CONSTRUCTING NEW R-SEQUENCES

MARK BERNARD RAMRAS
R-sequences play an important role in modern commutative algebra. The purpose of this paper is to show how new R-sequences may be constructed from a given one. In the first section we give some general results, which are applied in the second section to obtain an explicit method of construction.

Recall that a sequence of elements \(x_1, \ldots, x_n \) in \(R \) is an \(R \)-sequence if \((x_1, \ldots, x_n)R \neq R \), \(x_i \) is a nonzero divisor on \(R \), and for \(2 \leq i \leq n \), \(x_i \) is a nonzero divisor on \(R/(x_1, \ldots, x_{i-1})R \).

Throughout this paper \(R \) will be a commutative noetherian ring which contains a field \(K \). Moreover, \(R \) will either be local or graded.

I wish to thank Melvin Hochster for showing me Proposition 1.5, which simplified this paper considerably.

1. It is easy to see that if \(x_1, \ldots, x_n \in R \) and \(X_1, \ldots, X_n \) are independent indeterminates over \(K \), and if \(\varphi: K[X_1, \ldots, X_n] \rightarrow R \) by \(\varphi(f(X_1, \ldots, X_n)) = f(x_1, \ldots, x_n) \) is a flat monomorphism, then \(x_1, \ldots, x_n \) is an \(R \)-sequence. The converse, when \(R \) is local, is due to Hartshorne [3].

Proposition 1.1 (Hartshorne). Suppose \(R \) is local. If \(x_1, \ldots, x_n \in R \) form an \(R \)-sequence then \(\varphi: K[X_1, \ldots, X_n] \rightarrow R \) is a flat monomorphism, where \(\varphi \) is the map determined by \(\varphi(X_i) = x_i \) for each \(i \) and \(\varphi(a) = a \) for all \(a \in K \).

Remark. Saying that \(\varphi \) is a monomorphism is the same as saying that \(x_1, \ldots, x_n \) are algebraically independent over \(K \).

Corollary 1.2. Assume \(R \) is local. Suppose \(f_1, \ldots, f_n \) is a \(K[X_1, \ldots, X_n] \)-sequence, and each \(f_i \in (X_1, \ldots, X_n)K[X_1, \ldots, X_n] \). Suppose also that \(x_1, \ldots, x_n \) is an \(R \)-sequence. Then

\[
f_i(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)
\]

is an \(R \)-sequence.

Proof. By Proposition 1.1 the map \(\varphi \) is a flat monomorphism. By flatness, since \(f_1, \ldots, f_n \) is a \(K[X_1, \ldots, X_n] \)-sequence, \(\varphi(f_1), \ldots, \varphi(f_n) \)
is an R-sequence. (The assumption that each $f_t \in (X, \ldots, X_n)$ guarantees that the $\varphi(f_t)$ generate a proper ideal of R.)

Remark. It is well-known (e.g., [4, Theorem 119]) that for any local noetherian ring R, a permutation of an R-sequence is again an R-sequence. However, if R contains a field, the preceding result yields a very simple proof of this fact. For it is clear that for any permutation σ of $\{1, \ldots, n\}$, $X_{\sigma(1)}, \ldots, X_{\sigma(n)}$ is a $K[X_1, \ldots, X_n]$-sequence. Letting $f_t = X_{\sigma(i)}$, we have $f_t(x_1, \ldots, x_n) = x_{\sigma(i)}$, and so by Corollary 1.2, $x_{\sigma(1)}, \ldots, x_{\sigma(n)}$ is an R-sequence.

We now give a graded analogue of Proposition 1.1. For in order to use Corollary 1.2 we need $K[X_1, \ldots, X_n]$-sequences.

Proposition 1.3. Assume R is graded, and let x_1, \ldots, x_n be homogeneous elements of R of positive degree. Then x_1, \ldots, x_n is an R-sequence \iff (i) x_1, \ldots, x_n are algebraically independent over K, and (ii) R is a free $K[x_1, \ldots, x_n]$-module.

Proof. Let $A = K[x_1, \ldots, x_n]$.

