:G is generated by my(x) (x EM),
IRA()RA(r) rEG) and 1Q 1, Qf (f € L*(G)), [17]. We denote
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by p an isomorphism of M @ B(L*(G)) onto (M &), G) Q4 G defined by
2.1 Ad1R VFoa Qe

Then p(x @16) = my (x), pPARA(r)) = 1R A(r)@A(r) and p(1 R f) =
1Q1: QF.

THEOREM 2.1. If a is an action of G on M, then
{(M®.G)R:G, & ~{M Q B(LY(G)),[a]},

where [a]=Ad1RQV'eoiRQoea®@t. In particular, [a], =
a, QAdMN(t) for t € G.

LemMmA 2.2, If p is given by (2.1), then
aop=pRLcAd1IRQV'ea
on MR 1ls, where a =1t QRQooa Q..
Proof. Since
(2.2) V*RI6(t RN (V¥R 15)=Ad 1 QV'H(V*R15),
we have
(23) LVINIV*RI1I)=(V'®1:)1s Q VI a(V 1)
IfxeEM, then tQRo(x X1 ®1s)=x Q1 Q1 Therefore
PRLeAdIQRQ V'eda(x ®15)
=AdIQRQV*Rlsea @R Ad1IRQ V'ea(x ®1s) (By (2.1))
=Ad(IQV*®1)(1IRIc®V)ea®@LQieod(x Q®ls)
=Ad(IR®V*R1:)(1IR1: Q@ VNI @it R(1QV R1s))
ca@r@ux ®1ls ®ls) (By (1.3))
=Ad(1RQ1: ®VIIRQV*R®1s))a@tQux ¥l Xls)
(By (2.3))
=Ad1RQ1IQV'ep@ulx ®¥1ls ®ls) (By (2.1))

=a°p(x®lg).
This completes the proof.



ESSENTIAL SPECTRUM I'(3) OF A DUAL ACTION 445

Proof of Theorem 2.1. It is immediate from the following calcula-
tion:

(P @) eacp(I@A(r)=(pR) e a(1QA(r)RA(r))
=P ®)(1RA(NRA(NR1s)
=1I®QAMN Q16 =[a](1QA(r))

and

(PRu)eap(1@NH=(pRt)"a(1RQ1: RDf)
=P R®)'(1RX1: Qef)
=1Ref =[a](1Qf).

This completes the proof.

The dual version of the above result is obtained as follows. If oy is
an isomorphism of N into (N®§G) ;G given by

T (y)=Ad 1@ W(B(y) Q1)
for y in N, then (N®§G)R;G is generated by mx (y) (y EN), 1 Q ef
(fELY(G)) and 1R 15 RQA(r) (r€G), [17]. We denote by p an
isomorphism of N & B(L*(G)) onto (N®§G) X, G defined by
2.4) Ad1T Rl QI AdTRWoBRu.

where J is given by (J&€)(t)=A(t)"&(t™") for & € L*(G). Then
p(y®ls)=mv(y), p(1Qf)=1Qef and p(1RQA'(r)) =1&1c @ A(r).

THEOREM 2.3. If B is a dual action on N, then
{(N®5G) R4 G, Bt~ {N ® B(LX(G)), [B},
where [B]=Ad QWL Qa°BQu
LEmmA 2.4. If p is defined by (2.4), then
Bop=pRioAdIQW-p
on NR®1g, where B=1 Qo B Rt
Proof. Since

(2.5) WRL(t @) (WR1s)=Ad 1: @ WHW & 1),
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we have

2.6 (WR1)Ic@W)h Qo(W*RQls)=(lc @ W) (WX 1o).

If yEN, then tQo(y Rl Q1lg)=y Q1ls Q15 Therefore
Ad1®1c®]®1c°P®L°Ad1®W°B—(Y &X1s)
=AdIQWRIc°BRLQLeAdIQWB(y Q1) (By (2:4)
=Ad((1IQWR1)(IRIc QW) BRLQtoB(y R1s)
=Ad(1QWRI1:)(1X1: ® W))
LR BRLQLoB Ry ®ls)
=Ad(IQWRIL)(IRXI QW) R RQo(1QW*® 1))
BRLQUYy Rls ®@ls) (By (1.3)
=Ad(1Q1 @W)1RQWR16)BRQuly ®ls ®1lo)
(By (2.6))
=Ad(1RQ1 QW)1R1s ®JX1s))op iy ¥lc Pls)
(By (2.4))
=Ad(1R1 R®TR1:) (1R 1 @ WH)ep ¥y ®ls ®ls)
=Ad(1® 1 ®J ®1s)°Bop(y D1o).

This completes the proof.

Proof of Theorem 2.3. 1t is immediate from the

PR Bop(1R)=(p @) FRef)
=P RV(IRSR1c)=1Rf®1c =[BIIXS)
and
(P @) Bop(I@N()=(p @) B1R1c ®A(r))
=P ®1)'(1R1c ®A(r)®A(r))
=1QA'(NQA(r)=[B]1RA(r)).

This completes the proof.

By the use of operator valued weights E, and E; we have shown in
[16; 17, Proposition 6.1 and 6.4; 18] that

2.7) (M®.G)* =a(M) and (N®;G)’ = B(N).
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Combining (2.7) and Takesaki’s duality in the above, we have the
following theorem.

THEOREM 2.5. (i) If a is an action of G on M, then
(2.8) M®.G = (M & B(L(G))".

(i1) If B is a dual action of G on N, then
(2.9) N®;G = (N ® B(L(G))".

Proof. (i) Let p be the isomorphism of M @ B(L(G)) onto
(M®.G)RiG given by (2.1).  Then, by Theorem 2.1 and (2.7), we have

p(M®B(L(G)))=a(MR.G).
Since
pled(a(x)=(a®i)'°Ad1RQ V(a(x)®1s) = a(x)
by (1.3) and
plea(1@A(r)=p ' (1RA(NKRA(r))=1QA(r)
as before, we have (2.8).

(ii) Let p be the isomorphism of N & B(L(G)) onto (NQi G)Xs G
given by (2.4). Then, by Theorem 2.3 and (2.7), we have

p(N ®@B(L(G))*) = B(N®EG).

Since

p e BBHN=BRL)CAA(IRWH(1R1: RINB()R1s)
=B(y)

by (1.3) and
p e BURN=p (1R =1®f
as before, we have (2.9).

Hereafter we shall use the following notations:
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I

tRoea @y, [a]=Ad1Q V'ea
Lo Bt [B]I=AdIQWB

M=MQB(IXG)), a
N =N ® B(LX(G)), B

il

without any reference.

3. Essential spectrum I'(8). In this section we shall define
an invariant I'(B) of a dual action $ in analogy with I'(«) defined for an
action a by Connes, [5]. The argument will proceed similarly as that
for a.

For a dual action 8 of G on N we define B, and ®,, for ¢ € R(G)4
and w € N, by

(Bs(y), 0)=(B(y), 0 @) =(DP.(y), d)

Let m, and m denote the set of all ¢ € R(G)s with B,(y)=0 and
B, =0, respectively. The spectrum sp,(y) of y with respect to 8 and
the spectrum sp(f) are given by

spa(Y)EdgyF(cb) and sp(ﬁ)E¢QmF(¢),

where I'(¢) denotes the set of all t € G with (A(t), $) =0. For a closed
subset E of G we denote by N?(E) the set of all y in N satisfying
sps(y)CE. Then Nf({e})= N°*.

Now, we shall give some properties of spectrum spg(y) and the
related ones.

LeEmMMA 3.1. Forany ¢ and § in R(G). and for closed subsets E and
F of G the following eight statements hold:

(1) sps(Bs(y)) Cspe(y)\I'(d)°, where T'(¢p)° denotes the interior of
I(¢);

(i) y € NP(E) if and only if EU CT'(¢) implies B,(y) =0 for all
neighbourhood U of e and for all $ € R(G);

(i) NP(E) is a weakly closed vector subspace of N

(iv)  spe(x*) = spe(x)™";

(v) if D is weakly total in N, then sp(B) is the closure of union of all
spe(y) with y € D;

(vi) t € sp(B) if and only if N*(U) # {0} for all compact neighbour-
hoods U of t;

(vii)  if X x = A . on some neighbourhood of sps(y), then B,(y) =

Bs(y); and
(viii) if E or F is compact, N*(E)N*(F)CN*(E - F).

Proof. (i) Put z =B, (y). 1If B,(y)=0, then B,(z) = Bs (B, (y)) =
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0. Indeed, (A(t), dY)=(A(r),d)A(t),¢¥)=(A(2),¥) and PB,B, =
Bss = BsB, by the property of a dual action. Therefore m, C m, and
hence sps(z) C sps(y).

