FINITE GROUPS WITH A STANDARD COMPONENT OF TYPE J_4

LARRY FINKELSTEIN
FINITE GROUPS WITH A STANDARD COMPONENT
OF TYPE J_4

LARRY FINKELSTEIN

In this paper, it is shown that if G is a core-free group with a standard component A of type J_4, then either A is normal in G or the normal closure of A in G is isomorphic to the direct product of two copies of J_4.

1. Introduction. Janko [17] has recently given evidence for the existence of a new finite simple group. In particular, Janko assumes that G is a finite simple group which contains an involution z such that $H = C(z)$ satisfies the following conditions:

(i) The subgroup $E = O_2(H)$ is an extra-special group of order 2^{13} and $C_H(E) \subseteq E$.

(ii) H has a subgroup H_0 of index 2 such that H_0/E is isomorphic to the triple cover of M_{22}.

He then shows that G has order $2^{26} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23 \cdot 39 \cdot 31 \cdot 37 \cdot 43$ and describes the conjugacy classes and subgroup structure of G. In this paper we shall assume that J_4 is a finite simple group which satisfies Janko's assumptions and shall prove

Theorem A. Let G be finite group with $O(G) = 1$, A a standard component of G isomorphic to J_4 and $X = \langle A^0 \rangle$. Then either $X = A$ or $X \cong A \times A$.

Our proof follows the outline given in [6] and makes use of two key facts; namely, that J_4 has a 2-local subgroup isomorphic to the split extension of E_{211} by M_{24} and that J_4 has one class of elements of order 3 with the centralizer of an element of order 3 isomorphic to the full cover of M_{22}. We also make use of the characterization of finite groups with a standard component isomorphic to M_{24} which was recently obtained by Koch [18].

2. Properties of J_4. In this section, we shall describe certain properties of J_4 and its subgroups which will be required for the proof of Theorem A. Most of these properties are found in [17] and will be listed without proof. A will denote a group isomorphic to J_4.

(2.1) A has 2 classes of elements of order 2 denoted by (2_1) and (2_2). If $t \in (2_1)$ and $E = O_2(C(t))$, then E is isomorphic to an extra special group of order 2^{13}, $C(E) = Z(E)$, $O_{5,3}(C(t))/E$ has order 3 and
\[C(t)/O_{2a}(C(t)) \cong \text{Aut}(M_{22}). \] Moreover, if \(\langle \beta \rangle \in \text{Syl}_3 \left(O_{2a}(C(t)) \right) \), then \(\langle \beta \rangle \) acts regularly on \(E/Z(E) \). For \(x \in (2_3) \), \(C(x) \) is isomorphic to a split extension of \(E_{211} \) by \(\text{Aut}(M_{22}) \) with \(C(x) \) acting indecomposably on \(O_{2a}(C(x)) \).

(2.2) \(A \) has one class of elements of order 3. If \(\gamma \in A \) has order 3, then \(C(\gamma) \) is isomorphic to the 6-fold cover of \(M_{22} \).

(2.3) \(A \) has two classes of elements of order 7. If \(\delta \in A \) has order 7, then \(C_A(\delta) \cong Z_7 \times S_5 \) and \(\delta \not\sim \delta^{-1} \).

(2.4) Let \(T_0 \in \text{Syl}_3(A) \). Then \(T_0 \) has precisely one \(E_{211} \) subgroup, denoted by \(U \). \(N(U) = UK \) where \(K \cong M_{24} \). The orbits of \(K \) on \(U^* \) are \((2) \cap U \) of order \(7 \cdot 11 \cdot 23 \) and \((2) \cap U \) of order \(4 \cdot 3 \cdot 23 \).

In the above, \(U \) is isomorphic to the so-called “Fischer” module for \(M_{24} \). The following is an important property of the Fischer module.

(2.5) Let \((*) 1 \rightarrow R \rightarrow V \rightarrow U \rightarrow 1 \) be an extension of \(F_2M_{24} \) modules where \(R \) is a trivial module of dimension 1 and \(U \) is isomorphic to the Fischer module. Then the extension splits.

\[\text{Proof.} \] Let \(\tilde{U} \) and \(\tilde{V} \) be the \(F_2M_{24} \) modules dual to \(U \) and \(V \) respectively. Then we have the extension \((*) 1 \rightarrow \tilde{U} \rightarrow \tilde{V} \rightarrow R \rightarrow 1 \). It suffices to show that \((*) \) splits. Since \(U \) is not a self dual module and since there exists precisely 2 nonisomorphic \(F_2M_{24} \) modules of dimension 11 (see James [16]), \(\tilde{U} \) is isomorphic to the so-called Conway module [5]. Thus \(M_{24} \) has 2 orbits on \((\tilde{U})^* \). If \(u_1 \) and \(u_2 \) are representatives of these 2 orbits, then \(C_{M_{24}}(u_i) \cong \text{Hol}(E_{11}) \) and \(C_{M_{24}}(u_2) \cong \text{Aut}(M_{22}) \).

Since \(|\tilde{V}| = 2^{12} \), there exists a vector \(v \in \tilde{V} - \tilde{U} \) such that \(v \) is fixed by a Sylow 23 subgroup \(S \) of \(M_{24} \). The orbit of \(M_{24} \) on \((\tilde{V})^* \) which contains \(v \) has order \([M_{24}: C_{M_{24}}(v)] \) and is not divisible by 23. Therefore, by examining the list of maximal subgroups of \(M_{24} \) [5], together with \([M_{24}: C_{M_{24}}(v)] \leq 2^{12} \), we see that \(C_{M_{24}}(v) \) contains a subgroup \(L \) isomorphic to \(M_{22} \). Consider the action on \(\tilde{V} \) of an \(M_{22} \) subgroup \(M \) of \(L \). Then \(M \) has no fixed points on \(\tilde{U}^* \), so in fact \(C_M(M) = \langle v \rangle \). Therefore \(N_{M_{24}}(M) \cong \text{Aut}(M_{22}) \) fixes \(\langle v \rangle \) as well. Finally \(\langle L, N_{M_{24}}(M) \rangle = M_{24} \) centralizes \(\langle v \rangle \) and the extension splits.

We shall denote by \(E_{211} \cdot M_{24} \) a split extension of \(E_{211} \) by \(M_{24} \) in which \(E_{211} \) is \(F_2M_{24} \) isomorphic to the Fischer module.

(2.6) Let \(M = UK \) be isomorphic to \(E_{211} \cdot M_{24} \) with \(U = O_4(M) \)
and \(K \cong M_d \). Then the classes of elements of order 2 and 3 of \(M \) and the orders of the centralizers in \(M \) of a representative \(\lambda \) are as follows

| Class | \(|C_U(\lambda)|\) | \(|C_M(\lambda)|\) |
|-------|-------------------|-------------------|
| \((2_1)\) | \(2^{11}\) | \(2^{27} \cdot 3^5 \cdot 5 \cdot 7 \cdot 11 \) |
| \((2_2)\) | \(2^{11}\) | \(2^{27} \cdot 3^5 \cdot 7 \cdot 11 \) |
| \((2_3)\) | \(2^7\) | \(2^{21} \cdot 3^5 \cdot 7 \) |
| \((2_4)\) | \(2^7\) | \(2^{21} \cdot 3^5 \) |
| \((2_5)\) | \(2^5\) | \(2^{21} \cdot 3^5 \cdot 5 \) |
| \((2_6)\) | \(2^5\) | \(2^{21} \cdot 3^5 \) |
| \((3_1)\) | \(2^5\) | \(2^{21} \cdot 3^5 \) |
| \((3_2)\) | \(2^3\) | \(2^{21} \cdot 3^5 \cdot 7 \) |

Moreover, if \(\lambda_i \in (3_i) \cap K \) then \(C_M(\lambda_i) = C_U(\lambda_i)C_K(\lambda_i) \) with \(C_K(\lambda_i) \) isomorphic to the 3-fold cover of \(A_6 \), \(C_K(\lambda_2) \cong Z_3 \times L_4(7) \) and where \(C_K(\lambda_i)/\langle \lambda_i \rangle \) acts faithfully on \(C_U(\lambda_i) \), \(i = 1, 2 \).