(⇒) Assume (i) and (ii). Hence A is a polynomial ring in n variables and thus x_1, \ldots, x_n is an A-sequence. Since R is A-free, any A-sequence is an R-sequence.

(⇒) (i) follows from [5, p. 199].

(ii) A is a graded subring of R, with grading induced by that of R. That is, if $R = \bigoplus \Sigma R_k$, let $A_k = A \cap R_k$. Then ΣA_k is a direct sum, which we claim equals A. Since each x_i is homogeneous, $x_i \in A_{m_i}$ for some integer $m_i \geq 1$. Also, $K \subseteq R$ and R is graded, so $K \subseteq R_0$, and therefore $K = A_0$. Since every element g of A is a polynomial in the x_i's with coefficients in K, it follows that $g \in \Sigma A_k$. Hence $A = \bigoplus \Sigma A_k$. Thus, with the grading on A induced by that of R, and with the original grading on R, R is a graded A-module. Now by [2, Ch. VIII, Thm. 6.1] since A_0 is a field and R is a graded A-module, if $\text{Tor}_1^A(R, A_0) = 0$ then R is A-free. Thus to prove (ii) it suffices to show that $\text{Tor}_1^A(R, K) = 0$.

We compute $\text{Tor}_1^R(R, K)$ by taking a projective resolution of K over A and tensoring it with R. Since x_1, \ldots, x_n are algebraically independent over K, they form an A-sequence, and so the Koszul complex of the x's over A is exact and therefore yields a free A-resolution of K. Tensoring it with R gives the Koszul complex of the x's over R. But since by hypothesis the x's form an R-sequence, this Koszul complex has zero homology ([1, Cor. 1.2] or
In particular, the first homology group, \(\text{Tor}_1(R, K) \), is 0, and we are done.

We have a graded analogue of Corollary 1.2. Its proof is nearly identical to the latter's and so we omit it.

Corollary 1.4. Suppose \(R \) is graded and \(x_1, \ldots, x_n \) is an \(R \)-sequence, where each \(x_i \) is homogeneous of positive degree. Suppose \(f_1, \ldots, f_n \) is a \(K[X_1, \ldots, X_n] \)-sequence with each \(f_i \in (X_1, \ldots, X_n) \). Then \(f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n) \) is an \(R \)-sequence.

We close this section with a proposition due to M. Hochster.

Proposition 1.5. Let \(S \) be a graded Macaulay ring such that \(S_0 \) is local. Let \(x_1, \ldots, x_n \) be homogeneous elements of \(S \). If \(\text{rank}(x_1, \ldots, x_n) = n \) then \(x_1, \ldots, x_n \) is an \(S \)-sequence.

Proof. Let \(M = M_0 + \sum_{i=1}^n S_i \), where \(M_0 \) is the maximal ideal of \(S_0 \). Then \(M \) is maximal in \(S \) and contains every proper homogeneous ideal of \(S \). Let \(I = (x_1, \ldots, x_n) \), and localize at \(M \). Then in the local Macaulay ring \(S_M \), \(\text{rank}(f_M) = n \), so \(x_1, \ldots, x_n \) is an \(S_M \)-sequence, by [4, Thms. 129 and 136]. Let \(\mathcal{K} \) denote the Koszul complex of the \(x \)'s over \(S \). Then \(\mathcal{K} \otimes S_M \) is acyclic since it is the Koszul complex of the \(x \)'s over \(S_M \). Hence for each \(i \geq 1 \), the \(i \)th homology module \(H_i(\mathcal{K} \otimes S_M) = 0 \). Since \(S_M \) is \(S \)-flat we have \(H_i(\mathcal{K}) \otimes S_M = 0 \), so \(\text{ann}(H_i(\mathcal{K})) \not\subset M \). Since the \(x \)'s are homogeneous, \(\mathcal{K} \) is a complex of graded \(S \)-modules and hence \(H_i(\mathcal{K}) \) is also graded. But the annihilator of a graded module is a homogeneous ideal. Thus \(\text{ann}(H_i(\mathcal{K})) = S \) and so \(H_i(\mathcal{K}) = 0 \) for all \(i \geq 1 \). Therefore \(\mathcal{K} \) is acyclic, and so by [1, Prop. 2.8], \(x_1, \ldots, x_n \) is an \(S \)-sequence.