If t isin ['(¢)°, there exists a ¥ in R(G), such that (A (¢), ¢) # 0 and
¢y =0. Since ¢y =0 implies B,(z)=0, it follows that
t & sps(z). Therefore sps(z) CG\I'(¢)°.

(i1) Suppose that y € N?(E). For any neighbourhood % of ¢ and ¢
in R(G),, if EU CI'(¢), then E CI'(¢)° and hence E\I'(¢)°= . Since
sps (Bs(y)) = by (i), we have B,(y)=0.

Conversely, if t € E, there exist a neighbourhood % of e and a ¢ in
R(G). such that EU CI'(¢) and (A(t),¢)#0. From assumption it
follows that Bs(y)=10. Since (A (1), d)#0, we have
t & sps(y). Therefore spg(y) CE, namely, y € N*(E).

(i1) If y. € N?(E) and y, converges weakly to y, then

(Bs(y), 0)=(B(y), 0 @ $)=lim(B(yc), 0 @ $)

for all @ € N,. Therefore EU CI'(¢) implies B4(y)=0, and hence
y € N°(E) by (ii).

(iv) Let m, denote the ideal {A(¢)}" of R(G),. If t € spg(x*), then
m..Cm, Since (m,)*=m,. and (m,)* = m,», we have m, Cm,+ and
hence t7' € sps(x). Therefore sps(x*) Csps(x)~'. Changing the role of
x and x*, we have sps(x)Csps(x*)™". Thus sps(x*) = sps(x)~".

(v) Let E be the closure of union of all sps(y) with y € D. Since
E Csp(B) is clear, it suffices to show the converse inclusion. For this we
suppose tht sp(B)\E is nonempty and ¢ is its element. For any compact
neighbourhood % of e with 1% N E = J there exists a ¢ € R(G), such
that (A(¢), ¢)# 0 and G\I'(¢)°CtU. Since

sps(YN[($)° CE N1 =,

we have sps(B,(y)) = by (i) andso B,(y)=0forally €D. Since D is
weakly totalin N, B, = 0. Since (A(¢), ¢) # 0, we have t & sp(B), which
is a contradiction.

(vi) Suppose that N? (%) # {0} for all compact neighbourhoods U of
t. Then % has a nonempty intersection with some sp,(y) with y €
N. Thus t belongs to the closure of union of sps(y) with y € N and
hence to sp(B) by (v).

Conversely, suppose ¢ € sp(B). For any compact neighbourhood
U of t, there exists a ¢ € R(G), such that (A(t), ) # 0 and G\I'(¢)°C
. Since t € sp(B), Bs(y)#0 for some y € N. Since sps(B,(y)) CU
by (i), it follows that B,(y) € N*(U).

(vii) Since sps(y)CI'(d —4)° sps(Bs-u(y))=< by (). Thus
Bs(¥) = Bu(y) = Bs-u(y)=0.
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(viit) We may assume that F is compact by (iv). Let x € N°(E) and
yEN/(F). If w€ N, and ¢ € R(G),, then

(D, (xp), ) = (B)B(Y). & R )
- lim j (BX). Brors () @ A(r)) dr

= lim j (@A (r), ) d,

where the second equality is due to [17, Lemma 4.3]. Therefore

@, (xy) = lim f AN (2 =By, (X))

Since sp,(z,A(r)) = sp,(z,)r and since sp,(z,) Csps(x) by [17, Proposition
5.4], it follows that sp,(zA(r)) Cspg(x)r. If U is a symmetric compact
neighbourhood of e, then r » B,(,-,(y) vanishes on G\UF for all ¢ with
car A x¢ CU. Therefore (iii) implies sp, (P, (xy)) Csps(x )UF, which im-
plies (viii) by [17, Proposition 5.4].

For any projection p in N we denote by B* the restriction of B
defined by

BP(xP)EB(x)p@)IG XEN,

where x, is the restriction of px to p. Then B” is an isomorphism of N,
into N, @ R(G) satisfying B* QvoB? =+ Qv oB” that is, B is a dual
action of G on N,.

DeriniTioN 3.2, T'(B) is the intersection of all sp 87, where p are
nonzero projections in N*.

Lemma 3.3, If pis a projection in N® and q the central carrier of p in
NE then

(i) if N®*(E)N N,# {0}, then N*(E)N N, # {0};

(ii) sp(B")=sp(B’); and

(i) L(B")=T(B?).

Proof. (i) Let (N®)* be the set of all unitaries in N*. Since
q =sup{upu*: u € (N#)“}, if x € N®*(E)N N, and x # 0, there exist two
unitaries ¥ and v in N? such that upu*xvpv*#0. If we put y =
pu*xvp, then y EN,, y#0 and y € N?(E) by (viii) of Lemma 3.1.

(i) It is clear from (vi) of Lemma 3.1 and (i).
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(i) Since Z(N}) is isomorphic to Z(N?¥) by the correspondence
e, » e, for e € Z(N*), the central carrier of e, in N’ coincides with
e,. Since sp B =spB by (i), [(B?)=T(B7).

When u is a weakly continuous a twisted unitary representation of

G in M, i.e., u(st)=u(s)a,(u(t)). Then the unitary U in M @ L*(G)
defined by (U¢)(r) = u(r)é(r) for ¢ € ¥ @ L*(G) satisfies

G.1) UQRlo(a® 1)U =1 ® 8(u).

ProposITION 3.4.  If a unitary U in M Q L*(G) satisfies (3.1), there
exists a weakly continuous a twisted unitary representation u of G in M
such that (UE)(r) = u(r)é(r) locally almost everywhere. (We can use the
same letter for both U and u.)

Proof. For g in L'(G) we define U(g) in M by
(3.2) (U(g)w)=(U,0 ®g)
for all w in M,. If f€ L'(G), then

(Ua(U(g)), 0 @ f)=(U(g), ax((0 QHU))
= (U, a:(0 @NHU)RQg) (By (3.2))

=(URls(@a@ U, 0 Qf R ¢g)
(3.3) =(®8(U),0oQ®@fRg) (By(3.1)
=(U,0 Qf*g)

= [ eV, 0 ® Ad @1
- [ gUuxAd (W), 0 @ pa

Therefore
U* [ sAd @) di (= a(UR))

belongs to a(M). If we make g(¢)dt converge to the Dirac measure at
s, then it converges weakly to U*AdA(s)(U), which belongs to
a(M). Define a unitary u(s) in M by

”

(3.4) u(s)=a " (U*AdA,(s)(U)).
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Then s » u(s)is weakly continuous. Combining (3.3) and (3.4), we have

Ue)= | guar

It follows from (3.2) that (U¢&)(r)= u(r)é(r) locally almost
everywhere. Besides, since {M,a}~{a(M),t Q8} and aca,ca™'=
(¢ ®8), = AdA,(1), it follows from (3.4) that u(s)a,(u(t))= u(st).

Let o' and o’ be two actions of G on M. We denote by a' ~ o if
there exists a unitary u in M Q L"(G) satisfying (3.1) for «' and
a’=Aduca'.

DeriNiTION 3.5. Let B, and B, be dual actions of G on N. Denote
by B, ~ B. if there exists a unitary v in N @ R(G) such that

vR®1:(BQX)v=1tRy(v) and B,= Adv-°p,.

It should be noted that, when u is a weakly continuous « twisted
unitary representation of G in N, u(t)€ M* for all ¢ if and only if

a(u)=u@lg.

LemMMA 3.6. Let {e, :i,j = 1,2} be matrix units of a type I, factor
F,. If Bi~ By, there exists a dual action B of G on N QF, satisfying
By ®ew)=B(y Dew) for k=12, where Bi=1Qo°B Rt on
NQ®F.

Proof. Since B, ~ B,, there exists a unitary v in N Q R(G) such
that B, = Adv°f, and

(3.5) vR16(BIQ = w7y (v)

If we set w=i,3yRo(1R1sRe,+vQen), then w belongs to
N®FQR(G). Define a mapping B of N F, into NQFQ R(G)
by

B(EYU & ei,) = B—l()’n Xen)+ _Er()’lz Reiwv Qo (v* R ey)
+ i @0 (0 @ en)Biya® )+ Ad(iw R o (v ® €2)) (Bily= R €2)).

