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Let p(d) denote the length of the period of the simple
continued fraction for dm and ε the fundamental unit in
the ring Z [dm]. We prove that as d -> oo,

THEOREM 1. p(d) ^ 7l2π~2d1/2 log d + O(din).

THEOREM 2. log ε ^ Bπ~2d1/2 log d + O(d1/2).

THEOREM 3. p(d) Φ o(din/log log d).

THEOREM 4. If log ε Φ o(din log d) then also

p(d) Φ o(dm log d).

Recently Hickerson [1] has proved that p(d) — O(d1/2+δ) for every
δ > 0, and in fact a result somewhat more precise than this. Lehmer
[2] has suggested that for arbitrarily large d, p(d) might be as large
as 0.30c£1/2 log d, and if this is indeed the case then Theorem 1 is
almost the best possible result. In fact it is easy to show that
p(d) = O(d1/2 log d) using known results regarding log ε, but the
constant in Theorem 1 improves the best obtainable in this way.

Let ε0 denote the fundamental unit in the field Q(d1/2), [a0, a19 α2,

• aP(d)-ι> 2α0] the continued fraction for d1/2 and Pr/Qr its rth con-
vergent. Then as is well known ε = ε0 or ε*. Thus by the result
of Stephens [3],

log ε ^ 3 log ε0 ^ A ( i _ e~
1/2 + δ)d1/2 log d .

Δ

Now Qo = 1, Qi = <*>i ^ 1 and Qr+2 = ar+2Qr+1 + Qr ^ Q r + 1 + Qr and so
by induction Qr ^ ur+19 the Fibonacci number, for r ^ 0. Now

ε —
12

2d ι '«tt, ( ί ) - 1

±V±γ, ̂

and so p(d) < Adί/2 log d where A is approximately 5/4.
In exactly the same way, using ar < dί/2 for 0 ^ r < p(d) it is

possible to show that p(d) > log ε/log d. Since d = 22k+ί gives ε =
(1 + τ/~2Γ)2\ we find that for arbitrarily large d it is possible for
p(d) > d1/2/log d, and it will be shown that this can be improved at

21
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least by replacing the log d by log log d. Theorems 1 and 3 together
show that the scope for sharpening the results is somewhat limited;
nevertheless the remaining problem is important and worthy of
further study, for as we mention in the concluding remarks, if it
could be proved that p(d) = o(d1/2 log d) this would imply also that
log ε = o(d1/2 log d) a result which has been sought in vain for many
years.

Throughout we use ε1 to denote the fundamental unit in Z[d1/2]
with norm + 1; then ex — ε or a2. In accordance with established
practice, if for given integers d and N there exist integers X and
Y with X2 - dY2 = N, then we say that X + Yd112 is a solution of
the equation x2 — dy2 — N. Given one such solution, all the members
of the set ±(X + Yd1/2)ε? are also solutions, and this set is called a
class of solutions. A given equation may well have more than one
such class of solutions, but it is well known that the number of
such classes is finite.

LEMMA 1. For each r,\P9; - dQ2

r \ < 2d1/2.

This is well known.

LEMMA 2. For a class K of solutions of x2 — dy2 = N, the g.c.d.,
(x, y) depends only upon K.

For if xt + ytd
1/2 and x2 + y2d

1/2 belong to the same class, then
for some integer n,

- ±(χ2

say. Thus (x2, y2) \ (xίf yt) and similarly conversely.
A class K for which (x, y) = 1 is called a primitive class. The

main result used in the proof of the theorems is

LEMMA 3. The number of primitive classes, f(N; d), of x2 — dy2 =
N does not exceed 2ω{m). In the special case 2\\N, f(N; d) ^ 2ω(W)~1.
Here co(N) denotes the number of distinct prime factors of N.

Proof. In the first place it suffices to consider the case in which
(N, d) is square-free. For if (N, d) = k\k2 where k2 is square-free,
(x, y) = 1 and x2 — dy2 = N then kt \ x and so if xt = x/kL, JVΊ = N/k\
and d, = d\k\ then x\ — d,y2 = N, with (xί9 y) = 1. For the latter
equation we now have (N19 dL) = k2 which is square-free and so the
total number of classes of primitive solutions of the given equation
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does not exceed 2ωilNίl) <; 2ω{lNl) in the general case, or
2«(IΛΓI)-I j n ^ e S p e c i a i c a s e 2\\N since in this case 2||-NΊ also. We
suppose therefore from now on that (N, d) is square-free.

Let p denote any prime dividing N, and suppose that ps\\N;
( i ) if p I d then p \ x, whence p2 \ dy2 otherwise we should find,

since p\y that p2\d and p2\N. Hence s = 1 and so xy~ι = 0(modps)
(ii) if p\d then p can divide neither x nor y, otherwise it

would have to divide them both. Thus {xy~1)2 = d(moά ps) and so if
p is odd, xy~ι ΞΞ ±α2,(mod ps).