Proof. Let \(\lambda \) be an involution of \(M - U \), \(\alpha_1, \alpha_2, \ldots, \alpha_n \) the orbits of \(C_M(\lambda U/U) \) on \(\lambda C_U(\lambda) \) and \(\alpha_i \) an element of \(\alpha_i \), \(i = 1, \ldots, n \). Then \(\alpha_i \) is conjugate to \(\alpha_j \) in \(M \) exactly when \(i = j \) and also \(|C_M(\alpha_i)| = |C_M(\lambda U)|/|\alpha_i| \). Now \(K \) has 2 classes of involutions with representatives \(\lambda \) and \(\eta \) having centralizers in \(K \) of order \(2^{20} \cdot 3 \cdot 7 \) and \(2^9 \cdot 3 \cdot 5 \) respectively. Noting that the action of \(K \) on \(U \) is dual to the action of \(K \) on the Conway module, it is easy to see that \(|C_U(\lambda)| = 2^7 \) and \(|C_U(\eta)| = 2^5 \). Observe that \(U \) has 8 orbits on \(\lambda C_U(\lambda) \), each of which has length 16. Moreover an element of order 7 of \(C_K(\lambda) \) fixes 2 points of \(C_U(\lambda) \) and therefore must permute 7 of these orbits. Since \(|C_U(\lambda)| = |C_K(\lambda)| = |C_U(\lambda)| = 2^{27} \cdot 3 \cdot 7 \), it then follows that \(C_K(\lambda U/U) \) acting on \(\lambda C_U(\lambda) \) has one orbit of length 16 and one orbit of length 7 \cdot 16 = 112 with \(\lambda \) an element of the orbit of length 16. This accounts for the classes \((2_3)\) and \((2_4)\). Similar reasoning accounts for the classes \((2_5)\) and \((2_6)\). We already know from \((2.4)\) that \(M \) has orbits on \(U^* \) of lengths 4 \cdot 3 \cdot 23 and 7 \cdot 11 \cdot 23 \) and thus the classes of involutions of \(M \) are as described.

Let \(\gamma \) and \(\tau \) be representatives of the classes of element of order 3 of \(K \) with \(C_K(\gamma) \) isomorphic to the 3-fold cover of \(A_6 \) and \(C_K(\tau) \cong Z_3 \times L_4(7) \). Clearly \(\gamma \) and \(\tau \) are representatives of the 2 classes of elements of order 3 of \(M \). It suffices to determine the orders of \(C_U(\gamma) \) and \(C_U(\tau) \). As before, we may appeal to the action of \(K \) on the Conway module to obtain \(|C_U(\gamma)| = 2^5 \) and \(|C_U(\tau)| = 2^9 \) as required.

NOTATION. If \(H \) is a simple group, then \(nH \) will denote a proper
n-fold covering of H. If the multiplier of H is cyclic, then nH is unique up to isomorphism. Also let $E_{33} \cdot 3A_6$ be the group isomorphic to the centralizer of an element of order 3 of the class (3) of $E_{32} \cdot M_{24}$. Note that $E_{33} \cdot 3A_6$ is isomorphic to a 2-local subgroup of $6M_{22}$.

(2.7) The Schur multiplier of J_4 is trivial.

Proof. See Griess [14].

(2.8) $\text{Aut}(J_4) \cong J_4$.

Proof. Let $A \cong J_4$ and suppose that $\alpha \in \text{Aut}(A)$. We may imbed A in $\text{Aut}(A)$ and assume by way of a contradiction that $\alpha \notin A$ but $\alpha^p \in A$ for some prime p. Set $G = \langle A, \alpha \rangle$.

By (2.4), we may assume that $\alpha \in N_\alpha(U)$ where U is an E_{31} subgroup of A, $N_\alpha(U) = UK = E_{31} \cdot M_{24}$ and $K \cong M_{24}$. Since $\text{Aut}(K) \cong K$, we may further assume that $N_\alpha(U)/U = \langle \alpha \rangle \times K$. It is known [16] that U is an absolutely irreducible F_2K module, hence by a result of Schur, we have $[\alpha, U] = 1$. Two cases now arise; namely $[\alpha, K] = 1$ and $[\alpha, K] \neq 1$.

If $[\alpha, K] \neq 1$, then it is clear that α is a 2-element. Also the fact that $\mathcal{O}'(\langle U, \alpha \rangle)$ is a proper K invariant subgroup of U forces $\mathcal{O}'(\langle U, \alpha \rangle) = 1$. Hence $\langle U, \alpha \rangle \cong E_{32}$ and K acts indecomposably on $\langle U, \alpha \rangle$. Without loss, we may assume that α is centralized by a Sylow 23 subgroup of K. By arguing as in (2.5), it then follows that $C_3(\alpha) \cong M_{23}$. Therefore in either case, we have that $C_{UK}(\alpha) \cong UK_0$ where K_0 is an M_{23} subgroup of K.

Let γ be an element of order 3 of K_0. Then $C_{K_0}(\gamma) \cong Z_3 \times A_5$ implies that $C_U(\gamma) \cong E_{33}$ by (2.6). Also $C_3(\gamma) \cong 6M_{22}$ and $m_3(C_3(\gamma)) = 5$ [4] gives $O_3(C_3(\gamma)) \leq C_6(\gamma)$. Setting $\overline{C_3(\gamma)} = C_3(\gamma)/Z(C_3(\gamma)) \cong M_{22}$, we conclude that α centralizes a subgroup of $\overline{C_3(\gamma)}$ isomorphic to a split extension of E_{16} by A_5. But no nontrivial automorphism of M_{22} centralizes such a subgroup [9] and therefore $[\alpha, C_3(\gamma)] \leq Z(C_3(\gamma))$. By the 3-subgroup lemma, we then have $C_3(\gamma) \leq C_3(\alpha)$. Since γ is inverted by an element of $K_0 \leq C_3(\alpha)$, it follows that $N_\alpha(\langle \gamma \rangle) \leq C_3(\alpha)$ as well.

Finally, let $\langle t \rangle = O_3(C_3(\gamma))$ so that $C_3(t) = E \cdot N_3(\langle \gamma \rangle)$ by (2.1), where $E = O_3(C_3(t))$ is extra special of order 2^{13}. Observe that $C_3(\gamma)$ acts irreducibly on $E/\langle t \rangle$. Combining this with $[C_3(\gamma), \alpha] = 1$ and $C_3(\alpha) \geq U \cap E > \langle t \rangle$, we conclude that $E \leq C_3(\alpha)$. Therefore we are in the position where $C_3(\alpha) \geq C_3(t)$ and $C_{UK}(\alpha) = UK_0$ or UK with $K_0 \cong M_{23}$. But $C_3(t)$ contains a Sylow 2 subgroup of $N_\alpha(U)$ implies that $C_{UK}(\alpha) = UK$ and this gives $C_3(\alpha) \geq \langle UK, C_3(t) \rangle$. An easy argu-
ment shows that $C_A(\alpha)$ is simple with $C_{C_A(\alpha)}(t) = C_A(t)$. Thus by Janko's theorem [17], $|C_A(\alpha)| = |A|$ which of course gives $A = C_A(\alpha)$, a contradiction.

3. Preliminary results. In this section we present certain technical results which are necessary for the proof of Theorem A.

(3.1) Let G be a group, A a standard component of G with $C(A)$ of 2 rank 1. Let $S \in \text{Syl}_2(N(A))$. Assume that $S \in \text{Syl}_2(G)$ and $Z(S) \leq AC(A)$. Then $[A, O(G)] = 1$.

Proof. See Seitz [19].

(3.2) Let M be a group containing an involution z such that $C(z) = O(C(z)) \times \langle z \rangle \times U K$ where $K \cong M_{24}$ and U is $F_4 K$ isomorphic to the Fischer module. Let $V = \langle z, U \rangle$ and $N = N(V)$. Then either

(i) $z \in Z(N)$ or
(ii) $N = O(N) \times WK$ where $W = \langle z \rangle Y$ is special of order 2^{23} with $Z(W) = U$ and where Y is a homocyclic abelian group of order 2^{22} invariant under K with $Y/U \cong F_2 K$ isomorphic to U.