2. Any permutation \(\sigma \) in the symmetric group \(S_n \) acts as an automorphism on the polynomial ring \(K[X_1, \ldots, X_n] \) by

\[
(\sigma f)(X_1, \ldots, X_n) = f(X_{\sigma(1)}, \ldots, X_{\sigma(n)}).
\]

The next lemma is the key to our construction.

Lemma 2.1. Let \(\sigma \) be the cyclic permutation \((1, 2, \ldots, n)\) of order \(n \). Let \(K \) be a field, with \(a \in K \). Define a homogeneous polynomial \(f \in K[X_1, \ldots, X_n] \) by

\[
f(X_1, \ldots, X_n) = X_1^n - ag,
\]

where

\[
g = \prod_{i=1}^k X_{i_1}^{m_1} \cdots X_{i_k}^{m_k}, \quad 2 \leq i_1 < i_2 < \cdots < i_k \leq n, \quad \text{each } m_i \geq 1, \quad \text{and } \sum_{i=1}^k m_i = m.
\]

If \(a^n \neq 1 \), then the only common zero of \(f, \sigma f, \ldots, \sigma^{n-1}f \) in \(K^n \) is \((0, \ldots, 0)\).
Proof. We first treat a special case where the basic idea of the proof is not obscured by details. Suppose that \(k = n - 1 \), i.e., that each \(X_i, \ 2 \leq i \leq n \), divides the monomial \(g \). Let \((z_1, \ldots, z_n) \in K^n \) be a common zero of \(f, \sigma f, \ldots, \sigma^{n-1} f \). We have the following system of equations:

\[
\begin{align*}
 z_1^m &= a z_2^{m_2} \cdots z_{n-1}^{m_{n-1}} z_n^m \\
 z_2^m &= a z_3^{m_3} \cdots z_{n-1}^{m_{n-1}} z_1^m \\
 &\vdots \\
 z_n^m &= a z_1^{m_1} \cdots z_{n-2}^{m_{n-2}} z_{n-1}^{m_{n-1}}.
\end{align*}
\]

Equating the product of the left sides with the product of the right sides, and using the fact that \(\sum_{i=2}^{n-1} m_i = m \), we obtain:

\[
\left(\prod_{i=1}^{n} z_i \right)^m = a^n \left(\prod_{i=1}^{n} z_i \right)^{m_2} \cdots \left(\prod_{i=1}^{n} z_i \right)^{m_n} = a^n \left(\prod_{i=1}^{n} z_i \right)^m.
\]

But \(a^n \neq 1 \), so \(\prod_{i=1}^{n} z_i = 0 \) and thus some \(z_i = 0 \). For all \(i \) such that \(i \neq j \), \(z_j \) appears on the right side of the \(i \)th equation of the system above. Hence \(z_i = 0 \). Thus \((z_1, \ldots, z_n) = (0, \ldots, 0)\).

In the general case we shall break up the system of \(n \) equations into a number of subsystems, for each of which the preceding argument can be used.

Let \(H = \langle \sigma^i, \ldots, \sigma^k \rangle \) be the subgroup of the cyclic group \(\langle \sigma \rangle \) generated by \(\sigma^i, \ldots, \sigma^k \). Thus \(H \) is cyclic, of order dividing \(n \). In fact, \(H = \langle \sigma^b \rangle \) where \(b \) is the greatest common divisor of \(n, i_1, \ldots, i_k \).

We claim that if \(X_r \) divides \(\sigma^i(g) \), then \(r \equiv s \) \(\pmod{b} \). For \(r = \sigma^i(i_c) \) for some \(c, 1 \leq c \leq k \). Thus \(r \equiv s + i_c \) \(\pmod{n} \). Since \(b \) is a common divisor of \(i_c \) and \(n \), it follows that \(r \equiv s \) \(\pmod{b} \).