(iii) if p X d, p = 2 then {xy~ιf == cί(mod ps) gives
(a) if 8 = 1, in/"1 Ξ= d(mod2), i.e., a;?/-1 = d(modps)
(b) if 8 = 2, since x2 — cί?/2 = 0(mod 4) and both x and y are odd,

c? = l(mod4) whence {xy~1)2 = l(mod 4), i.e., xy~x = ±l(mod4), i.e.,
α;̂ /"1 = ± l ( m o d p s )

(c) if s ^ 3, then d Ξ I(mod8) and now (xy'1)2 Ξ d(mod2s) gives

xy~ι = ±α(mod2 3" 1).
Combining (i), (ii), and (iii) and using the Chinese Remainder

Theorem, we see that xy~ι is congruent to one of at most

2ω{N)'1 residues modulo JNΓ if 2||ΛΓ

2ωilNl) residues modulo N unless 8\N

2"(w> residues modulo — N if 81 iSΓ
2 '

Next we prove that if x2 - dy2 = X2 -dY2 = N and if xy~ι =
Zy-^mod N) then x + yd1/2 and X + Yd112 belong to the same class
K. For

x + yd112

 = (α? + ^ 1 / 2 )(X - Yd1'*) = α X - ^ Γ
X + Γd1/2 X2-dY2 N N

- A + M 1 / 2 , say .

Now B is an integer and A rational, and since A2 — dB2 — 1 it follows
that A too is an integer, and so that result of the lemma follows,
except if 8|JV.

Finally, if 81iSΓ then we find that if xy~ι =XY-ι{jαi(All2N) then
x + yd112 and X + Yd112 belong to the same class; for if as above
A + Bd1/2 denote their quotient, we find that B equals either an
integer or else half an odd integer. In the former case the result
follows as above. In the latter case we find (2A)2 = d{2Bf + 4 and
since now 2B is an odd integer and 4 \ d, 2A is also an odd integer,
whence d = 5(mod 8). But this is inconsistent with x2 — dy9 = 0(mod 8)
where (x, y) = 1 and so this latter case does not arise. This concludes
the proof.



24 J. H. E. COHN

LEMMA 4. // N(e) = 1, then

and

f(N, d) + f(-N, d) ^ 2ω(l*l)~1 if 2\\N.

Proof. After Lemma 3, it merely remains to prove that x2—dy2=
N and X2 - dY2 = -iSΓ with a r"1 = XΓ^mod N), or even (mod 1/22V)
if 8\N, is impossible. For we should obtain if

A + Bdι/2 = (a? + ?/d1/2)(X + Γd1'2)"1

that A2 — di?2 = — 1 with either A and B both integers, or else both
half integers. Both cases are impossible if N(e) = + 1 .

LEMMA 5. (1) If N(ε) = 1 then

0<N<2d1/

( 2 ) If N(ε)= - 1 then

0<N<2d1/2

Proof If 0 S m < n ^ p(d) - 1 then Pm + Qmd1/2 and PΛ + Qnd
112

are primitive solutions in distint classes; they are primitive since
(Pr, Qr) = 1 and are in distinct classes since

K P . + Qwtf
1/2 < P. + Q.ώ1/2 ^ e 4 .

Hence using Lemma 1,

p(d) ^ the number of distinct primitive classes of all

equations x2 - dy2 = N with -2d1/2 < iV <

= Σ f(N; d), which gives (1) .
V 2 l 2

If N(ε) = — 1 then the above reasoning applies if 0 ^ m < n ^
- 1 and so (2) follows, since if N(ε) = - 1 , /(2SΓ; d) = /(-iV; d).

We remark that this result is best possible for example for the
values d — 7,13 respectively.

LEMMA 6. As x —> oo

(1) F(α ) - Σ 2ω(*> = cα; log x + O(a?) ,
l£N<L
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( 2 ) A(x) = Σ 2ωUV) = - c o ; log α; + O(x) ,

"If* 3

( 3 ) B{x) = Σ 2*<-V) = - c o ; log a: + 0{x) ,

( 4 ) C(x) - Σ 2ωiN) = ^x log x + O(a?) ,

( 5 ) D(x) = Σ 2ω(ΛΓ) = — ca; log α; + O(x) ,
KiV^α 6

( 6 ) JK(a ) = Σ 2ω(iV) - — ex log a; + O(a?) , where c = 6π "

^ T l 1 2

Proo/. (1) The identity

is easily proved by induction on the number of distinct prime factors
of N. For if N is a prime or a prime power the result is immediate,
and then the identity follows on observing that 2ω, d and μ are all
multiplicative. Thus

Σ Σ

Σ MAO Σ

Σ

0 ( a ; )

= ex log x + O(x

(2) We have

Λ(ΔX) — 2J Δ

i\N
"V"1 Oω(2 l/22V)

y 2 | V
Klι'2.Y^ϊ lglί2.Vg

211/2-V 2/1/2N
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"» Oω(l/22V) I y Ol + ω

26

= A(x)

Thus A(2x) + A(x) = 2A(a;) + 2J5(α;) = 2F(x). We now prove by
induction that

A(x) = 2 Σ (-l)r~1F(α; 2-r) .