Proof. Assume that $z \in Z(N)$ and let $\bar{N} = N/O(N)$. By (2.2), the orbits of K on U^z are t^K of order 1771 and x^K of order 276 with $C_K(x) \cong \text{Aut}(M_{24})$. Moreover both t and x are squares in UK, hence $z^N \cap U = \emptyset$. Now the orbits of $C(z)$ on V^z are precisely

<table>
<thead>
<tr>
<th>Orbit</th>
<th>${z}$</th>
<th>t^K</th>
<th>x^K</th>
<th>$(zt)^K$</th>
<th>$(zx)^K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td>1771</td>
<td>276</td>
<td>1771</td>
<td>276</td>
</tr>
</tbody>
</table>

Since $z \not\in Z(N)$ and $z^N \cap U = \emptyset$, z^N must be a union of some of the sets $\{z\}, (zt)^K, (zx)^K$. But $|z^N|$ is a divisor of $|L_{13}(2)|$ then gives $z^N = zU$.

Representing N on $z^N = zU$, we have $|N| = 2^{11} |N_{11}(V)|$, hence $|\bar{N}| = 2^{22} |M_{24}|$. Moreover U is generated by those involutions of V not conjugate to z so that $U \lhd N$. Assume that $C_N(U) = O(N)V$. Then \bar{N}/\bar{V} acts faithfully on \bar{U} and is therefore isomorphic to a subgroup of $L_{11}(2)$. Let $S \in \text{Syl}_{11}(K)$ so that $N_K(S)$ is isomorphic to a Frobenius group of order 10·11. Since S fixes 2 points of zN, it follows that $|C_N(\bar{S})| = 2 |C_N(\langle z, \bar{S} \rangle)| = 2^{9} \cdot 11$. Hence a Sylow 11 subgroup of \bar{N}/\bar{V} has centralizer of even order which contradicts the fact that a Sylow 11 subgroup of $L_{11}(2)$ has centralizer of odd order. We conclude that $C_N(U)$ properly contains $O(N)V$.

It is easy to see from the action of K on $C_N(U)$ that $C_N(U) = O(N)W$ where $W/U \cong E_{112}$. Furthermore, $C_N(z) = V$ implies that $Z(W) = U$ and $[z, W] = U$. Thus W is a special 2-group of order
with $Z(W) = U$. We will in fact show that $N = O(N) \times WK$. To see this, observe that $V\langle K^\nu \rangle$ covers \bar{N} together with $[VK, O(N)] = 1$ implies that $N = O(N)C_N(O(N))$. A simple argument establishes that $O^\nu(C_N(O(N))) = WK$ and therefore $N = O(N) \times WK$. For the remainder of the proof, we may assume that $O(N) = 1$.

Consider the homomorphism $\varphi: W \rightarrow U$ by $\varphi(w) = [z, w]$. It is easy to see that φ induces an F_2K isomorphism between W/V and U. But then W/U is an F_2K module which satisfies, the hypotheses of (2.5) and thus $W/U = V/U \times Y/U$ where Y/U is F_2K isomorphic to U. It remains for us to show that Y is a homocyclic abelian group. Assume not. Then by the action of K on Y, $Z(Y) = U$. Let L be a subgroup of K isomorphic to $\text{Aut}(M_{22})$. It follows from the properties of the Fischer module that $|C_{Y/U}(L)| = |C_U(L)| = 2$ with $C_{Y/U}(L)$ and $C_U(L)$ the unique proper L invariant submodules of Y/U and U respectively. Let $\langle y, U \rangle = C_{Y/U}(L)$ so that L normalizes $\langle y, U \rangle$. Since $y \notin Z(Y)$, $1 \neq [y, Y] < U$ and since L normalizes $\langle y, U \rangle$, $Y = [y, Y]$ we must have $[y, Y] = C_U(L)$. This in turn implies that $[Y: C_Y(y)] = 2$. But L normalizes $C_Y(\langle y, U \rangle) = C_Y(y)$, hence $C_Y(y)/U$ as well and this gives a contradiction.

(3.3) Let $Y \cong E_{222}$ and M a subgroup of $\text{Aut}(Y)$ such that $M = M_i \times M_j$ with $M_i \cong M_j \cong M_{22}$. Then $Y = Y_i \oplus Y_j$ where $[Y_i, M_i] = Y_i$ and $[Y_j, M_j] = 0$, $i \neq j$.

Proof. Let γ be an element of order 23 of $\text{Aut}(Y)$. If γ acts regularly on Y, then $C_{\text{Aut}(Y)}(\gamma)$ is isomorphic to $GL_4(2^{11})$ or is cyclic. Otherwise $\dim(C_{\text{Aut}(Y)}(\gamma)) = 11$ and $C_{\text{Aut}(Y)}(\gamma) \cong Z_{1023} \times L_{11}(2)$. Let $\gamma_i \in M_i$ be an element of order 23. Then it is clear that $\dim(C_{Y_i}(\gamma_i)) = 11$. If we set $Y_i = C_{Y_i}(\gamma_i)$, $i \neq j$, then an easy argument verifies that Y_i and Y_j satisfy $[Y_i, M_j] = 0$, $i \neq j$ and $[Y_i, M_i] = Y_i$, $i = 1, 2$ as required.

In the next result, we list certain properties of $2M_{22}$ which are required for (3.5).

(3.4) Let $D \cong 2M_{22}$, $T \in \text{Syl}_2(D)$. Then
(i) D has 3 classes of involutions.
(ii) $Z(T)$ has order 4 and contains representatives of the classes of involutions of D.
(iii) T has precisely 2 E_{22} subgroups, say F_1 and F_2. Each is normal in T and self-centralizing in D. Also $N(F_1)/F_1 \cong A_5$ and $N(F_2)/F_2 \cong S_5$.

Proof. See Burgoyne and Fong [4].

(3.5) Let Γ be a group with an involution z such that $C(z) =$
$O(C(z))D(z)$ with $D = E(C(z))$ and $D/O(D) \cong 2M_{22}$. Assume further that Γ has a 2-subgroup $R^* = (R_1 \times R_2)z$ where $R_2 = R_1^\alpha$ has type $2M_{22}$ and $R = R_1 \times R_2 \leq O^2(\Gamma)$. Then $\Gamma = O(\Gamma)E(\Gamma)z$ with $E(\Gamma)/O(E(\Gamma)) \cong 2M_{22} \times 2M_{22}$.

Proof. By assumption and (3.4)(iii), R has a normal subgroup $V = V_1 \times V_2$ where $V_i \vartriangleleft R_i$ and $V_i \cong E_{33}$, $i = 1, 2$. If α is an involution of R, then $m_2(C_{R_i}(\alpha)) \geq 3$, $i = 1, 2$, gives $m_2(C_R(\alpha)) \geq 7$. Since $m_2(C(z)) = 6$, it follows that $z^\alpha \cap R = \varnothing$. Also all involutions of $R^* - R$ are conjugate to z which then implies that $z^\alpha \cap R^* = z^{R^*}$. Since $R^e(z) \in \text{Syl}_2(C(z))$, we see that $R^e \in \text{Syl}_2(\Gamma)$. Furthermore by the Thompson transfer lemma and assumption, $z \notin O^2(\Gamma)$ and $R \in \text{Syl}_2(O^2(\Gamma))$. Let $A = O^2(\Gamma)$.