Now consider \(\prod_{s=1}^{n} \sigma^i(g) \). It is clearly invariant under \(\sigma \). But if \(\sigma(\prod_{s=1}^{n} X_s^{i_s}) = \prod_{s=1}^{n} X_s^{i_s} \), then \(a_1 = a_2 = \cdots = a_n \). Now since \(\deg g = m, \ \deg (\prod_{s=1}^{n} \sigma^i g) = nm \). Thus \(\prod_{s=1}^{n} \sigma^i g = \prod_{s=1}^{n} X_s^m \). On the other hand, for any \(r \),

\[
\prod_{s=r \pmod{b}}^{n} \sigma^i g = \left(\prod_{s=r \pmod{b}}^{n} \sigma^i g \right) \left(\prod_{s \neq r \pmod{b}}^{n} \sigma^i g \right),
\]

and if \(r \neq s \pmod{b} \) then \(X_s \) does not divide \(\sigma^i g \). Therefore

\[
\prod_{s=r \pmod{b}}^{n} \sigma^i g = \prod_{s=r \pmod{b}}^{n} X_s^m = \left(\prod_{s=r \pmod{b}}^{n} X_s \right)^m.
\]

Now suppose \((z_1, \ldots, z_n) \) is a common zero of \(f, \sigma f, \ldots, \sigma^{n-1} f \). Then for all \(1 \leq s \leq n \), \(z_s^m = a(\sigma^i g)(z_1, \ldots, z_n) \). Hence

\[
\left(\prod_{s=r \pmod{b}}^{n} z_s \right)^m = a^n \left(\prod_{s=r \pmod{b}}^{n} (\sigma^i g)(z_1, \ldots, z_n) \right) = a^n \left(\prod_{s=r \pmod{b}}^{n} z_s \right)^m.
\]
Since \(a^n \neq 1 \), it follows that \(a^{n/b} \neq 1 \), and so \(z_s = 0 \) for some \(s \equiv r \) (mod \(b \)). We shall show that \(z_t = 0 \) for every \(t \equiv r \) (mod \(b \)).

For \(1 \leq j \leq k \), \(X_{ij} \) divides \(g \): Thus \(X_i = \sigma^{t-i_j}(X_{ij}) \) divides \(\sigma^{t-i_j}(g) \), say \(x_h = \sigma^{t-i_j}(g) \). Now \(\sigma^{t-i_j}(f) = \sigma^{t-i_j}(X_i^n) - a\sigma^{t-i_j}(g) = X_i^n - ax_h \). If \(z_t = 0 \), then \(z_{s-i_j} = 0 \) since \((z_1, \ldots, z_n)\) is a zero of \(\sigma^{t-i_j}(f) \), and so \(z_{t-i_j} = 0 \). Thus for all \(j \) and for all \(q \) with \(q \equiv s \) (mod \(i_j \)), we have \(z_q = 0 \). This implies \(z_t = 0 \) for all \(t \equiv r \) (mod \(b \)). Since \(r \) was arbitrary, \((z_s, \ldots, z_n) = (0, \ldots, 0)\).

Theorem 2.2. Let \(K, \sigma, a, \) and \(f \) be as in the preceding lemma. Then \(f, \sigma f, \ldots, \sigma^{n-1}f \) is a \(K[X_1, \ldots, X_n] \)-sequence.

Proof. Let \(I = (f, \sigma f, \ldots, \sigma^{n-1}f) \) and let \(R = K[X_1, \ldots, X_n] \). Let \(S = \overline{K}[X_1, \ldots, X_n] \), where \(\overline{K} \) is the algebraic closure of \(K \). By Lemma 2.1 the variety of \(IS \) in \(\overline{K}^n \) contains only the origin. Hence by the Nullstellensatz, the radical of \(IS \) is the maximal ideal \((X_1, \ldots, X_n)S \). Therefore \(\operatorname{rank}(IS) = n \), and so by Proposition 1.5 \(f, \sigma f, \ldots, \sigma^{n-1}f \) is an \(S \)-sequence. Now \(S = R \otimes_K \overline{K} \), so \(S \) is \(R \)-free. Hence \(S \) is faithfully \(R \)-flat, and thus \(f, \sigma f, \ldots, \sigma^{n-1}f \) is also an \(R \)-sequence.