Then B = Adw ° 3, and hence B is an isomorphism. Moreover, since
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cRiotRa(ls Rl Ren)=trQRyeo(lsc Qen)
WQRoR@ioin @t Qoo Ry X ir(v R en)
=w@e®@younw@a(vQex)

it follows from (3.5) that

w®16(Bi @ )w
=R R(IR1I:Re; Rl +tvRen®1s)

(Bt R)(IR 1L Ren+ v en)
= Q@R @ ®o(1®1ls Q®ls Pen
@16 Pex(Bi @t @ ir) (v Qex))
= ®o Qi@ Q1R @le Qen
+in @y @ te(v Q ex))
= @@y tn@o(1RQ1s Qe+t v en)
= (w @& y)w.

Since E is a dual action of G on N Q F,, B is also a dual action of G on
NQF,.

When G is abelian, if p,g € N? and p ~q in N, then I'(B")=
I'(B?). However, if G is nonabelian, this is not necessarily assured.

Let B, and B, be dual actions of G on N such that 8, = Adv < f3, for
some v EN QR(G) with v @ 15(B:1Q® t)v = Qy(v). Then we have
a dual action B of G on N Q F, satisfying

I1Qe, E(NQFE)Y and 1Qe ~1Qexn

as in Lemma 3.6. Then I'(8'®%) =TI'(B;) and hence I'(B,)sps(1 R e,) =
sps (1 & e2)I'(B)). '

The condition (ii) in the following theorem is a consequence of
Theorems 5.2 and 6.1, which will be proved in §§5 and 6.

THEOREM 3.7. (i) I'(B) is a closed subgroup of G.
(i) If B is dual to some action (or if B is regular), I'(B) is normal and

I(B)=T(B).

Proof. (i) Since I'(B) is clearly closed, it suffices to prove the group
property. Since I'(8)' =T'(B), by (iv) of Lemma 3.1, we have only to
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show I'(B)spB? CspB” for all projections p in N®.  Since spB” is closed,
we have only to show that, for any compact neighbourhood % of e,
spBf N st # I for any s €I'(B) and ¢ € spB”. Choose a symmetric
neighbourhood 7" of e with t™' V1% C. Since t € spB’, there exists an
element x in N such that sps(x)Ct? and x = pxp#0. Let g be the
carrier projection of x*. Since s €I'(B) and 0<q =p, s € spB? and
hence there exists an element y in N such that spg(y)Cs? and
y =qyq#0. Since yx € N, yx = pyxp# 0 and sp, (yx) C stU by (viii) of
Lemma 3.1, it follows that spB” N stU # .

(i) When B is regular, I'(B) coincides with the set of t € G with
B.=1 on Z(N®iG) by Theorem 6.1. Since Z(N®:G) is globally
invariant under B\ for all s, I'(B) is normal.

_If B is regular, then {N,B}~{N,[B]} and SO r'B)=r(B) =
I'(B). Since I'(B)=T(B) by Theorem 5.2, I'(B) =T'(B).

4. Integrable actions and dual actions. Here and
hereafter, we denote the center of a given von Neumann algebra A by
Z(A).

This section is prepared only for Theorem 8.4. First we recall a
result on a weight on M, G, [17, Section 6]. Let A be a semi-finite
faithful normal weight on L*(G) defined by

(8= [ roawa

for all f in K(G). Here, we need no fair of notational confusion for
A. Let n, be the set of all x in M satisfying

Ha(x*x), 0 @A) = A,

off (A >0)

for all w in M. Then there exists a faithful normal M* valued weight
E, on M, whose domain is n*n,.

In case of compact G it is straightforward that

(a) A is bounded (it may be assumed a state);

(b) E:=E, and |E.[=1 (if (1,4)=1);

(c) M*Cn,; and

(d) n, is o-weakly dense in M.
However, for a noncompact G, the assertions (a), (b) and (c) do not
hold. Following Connes and Takesaki [6] we call a to be integrable, if
E, is semi-finite, namely, a satisfies (d). It is shown in [17] that the
action B dual to some B is always integrable. Since (n,), C n*" for
p € M° if « is integrable, so is a’.
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THEOREM 4.1. (Connes and Takesaki). Assume that G s
separable. If M is properly infinite, the foilowing three conditions are
equivalent:

(i)  « is integrable; ~

(i)  for each non zero projection f in M there is an x in M satisfying
gxq#0 (g =f®1s) and
(4.1) (1@ Va(gxq) = gxq 1lc;

(i) {M,a}~ {M,,[a]?} for some projection p in M'*,

Proof. (i) = (ii) Since « is integrable by assumption (i), there exists
a nonzero z in n, with z = fzf. For any g in K(G) we set

“2) (6) =) e n =] g0Ewr

for € in X Q@ L(G). Then gxqg = (fR1s)x(fR1s)=x. Since z#0,
x#0. Since

56l = [ o) PAG)dS = (Bu(z*2), @)
=IE. Gl =BG *2)l g Bl

x isbounded on % & L(G). If we replace £ by (x' @ 15)¢ with x" € M’
in (4.2), then [x,x'®15;]=0 and so x € M. Since

2
2y

(IR VNa(x)E)(s, 1) = A()" (@ (x)E) (¢ 's, 1)
= A(1)"a, (x)E(t s, 1)

:A(t)’”A(f‘S)‘”af(am-(Z))f g(r)é(r,t)ydr  (By (4.2))

= A()"a(2) [ g(nEC, tyar
— (x @10)E)(s.1),

we have gxq (= x) satisfies the equality in (ii).

(ii) = (iii) It suffices to show that the set I, of x in M with
(1® V')a(x)=x &1, contains an isometry v. Indeed, vv* € M'“! and
AdvRlseoa =[a]oAdv.

The case where M* is o-infinite. Since

IQV'®Is(a@u)(IRQX V)= KA R V),
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we can define an action (a) of G on M ® F, by

(@)(Zx, Qe,)= [a—](xu Ren)
+a] (e Qe Rr1Q V' R es)

+i Qo(1RQ V*FRen)[a](xx& exn)
+ ®U o ® LFz(x22®e22)’

where [a]=w®o°[a]Qu. Then 3x, Re; € MRQF)® if and
only if

xnEMY, x,€I, x,€I* and x,E M-

Therefore the central carrier of 15 ® e in (M ® F,) is majorized by
the central carrier of 1,; ® e,, by (ii)). Since M* is properly infinite and
G is separable by assumption, 1 & e, is properly infinite and 1 & e, is
o-infinite in (1\7I®F2)“’>. Therefore 1y R en <1z &®ey; in (1\71 & F)«
from the above discussion. Thus there exists a partial isometry v &) e,
in (M ® F,)™ whose initial and final projections are 1y ) e, and the one
majorized by 1y @ e, respectively. Then v is an isometry in I,

The general case. There exists a partition {e,:t € I} in Z(M*)
satisfying either

(a) e is o-finite in M*; or

(b) e is divided into uncountable set {f.: k € K} of mutually
equivalent, properly infinite and o-infinite projections in M*. Since M *
is properly infinite, e, with (a) is also properly infinite in M*. Thus we
can apply the above o-finite case of M to {M,,a*“} or {M,, a’}.

(iii) = (i) Since & is dual to &, [a] is integrable. If p € M) is
nonzero, [a]” is also integrable on M,. Therefore @ is integrable on M
by our assumption (iii). Let g be a projection in M of the form 1 Qe
for some minimal e in B(L*G)). Since g € M% a‘ is integrable on
M, Since {M, a} is equivalent to {M,, @’}, « is integrable on M.

Now we consider the dual version. Let w, be the semi-finite faithful
normal weight on R(G) defined by

(A(A™(g+8)) we) =g xg(e), E()=g(t7)
for g in K(G) and ng the set of all y in N satisfying

[(B(y*y) o Qo= Ao
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for all  in N,. There exists a faithful normal N* valued weight E, on
N with domain njn,. When G is discrete,
(a) . is bounded (it may be assumed a state);
(b) Ei=E, and [E,|=1 (if (1, w,) = 1);
(c) NPCng; and
(d) n, is o-weakly dense in N.
However, for a nondiscrete G, (a), (b) and (c) do not hold, and moreover,
(e) (N°({s}) Nny)\{0} = for all s.

DEFINITION 4.2. B is integrable if for any nonzero projection f in
NP? there is an element y in N satisfying qyqg#0 (¢ =f&® 1) and

4.3) (1Q W)B(qyq) = qyq ® ..