We now examine the structure of $C(D)$. Observe that $C_{C(D)}(z) = O(C(z))z$ where $\langle t \rangle = O_d(D)$. By a result of Suzuki, $O(D)$ has dihedral or semidihedral Sylow 2 subgroups. Let $Z \in \text{Syl}_2(C(D))$ so that $\langle Z, z \rangle \in \text{Syl}_2(C(D))$. Since $C_R(z) \in \text{Syl}_2(D)$ and $Z(R) = C_R(C_R(z)) \in \text{Syl}_2(C_R(C_R(z)))$, we may assume that $Z \subseteq Z(R)$. Therefore Z is elementary abelian by (3.4)(ii) and we have either $\langle Z, z \rangle \cong D_8$ and $Z \cong E_4$, or $Z = \langle t \rangle$. Let $N = N(Z)$ and $\bar{N} = N/Z$. In either case, $\langle z \rangle \in \text{Syl}_2(C_{\bar{N}}(\bar{D}))$ and $C_{\bar{N}}(\bar{z}) \leq N_{\bar{N}}(\bar{D})$ together imply that \bar{D} is a standard component of \bar{N}. By Theorem A [8] and (3.1), $E(\bar{N}) = \langle \bar{D}^2 \rangle$, $Z(E(\bar{N}))$ has odd order and $E(\bar{N})/Z(E(\bar{N})) \cong M_{22} \times M_{22}$. Let $K = E(N)$ have components K_1 and K_2 with $K^e_1 = K_2$ and $K_1/K_2 \subseteq M_{22}$. Then $D = C_K(D)$ and $D/O(D) \cong 2M_{22}$ implies that $K/O(K) \cong 2M_{22} \times 2M_{22}$. Thus $|Z| = 4$ and $K = O^2(C_d(Z))$.

Note that $R \leq K$. Without loss, we may assume that $R_i \leq K_i$, $i = 1, 2$. By (3.4)(iii), let V_i and W_i be the 2 E_{33} subgroups of R_i with $C_{R_1}(V_i) = O(K_1)V_i$, $C_{R_1}(w_i) = O(K_2)W_i$, $N_{R_1}(V_i)/C_{R_1}(V_i) \cong S_6$ and $N_{R_2}(W_i)/C_{R_2}(W_i) \cong A_8$, $i = 1, 2$. Set $W = W_1 \times W_2$, $M = N(W)$ and $\bar{M} = M/W$. Then $M \cap K = E(M \cap K)O(M \cap K)$ with $E(M \cap K)/O(E(M \cap K)) \cong A_8 \times A_8$. Since $W_1 = W_2$, $C_M(zW) = N(\langle z, W \rangle) = WC_M(z)$. Also $K = K_1K_2$ with $K^e_1 = K_2$ implies that $C_{M \cap K}(z)$ involves A_8. Hence by (3.4)(iii), $C_M(\bar{z}) = \langle \bar{z} \rangle \times O(C_d(\bar{z}))(D \cap \bar{M})$ where $D \cap \bar{M} = E(C_{\bar{M}}(\bar{z}))$ and $D \cap \bar{M}/O(D \cap \bar{M}) \cong A_8$. It now follows that $D \cap \bar{M}$ is a standard component of \bar{M} and we have from Proposition 2.3 [7] and (3.1) that $\bar{M} = O(\bar{M})E(\bar{M})\langle \bar{z} \rangle$ with $E(\bar{M})/O(E(\bar{M})) \cong A_8 \times A_8$. Furthermore $E(D \cap \bar{M}) = E(\bar{M})$ then implies that $Z = C_M(E(\bar{M}))$ and this yields $Z \vartriangleleft M$.

Our next goal is to show that $ZO(\Gamma) \vartriangleleft \Gamma$. Towards this end, observe that W, $W_1 \times V_2$, $V_1 \times W_2$ and $V_1 \times V_2$ are the only E_{30} subgroups of R and that S_5 is not involved in $N_4(W)$ whereas S_5 is involved in $N_4(W_1 \times V_2)$, $N_4(V_1 \times W_2)$ and $N_4(V_1 \times V_2)$. This prevents W from fusing in Γ to $W_1 \times V_2$, $V_1 \times W_2$ or $V_1 \times V_2$ and
yields \(W \triangleleft N_\lambda(R) \). Now \(Z(R) \) contains representatives of the classes of involutions of \(K \) by (3.4i), hence of \(A \) as well. Since \(Z \leq Z(R) \), \(Z \) fails to be strongly closed in \(R \) with respect to \(A \) only when \(Z^x \cap Z(R) \not\subseteq Z \) for some \(\lambda \in A \). If in fact this happens, then we may choose \(\lambda \in N_\lambda(R) \). But \(W \triangleleft N_\lambda(W) \) and \(Z \triangleleft N_\lambda(W) \) then gives \(Z^x = Z \), a contradiction. Applying Goldschmidt's theorem [11], we conclude that \(ZO(\Gamma) \triangleleft \Gamma \). This in turn yields \(\Gamma = O(\Gamma)N \).

Since \(K = E(N) = O^\prime(N) \), it suffices to show that \([K, O(\Gamma)] = 1 \). Recall that \(E(C(z)) = D = C_K(z) \). Let \(T = C_K(z) \in \text{Syl}_2(D) \) and \(Z(T) = \langle t, t_x \rangle = Z(T) \leq Z(R) \). Then for \(X = O(\Gamma) \), we have \(X = C_X(z)C_x(zt_x)C_x(t_x) \). Now \(C_X(z) \leq O(C(z)) \) and \([O(C(z)), D] = 1 \) gives \(C_X(z) \leq C_X(t_x) \). Also \(z^x = zt_x \) for some \(\lambda \in Z(R) \), hence \(t_x = t_x^\lambda \in D^\lambda = E(C(zt_x)) \). By the same reasoning, \(C_X(zt_x) \leq C_X(t_x) \) and so \([t_x, X] = 1 \). But \(\langle t_x^\lambda \rangle = K \) and therefore \([K, X] = 1 \) as required.

The next result will be used in conjunction with (3.5).

(3.6) Let \(\Gamma_0 = \Gamma_0 \times \Gamma \) with \(\Gamma_0 \leq \Gamma_0 \leq 6M_{22} \) and suppose \(H = H_1 \times H_2 \) is a perfect subgroup of \(\Gamma_0 \). Then by reindexing if necessary \(H_1 \leq \Gamma_1 \) and \(H_2 \leq \Gamma_2 \).

Proof. Let \(\tilde{\Gamma}_0 = \Gamma_0 / \Gamma \) and observe that \(\tilde{H} = \tilde{H}_1 \tilde{H}_2 \) where \(\tilde{H}_1 \) is perfect and \([\tilde{H}_1, \tilde{H}_2] = 1 \). Since \(\tilde{\Gamma}_0 \cong 6M_{22} \) and \(6M_{22} \) contains no subgroup which is the central product of two proper perfect subgroups (see Conway [5], p. 235), \(\tilde{H} \neq 1 \) and either \(H_1 \leq \Gamma_1 \) or \(H_2 \leq \Gamma_2 \). Assume that \(H_1 \leq \Gamma_1 \). Then by the same reasoning applied to \(\Gamma_0 / \Gamma_2 \), we have \(H_2 \leq \Gamma_2 \).

4. Proof of Theorem A. Let \(G \) be a group with \(O(G) = 1 \), \(A \) a standard component of \(G \) with \(A/\text{Z}(A) \cong J_4 \) and \(X = \langle A^\theta \rangle \). Furthermore, let \(K = C(A) \) and \(R \in \text{Syl}_2(K) \). It follows from (2.7) that \(Z(A) = 1 \) and from (2.8) that \(N(A) = KA \). We shall assume that \(G \) is a minimal counterexample to Theorem A. Thus \(X \neq A \) whereupon \(X \) is simple and \(G \leq \text{Aut}(X) \) by Lemma 2.5 [1].

(4.1) \(|R| = 2\). Consequently \(G = \langle X, R \rangle \).

