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Let p(d) denote the length of the period of the simple
continued fraction for d*® and ¢ the fundamental unit in
the ring Z [d'/?]. We prove that as d — o,

THEOREM 1. p(d) < 7/2x72d* log d + O(d/?).

THEOREM 2. loge = 3z7%d'2log d + O(d*?).

THEOREM 3. p(d) #* o(d**/log log d).

TueoreEM 4. If loge =+ o(d*/%log d) then also

p(d) = o(d*?log d) .

Recently Hickerson [1] has proved that p(d) = O(d"/**°) for every
0 > 0, and in fact a result somewhat more precise than this. Lehmer
[2] has suggested that for arbitrarily large d, p(d) might be as large
as 0.30d2log d, and if this is indeed the case then Theorem 1 is
almost the best possible result. In fact it is easy to show that
o(d) = O(d"*log d) using known results regarding loge, but the
constant in Theorem 1 improves the best obtainable in this way.

Let ¢, denote the fundamental unit in the field Q(d'?), [ay, @, @,
<er Qpa-1y 20,] the continued fraction for d'* and P,/Q, its rth con-
vergent. Then as is well known ¢ = ¢, or €. Thus by the result
of Stephens [3],

loge <3loge, = %(1 — e V24 9)d*logd .

NOW Qo = 1: Ql = a'l z 1 and Qf+2 = a’r+2Q1'+1 + Qr ; Qr+l + Qr and 80
by induction @, = w,,,, the Fibonacci number, for » = 0. Now

€ = Py + Qpa-d?
> 24" @y — 1
= 24 Uy — 1
K Y »d
S {1 +1'5 }”‘ ! ’
2
and so »(d) < Ad'*log d where A is approximately 5/4.
In exactly the same way, using ¢, < d"* for 0 < r < p(d) it is
possible to show that p(d) > loge/logd. Since d = 2% gives ¢ =

1 +1V2)*, we find that for arbitrarily large d it is possible for
o(d) > d¥*/log d, and it will be shown that this can be improved at
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22 J. H. E. COHN

least by replacing the logd by loglog d. Theorems 1 and 3 together
show that the scope for sharpening the results is somewhat limited;
nevertheless the remaining problem is important and worthy of
further study, for as we mention in the concluding remarks, if it
could be proved that p(d) = o(d"*log d) this would imply also that
log ¢ = o(d"?log d) a result which has been sought in vain for many
years.

Throughout we use ¢, to denote the fundamental unit in Z[d"'?]
with norm + 1; then ¢, = ¢ or &. In accordance with established
practice, if for given integers d and N there exist integers X and
Y with X* — dY* = N, then we say that X + Yd'* is a solution of
the equation #* — dy®> = N. Given one such solution, all the members
of the set =(X + Yd'?er are also solutions, and this set is called a
class of solutions. A given equation may well have more than one
such class of solutions, but it is well known that the number of
such classes is finite.

LeEMMA 1. For each », |P: — dQ%| < 2d"2.
This is well known.

LEMMA 2. For a class K of solutions of a* — dy*= N, the g.c.d.,
(z, y) depends only upon K.

For if », + y,d¥* and z, + y,d"* belong to the same class, then
for some integer =,

@, + v, d"

Il

(@, + v d0)er
= £ + yd")(@, + 0.4 ,

say. Thus (x, %)) | (2, ) and similarly conversely.
A class K for which (z, y) =1 is called a primitive class. The
main result used in the proof of the theorems is

LEMMA 3. The number of primitive classes, f(N; d), of * —dy* =
N does not exceed 2%, In the special case 2|| N, f(N; d) < 2°1¥0~,
Here w(N) denotes the number of distinct prime factors of N.