THEOREM 4.3. Assume that G is separable and N* is properly
infinite. If B is integrable, then

{N,B}~{N,[B)}
for some projection p in N'®.
Proof. We denote by I, the set of all y in N satisfying
(4.4) 1QW)B()=y R le.
Since  B(y*y)=y*y ®1s qo=sup{s(y*y): y€IL} belongs to
NP¥, where s(y *y) is the carrier of y *y. Since Iu = I for u in N,
qo € Z(N*). Since B is integrable, g,=1. Since
IQWRILBRVIRW)=wR@y(1QW),

we can define a dual action (8) of G on N®F, by

B2y Qey)= [—B]()’n & en)

+H[Bl(e®e)w Ro(1® W& ex)

T ®o(1IRQW*R ezz)m()’zl & ea)
xR B Ry en)

as shown in Lemma 3.6. Then 2y, Qe, € (N® F,)*® if and only if

YWEN® y,EIL, y,EI% and y,€E N~
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Since G is separable and N* is properly infinite, 1z ® e, <1z Qe in
(N @ F>,)® from the above. Therefore there exists an isometry w in I,.
Consequently, (4.4) implies

Adw ®15°8 =[B]eAdw.

Since [Bl(ww*)=ww*®1; by (4.3), p=ww* belongs to N and
{Nv B}N {Nm[B]p}-

5. Regular actions and dual actions. In this section we
shall discuss the relation between a (dual) action dual to some one and a
dominant (dual) action. The former is initially characterized by Land-
stad and the latter concept is initially given by Connes and
Takesaki. For our convenience we shall introduce the following ter-
minology for « and .

Derinimion 5.1. - An action a (resp. a dual action B) of G on M
(resp. N) is regular if there exists a covariant dual system {N, B} (resp.
covariant system {M, a}) satisfying {M, a} ~ {N &} G, B} (resp. {N, B}~
{M ®.G,a}).

Therefore, B is regular if and only if there exists a weakly continuous
unitary representation u of G in N such that B(u(?))= u(t) Q@ A (¢) for
all t; and « is regular if and only if there exists an isomorphism 7 of
L*(G) into M such that o, o7 = woAdA'(¢t) for all 1, [15; 16; 17,
Theorems 8.1 and 8.3; 21]. It is immediate from our definition that &, é,
&, B, [a] and [B] are regular.

The ergodicity of a (resp. B) on Z(M) (resp. Z(N)) is defined by
M*NZ(M)=Cl1 (resp. N®° N Z(N)=C1).

THEOREM 5.2. (i) Z(M®.,G) Ca(M) (resp. Z(NQiG) CB(N)) if
and only if Z(M®:G)Ca(M) (resp. Z(NQIG)CB(N).

(ii) & (resp. B) is ergodic on Z (M) (resp. Z(N)) if and only if & (resp.
B) is ergodic on Z(M) (resp. Z(N)).

(iii) Kera | Z(M) = Ker @ | Z(M), where Ker o | Z(M) is the set of
all t in G with a, = v on Z(M).

(iv) I(B) =T(B).

Proof. Our proof owes to Takesaki’s duality:
(5.1) {M,a}~{M,[a]} and {N,B}~{N,[B]}

(i) The case of . Let N=M@.G and B =a. According to (5.1)
we have only to show the equivalence of Z(N)CN® and Z(N)C
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N Since Z(N)=Z(N)®1s, we have only to show that y € N* if
and only if y ® 15 € N¥ for all y € Z(N). However, this is clear from
the following equality

AdIQWorR®oBRUY ®ls)=y®ls Qla

The case of B. Let M =N®:G and e =B. According to (5.1) we
have only to show the equivalence of Z(M)CM® and Z(M)C
M. Since Z(M)=Z(M)® 15, we have only to show that x € M* if
and only if x @15 € M for all x € Z(M). This is clear from

AdIR@QV'orQRQRoea@i(xR1s)=x R 1 R 1,

(ii) The case of . Since a(x)=x Q1 if and only if [a](x R 15) =
x Q®1s ®1g, it follows that a is ergodic on Z(M) if and only if [«] is
ergodic on Z(M)® 1s. Thus we have (ii) for @ by (5.1).
The case of B. Since B(y)=y Q1 if and only if [B](y R 15) =
y ®1s &1, both of the ergodicity of B on Z(N) and [B] on Z(N)® 1,
are equivalent. Thus we have (ii) for B8 by (5.1).
(ii)) It is immediate from (5.1) that

Kera | Z(M)=Ker[a]l Z(M)=Kerd | Z(M).

(iv) If yEN, z € B(L(G)), w,E Ny, @, € B(L(G)), and ¢ €
R(G)x, then

<B—¢()’ Qz), 01 QW) =(Be(y) Rz, 0 Q w2)

and hence B, = 0 is equivalent to B, =0. Since Z(N?)=Z(N*)R® 1, it
follows that sp B’ = spB°®'e for p € Z(N?). Consequently, I'(B) =
I'(B).

When M is properly infinite and M contains a partition {e,: ¢« € I} of
the identity such that e, ~e, in M for all ¢,k and dim L*(G)= Card I,
Takesaki’s duality tells us that (M®Q,G)®:G is isomorphic to
M. Here we raise a question, when is {M Q. G) Qi G, a} equivalent to
{M, a}?, namely, when are they isomorphic as a covariant system?
We shall begin with the following lemma.

LEmMA 5.3. If M* (resp. N*) contains a partition {e,: v € I} of the
identity satisfying

(i) e ~1in M* (resp. N*) for all « € I; and

(i) dimH =Card],
then {M, a} (resp. {N, B}) is spatially isomorphic to
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52) MRBH),.Q@cea@i} (resp. {INRKB(H),t Qo°B R:}).

Proof. From our assumptions (i) and (ii) we can obtain a partition
{f.: « € I;} of the identity such that Card I, =dimH and f, ~ 1 in M*®
(resp. N?) for all « € I, Let v, be an isometry in M* (resp. N?) with
vv*=1f. Let p be the spatial isomorphism of M (resp. N) onto
M Q B(H) (resp. N B(H)) such that

p(x)=> v*xv, Qe.

for x in M (resp. N), where {e,:t, k € I} is the set of matrix units of
B(H). Then

p(at(x)) = 2 UTCY,(X)UK ®em
=2 a(virv,) Qen = (@ @) (p(x))

(resp- (0 ® B = (@ R op BUB()
-.®0(Z B ®en) = (R B Rp(X),

where the second equality follows from the following reason. If sps(x)
is compact, then, by [17, Lemma 4.3},

(V1@ 16)B() (@ ®16) = lim [ Brerav 30) @A () ).

An action « (resp. a dual action B) is said to be of infinite multiplicity
if it satisfies the conditions (i) and (ii) for a Hilbert space H = L*(G) and
an infinite G in Lemma 5.3.

DEFINITION 5.4. An action « (resp. a dual action 8) of G on M
(resp. N) is said to be dominant if

(i) « (resp. B) is of infinite multiplicity, and

(i) {M,a}~{M, [a]} (resp. {N, B} ~ {N, [B]}).

For a dominant « (resp. B) it holds that

{M,a}~{M,a} (resp.{N,B}~{N,B})
by Lemma 5.3.

REMARK 5.5. If G isinfinite and « (resp. 8) is regular, @ (resp. 8)
is dominant.



ESSENTIAL SPECTRUM I'(8) OF A DUAL ACTION 461
THEOREM 5.6. If a (resp. B) is regular, then
{M,a}~{M,[a]} (resp. {N,B}~{N,[B]}).

Proof. The case of {M, a}. 1f a isregular, there exists a covariant
dual system {N, B} satisfying

(53) {M’a}N{N ®2G> é}

Let % denote the underlying Hilbert space of N. Since

B(B(Y) = B(y) = AdAi()(B(¥))
Bl ®f) =1 ®f = AdA (1) (1, ®f)
for AJ(t)=1, @ A'(t), we have B, = AdAi(t) on N®3G. Let w be the
unitary on ¥ @ L*(G)Q L*(G) defined by
1Ly @ W*H)(1y @l ®J).
Since AdWA'(r)@15)=A'(r) @ A(r), it follows that
wrAdA(r)Q1s(w) =14 @1c @A(r).
Therefore, by (5.4)
(Adw)'oB, ®ioAdw = B, Q AdA'(t)
on (N®jG)Q B(L(G)), which completes the proof for a.

(5.4)

The case of {N, B}. 1If B is regular, there exists a weakly continuous
unitary representation u of G in N satisfying B(u(t)) =
u(t)@Ar(t). We denote by the same letter u the unitary in N Q L*(G)
defined _ by Wé)(r)=u(r)é(r) for EEH QLH(G). Then
(IR W)Bu*)=u*®1ls. Indeed, if ¢ € H Q L(G)R L(G), then

(4 @1c)(A1Q W)E)(s, 1) = u(s)é(s, 1s)
=u(s)(IQU)E) (s, s)
=Bu(s) X1 (1R U)) (1, s)
= (B u)(AQ UL s)
=(IQU)BQ)AQU) (s 1)
= (B(u)é)(s, 1),

where U is a unitary on L*(G) ® L*(G) defined by (Un)(s, t) =n(t, s) for
all n in LA(G)R L(G). Therefore
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AduR1°Ad1QWoB =B0Adu
and hence {N, [B]} ~ {N, B}.