Combining Theorem 2.2 with Corollaries 1.2 and 1.4, we have:

Corollary 2.3. Suppose \(R \) contains a field \(K \), and \(x_1, \ldots, x_n \) is an \(R \)-sequence. Define \(f \in K[X_1, \ldots, X_n] \) as in Lemma 2.1, and assume \(a^n \neq 1 \). If \(R \) is local, or if \(R \) is graded and each \(x_i \) is homogeneous of positive degree, then

\[
f(x_1, \ldots, x_n), (\sigma f)(x_1, \ldots, x_n), \ldots, (\sigma^{n-1} f)(x_1, \ldots, x_n)
\]

is an \(R \)-sequence.

Remark. Since \(f \) is a homogeneous polynomial of positive degree, when the original \(R \)-sequence consists of homogeneous elements of positive degree, the same is true for the resulting \(R \)-sequence. Thus in the graded case as well as in the local case, the procedure may be iterated.

Example. Let \(R = K[X, Y, Z] \), where \(X, Y, Z \) are independent indeterminates. By Theorem 2.2, if \(a^2 \neq 1 \), then \(X^2 - aYZ, Y^2 - aXZ, Z^2 - aXY \) is an \(R \)-sequence, and if \(b \in K \) and \(b^2 \neq 1 \), then \(X^3 - bY^3, Y^3 - bZ^3, Z^3 - bX^3 \) is another. Hence by Corollary 2.3, \((X^2 - aYZ)^2 - b(Y^2 - aXZ)^2, (Y^2 - aXZ)^2 - b(Z^2 - aXY)^2, (Z^2 - aXY)^2 - b(X^2 - aYZ)^2 \) is again an \(R \)-sequence, as is \((X^3 - bY^3)^2 - a(Y^3 - bZ^3)(Z^3 - bX^3), (Y^3 - bZ^3)^2 - a(Z^3 - bX^3)(X^3 - bY^3), (Z^3 - bX^3)^2 - a(X^3 - bY^3)(Y^3 - bZ^3) \).
\[bX^2 + a(X^3 - bY^3)(Y^3 - bZ^3). \]

REFERENCES

Received August 2, 1976.

NORTHEASTERN UNIVERSITY
BOSTON, MA 02115
Charalambos D. Aliprantis and Owen Sidney Burkinshaw, *On universally complete Riesz spaces* .. 1
John H. E. Cohn, *The length of the period of the simple continued fraction of \(d^{1/2}\) ... 21
Earl Vern Dudley, *Sidon sets associated with a closed subset of a compact abelian group* ... 33
Larry Finkelstein, *Finite groups with a standard component of type \(J_4\) ... 41
Louise Hay, Alfred Berry Manaster and Joseph Goeffrey Rosenstein, *Concerning partial recursive similarity transformations of linearly ordered sets* ... 57
Richard Michael Kane, *On loop spaces without \(p\) torsion. II* 71
William A. Kirk and Rainald Schoneberg, *Some results on pseudo-contractive mappings* .. 89
Philip A. Leonard and Kenneth S. Williams, *The quadratic and quartic character of certain quadratic units. I* 101
Lawrence Carlton Moore, *A comparison of the relative uniform topology and the norm topology in a normed Riesz space* 107
Mario Petrich, *Maximal submonoids of the translational hull* 119
Mark Bernard Ramras, *Constructing new \(R\)-sequences* 133
Dave Riffelmacher, *Multiplication alteration and related rigidity properties of algebras* .. 139
Jan Rosiński and Wojbor Woyczynski, *Weakly orthogonally additive functionals, white noise integrals and linear Gaussian stochastic processes* ... 159
Ryōtarō Satō, *Invariant measures for ergodic semigroups of operators* ... 173
Peter John Slater and William Yslas Vélez, *Permutations of the positive integers with restrictions on the sequence of differences* 193
Edith Twining Stevenson, *Integral representations of algebraic cohomology classes on hypersurfaces* ... 197
Laif Swanson, *Generators of factors of Bernoulli shifts* 213
Nicholas Th. Varopoulos, *\(BMO\) functions and the \(\bar{\partial}\)-equation* 221