Proof. Let \(g \in G - N(A) \) be chosen so that \(Q = K^g \cap N(A) \) has a Sylow 2 subgroup \(T \) of maximal order. If \(m(R) > 1 \), then by ([13], (3.2) and (3.3)), \(R \) is elementary abelian and we may choose \(g \) so that \(T = R^g \). On the other hand, if \(m(R) = 1 \) and \(T \) is trivial, then \(\Omega_1(R) \) is isolated in \(C(\Omega_1(R)) \), hence \(\Omega_1(R) \) is contained in \(Z^*(G) \) by [10] contradicting \(F^*(G) \) is simple. Thus in either case, we may assume that \(T \) is nontrivial.
Now $Q = N(A) = K \times A$ implies that T is isomorphic to a subgroup of A under the projection map $\pi: N(A) \rightarrow A$. An easy argument shows that Q is tightly embedded in QA. Moreover, $\pi(Q)^a = \pi(Q^a)$ for $a \in A$ then implies that $\pi(Q)$ is normalized by $\langle C_A(a); a \in \pi(T)^a \rangle$. Assume first that $m(R) > 1$ so that R is elementary abelian and $T = R^a$. Let $a \in \pi(T)^a$. Then $\pi(Q) \cap C_A(a)$ is a normal subgroup of $C_A(a)$ with Sylow 2 subgroup $\pi(T) \cong T$. The structure of $C_A(a)$ is given in (2.1) and from this we conclude that a belongs to the class $(2,2)$ of A and $\pi(Q) \cap C_A(a) = \pi(T) \cong E_{23}$. But $\pi(T)$ also contains involutions of the class $(2,2)$ and this gives a contradiction.

Assume finally that $m(T) = 1$ and let $\langle a \rangle = O_1(\pi(T))$. Arguing as before, $\pi(Q) \cap C_A(a)$ is a normal subgroup of $C_A(a)$ with Sylow 2 subgroup $\pi(T)$, hence by (2.1), $\pi(T)$ has order 2. Since $\pi(T) \cong T$, we may set $T = \langle ra \rangle$ with $1 \neq a \in A$ and $r \in R$. Now $[A, R] = 1$ gives $N_R(T) = C_R(r)$ and since $N_R(T) \cong T$ by [2, Theorem 2], we conclude that R has order 2 proving the result.

Since G is a minimal counterexample to Theorem A and A is a standard component of $\langle R, X \rangle$, with $X = \langle A^X \rangle$, it follows that $\langle R, X \rangle$ is also a counterexample to Theorem A. Hence $G = \langle X, R \rangle$.

Notation. By (4.1), we may set $\langle z \rangle = R$ so that $G = \langle X, z \rangle$. Also $C(z) = O(C(z)) \times \langle z \rangle \times A$ by (2.7) and (2.8). Let $T_0 \in Syl_2(A)$, $T = \langle z \rangle \times T_0 \in Syl_2(C(z))$ and $\{V\} = \langle z \rangle \times U = \mathcal{S}_{12}(T)$ where $U = \mathcal{S}_{12}(T_0)$. Recall from (2.4) that $N_{C(z)}(V) = O(C(z)) \times \langle z \rangle \times UK$ where $UK = N_A(U)$, $K \cong M_2$, and U is F_2K isomorphic to the Fischer module.

(4.2) $z^g \cap A = \emptyset$.

Proof. Note that z is not a square in G whereas every involution of A is a square by (2.1).

(4.3) Let $N = N(V)$. Then $z^g \cap V = zU$. $N = O(N) \times WK$ where $W = \langle z \rangle Y$ is special of order 2^{23} with $Z(W) = U$, Y is a homocyclic abelian group of order 2^{23} invariant under K and Y/U is F_2K isomorphic to U.

Proof. Since $C_N(z) = O(C(z)) \times \langle z \rangle \times UK$, it suffices, in light of (3.1), to show that $z \in Z(N)$. Assume in fact that $z \in Z(N)$. Then $V = J(T)$ and $T \in Syl_2(N)$ together imply that $T \in Syl_2(G)$. Furthermore V is weakly closed in N with respect to G and so N controls fusion of $C(V) = O(N) \times V$. But V contains representatives of the classes of involutions of $C(z)$ and therefore z is isolated in $C(z)$. Applying the Z^* theorem [10], we then have $z \in Z^*(G)$ which is incompatible with $G \leq \text{Aut}(X)$.

We continue our analysis using the structure and notation for N set up in (4.3). In order to eliminate the ambiguity in the structure of Y we need the following result.

(4.4) Let $\langle \delta \rangle \in \text{Syl}_7(A)$, $\Delta = C(\delta)$ and $\bar{\Delta} = \Delta/O(\Delta)$. Then either $
abla \cong S_5 \triangleleft Z_2$ or $\bar{\Delta} = E(\bar{\Delta})\langle \bar{z} \rangle$ where $E(\bar{\Delta}) \cong U_3(5), L_3(5)$ or $L_2(25)$.

Proof. According to (2.3), $C_A(\delta) = \langle \delta \rangle \times D$ where $D \cong S_5$. Moreover if e and d are involutions in D' and $D - D'$ respectively, then by (2.1), $e \in (2_2)$ and $d \in (2_2)$. We shall first show that z fuses to zd and ze in Δ. We know from (4.3) that z fuses to both zd and ze in G. Set $\Sigma = C(z)$ and assume that $(zd)^g = z$, $g \in G$. Now $C_B(zd)^g = C(\langle z, zd \rangle)^g = C(\langle z^g, z \rangle) = C_H(z^g)$. Since $z^g \cap H = \{ z \} \cup (zd)^h \cup (ze)^h$ and $C_H(zd) \neq C_H(ze)$, we may replace g by gh, $h \in H$, if necessary, to insure that $z^g = zd$. Thus $C_B(zd)^g = C_B(zd)$. Let $B = O^*(C_H(zd)) = \langle z \rangle \times C_A(d)$ and $B = B/O_2(B) \cong \text{Aut}(M_{22})$. Since $B^g = B$ and $\langle \delta \rangle \in \text{Syl}_7(B)$, we may assume that $\langle \delta \rangle^g = \langle \delta \rangle$. If $\delta^g \sim \delta^{-1}$, then g induces an automorphism of $O^*(B) \cong M_{22}$ in which an element of order 7 is inverted, a contradiction. Therefore $\delta^g \sim \delta$ in U and again we may replace g by gb, $b \in B$, if necessary to obtain $\delta^g = \delta$ as required.

We may prove that z fuses to ze in Δ in the exact same way making use of the fact that $O^*(C_H(zd))/O_2(C_H(zd)) \cong \text{Aut}(M_{22})$ by (2.1).

Returning to the structure of $\bar{\Delta} = \Delta/O(\Delta)$, we have $C_{\bar{\Delta}}(\bar{z}) = O(\bar{\Delta}) \times \langle \bar{z} \rangle \times \bar{D}$ so that \bar{D}' is standard in $\bar{\Delta}$. Since $\bar{\Delta}$ has sectional 2 rank at most 4 by a result of Harada [14], we may apply the main theorem of [13] to conclude that $E(\bar{\Delta})$ is isomorphic (i) A_5, (ii) $A_5 \times A_5$, (iii) $L_3(4)$, (iv) M_{12}, (v) $U_3(5)$, (vi) $L_3(5)$, (vii) $L_4(25)$, or (viii) A_7. Furthermore except in case (i), $\bar{\Delta} \leq \text{Aut}(E(\bar{\Delta}))$. Since $\bar{zd} \sim \bar{z} \sim \bar{ze}$ in $\bar{\Delta}$, and $\bar{d} \sim \bar{z} \sim \bar{e}$ by (4.2), we may easily eliminate cases (i), (iii), (iv) and (viii) and show that in case (ii), $\bar{\Delta} \cong S_5 \triangleleft Z_2$.

REMARK. If $E(\bar{\Delta})$ is simple then both $O_{z',e}(\Delta)$ and $\Delta - O_{z',e}(\Delta)$ contain one class of involutions. In particular, $z \in O_{z',e}(\Delta)$ and $\bar{d} \not\sim z \not\sim e$ together imply that the classes (2_2) and (2_2) of A fuse in G.

(4.5) $Y \cong E_{z^222}$.

