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An explicit constructive algorithm is developed for calcu-
lating the Hirzebruch-Riemann-Roch index »(L)= Y %.,(—1)
dim HY(X, ©(L)) of a holomorphic line bundle L on-a normal
compact two-dimensional complex analytic space (X, ) with
singularities, in terms of the standard global topological
invariants of X and a “correction term” involving only the
local analytic and topological structure of the singular points
themselves. The technique is by resolutious of singularities.

In recent years considerable attention has been given to the
problem of extending classical results on nonsingular projective
algebraic varieties to the more general case of possibly singular
complete abstract algebraic varieties, or to that of compact complex
analytic spaces. In particular, Paul Baum, William Fulton, and
Robert MacPherson have achieved Riemann-Roch theorems for singular
varieties by constructing objects in appropriate homology theories
and K-theories which play the role of (the duals of) the Chern char-
acter of a holomorphic vector bundle E and the Todd class of a
complex manifold X in Hirzebruch’s formula (X, E) = [¢h(E) U
Td(XHI(X)] (2], [3], [7]; see also Fulton [8], to appear).

In a rather different spirit one can study the local properties of
isolated singular points and inquire how these properties are reflected
in the global geometry of compact spaces which contain them. In
some sense a “nice” singularity ought to be one whose presence
passes unnoticed from a global point of view, while for a compact
space with “bad” singularities the classical theorems (like Riemann-
Roch) ought to require considerable adjusting. In [4] this tack was
taken with respect to Hirzebruch’s formula in dimension 2 in an
attempt to understand the contribution of normal isolated singular
points to global properties of compact surfaces. At that time only
the hypersurface case was treated and the proofs depended on rather
tedious calculations involving explicit techniques for resolving sin-
gularities. The purpose of this paper is to extend the result to
arbitrary normal surfaces and to present a more concise and satis-
factory proof. Thus we show:

THEOREM 1 (Proposition 2 below). Let (X, &) be a normal com-
pact two-dimensional complex analytic space. Then there is a ra-
tional cohomology class ¢, e HYX, Q) such that for every holomorphic
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line bundle L on X we have the Riemann-Roch equation
HPL) = 2oLy + eLye)(XD + 1)

where ¢(L) is the Chern class of L and [X] is the natural generator
of H(X, Z).

THEOREM 2 (Proposition 4 below). For (X, &) and ¢, € H¥(X, Q)
as above, we may compute the integer x(<”) as follows. Denote by
P={m, -, 2} the set of singular points of X and let 1: X — X
be any normal resolution of simgularities. Let C = Ui, C; be the
decomposition of the exceptional curve C = (P) into its irreducible
branches. Denote by g, the genus of C,, by g(C) = dim H{C, R) —
S dim HYC,, R) the number of independent cycles in the dual
graph of C, and by e(C,), C? respectively, the Euler number and
sel f-intersection. Let 7, € H¥C, Q) = Q° be the generator correspond-
ing to the component C, (i.e., dual to a point of C, — (U;«: C;) and
denote by || ||. the norm on this rational vector space represented in
the basis {v,, «--,7,} by the positive definite matriz (—C,-C;)™*, and
by e(C) + C* the vector >\i_, (e(C,) + C%v,. Finally, denote by R'n,. 7%
the first right derived sheaf on X via w of the ideal subsheaf .7 C
&% of the divisor C< X, and define the topological Euler class ¢,
by ¢, = ¢ (X) = e(X)é for e(X) the Euler number of X and & the
natural generator of HYX, Z). Then:

120(7) = (¢t + e)(XD + 5 + 10 3y g, + 119(C) — [[e(C) + C*2

+ 3 dim (R'm, )., -

We note that except for the term (¢! + ¢,)([X]) the terms on
the righthand side of the equation depend only on the germs (z, &%,)
of the singular points and that by the theorem their sum is inde-
pendent of the resolution 7. Because of the terms dim (R'n,..%),,,
however, the index ¥(£”) is not determined solely by the topology
of X as is the case when X is nonsingular (see [14], Example, page
7). It should also be emphasized that it is the numerical calcula-
tions of Theorem 2 that are of primary interest here. That is, our
aim is to prescribe a concrete finite algorithm useful for determining,
say, the number of sections admitted by particular line bundles on
a particular singular surface, rather than to develop a general
theory of characteristic classes of vector bundles on analytic spaces.
For this the reader may consult, e.g.,. MacPherson [16], or the re-
ferences [2], [3] and [7] cited above.
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Theorems 1 and 2 then combine to give the main “Composite
Riemann-Roch Theorem,” Theorem 5 below.