Proof. In the first place it suffices to consider the case in which
(N, d) is square-free. For if (N, d) = k’k, where k, is square-free,
(,¥) =1 and 2* — dy* = N then k,|2z and so if @, = 2/k, N, = N/k}
and d, = d/k? then 2° — dy* = N, with (2, y) = 1. For the latter
equation we now have (N, d,) = k, which is square-free and so the
total number of classes of primitive solutions of the given equation
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does not exceed 2¢U¥ih < 2¢UN¥) in the general case, or 2¢/¥w-t <
2¢480-t in the special case 2||N since in this case 2||N, also. We
suppose therefore from now on that (N, d) is square-free.

Let p denote any prime dividing N, and suppose that »°|| N;

(i) if p|d then p|z, whence p*} dy* otherwise we should find,
since p Yy that p*|d and p*|N. Hence s = 1 and so 2y~* = 0(mod p°).

(ii) if ptd then p can divide neither x nor y, otherwise it
would have to divide them both. Thus (zy*)* = d(mod p°) and so if
p is odd, ¥y = *a,(mod p°).

(iii) if ptd, p =2 then (zy™') = d(mod p*) gives

(a) if s =1, 2y~ = d(mod 2), i.e., 2y~ = d(mod p°)

(b) if s =2, since 2* — dy* = O(mod 4) and both # and y are odd,
d = 1(mod 4) whence (zy™*)* = 1(mod 4), i.e., zy' = +1(mod 4), i.e.,
2yt = +1(mod p*)

(¢) if s=3, then d = 1(mod 8) and now (zy™*)* = d(mod 2°) gives
2yt = Fa(mod 2°7Y).

Combining (i), (i), and (iii) and using the Chinese Remainder
Theorem, we see that ay™* is congruent to one of at most

20~ residues modulo N if 2||N
20080 regidues modulo N unless 8| N

200%)  regidues modulo —é—N it 8|N.

Next we prove that if 2* — dy* = X®* —dY?= N and if ay™" =
XY *(mod N) then z + yd'/? and X + Yd"* belong to the same class
K. For

v+ yd"”? _ (@ + yd"" )X —Yad?) _2X —dyY + —2Y + XY e
X +Yd”® X —dY? N N
= A + Bd'*, say.

Now B is an integer and A rational, and since A? — dB? = 1 it follows
that A too is an integer, and so that result of the lemma follows,
except if 8| V.

Finally, if 8| N then we find that if 2y~ = XY *(mod 1/2N) then
x4+ yd’* and X + Yd'* belong to the same class; for if as above
A + Bd'?® denote their quotient, we find that B equals either an
integer or else half an odd integer. In the former case the result
follows as above. In the latter case we find (24)* = d(2B)* + 4 and
since now 2B is an odd integer and 4} d, 24 is also an odd integer,
whence d =5(mod 8). But this is inconsistent with 2* — dy’ = 0(mod 8)
where (2, ¥) = 1 and so this latter case does not arise. This concludes
the proof.
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LEMMA 4. If N(¢) = 1, then
F(N, d) + F(=N, d) < 220
and
f(N, d) + f(—N, d) < 20"t 4f 2]|N.
Proof. After Lemma 3, it merely remains to prove that 2*—dy*=

N and X* — dY*= —N with ay™' = XY *(mod N), or even (mod 1/2N)
if 8| N, is impossible. For we should obtain if

A+ Bd* = (z + yd" )X + Yd)™

that A* — dB* = —1 with either 4 and B both integers, or else both
half integers. Both cases are impossible if N(e) = +1.

LemMma 5. (1) If N(¢) =1 then
pd) = 3, (N d)+ f(=N; )} .
(2) If N(&) = —1 then
pd)= > f(N;d).

0<N<2dl/2

Proof. If 0<m < n=pd)—1 then P, + Q,d"* and P, + Q,d"*
are primitive solutions in distint classes; they are primitive since
(P,, @,) =1 and are in distinct classes since

1< P+ Qd* <P, +Qd" =<e,.
Hence using Lemma 1,

p(d) £ the number of distinet primitive classes of all
equations #* — dy®* = N with —2d'? < N < 2d'*
= >,  f(N; d), which gives (1) .