Proof. It follows from (4.3) that either the result is true or Y is homocyclic of exponent 4. Assume the latter for purpose of a contradiction. We know that $N = O(N) \times WK$. Thus if $\langle \delta \rangle \in \text{Syl}_7(K)$, and $\Delta = C(\delta)$, then the structure of $\bar{\Delta} = \Delta/O(\Delta)$ is given by (4.4). Now $C_T(\delta) \cong Z_i \times Z_i$ and $C_k(\delta)$ contains an element of order 3 which acts regularly on $C_T(\delta)$. This implies that $O^*(\Delta)$ contains a $Z_i \times Z_i$ subgroup and we conclude from (4.4) that $\bar{\Delta} = E(\bar{\Delta})\langle \bar{z} \rangle$ with
$E(\bar{J}) \cong L_6(5)$. Since $E(\bar{J})$ has wreathed Sylow 2 subgroups of order 2^5 and \bar{z} acts as the graph automorphism, z must invert $C_{r}(\delta)$. But the set of all elements of Y inverted by z forms a subgroup of Y properly containing U and invariant under K which forces z to invert Y.

We claim that Y is the unique $(Z_4)^n$ subgroup of N. In fact let Y' be another such subgroup of N. Then $WK = \bar{W}K/V \cong E_{24} \cdot M_{24}$ together with $m_4(\bar{Y}') = 11$ gives $\bar{Y}' = \bar{W}$. Therefore $Y \subseteq W = \langle z \rangle Y$ and since z inverts Y, we must have $Y = Y'$. This in turn implies that W must be the unique subgroup of N of its isomorphism type as well. In particular, if $N = N(W)$, then W is weakly closed in its normalizer with respect to G. Hence N contains a Sylow 2 subgroup of G and this in turn forces N to control fusion of $C(W) = O(N)U$. Now the 2 N classes of involutions of U are the sets $(2_1) \cap U$ and $(2_2) \cap U$ of A. Also in the remark following (4.4), we observed that the classes (2_1) and (2_2) of A fuse in G if $E(\bar{J}) \cong L_6(5)$. Thus N must act transitively on U which is clearly not the case and we conclude that $N < N(W)$.

We now investigate the structure of $N(W)$. First observe that $C(W) \leq C(V)$ gives $C(W) = UO(N)$. Set $\bar{N}(W) = N(W)/U$ and consider the action of $\bar{N}(W)$ on \bar{W}. Since Y is characteristic in W, \bar{Y} is normal in $\bar{N}(W)$. Also $C_{\bar{N}(W)}(\bar{z}) = \bar{N} = \langle \bar{z} \rangle \times O(\bar{N}) \times \bar{Y}K$. Therefore we may apply (3.1) to conclude that $N(W) = O(N) \times W^*K$ where W^* is a 2-group containing W invariant under K, $W = \langle z \rangle Y^*$ where Y^* contains Y and is invariant under K with \bar{Y}^*/\bar{Y} F_2K isomorphic to \bar{Y}.

But Y^*/Y, Y/U and U are all F_2K isomorphic, hence $|C_{r}(\delta)| = 2^s$ and this in turn gives $|C_{r}(\delta)| = 2^r$ which contradicts $|\Delta| = 2^s$.

(4.6) $W \in \text{Syl}_4(C(U))$. Hence $Y \in \text{Syl}_4(C(Y))$.

Proof. The second statement follows easily from the first. Now $z^g \cap Y = \emptyset$ together with $z^w = zU$ by (4.3) gives $\langle z^g \cap W \rangle = V$. Thus V is weakly closed in W with respect to G. This implies that $N_{\text{cent}}(W) = N \cap C(U) = O(N) \times W$ by (4.3), hence $W \in \text{Syl}_4(C(U))$ as required.

(4.7) Let $M = N(Y)$ and $\bar{M} = M/Y$. Then

(i) $C_M(\bar{z}) = \bar{N} = O(N) \times \langle \bar{z} \rangle \times K$.

(ii) $\bar{z} \in Z^*(\bar{M})$.

Proof. Suppose $z^\alpha \in zY$, $\alpha \in M$. Since $z^g \cap W = z^w = zU$ by (4.3), αw normalizes V, hence $\alpha w \in N$. This in turn implies that $\alpha \in N$ and we see that $\bar{N} = C_M(z) = O(N) \times \langle \bar{z} \rangle \times K$, proving (i).
To prove (ii), let b be an involution of $UK - U$. Since z fuses to za for any involution $a \in A$ by (4.3), there exists $g \in G$ such that $z^g = zb$. By (2.4), we see that $m_2(C(zb)) = 12$ and all E_{q_2} subgroups of $C(zb)$ are conjugate. Therefore $\langle zb, C_T(zb) \rangle = V^{e_h}$ for some $h \in C(zb)$. Observe that $C_T(zb)$ is generated by those involutions of $\langle zb, C_T(zb) \rangle$ which are not conjugate to zb. Hence $U^{e_h} = C_T(zb)$.

Also $W \in \text{Syl}_2(C(U))$ by (4.6) implies that $W^{e_h} \in \text{Syl}_2(C(C_T(zb)))$. Since $\langle Y, zb \rangle \in \text{Syl}_2(C(C_T(zb)))$ as well, there exists $k \in G$ such that $W^{e_h} = \langle Y, zb \rangle$. Finally, $z^{e_hk} \in z^g \cap \langle Y, zb \rangle = (zb)^g$ implies that $z^{e_hkl} = zb$ for $l \in \langle Y, zb \rangle$. Setting $g' = ghk$, we have $z^{g'} = zb$ and $W^{g'} = \langle Y, zb \rangle$. Therefore $Y^{g'} = Y$ and $z \sim zb$ in M. We have shown that $\bar{z} \sim zb$ in \bar{M} and thus $\bar{z} \in Z^*(\bar{M})$.

(4.8) $M = O(M)(M_1 \times M_2)\langle z \rangle$ where $M_1 = M_2 \cong E_{q_1} \cdot M_{q_2}$.

Proof. If follows from (4.7) that $C_T(\bar{z}) = \langle \bar{z} \rangle \times \bar{K}$ and $\bar{z} \in Z^*(\bar{K})$. Therefore, by a result of Koch [18] and (3.1), $\bar{M} = O(\bar{M})E(\bar{M})\langle \bar{z} \rangle$ where $E(\bar{M}) \cong M_1 \times M_2$. Let M_1 and M_2 be the minimal normal subgroups of M which map onto the direct factors of $E(\bar{M})$. By (3.2), $Y = U_i \times U_2$ where $[M_i, U_i] = U_i$ and $[M_i, U_j] = 1$, $i \neq j$. It is clear that $O_2(M_i) \neq U_i$ or $O_2(M_i) = Y$, $i = 1, 2$. Assume the latter happens and set $\bar{M}_i = M_i/U_i$. Since M_i is perfect and U_2 is central in M_i, \bar{M}_i is a perfect central extension of E_{q_1} by M_{q_2}. But this contradicts the fact that M_{q_2} has trivial multiplier [4]. Therefore $O_2(M_i) = U_i$, $i = 1, 2$. Now $M_i \cap M_2 \leq O_2(M_i) \cap O_2(M_2) = U_i \cap U_2 = 1$ gives $M_iM_2 = M_i \times M_2$. Finally $M_1 = M_2 \cong C_{M_1M_2}(z) \cong E_{q_1} \cdot M_{q_2}$ proving the result.

Notation. From (4.8), let $M_0 = (M_1 \times M_2)\langle z \rangle$ with $M_1 = M_2 \cong E_{q_1} \cdot M_{q_2}$. Set $M_i = U_iK_i$ with $U_i = O_2(M_i)$, $K_i \cong M_{q_2}$ and set $M_i = U_2K_2$ with $U_2 = U_i$, $K_2 = K_i$. Furthermore, let $UK = C_{M_1M_2}(z)$ with $U = U_1U_2(z)$ and $K = C_{K_1K_2}(z)$. Finally, let $S_1 \in \text{Syl}_2(M_1)$, $S_2 = S_1 \in \text{Syl}_2(M_2)$, $S = S_1 \times S_2$ and $S^* = \langle S, z \rangle \in \text{Syl}_2(M_0)$.