It should be noted that the proof of Theorem 5.6 for B does not use
the homomorphism property of u.

COROLLARY 5.7. a (resp. B) is dominant if and only if it is regular
and of infinite multiplicity.

6. Ergodic actions and dual actions. This section is
devoted to further investigation of [6, §3 of Chapter III}. The following
theorem generalizes [6, Theorem III, 3.2], whose proof will go along the
same line of argument. By Lemma 3.3

6.1) r'(B)= N{spB":p € Z(N*), p#0}.

For a given action a we denote by Kera [ Z(M) the set of all ¢ in G
satisfying «, = ¢ on Z(M).

THEOREM 6.1. (i) T(B)=KerB | Z(N®LG) if B is regular.
(i) T(@)=Kera|Z(M).

Proof. (i) If B is regular, there exists an isomorphism p of N*Q,G

onto N satisfying Bep =p @cod, where a is an action of G on
NP, Then Takesaki’s duality gives us that

{N®3G, B}~ {N® ® B(L(G)), [a]}-
Therefore
(6.2) Ker 1 Z(N®LG)=Ker[a]l Z(N®)®1s = Kera | Z(N®).
Since {N*, a} is covariant and p ca(N®)= N*® by (2.7), we have
aS=(pea)oa,°(poa)’ € Aut N*.
Here we set u(t)=p(1 Q@ A(t)). Since B(u(t))=u(t)@A(t), N°({t}) =
N*u(t) by [17, Proposition 5.2]. If p is a nonzero projection in Z(N*),

then a$(p)= u(t)pu(t)* and

(6.3) pNe({t}hp = pNPu(t)p = pNPa(p)u(t).
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Consequently, s € Ker 8 | Z(N®3G) if and only if a, = ¢ on Z(N®) by

(6.2), if and only if %=1 on Z(NP?), if and only if pa$(p)# 0 for all

nonzero projection p in Z(N*), if and only if s € I'(8) by (6.1) and (6.3).
(il) Combining (i) and Theorem 5.2, we have

I'(@)=Kera | Z(M)=Kera|Z(M).

Here we denote the von Neumann algebra generated by B(N) and
1R (L (G)NA'(H)) by NQRi(H\G), whose characterization will be
discussed in §7.

COROLLARY 6.2. Assume B is regular. For a closed subgroup H of
G, I'(B)=H if and only if H is the largest subgroup satisfying
Z(NQREG)CNRG(H\G). In particular, T(B)=G if and only if
Z(N®;G)CB(N).

Proof. T'(B)= H if and only if H is the largest subgroup satisfying
the condition that B, =¢ on Z(NQaiG) for all t € H by Theorem
6.1. The condition is equivalent to

Z(N®;G)C{x EN®;G: B.(x)=x, 1 € H} = NQ}(H\G)
by Theorem 7.2 in §7.

Here, if we combine Theorem 5.2 and Corollary 6.2, we have that
I'(B) = G if and only if Z(N®4G)CB(N).

From our previous result [14, Proposition 3.1] we have the following
proposition.

ProprosITION 6.3. If a (resp. B) is regular, the following two condi-
tions are equivalent:

i) ZMR.G)Ca(M) (resp. T'(B) = G); and

(i) Z(M*)CZ(M) (resp. Z(N?)CZ(N)).

If a (resp. B) in the above is ergodic on Z(M) (resp. Z(N)), then M *
(resp. N*®) is a factor.

Proof. The case of {M,a}. If a is regular, there exists a dual
action 8 of G on M* such that

(6.4) {M, e}~ {N®} G, B},

where N=M*
(i) = (ii) Since Z(M Q. G)Ca(M) by (i) and a (M) = (M. G)%, it
follows from (6.4) that
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Z(N)®1s = Z(N ® B(L(G))) C(N ® B(L(G)))*.
If z&€ Z(N), then [B](z®1s)=2z ®1s ®1s and hence
BRURI)=(t®0o°Ad 1@ W*[BN(z ®le)=2 ®le Dl

Therefore B(z)=2z ®1; for z € Z(N). Since B(z) commutes with
B(N) and 1 L*(G), B(z) belongs to Z(N®4G), which shows that
B(Z(N))CZ(NQ;iG). Consequently, (6.4) implies that Z(M*®)C
Z (M), because B(N)=(NR®:G)~.

(ii) = (i) We apply Takesaki’s duality to (6.4) and we have

(6.5) {M®. G, a}~{N & B(L(G)),[B]}
If we can show that
(6.6) Z(N)Q1s; CN®:G,

then Z(M®,G)C(M®.G)* = a(M) by (6.5). Therefore we want to
show (6.6).
Now, since $ is a dual action of G on N, we have

(6.7) {N,B}~{B(N),. @}

and (¢ @ v)B(y)=Ad1QW*(B(y)®1s). According to our assump-
tion Z(M*)CZ (M), we have

Z{(t ®7)B(N) CZ(B(N)Qie, G)C(BIN) Qi G)

by (6.4) and (6.7). Therefore (¢t @vy)B(Z(N)) commutes with
1®1: QL*(G) and hence B(Z(N)®1s; commutes with
Ad1IQW(AR1; QL(G)). Since Z(B(N))Q1s; commutes with
B(N) ®1s we have

ZBIN)RD1s C{BINY @1s Ad1Q W(1R1s ®L(G)Y,

the right hand side of which is B(N)®!s,G by [16, Theorem 5].
Therefore, (6.6) is proved by (6.7).

The case of {N, B}. If B is regular, there exists an action @ of G on
N# such that

(6.8) {N,B}~{MK.G,a},
where M = N°”,
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(i) = (ii) Since Ker 81 Z(N®:iG)=T(B)= G by Theorem 6.1 and
(1), B = on Z(N®:G) and hence [a], =t on Z(M & B(L*(G))) by
(6.8). Therefore o, =¢ on Z(M) for all ¢t and so a(z)=2z 1, for
z€ Z(M). Since a(z)EME.G and it commutes with a(M) and
1®R(G), a(z) belongs to ZMKR.G), namely, Z(a(M))C
Z(MQ®.G). Consequently, (6.8) implies that Z(N*®) CZ(N), because
a(M)=(MQR.G)~

(ii) = (i) Since B is regular, there is a weakly continuous unitary
representation u of G in N such that B(u(t))=u(t)@A(t). Since
Z(N?)C Z(N) by (ii), if p is a nonzero projection in Z(N*), B? is a dual
action of G on N, and t~ u(t), is a weakly continuous unitary
representation of G in N, satisfying B?(u(t),) =
u(t), ®A(t). Therefore spp? = G for all p in Z(N*). Consequently,
I'p)=_a.

Finally, if « (resp. B) is ergodic on Z(M) (resp. Z(N)), then M*®
(resp. N*?) is a factor from the above.

THEOREM 6.4. The following two conditions are equivalent:

i) MQ®.G (resp. NQiG) is a factor; and

() Z(M®.G)Ca(M) (resp. T(B) = G) and « (resp. B) is ergodic
on Z(M) (resp. Z(N)).

Proof. The case of {M,a}. ()=> (i) If a(z)=zQ1s; for
z € Z(M), a(z) commutes with a(M) and 1@ R(G), and hence it
belongs to Z(M&.G). Since MR.G is a factor, (ii) follows im-
mediately.

(i) = (i) We denote the covariant system {(MQ.G)®.G, &} by
{M,&}. Since ¢(M®.G)=M?, it suffices to show that M¢ is a
factor. Since « is regular, it suffices to show that

(a) Z(M®.:;G)Ca&(M); and

(b) @ is ergodic on Z(M)
by Proposition 6.3. (a) and (b) are immediate from (ii) by Theorem 5.2.

The case of {N, B}. (i) = (ii) Since I'(8) = G is clear, it suffices to
show the ergodicity of B8 on Z(N). If B(z)=z ®1s for z € Z(N),
then B(z) commutes with B(N) and 1 Q L"(G), and hence B(z) belongs
to Z(N®;3G). Since NQ; G is a factor by (i), B is ergodic on Z(N).
_()> 0 Let  {NB}={(N®}G)®4G, Bl._Since SNDEG) =
NP, it suffices to show that N” is a factor. Since B is regular, it suffices
to note that

() T(B)=G; and

(d) B is ergodic on Z(N)
by Proposition 6.3. (d) is clear from (ii) by Theorem 5.2.
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COROLLARY 6.5. Ifa (resp. B) isregular and if Z(M®.G) Ca (M)
(resp. T'(B) = G), then a” (resp. B*) is regular for all p € Z(M*) (resp.
Z(N*?)).