For, if a? = 1, the result is clearly true since both sides vanish, and
then if true for x <> x0, we have for x <; 2x0,

which is again of the required form, and this completes the induction.
Now F(y) — 0 if y < 1 and so we have

A(x) =

where

, Γloga Ί

Llog2J

Now by (1)

for some constant C and all y > 1. Thus

Σ
ί* — 1

Hence

-,X
-2cΣ(-lΓ1-i:logx <2Cx + 2c»log2 Σ ^ 2"r

Finally,

-(-I)'
1- -4-

= \x log *{1 + O(ί);-1)
ό

— a? log α; + O(log a?) ,
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and so (2) follows.
( 3) now follows since B(x) — F(x) — A(x).
( 4 ) follows since

C{χ) = Σ 2^2ΛI2N) = A(—X
Kl£ll \ 2

2|l/2iV

(5) and (6) now follow similarly since D(x) = C(l/2x) and E(x) =
D(l/2x).

Proof of Theorem 1. The idea of the proof is to combine the
results of Lemmas 3-6. We have immediately that

p(d) < Σ 2ω[N) = cdU2 log d + O(dί/2)

and the remainder of the proof deals with reducing the constant in the
above. There are two ways of doing this; in the first place if 2\\N,
then the upper bound 2ω{N) appearing above can immediately be halved
in view of Lemmas 3 and 4; secondly depending upon the value of
d, there are certain residue classes modulo 16 such that for any N
belonging to one of them, the equation x2 — dy2 = N cannot have
any primitive solutions at all. In each case, it is not possible to
dispose of all the odd values of N in this way, and corresponding
to these we always obtain a term

Σ 2ω{N) - B(2d1/2) .

There are various cases to consider.
(a) d = I(mod8). In this case, since x and y cannot both be even,

we find that x2 — dy2 = JV is either odd or divisible by 8. Thus we
find that p(d) ^ B(2dί/2) + D(2dι/2) - l/2cd1'2 log d + O(dι/2), as required.

(b) d == 5(mod 8). In this case, we find that if N is even, then
22||iV, and accordingly

p(d) ^ B(2d1/2) + C(2d112) - D(2d1/2) = ±cd1/2 log d + O(dι/2) .

(c) If d Ξ= 2 or 3(mod4) then N can be even only if 2\\N and

we obtain

p(d) ^ B(2di/2) + Σ
2||iV

- B(2dί/2) + ^{A(2dι/2) - C(2dί/2)}

= Led1'2 log d + O(dι/2) .
Δ
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It is to be noted for future reference that if 4|c£, then the 7c/12
of the theorem can be improved to l/2c.

(d) If d ΞΞ 0(mod 4), then for a primitive solution of x2 — dy2 = N
we must have either that x is odd, in which case N is also odd, or
else x is even, y odd and A\N. In the latter case we find that
(l/2a;)2 — (1/Ad)y2 — I/AN and so we obtain a primitive solution of the
equation X2 — (1/Ad) Y2 = 1/4.ΛΓ, in which moreover y is odd. Thus
we have

either 1/Ad = 0 or l(mod 4) in which case I/AN is odd or divisible
by 4,

or l/4d ΞΞ 2 or 3(mod 4) in which case I/AN is odd or 2111/4ΛΓ.

In the first case we obtain

p(d) £ B(2d1/2) + C(2dί/2) - D(2d1/2)

cd

and in the second ease we obtain similarly

p(d) g B{2dm)

which concludes the proof.

LEMMA 7. As x—» °o9

F^x) = Σ 2ω(^} log— = cα log a; + O(x) .
l^ iV^ i V

Proof. Let 1 < ^ < x; then

0 = Σ 2<" w log | ;- Σ 2^'log

- Σ 2 * ( l o g / 0 + Σ 2 l o g 4
^ i V l N

and so

) ^ log p-F(x) ,

since α /iV < p ίor N > xp~\
Thus if 1 < ρn S x < Pn+1, we find that

n—1

Σ
r=i r=0

log /o Σ ^(^- r ) ^ (̂a?) - F ^ p - ) ̂  log
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and so to complete the proof it suffices to show that

n-l

log p Σ F(xρ~r) > ex log x + O(x) as p > 1+ ,

where n — [(log x/log p)].