—2d1/2< N <2d1/2

If N(¢) = —1 then the above reasoning applies if 0= m<n
2p(d) — 1 and so (2) follows, since if N(¢) = —1, f(N;d) = f(—N; d).

We remark that this result is best possible for example for the
values d = 7, 13 respectively.

LEMMA 6. As z—

(1) F(x) = sg, 2°M = ¢cxlog x + O(w) ,
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(2) A(z) :}: 2o = %cx log z + O()

(3) B(z) = P éx 24 —%—cm log z + O(x) ,
i

(4) C(w) :1<.3;x2wm - %cx log % + O() ,

(5) D() :g 2 = %—cw log & + O() ,

(6) E@ = > 2% = —IlEcx logz + O(x), where c¢=6x"2.
1<N

B
]

Proof. (1) The identity
" = 3 d(=L )ty

is easily proved by induction on the number of distinct prime factors
of N. For if N is a prime or a prime power the result is immediate,
and then the identity follows on observing that 2°, d and g are all
multiplicative. Thus

Fo) = 3, S d(4])uth)

2

= > X dk)k)

1Sks21/2 15k <ok 2

= 2 (k)< ;k_ (k)
- oo {ﬁ 202 }
g log g T <k>
xpk) log o
1§k§a‘d/2 k? + O(x)
zlog x
= + O(=
O
= cxlog x + O(x)
(2) We have
AQ2x) = 3, 24
I<N =2z
2|N
— w(2:1{2N)
1§1/2%<12
— Z 2w(2-1/2N) + E 20}(2-1/21\7)
SR R
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— Z Qu(1/2N) + Z Qi+w(l/2N)
1<1/2N<z 1<1/2N Sz
2|1/2N 2]1 /2N

= A(w) + 2B(x) .

Thus A(22) + A(x) = 2A(x) + 2B(x) = 2F(x). We now prove by
induction that

Afx) = 2 ij (=1 F(z-277) .

For, if 2 = 1, the result is clearly true since both sides vanish, and
then if true for z < #,, we have for z < 2u,,

A(z) = 2F <é—x> - A(—%—x)

which is again of the required form, and this completes the induction.
Now F(y) =0 if y <1 and so we have

A@) =23 (-1 Fe-27) ,

where

b= liogs )

|F(y) — cylogy| < Cy.,

for some constant C and all y > 1. Thus

Now by (1)

ko
<203, =< 2Cx.

1A(x) — 23 (1) Elog &
r=1 ar 7 =1 2"

Hence
k k
’A(x) — 202, (—1)*'1—2”7 log x' < 20z + 2cxlog 2-3, 727"

< Cx .
Finally,

(-3
-(3)

z log 2{1 + O(x™)}

<
Il =
LY

(—-1)"1—2—; log 2 = —%—x log -

I

Il

ol co|m

zlog z + O(log 7) ,
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and so (2) follows.
(3) now follows since B(x) = F(z) — A(z).
(4) follows since

Cw)= zww“m:A(.;_x).

1<1/2Ns1l2x
2|1/2N

(5) and (6) now follow similarly sinece D(x) = C(1/2z) and E(x) =
D(1/2x).

Proof of Theorem 1. The idea of the proof is to combine the
results of Lemmas 3-6. We have immediately that

pd) £ _3 2°% = cd*log d + 0(@")

and the remainder of the proof deals with reducing the constant in the
above. There are two ways of doing this; in the first place if 2||N,
then the upper bound 2“* appearing above can immediately be halved
in view of Lemmas 3 and 4; secondly depending upon the value of
d, there are certain residue classes modulo 16 such that for any N
belonging to one of them, the equation 2 — dy* = N cannot have
any primitive solutions at all. In each case, it is not possible to
dispose of all the odd values of N in this way, and corresponding
to these we always obtain a term
200 = B(2d?) .
1=y 2

There are various cases to consider.

(a) d =1(mod8). In this case, since # and ¥ cannot both be even,
we find that a* — dy? = N is either odd or divisible by 8. Thus we
find that p(d) < B(2d'?) + D(2d'?) = 1/2¢d"*log d + O(d"?), as required.

