Vol. 71, No. 1, 1977

Recent Issues
Vol. 331: 1
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Vol. 324: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The length of the period of the simple continued fraction of d12

John H. E. Cohn

Vol. 71 (1977), No. 1, 21–32
Abstract

Let p(d) denote the length of the period of the simple continued fraction for d12 and 𝜖 the fundamental unit in the ring Z [d12]. We prove that as d →∞,

Theorem 1. p(d) 72π2d12 log d + O(d12).

Theorem 2. log 𝜖 3π2d12 log d + O(d12).

Theorem 3. p(d)o(d12log log d).

Theorem 4. If log 𝜖o(d12 log d) then also p(d)o(d12 log d).

Mathematical Subject Classification
Primary: 10A30, 10A30
Secondary: 12A45
Milestones
Received: 23 April 1974
Revised: 21 December 1976
Published: 1 July 1977
Authors
John H. E. Cohn