Proof. The case of a. Since a is regular, {M, a} is identified with
{N®; G, B} for some {N,B}. Since B.(B(y))=pB(y) and B(1Qf)=
1 f-, it follows that B, = AdAi(t) on NQR3G. Since Z(M*)CZ (M)
by Proposition 6.3, p belongs to B(¥)QL*(G), where X is the
underlying Hilbert space of N. An action ¢+ AdAi(t) on
B(#)QL*(G) coincides with B, on Z(M*<). Since B.(p)=p,
AdAi(t)(p)=p. Since L"(G)NR(G)=Clg, p is of the form e @ 1,
for some projection e in B(J%). Let 7 be an isomorphism of L*(G) into
M, defined by #w(f)=e®f (€M,). Then = satisfies a,0om =
moAdA'(t) on L°(G). Therefore «” is regular on M,.

The case of B. Since B is regular, there exists a weakly continuous
unitary representation u of G in N such that B(u(t))=
u(t)@Ar(t). Since Z(NP)CZ(N) by Proposition 6.3, tH u(t), is
a weakly continuous unitary representation of G in N, and hence B” isa
regular dual action of G on N,.

LEMMA 6.6. Let p be a projection in M. If
(i) «a is regular and Z(M)CM*; and
(ii) p is properly infinite,

then p Q1 ~a(p) in M Q L*(G).

Proof. Since a is regular by (i), {M, a} is identified with {N Q% G, é}
for some  covariant dual system {N,B}. Then «a(x)=
Ad1y Q@ V'(x 1) for x in M. Since

(6.8) AdLQV'ARN=1Qxf (1=1lv=1xQls)

M @ L*(G) is globally invariant under Ad 1y & V' by Lemma 8.2. Let
p be the restriction of Ad 1y Q@ V' to M @ L*(G). Then the condition
(i) implies that p = ¢ on Z(M)Q L*(G) by (6.8). Therefore p Q15 ~
p(p) (= a(p)) by Suzuki’s Theorem [N. Suzuki, Téhoku Math. J. 7
(1955), 186-191, Theorem 1]*.

THEOREM 6.7. If
(1) G is separable;
(i) B is integrable and T(B)= G; and
(iii)) _NP* is properly infinite, R
then {N,iQo°B X}~ {N,[B]}, where N=N Q B(L*(G)).

* The author thanks the referee for indicating him this paper.
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Proof. According to (i), (ii) and (iii) we have
(6.9) {N,B}~{N,.[B)"}

for some p in N®! by Theorem 4.3. Since N is properly infinite by (iii),
so is p. Let g be the central carrier of p in N". Since

(6.10) Z(N®i G)C[BI(N)

by (ii) and Theorem 5.2, it follows from Corollary 6.5 that [B]¢ is
regular. Therefore we can identify {]\_Ii, [B]7} with (M@, G, @} for some
covariant system {M,a}. Since Z(N"¥)CZ(N) by Proposition 6.3,
(6.10) implies that Z(N,®%:G) is included in [B]°(N) and hence
Z(M)CM"“. Therefore, if z€2Z(M), then [a](z®ls)=
zQ®1:;®1; and hence a(z)=z®I1s Namely, Z(M)CM* or
Z(a(M)=M* R 1.

Now we apply Lemma 6.6 to the covariant system {a« (M), ¢ @ 6} and
the projection p € a(M). Then we have a partial isometry v in
a(M)RL*(G) satisfying w*=p&®1s; and v*v=1Q8(p)=
a@ulp). As 1yQ®V is a function P 1, @A(t) in
(Iy ® R(G)) QLY(G) and

UVM(UVM)*=UU*=p®IG (VM51M®V)
(UVM)*UVM= V;C[a ®L(p)VM=p ®1G;

it follows that u = (vVy),e. is a unitary in N, ® L*(G) and

[BY (u(1)) = u(t) QA (1)

Therefore the note given after Theorem 5.6 gives our desired results.

7. Subgroups and subalgebras.. Throughout this section
H, dy and A, denote a closed subgroup of G, the right invariant Haar
measure and the modular function, respectively. We define a sub-
algebra of MQ. G (resp. NQj3G) associated with H by

(7.1) M®.H ={a(M),1QA(H)}"
(7.2) (resp. NQ:(H\G) ={B(N), 1 Q (L(G) N A'(H)'}).
Utilizing @ (resp. B), we shall give a correspondence between a subgroup

of G and a subalgebra of MQ. G (resp. N4 G) of the form (7.1) (resp.
(7.2)), which generalizes a result due to Takesaki, [23, Theorems 7.2 and
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7.3].  For the notational convenience we set
F(G/H)=L"(G)NA(H) and Z*(H\G)=L(G)NAX'(H)

in what follows.

THEOREM 7.1. let N=M®,G and B = a.
() MR.H={yeN:B(y)ENQAH)"}
=NN1QQZL(G/H)).
(i) H coincides with the smallest closed subgroup H' of G satisfying
BM®.H)CN QA (H')".

Proof. (i) Since
Bla(x))=a(x)®1s and BA(1))= () QA (),

it follows that B(M Q. H)CN QA (H)".
Next we shall show that B(y)EN QA(H)" implies y€E
(1R ZL*(G/H)) for y € N. For this we have only to show

(13) LY(G/H)R1s C{AdW(lc QA(H))U1s @ B(IAG))Y'.

Indeed, y®1s; commutes with Ad1@ W(N'QA(H)) and
I~n®B(L(G)) by assumption and hence y commutes with
1 £*(G/H) by (7.3). Now, if feL(G/H)NC(G), &f€
F*(G/H)Q L*(G), where (8°f)(s,t)=f(ts). Forany g, h € K(G) with
[Aglli=1 we set

Foo=( [ 699000 @g-)dr ) (1o @ ).

Since fEA(H) and 6°f = AdW(15 ®f), F,, belongs to the right hand
side of (7.3). If ¢ € [(G)® L*(G), then

(Fud)s.0)= [ )8 )dr ) 8y h ()6 s 1),

Since r » f(r7's) is continuous and bounded, if g(r~')dr converges to the
Dirac measure at the unit e, then F,, converges weakly to
f&(A'h). Therefore f @ (A'h) belongs to the right hand side of
(7.3). Making A™'h converge weakly to 15, we have the inclusion (7.3)
for Z°(G/H)N C(G) instead of £*(G/H). Since £*(G/H)N C(G) is
weakly dense in £*(G/H), we have (7.3).

Finally we shall show M®.H = NN (1R £L*(G/H)). Our proof
will go along the same line as Takesaki’s proof. Suppose that y E NN
(1® ZL(G/H)Y. We may assume that M is standard. Let J be the
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modular conjugation operator of M®,G. Since J=v(JyRJs)=
(Ju @ Js)v for a certain weakly continuous unitary representation v of G
in M, we have

JAQZL(G/H)YT =(1QZL(H\G)Y

and hence JyJEN'N(1Q L*(H\G)). Here we apply the modified
Blattner-Mackey’s theorem for induced covariance representations [22,
Theorem 4.3]. There exists a natural isomorphism p of (M &, ;xH)
onto N'N(1Q £*(H\G)) such that

p(x'Qly)=x'Qls and pu()@Au1))=u()QA'(t)

for x’€ M’ and ¢t € H, where u is a strongly continuous unitary represen-
tation of G on # implementing « and where Ay is the left regular
representation of H on L*H). Therefore JyJ belongs to
p(M&Q.uH)'), which is generated by x'@1s; and u(t)@A'(¢) for
x'€M' and t € H. Since v(t)u(t)* € M’ and since

T(x' Q1) = a(Jyx'Ty)

and

J@OA () =1 (1),

it follows that y belongs to M), H.
(ii) It is clear from the first equality in (i).

In the above proof we have established a bijective correspondence
of a closed subgroup H and a subalgebra £*(G/H) by the relation

LY(G/HY = {x € BIXG)): AdW*(x ®15) € B(L(G)) QA (H)'}.

Indeed, since £*(G/H)' is generated by L*(G) and A (H), it is included in
the right hand side. The converse inclusion is direct from (7.3).
The dual version of Theorem 7.1 is the following.

THEOREM 7.2. Let M =N®:4G and a = .

i) N®iH\G)={xEM:a(x)=x,1tE H}
=MNAQA'(H)).