(b) d = 5(mod8). In this case, we find that if N is even, then
2}||N, and accordingly

o(d) < B@d'?) + C(2d'"?) — D(2d"?) = %cd“ log d + O(d"?) .

(¢) If d =2 or 3(mod4) then N can be even only if 2||N and
we obtain

p(d) £ B@d¥?) + 3, ew-t

1<N<=2dl 2
2N

B(2d") + —;-{A(Zd”z) — C(2d'?)

Il

- _;—cd“z log d + O(d?) .



28 J. H. E. COHN

It is to be noted for future reference that if 4}d, then the T7e¢/12
of the theorem can be improved to 1/2¢.

(@) If d = 0(mod 4), then for a primitive solution of 2* — dy*= N
we must have either that x is odd, in which case N is also odd, or
else # is even, ¥ odd and 4|N. In the latter case we find that
(1/2z)* — (1/4d)y* = 1/4AN and so we obtain a primitive solution of the
equation X*® — (1/4d)Y? = 1/4N, in which moreover ¥ is odd. Thus
we have

etther 1/4d = 0 or 1(mod 4) in which case 1/4N is odd or divisible
by 4,
or 1/4d = 2 or 3(mod 4) in which case 1/4N is odd or 2||1/4N.

In the first case we obtain
p(d) = B(@d'*) + C(2d'/?) — D(2d"*) + E(2d"?)

- {Ecdw log d + O(d@") ,

and in the second case we obtain similarly
p(d) < B2dY?) + C(2d"?) — E(2d"?)

- 17_20011/2 log d + O(d?)

which concludes the proof.
LEMMA 7. As 2— oo,

F(x) =1§N2§x2‘””"> log—la\i] =cxloga + O(x) .

Proof. Let 1 < p < @; then

Fyw) ~ Fiwp™) = 3, 2° logl—f]—— S, 2o log—p%]-

1=SNsz 1ENsxp—1

= 3 2Mloggp+ I 20W]og L
Nszp—1 N

1= ro—l< N2
and so
log p-F(20™) = Fy(x) — Fy(xp™) = log 0+ F(x) ,
since 2/N < p for N > zp™'.
Thus if 1 < " £ 2 < p*, we find that

log 0-3, Fwp™) = F\() — Fi(ap™) < log p-3, Fap™),
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and so to complete the proof it suffices to show that
n—1
logp-3, Fxp™)—caxlogae + O(x) as p— 1+,
0

where n = [(log z/log p)].
Now for all y > 1, we have for some constant A,

cylogy — Ay < F(y) < cylogy + Ay .
Thus

log o glF(a:p") < logp nz,o_l (cxloga + Ax)p™*
< p%)l—(cx log 2z + Az) —> cxlog z + Ax
as p— 1+ .
On the other hand
log o nE;,l F(zo™) > log p nz—: (cxlog & — caxrlog o — Ax)p~
= log o+ (cx log z — Ax) Elp"
— ca(log o) 0™
=X-Y, say.

Now

X = olcx log v — Ax) logp{l _ 1
o—1 o

as p—1, since @ lies between p™ and p"*'. Also

}——9 (cxlogx — Az)(1 — 27

Y < cx(logp)zz,r,o" = pcx{:)ogp} —cx as p— 1+
and so the result follows.
LEMMA 8. Let
A, (@) =L<272A§zzww> 1og]—3-

with enalagous definitions for B, C,, and D,. Then the results of
Lemma 6, (2)-(5) hold also for the functions A, etc.