(4.9) $S^* \in \text{Syl}_2(G)$, $S = S^* \cap X \in \text{Syl}_2(X)$ and $z \in X$.

Proof. First observe that all involutions of $S^* - S$ are conjugate in S^* to z and $C_{S^*}(z) \in \text{Syl}_2(C(z))$. Furthermore, it is easy to see that $z^g \cap S = \varnothing$. In fact, if s is an involution of S, then $C_T(s) = C_T(s) \times C_T(s)$ has order at least 2^a gives $m_2(C_T(s)) \geq 13$ whereas $m_2(C(z)) = 12$ by (2.4). Therefore $z^{S^*} = m_2 \cap S$ and we have at once that $S^* \in \text{Syl}_2(G)$. It is clear from the Thompson transfer lemma that $z \in O^2(G)$. Since $G = \langle X, z \rangle$, we have $X = O^2(G)$. Thus $z \in X$. Also $S \leq O^2(M_0) \leq X$ gives $S = S^* \cap X \in \text{Syl}_2(X)$.

(4.10) Let \(\gamma \) be an element of order 3 of \(A \) and \(\Gamma = C(\gamma) \). Then
\[
\Gamma = O(\Gamma)E(\Gamma)\langle z \rangle \text{ where } E(\Gamma) = \Gamma_1 \times \Gamma_2 \text{ and } \Gamma_i = \Gamma_2 \cong 6M_{22}.
\]

Proof. First observe from (2.2) that \(C_i(z) = O(C(z)) \times \langle z \rangle \times C_A(\gamma) \) where \(C_A(\gamma) \cong 6M_{22} \). Also by (2.2) we may assume that \(\gamma \) belongs to the class (3) of \(UK \). Thus we may write \(\gamma = \gamma _1 \gamma _2 \) where \(\gamma _1 = \gamma _i \) and \(\gamma _i \) belongs to the class (2) of \(M_i, i = 1, 2 \). Applying (2.6) gives
\[
C_{M_0}(\gamma) = \langle C_{M_1}(\gamma), C_{M_2}(\gamma) \rangle \langle z \rangle \text{ where } C_{M_1}(\gamma)^i = C_{M_2}(\gamma)^i \cong E_{29} \rtimes 3A_4.
\]
Since \(C_{M_1}(\gamma) \) is isomorphic to a 2-local subgroup of \(6M_{22} \) which contains a Sylow 2 subgroup of \(6M_{22} \), we may set \(R^* \in Syl_2(C_{M_0}(\gamma)) \) where \(R = \langle R_1 \times R_2 \rangle \langle z \rangle, R_2 \in Syl(C_{M_1}(\gamma)) \) and \(R_2 = R_3^* \) has type \(2M_{22} \). Also \(R_1 \times R_2 \leq O^2(\Gamma) \). Thus by (3.5), \(\Gamma = O(\Gamma)E(\Gamma)\langle z \rangle \) where \(E(\Gamma)/O(\Gamma(\Gamma)) \cong 2M_{22} \times 2M_{22} \). But \((C_{M_0}(\gamma))^{(\circ \circ)} = C_{M_1}(\gamma) \times C_{M_2}(\gamma) \leq E(\Gamma) \) then gives \(E(\Gamma) = \Gamma_1 \times \Gamma_2 \) where \(\Gamma_2 = \Gamma_1 \cong 6M_{22} \).

(4.11) Let \(\gamma_i \) and \(\tau_i \) be representatives of the classes (3) and (3) respectively of \(M_i \) with \(\gamma_i = \gamma_i \) and \(\tau_i = \tau_i \). Let \(\gamma = \gamma \gamma_i \tau_i \gamma_i \) and \(\tau = \tau \tau_i \tau_i \). Then \(\gamma, \tau_i, \tau_i \gamma_i \) and \(\gamma \) are conjugate in \(X \).

Proof. We know that \(\tau \) is conjugate to \(\gamma \) in \(A \) by (2.2). Since \(z \) leaves \(\gamma^2 \) invariant under conjugation and \((\tau_i \gamma_i)^2 = \gamma_i \tau_i \), it suffices to show that \(\tau_i \gamma_i \) fuses to \(\gamma \) in \(X \). This in turn may be proved by verifying that \(\tau_i \) fuses to \(\gamma_i \) in \(C_X(\gamma_i) \). Let \(P_i \in Syl_3(M_i) \) with \(P_i = P_2, Z(P_i) = \langle \gamma_i \rangle \) and assume that \(\tau_i \in P_i, i = 1, 2 \). Since \(C_{M_0}(\gamma)^{(\circ \circ)} = C_{M_1}(\gamma) \times C_{M_2}(\gamma) \) is contained in \(E(\Gamma) = \Gamma_1 \times \Gamma_2 \), it follows from (3.6), that subject to reindexing, if necessary, \(C_{M_i}(\gamma_i) \leq \Gamma_i, i = 1, 2 \). In particular, \(P_i \in Syl_3(\Gamma_i) \) and \(\langle \gamma_i \rangle = O_3(\Gamma_i), i = 1, 2 \). Now \(P_1 \) contains an \(E_9 \) subgroup \(\langle \gamma_i, \gamma_i^* \rangle \) all of whose elements of order 3 are conjugate in \(M_i \) to \(\gamma_i \). On the other hand, \(M_{22} \) contains one class of elements of order 3, hence \(\tau_i \) is conjugate in \(\Gamma_i \) to an element of \(\langle \gamma_i, \gamma_i^* \rangle \). Therefore, \(\gamma_i \) is conjugate to \(\tau_i \) in \(\langle M_i, \Gamma_i \rangle \leq C_X(\gamma_i) \) as required.

(4.12) \(I(S_i) = U_i^X \cap I(S) \).

Proof. Since \(S \) has type \(J_s \times J_s = Y = J(S) \) by (2.4). Therefore \(N_X(Y) \) controls fusion of \(Y \) and we have that \(U_i^X \cap Y = U_i, i = 1, 2 \).

We now observe from (2.6) that every involution of \(M_i M_2 - Y \) centralizes an element of order 3 of \(M_i M_2 \), which is conjugate to \(\tau_i \tau_2 = \tau, \gamma_i \gamma_2 = \gamma, \gamma_i \gamma_2 \) or \(\gamma_i \gamma_2 \). Also \(C_{M_1}(\gamma_i) = C_{U_i}(\gamma_i)C_{K_1}(\gamma_i) \cong E_{29} \rtimes 3A_4 \) and \(C_{M_1}(\gamma_i) \cong C_{U_i}(\gamma_i)C_{K_1}(\gamma_i) \cong E_9(L_3(2) \times Z_3) \). In the course of proving (4.11), we showed that up to reindexing, it may be assumed that \(C_{M_1}(\gamma_i) \leq \Gamma_i, i = 1, 2 \). Let \(R = R_1 \times R_2 \in Syl_2(\Gamma_i \Gamma_i) \) where \(R_1 \in Syl_2(\Gamma_i) \) and \(R_2 \leq C_{M_1}(\gamma_i), i = 1, 2 \). By (3.4), \(Z(R_i) \) has order 4 and contains representatives of the 3 classes of involutions of \(\Gamma_i, i = 1, 2 \). But
then every involution of \(R_i \) is conjugate to an element of \(Z(R_i) \) whereas every involution of \(R - R_i \) is conjugate to an element of \(Z(R) - Z(R_i) \). Since \(Y \cap R = (U_i \cap R_i) \times (U_i \cap R_i) \) with \(U_i \cap R_i \cong E_2 \), we have \(Z(R_i) \leq U_i \) and \(Z(R) - Z(R_i) \leq U - U_i \). Therefore \(U_i^n \cap Y = U_i \) then yields \(Z(R_i)^x \cap Z(R) = Z(R_i) \). We now conclude that \(I(R_i) = U_i^n \cap I(R) \), \(i = 1,2 \) and this in turn gives \(I(\Gamma_i) = U_i^n \cap I(\Gamma) \), \(i = 1,2 \).