(i) H={t€G: a(x)=x,x E NQI(H\G)}.

Proof. (i) Since the action a dual to B is defined by a(z)=
Ad1R V'(z Q1) for z € NR4G, we have
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a(2)E(s, 1) = (a(z)§)(s,1)
=(1QV)zR®1:)AQ V)*E)(s 1)
=AiNz(1RQ V)*E)(s, 1)
= Au0)zA (1) E (s, 1),

(7.4)

where Ai(t)=1QA'(t). Therefore the second equality in (i) is
proved. Moreover, o, = Ad A{(t) on NQiG.

Now we shall show the first equality. Put «{=a, for all
t€H. «a" is then an action of H on NQgiG. Since NQ§(H\G) is
clearly included in (N&®j3 G )*", it remains to show the inclusion relation

(7.5) No=(N®s(H\G))Y C((N®;G)™).
According to Theorem 1.1 we have

(N C(B(N))”' = (N Q3 G)Y C((NQ:iG)"Y

where 87 is defined by (7.6) below. Moreover, 1 @ A'(H) commutes
with (N®#EG)*". Therefore Lemma 7.3 below implies (7.5).

(i) Let H, be the set of all ¢ such that «(x)=x for all
x € NQ4(H\G). Then H, is a closed subgroup of G. Since H CH,
and NQ§(H\G)CN®4(H\G) by (i), we have H = H,.

LEmma 7.3. If B" is a mapping defined on (NQi(H\G))' by

(7.6) B '(y)=Ad1QW(y Qls),

then (1) B" is a dual action of G on (NKF(H\G)); and
(i) (N®(H\G)) = {(N QH\G)))*", LQA'(H)}".

Proof. (i) Since [W, 15 @ A'(¢)] =0 and

Ad 1R W*(B(N)®15)CB(N)RR(G)
Ad1QW*(1QZH\G)® 1) = 1® L(H\G)® 1,

we have BY(N)CN,QR(G), where N,=(N&i(H\G)). Since
W &1, satisfies (2.5), B is a dual action of G on N,.

(i) As N, C(IRZF(H\G)), PB"(Ny is included in
No@A(H)'. Let p be an isomorphism of A(H)" onto Ay (H)" with
p(A(1))=Au(t) and let By =1 Q@ poBF, where Ay is the right regular
representation of H. Then By is a dual action of H on N,. Since
IQA'(H)CN, and Bu(I1 Q@A (r))=1QA'(r)@ Au(r), N, is generated
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by (Ny)?* and 1 ® A'(H) by a characterization of a crossed product due to
Landstad. Since (N,)*" = (N,)*, we complete the proof.

COROLLARY 7.4. There exists a semi-finite faithful normal operator
valued weight E on N®§G onto NQ§(H\G).

ProposITION 7.5. Let a be an action of G on M and H a closed
subgroup of G.  Then H is normal if and only if M&Q, H is invariant under
AdA(t) for all t.

Proof. Since
Adr(t)(a(x))= a(a (x)), AdA(t)(Ai(s)) = Ay(tst ™),

if H is normal, M Q. H is invariant under AdA,(¢). On the other hand,
if H is nonnormal, M &), H is not invariant.

8. Galois correspondence. In this section we shall give a
Galois correspondence between closed subgroups of G and globally B
invariant von Neumann subalgebras of N containing N* in Theorem 8.4,
which generalizes [6, Theorem II1.4.3]. If L, is an « invariant sub-
algebra, then a(L,)CL,QL*(G), and vice versa. Therefore a von
Neumann subalgebra L of N is said to be B invariant if B(L)C
L @QR(G). Insuchcases a|L,and B[ L are an action of G on L, and
a dual action of G on L, respectively.

THEOREM 8.1. Let a be an action of G on M and L a von Neumann
subalgebra with (M) CL CMQ,G. If M is a factor, then the following
two conditions are equivalent :

(i) L is a invariant; and

(ii) there exists a closed subgroup H of G such that L = M, H (or
L={yeM®.G:a(y)e(MQ.G)QA(H)"}).

Before going into the proof we shall prepare the following lemma,
which is implicitly proved in the proof of [17, Theorem 3.1].

LemMmA 82. M QL (G)={a(M),1RQL(G)}".
Proof. Since the right hand side is included in the left hand side, we

want to show the converse inclusion. For this we set y;, for f, g € K(G)
and y € M by

8.1) Yie Ef (AR fa(a(y))g(t)dr
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Since g € K(G) and ||(1 Q. f)a(a'(Y))|=|fll-lly |, the right hand side
of (8.1) is Bochner integrable and hence y;, exists in
{a(M),1Q L (G)}. If £n € K(G, %), then

O ()= [ [ (s a 0Ig ) [ m(s))drds

= [ [ 1698 ) @ ()EC5) Im ()

and (s,1)— g(ts)(a, (y)é(s)| n(s)) belongs to K(G x G). If f(¢")dt
tends to the Dirac measure at the unit e of G, then

(el | m) = ((y ®g)é [ ).

Since ||y =l gl|aflllyll and K(G, ) is dense in X &QLAG), y,
converges weakly toy @ g. Since y and g are arbitrary in M and K(G)
respectively, M & L*(G) is included in {a(M),1 & L™ (G)}".

Proof of Theorem 8.1. (i) > (ii) We set N=M&,G. Let H be
the smallest closed subgroup of G satisfying a(L)CN @ A(H)". Since
a(y)ENQXA(H)" is equivalent to sp;(y)CH, H coincides with the
closed subgroup spanned by sp;(y) for all y in L. Therefore, L is
included in the set of ally € N with a(y) € N @ A(H)", orin M&), H by
Theorem 7.1. Let p be the isomorphism of MQ.H onto M.~ H
satisfying p(a(x))=a"(x) and p(A(r)) = Au(r). Then

(8.2) a"(M)Cp(L)CM®,.~H.

If we denote (a®)" by B, then I'(B)=Kera”[Z(M) by Theorem
6.1. Since M is a factor by assumption, I'(8) = H.

Now, we shall show that p(L) &3 H is a factor. Since I'(8) = H, we
have only to prove B [ Z(p(L)) is ergodic by Theorem 6.4. For this we
suppose that B(z)=z®1y for z in Z(p(L)), that is, z €
Z(p(L))". (8.2) implies that

a®"(M)Cp(LY C(MR,+H)? = a™(M).
Since M is a factor, so is p(L)?. Since Z(p(L))? is included in
Z(p(L)?), z is a scalar operator.

On the other hand, by (8.2) we have

(8.3) a" (M) & HCp(L) Qs HA(M®.»H) Q3 H.

If we apply Takesaki’s duality to (8.3), we have an isomorphism p’ of
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MR.~H)XiH onto M @ B(L*(H)) as in the proof of Theorem 2.1
such that

M & L"(H)Cp'(p(L) Qs H)CM Q B(L(H)),

where the first inclusion is obtained by Lemma 8.2. Since p(L) Qs H is
a factor as shown in the above, we have p'(p(L)XiH)= M @ B(L(H))
by [6, Lemma II1.4.2]. Therefore

p(L)Q:H=(M.»H)Q;:H,

which implies p(L)= M ®,#H by (2.7) and hence L = M K. H.
(ii)) = (i) We have only to show that a(L)CL @ R(G). Since

ala(x))=a(x)®1s and a(A,(r))=A(r) QA(r)
and L = M. H, we have a(L)CL @ A(H)'CL @ R(G).
The dual version of Theorem 8.1 is the following.

THEOREM 8.3. Let B be a dual action of G on N and L a von
Neumann subalgebra with B(N)CL CN®:G. If NQiG is a factor,
then the following two conditions are equivalent:

(i) L is B¢ invariant; and

(i) there exists a closed subgroup H of G such that L = NQ4(H\G)
(or L={x ENXLG: B.(x)=x, t € H}).

Proof. We may assume without any loss of generality that N is
standard.

(i) = (ii) Let B’ be the dual action of G on B(N) defined by
(1.10). Theorem 1.1 gives an action a of G on (NQ3:G)' satisfying

{BIN), B}~ {(N®:G) ®. G, dl,

namely, there exists an isomorphism p of B(N) onto (N QR:G) Q.G
satisfying aep =p QtopB’.

Since L is B¢ invariant by (i), Ad 1 @ W*(L @ 1) is included in
L®R(G). Since [W,1®A'(r)]=0, Ad 1R W(L'® 15) is included in
L'@ R(G). Therefore L' is B’ invariant. Moreover, NXiG is a
factor by assumption and

(N®:G)Y CL'CB(N)".