Now for all y > 1, we have for some constant A,

cy log y - Ay < F(y) < cy log y + Ay .

Thus

log ^ Σ (a*? log α +

< p o g ^ (ca? log a? + Aa?) • cα; log α +
p - 1

as

On the other hand

% — 1

Σ
0

log p Σ F(xρ~r) > log p Σ (ox log x — cxr log p — Ax)p"τ

o

= log p (ex log x —
o

( g / ) Σ
0

= X-Y , say .

Now

Σ = ^ca loga - ^ I o g i Q ^ _ J M _ _ ( c a . l o g χ _ Aχ){1 _ ^
p — 1 I jOM

as jθ —»• 1, since x lies between /Γ and pn+ί. Also

Γ < cα(log pγ Σ ^ " r = P2cx \^2KA\ • ex as p
o Ip — 1J

and so the result follows.

LEMMA 8. Let

= Σ

with analagous definitions for B19 Cl9 and Dx. Then the results of
Lemma 6, (2)-(5) hold also for the functions A1 etc.

Proof. These results follow from Lemma 7 in exactly the same
way as the corresponding results follow from Lemma 6(1).
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Proof of Theorem 2. We have for each convergent

Qr

1

QrQr+1 '

whence

dί/2 + ±2-
Qr+ί ^ 1 _ Qr / 2d1/2 + 1

where

|P r

2 -cZQ r

2 | = i\Γr.

Consider first the case N(ε) = — 1. Then

£ = S = l T { ) + Q()-lU/

2}><<l)-2 O J l / 2 i I

< (2d1/2 + 1) Π — — —

— 1 1
0

11 77

Thus

23»(d)-l 9/71/2 , I

21ogs< Σ log *

^ Σ , ίf(N; d) + f(-N; d)} log

= Σ , ί/W d) + f(-N; d)} log
0<iV<2dV2

= 2 Σ , 2/(iV; d) log-2^-2 + θ(iog d),
0<N<2dί2 iV

since in this case f(N; d) — f(—N; d).
Thus

logε< Σ
0<iV<2cί1/2

as before, using Lemmas 7 and 8 in place of Lemma 6, since in this
case iJfd. In the case N(e) — + 1 , we have
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ε = P + Q _ d1/2

< (2d1/2 + ϊ)QP(d)-i

<u 9

as before.
Thus

logε^lf

^ Σ ι ίf(N; d) + f(-N; d)} log
0<iV<2dl/2

= Σ
0<JV<2d

^ ^ c d 1 / 2 log (Z + O(d1/Z) ,
Δ

as before, provided 4 | d .
Finally if 41 <Z we observe that ε = 77 or ^2 where 27 is the fun-
damental unit of the ring Z[((l/i)d)1/2]. Then the result for this
case follows by descent since now log ε <̂  2 log η.

This concludes the proof of Theorem 2.

Proof of Theorem 3. We have as before

P(d)-i 9rl1/2 4 1
l o g ε < Σ ^ + 1

and so for any K satisfying 1 < K < 2d1/2

logs < Σ l o g - ^ + O(logd)

= Σ
NSK

^ Σ gg
M Nr>K N-

r 0£r<p(d) r

< Σ {AN; d) + A-N; d)}\og2d^

<A\ogd KlogK+ —p(d)log(^iΓ2) + O(Klogd).

In particular taking K — 2cZ1/2(log d)~3 we obtain

log s < Zp(d) log log d + o(d1/2) .

Now for d = 22ft+1 we have s = (1 + VΎf\ i.e., log ε > Adm where
A > 0 and so p(d) Φ o(d1/2βog log cί), as required.
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Proof of Theorem 4. If log ε Φ o(dί/2 log d), then there exists a
positive constant cγ < c so that for infinitely many values of d, log ε >
eft12 log d. Let g(N; d) denote the number of distinct primitive
classes of solutions of x2 — dy2 — N for which x/y occurs as a con-
vergent to the continued fraction for dU2. Then

and

log ε <

Thus if k ^ 1,

log ε - 2p(d) log k < Σ 9(N; d) log ψ±— + O(log d)

^ Σ
\N\2d

Σ 1 2 g(N;d)log^
0<\N\<2dV2k-l k\N\

since g(N; d) ̂  /(JV; d). Thus

log ε - 2p(d) log & < JF\(2dl/1A?-1) + O(log d)

Thus if k > c/clf we have for infinitely many values of d,

as required.

P(d) > %\~e,dι»logd
2k log &
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