Our next objective is to show that \(I(C_{M_i}(\tau_i)) = U_i^n \cap I(C_{M_i,M_2}(\tau_i)) \), \(i = 1,2 \). By (4.11) there exists \(g \in X \) such that \(\tau^g = \gamma \), hence \((C_{M_i,M_2}(\gamma))^g \leq C_X(\gamma) \). Since \(O^2(\tau^g) = (C_{M_i,M_2}(\tau))^g \), \((C_{M_i}(\tau_i))^g \times (C_{M_2}(\tau_2))^g \leq O^2(\tau^g) = O^2(C_X(\gamma)) = \Gamma_i \Gamma_i \) by (3.5). Furthermore by (3.6), \(C_{M_i}(\tau_i) \leq \Gamma_j \) with \(j \neq j_2 \). But \(O_d(C_{M_i}(\tau_i)) = C_{U_i}(\tau_i) \cong E_8 \) combined with \(U_i^n \cap \Gamma_i = I(\Gamma_i) \) yields \((C_{M_i}(\tau_i))^g \leq \Gamma_i \). Therefore \(I(C_{M_i}(\tau_i))^g = U_i^n \cap I(C_{M_i,M_2}(\tau_i))^g \) and this implies that \(I(C_{M_i}(\tau_i)) = U_i^n \cap I(C_{M_i,M_2}(\tau_i)) \), \(i = 1,2 \). The same argument then gives \(I(C_{M_i}(\tau_i)) = U_i^n \cap I(C_{M_i,M_2}(\tau_i)) \) and \(I(C_{M_i}(\tau_i)) = U_i^n \cap I(C_{M_i,M_2}(\tau_i)) \), \(i \neq j \). Since a conjugate of every involution of \(M_i,M_2 \) centralizes \(\gamma, \tau, \gamma_2 \), or \(\tau_1 \gamma_2 \), we see at once that \(I(M_i) = U_i^n \cap I(M,M_2) \), \(i = 1,2 \). Therefore \(I(S_i) = U_i^n \cap I(S) \), \(i = 1,2 \) proving the result.

(4.13) The following holds:

(i) \(S_i \) is a Sylow 2 subgroup of \(O^2(C_X(S_i)) \) and \(O^2(C_X(U_i)) \), \(i \neq j \).

(ii) Every involution of \(S_i \) is conjugate in \(C_X(S_j) \) to an element of \(U_i \), \(i \neq j \).

Proof. Since \(U_j \triangleleft S \), \(S_i \times U_j \in \text{Syl}_2(C_X(U_j)) \), \(i \neq j \). By Gaschutz's theorem we may write \(C_{\Omega}(U_j) = C_j U_j \) where \(C_j \) is a complement to \(U_j \) in \(C_X(U_j) \). Also \(U_j \) is central in \(C_X(U_j) \) gives \(C_X(U_j) = C_j \times U_j \). Clearly \(O^2(C_X(U_j)) \leq C_j \). Also \(S_i \leq M_i \) and \([M_i, S_i] = 1 \) yields \(S_i \leq C_j \). It now follows directly that \(S_i \in \text{Syl}_2(O^2(C_X(U_j))) \). The same proof may be used to verify that \(S_i \in \text{Syl}_2(O^2(C_X(S_i))) \) and this completes the proof of (i).

In order to prove (ii), first observe that \(S_j = \Omega_i(S_j) \), hence by (4.12), \(S_j \) is weakly closed in \(S \) with respect to \(X \). Therefore \(N_X(S_j) \) controls fusion of \(C_X(S_j) \). Since \(S_i \in \text{Syl}_2(O^2(C_X(S_j))) \) by (i), the Frattini argument gives \(N_X(S_j) = C_X(S_j)N_X(S) \). Now \(N_X(S) \leq N_X(Y) \) where \(N_X(Y) = M \cap X = O(M)(M_i \times M_2) \). Clearly \(\tilde{S} \) is self normalizing in \(\tilde{M} = M \cap X/O(M) \) and this yields \(N_X(S) = O(N_X(S)) \). Consequently \(N_X(S_j) = C_X(S_j)S_j \). But \([S_i, S_j] = 1 \) implies that \(C_X(S_j) \) controls fusion of \(S_i \times Z(S_j) \in \text{Syl}_2(C_X(S_j)) \) and the result now follows from (4.12).

(4.14) \(S_i \) is strongly closed in \(S \) with respect to \(X \), \(i = 1,2 \).
Proof. By symmetry, we need only prove the result for S_λ. Assume in fact that S_λ is not strongly closed in S with respect to X. Let $s_i \in S_i$ be an element of minimal order of S_i such that $s_i^g \not\in S_i$. Then $s_i = s_is_i^g$ for some $g \in X$, $s_i \in S_i$, $i = 1, 2$, and $s_i^g \neq 1$. By (4.12), we may assume that $|s_i| > 2$. Also $(s_i^g)^a = (s_i^g)^b(s_i^g)^a$ together with the minimality of $|s_i|$ implies that s_i' is an involution. By (4.13ii), s_i' is conjugate in $C_X(S_i)$ to an element of U_2, so we may further assume that $s_i' \in U_2$. But U_2 is weakly closed in S with respect to X by (2.4) and (4.12), therefore $N_X(U_2)$ controls fusion of $C_X(U_2)$. A contradiction may now be established by observing that

$$s_i \in S_i \in \text{Syl}_2(O^2(C_X(U_2)))$$

whereas $s_is_i' \in O^2(C_X(U_2))$ by (4.13i).

We are now in the position to complete the proof of Theorem A. By (4.14) and the Aschbacher-Goldschmidt theorem [12], X is not simple. This of course contradicts our condition that X is simple and $G \leq \text{Aut } X$.

References

7. ———, Finite groups with a standard component isomorphic to HJ or HHM, J. Algebra, 43 (1976), 61-114.
8. ———, Finite groups with a standard component isomorphic to M_{22}, J. Algebra, 44 (1977), 558-572.
14. R. Griess, Personal communication.
17. Z. Janko, A new finite simple group of order $86,775,571,046,077,562,880$, which possesses M_{24} and the full covering group of M_{24} as subgroups, J. Algebra, 42 (1976), 564-596.

Received July 8, 1976 and in revised form January 17, 1977.

WAYNE STATE UNIVERSITY
DETROIT, MI 48202
Charalambos D. Aliprantis and Owen Sidney Burkinshaw, On universally complete Riesz spaces .. 1
Stephen Richard Bernfeld and Jagdish Chandra, Minimal and maximal solutions of nonlinear boundary value problems 13
John H. E. Cohn, The length of the period of the simple continued fraction of $d^{1/2}$.. 21
Earl Vern Dudley, Sidon sets associated with a closed subset of a compact abelian group .. 33
Larry Finkelstein, Finite groups with a standard component of type J_4 41
Louise Hay, Alfred Berry Manaster and Joseph Goeffrey Rosenstein, Concerning partial recursive similarity transformations of linearly ordered sets .. 57
Richard Michael Kane, On loop spaces without p torsion. II 71
William A. Kirk and Rainald Schoneberg, Some results on pseudo-contractive mappings ... 89
Philip A. Leonard and Kenneth S. Williams, The quadratic and quartic character of certain quadratic units. I 101
Lawrence Carlton Moore, A comparison of the relative uniform topology and the norm topology in a normed Riesz space 107
Mario Petrich, Maximal submonoids of the translational hull 119
Mark Bernard Ramras, Constructing new R-sequences 133
Dave Riffelmacher, Multiplication alteration and related rigidity properties of algebras .. 139
Jan Rosiński and Wojbor Woyczynski, Weakly orthogonally additive functionals, white noise integrals and linear Gaussian stochastic processes .. 159
Ryōtarō Satō, Invariant measures for ergodic semigroups of operators 173
Peter John Slater and William Yslas Vélez, Permutations of the positive integers with restrictions on the sequence of differences 193
Edith Twining Stevenson, Integral representations of algebraic cohomology classes on hypersurfaces 197
Laif Swanson, Generators of factors of Bernoulli shifts 213
Nicholas Th. Varopoulos, BMO functions and the $\overline{\partial}$-equation 221