Therefore we can apply Theorem 8.1 to {(N®jG)', a} and obtain a
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closed subgroup H of G satisfying
p(L)=(N®}G) ®. H.

Let’s recall the proof of [17, Theorem 8.1]. Then p is of the form
Ad1Q®Q V'eB' and it satisfies

p(y)=a(y) and pAi(r)=1Q1s @A(r)

for y E(N®:G) and r € G. Therefore L' is generated by (NQQsG)’
and 1 ®A'(H) and hence

L=(NR:G)N(1RQA(H))=N;(H\G).

(iiy = (i) The commutant of L =NQ4§(H\G) is generated by
(N®:G) and 1Q@A'(H). Since B'(y)=y ®1s for y €(N®;5G) by
Theorem 1.1 and

Ad1IQWIRA(NR1Ls)=1RQA'(r)QA(r),

it follows that L' is B’ invariant. Therefore Ad1Q W(L' Q1s) is
included in L'QR(G). Since [W,1®A'(r)]=0, L is B¢ invariant
similarly as before.

THEOREM 8.4. Assume that G is separable. If

(i) N s a factor, and

(i) B is integrable and T'(B)= G,
then there exists a bijective correspondence between the closed subgroups H
of G and the 3 invariant von Neumann subalgebras L of N containing N*
in such a way that

Ly, ={y eN: B(y)ENQA(H)}
H = N{H"B(L)CNQA(H)Y},

where H' runs over closed subgroups of G.

Proof. Let K be an infinite dimensional Hilbert space with dim K =
dimL*(G). Weput N=N®B(K)andB =t @o B ®.. Then {N, B}
is a covariant dual system. Since K is infinite dimensional, N? =
N? ® B(K) and dim K = dim L*(G), it follows that B is of infinite
multiplicity. Since B is integrable by assumption, so is 8. If x € N,
y € B(K), z € B(L’(G)) and f € L*(G), then
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T [Blx Ry ®2)=[BIR:(x Rz Ry)
77(1N®1K®1G ®f):1N®1G ®f®1x

where 71 =1, QL R ooy @ o Q1. Therefore
(N ®B(LY(G))®15G) = (N ® B(L(G)) R G) ® B(K).

Since I'([B])= r)=G by (ii), it follows from Corollary 6.2 that
I'(B)=T(B])=G. Since N* is properly infinite, Theorem 6.7 implies
that B8 is dominant. Therefore {N, B} is equivalent to (M., G, at,
where M = N®2G and @ =B. Since N is a factor by assumption (i), N
is also a factor and hence B is ergodic on Z(N). SinceI'(8)=G, M isa
factor by Theorem 6.4.

Now, suppose that L is 8 invariant. Put L=LQ®B(K). ThenL
is B invariant. Since N* CL CN, a(M)CL CM®.G. Therefore we
can apply Theorem 8.1 to {M, @} and obtain

L,,=L and H; =H (ByTheorem?7.1).
Now, since B(L)CN ® A (H)" is equivalent to B(L)CN @ A (H)’,
we have H, = H;. Therefore, if x € Ly, then x ®1x € Ly, = L and
hence x € L. Since L CL,, is clear, we have L =L, .

Moreover, since L, = L, ®B(K)=(Ly), we have H=H;, =
HLH®B(K) = HLH-

9. Appendix. 1. Asshown by Araki and Haagerup [1,9], each
action @ of G on a standard M is implemented by a unitary u in
B(#)Q L*(G) satisfying

Ul @o)(u®le)=1Q8(u)

in such a way a(x)=Adu(x ®1s) by Proposition 3.4. Then the
commutant of M@.G is given by Digerness, [7, 10, 16] as follows:

MR.G) ={M'Qlsu(lQR(G))u*}"
The dual version of this result is the following:

THEOREM 9.1. If a dual action B of G on a standard N is im-
plemented by a unitary w in B(#)Q R(G) satisfying

©.1) WL (L)W *Qls)=1t@y(w¥)
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in such a way B(y)=Adw*(y 1), then
(N®iG) ={N'®1s w* (1 Q L(G)w}".

Proof. We set
7(f)=Adw*(1Qf)

for f€ L*(G). First we shall show w(f)E(NQ:iG). For this it
suffices to show that [7(f),1® g]=0 for all g € L*(G). It is clear that
7(f)€ B(N). Since t Qo(w Q1) belongs to B(X)R1s @ R(G)
and since

AQW)W*Rls)o(w ®ls)=(W*Q1s)1Q W)
by (9.1), we have

AdTQWeAdw* R1:(1QfQ1c)=Adw* R 1:(1Qf&16)

and hence B'(7w(f)) = 7 (f) @ 15, where B’ is a dual action of G on B(N)'
defined by (1.10). Then #(f)€(1QL*(G)) by the argument given
after Theorem 7.1.

Now, as M = N4 G is globally invariant under Ad 1 @ A'(t), we
can define an action of G on M' by a, = Ad 1 QA'(¢t)I M'. Since 7 is
an isomorphism of L*(G) into M’ satisfying a,ocm = w°AdA'(t), M’ is
generated by 7(L*(G)) and (M')* by [16; 17, Theorem 8.3]. Besides

(M) =M'0N(1IQR(G)) ={B(N),1Q L(G),1QR(G)Y.

It suffices to show the right hand side is N' @ 1c.
Since {N, B} and {B(N),¢ & v} are equivalent, it follows that

B&L(B(N),1QLY(G),1QR(G)}")
={t ®y(B(N),1R1: QL(G),1RQ1: Y R(G)Y,

which is B(N)Q B(L*(G)) by [16, (38) in the proof of Theorem
3]. Therefore (M')* = N'® 1s.

CorOLLARY 9.2. N ® B(L*(G))={B(N),1Q B(L*(G))}.

2. Haga’s factorization holds always for a regular action. Namely,
if a is regular, M, G is isomorphic to M* @ B(L*(G)) by Theorems
2.5 and 5.6. However, as for the converse, we have only the following
proposition for an abelian G.
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ProposiTion 9.3. If G is abelian, the following two conditions are
equivalent

(i) « is regular; and

(ii) there is an isomorphism p of MR, G onto M= Q B(L*(G)) such
that p'(M* ® 15) is @ invariant.

Proof. (i) = (ii). If « is regular, {M,a} is equivalent to
{M"*®4G, B} for some covariant dual system {M* B}. Therefore

(MBI}~ {(M*)", B}~ {M ®.G, &}.

Since G is abelian, [B](y ®1s)=y X1 K 1; for y € M. Thus we
have an isomorphism p of M ®,G onto M* Q@ B(L*(G)) such that
p '(M*&®1s) is @ invariant.

(il) > (1) We set

B)=pQuredep™ and B=Ad1QW*-(B).

Then we have
9-2) {MQ.G,a}~{M*Q B(L(G)), (B}

Since (B) is a dual action of G on M*& B(L*(G)) and since
AdW*(FR1s)=f&Q 1, AdW*A(r)Q1s)=A(r) QA(r) and
AdW*(1s QA(r)) belongs to L*(G)Q R(G), B is an isomorphism of
M= ® B(L(G)) into M* @ B(LG))® R(G). However, G is abelian
by assumption, we have

9.3) AdW*(1s QA(r) € 1R R(G).

Since M“®1s is (B) invariant by (i), it is B invariant by
(9.3). Therefore there is an isomorphism B of M* into M* Q R(G)
such that

9.4) Qoo BRe=BIMRls.

Now, we shall show that B[ M* @1 is a dual action of G on
M*Q1ls. If y €N, then
BRoB(yRlo)=BRLeAd1QW*(B)(y ®lcs)

F1QRoRLoBRLRQL AdIRQ W (B)(y ®ls) (By(94))
- RrRAIRI®W BR @ ue(B)(y Do)
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=7o(B)QLo(B)(y ®ls) (By (94))
(=1Q0Q°AdIRQIL QW L Qo Ri°AdIRQW*RQ 1)
ToAd1Q1 @W*(B) Xy ®lc @1s)
TeAd(1R@ 1 QWHIRWR16))° By ®ls ®ls)
=Ad1IRQIe QW BRu(y ®ls ®lo),

where the last equality follows from
W®16(0'® L)lG ® W = Ad IG ® W*(W®1G).

Consequently, since B is a dual action of G on M" ®1s; and
BRRLe=1QaBIM, Q1 B is a dual action of G on M* and
(B)=Ad 1 Wo-pB =[B], which implies that

M~ a(M)=(M®.G)* ~(M* Q B(LY(G))*' = M*RQ: G

by (9.2). Therefore « is regular.
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