Proof. These results follow from Lemma 7 in exactly the same
way as the corresponding results follow from Lemma 6(1).
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Proof of Theorem 2. We have for each convergent

P 1
dl/z _— < s
1 Qr QrQr+1
whence
P
av: + —r
Q'r+1 < 1 — Qr < 2d1/2 + 1
Q. Q,|P,—Qd”? |P;—dQ;| N,
where

|P; —dQ?| = N, .
Consider first the case N(¢) = —1. Then

g, = & = P2p(d)__1 —+ sz(al)—-ldl/2
< @2d"7"* + D)Qypiay—,

2p(d)—2Q
— (2d1/z + 1) H rt+1
¢Q

r

2p(d)——22d1/2 + 1
1/2
<@+ S

—Zp(d)—lzdl/Z + 1
= 1;[ N
Thus

d)—
2log e <2p§] 1logf 207 +1
0 N,

1/2

< S {f(N; d) + F(—N; )} log 24-+ 1

0<N<241/2 N
= > {f(N;d)+ f(—N; d)} 1og3-d1—/2 + O{d™2F(2d"%)}

0<N<2dl/2 N

24
=2 >, f(N; d)log=— + O(log d) ,
0<N <2412 N

since in this case f(N; d) = f(—N; d).
Thus

loge< S, f(N;d)log -zjlvﬂ + O(log d)
o 172

<N<2d

< —Ecol‘/Z log d + O(d?),

as before, using Lemmas 7 and 8 in place of Lemma 6, since in this
case 4}/ d. In the case N(¢) = +1, we have
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e = Py + Qpay—d?
< (2d'* + 1)@pay—,

pld)—lzdllz + 1
< 1;1 T ’
as before.
Thus
log e <p(§,—l log 2.—--—-d1/2 +1
0 N,
1/2
< (F(N: d) + f(—N; d)}log 24-+1
0<N<2d1/2 N
= S {F(N; d) + F(—N; d)}log 2= + O(log d)
0<N<2d1/2 N

< %cd”“’ log d + 0(d?) ,

as before, provided 4 ) d.
Finally if 4|d we observe that ¢ =7 or 7* where 7 is the fun-
damental unit of the ring Z[((1/4)d)”?]. Then the result for this
case follows by descent since now loge < 2log 7.

This concludes the proof of Theorem 2.

Proof of Theorem 3. We have as before

(d)— /
log e <p5‘_). 1log 24 +1
=0 N,

and so for any K satisfying 1 < K < 2d"?

log ¢ <p(§_‘,_ log 21‘5/2 + O(log d)

d /2

r

2d*

= Z log + 2 log + O(log d)

057‘<P(d) T 0§r<p(d)

< 2 UWN; d) + f(=N; d)} log 2d*"

1sN

(d) log 2?{ + O(log d)
< Alogd-Klog K + %p(d) log (4dK-?) + O(K log d) .

In particular taking K = 2d'*(log d)™® we obtain
log ¢ < 3p(d) log log d + o(d?) .

Now for d = 2%+ we have ¢ = (1 + 1/ 2)*, i.e., log ¢ > Ad'* where
A > 0 and so p(d) # o(d'/?/log log d), as required.
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Proof of Theorem 4. If loge # o(d"*log d), then there exists a
positive constant ¢, < ¢ so that for infinitely many values of d, loge >
c,d*log d. Let g(N; d) denote the number of distinet primitive
classes of solutions of 2* — dy* = N for which #/y occurs as a con-
vergent to the continued fraction for d“*. Then

2pd)z 3, 9(N;d)

—2d1/2<N <2412

and
2472
loge < S, g(N; d) log + O(log d) .
—2d1/2<N<2d1/2 |N|
Thus if £ =1,
2d'/?
loge —2p(d)logk < >,  g(N; d)log —— + O(log d)
—2d1/2<N<2dl 2 k I N[
< N: d) log 222 1 0og d)
=0<1N|<Zdl/2k_ly( ; d) log W] + O(log
2d2
< w(N)
= o<n Saatz-t 2 log N + O(log d)

since g(N; d) < f(N; d). Thus

log e — 2p(d) log k < F,(2d**k™) + O(log d)
< ed k" log d + O(d™?) .

Thus if k& > ¢/e,, we have for infinitely many values of d,

ke, — ¢
d) > 2 —C g log d + 0¥ ,
(d) 2% Tog og d + O(d'?)

as required.
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