The paper concludes with some remarks and examples, among
which we mention here the following result of Laufer which con-
nects these ideas to the notion of the Milnor number £ of an isolated
hypersurface singularity.

THEOREM 3 (Laufer [15]). Let X be a two-dimensional compact
complex analytic space each of whose singular points is an isolated
hypersurface singularity. Then for K the “canonical” line bundle
on X (the standard bundle of holomorphic 2-forms on the regular
points, extended to all of X) we have for every holomorphic line
bundle L on X the equation

N A 1 e
x(L) = 2L (L= K) + {5(K* + o(X) + 1)

Jor p the sum of the Milnor numbers of the singular points.
Furthermore, pt can be calculated by the formula of Theorem 2 above.

And lastly we give an application to the topic of singular sur-
faces which are homotopy projective planes:

THEOREM 4 (Proposition 6 below). Let X be a mormal compact
two-dimensional compler analytic space with vanishing geometric
genus p, = dim H¥(X, &) and with integral cohomology ring iso-
morphic to that of the complex projective plane P* and generated
by the Chern class of the line bundle of a holomorphic divisor.
Then X is a rational projective algebraic surface homotopy equiva-
lent to P%, each singular point of X s a rational double point,
and, indeed, X -is biholomorphic either to

(a) P? qtself (in case X is nonsingular) or to

(b) a singular rational surface obtained from P* by the suc-
cessive application of precisely 8 monoidal transformations fol-
lowed by the blowing down of precisely 8 mnomsingular rational
curves, each with self-intersection 2.

Examples of these last-mentioned spaces are given in [6].

I. A Riemann-Roch theorem for singular surfaces. Let (X, &%)
be a normal compact complex analytic space (always reduced in this
paper). One way to study the properties of X is to produce a reso-
lution 7: X — X of the singularities of X, apply the powerful theory
of compact complex manifolds to the nonsingular model X, and
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then try to push this information down to X via the map nx. This
approach is especially fruitful in (complex) dimension 2 where we
have at our disposal not only the rich abundance of detail concerning
isolated singularities of surfaces and their resolutions (as exposed
in [13], e.g.) but also the all but exhaustive classification theory
for two-dimensional compact manifolds due principally to Kodaira
[12]. In particular the following result relates the topology of a
singular surface with that of its nonsingular model. A complete
proof is given in [5] (Lemma 1 of that paper).

LEMMA 1. Let X be a compact two-dimensional complex analytic
space with only isolated singular points =, -+, %,. Let m:X—X
be any resolution of the singularities of X. Put C = n"({z, -+, 2,})
the exceptional curve in X. Then there is an evact sequence

(“Z) - — H'X, Z) "> H'X, Z)
S H(C, 2) -2 HH(X, Z)— -+,

1= 1, with ©, naturally induced by © and &, by the imclusion CC
X. Furthermore,

(a) m, 18 injective, w, surjective, and T, an isomorphism;

(b) tf (*Z) is tensored with Q, in the resulting sequence

(*Q) -+- — H(X, Q = H(X, Q)
—LHNC, @ H(X, Q) — -

&, s surjective and w, an isomorphism.
This result alone gives us the first version of the theorem.

PROPOSITION 2 (Theorem 1 of the introduction). Let (X, Z%) be
a normal compact two-dimensional complex analytic space. Then
there is a rational cohomology class ¢, € H(X, Q) such that for any
holomorphic line bundle L on X we have the Hirzebruch-Riemann-
Roceh formula

W (L)) = %(C(L)2 + e(L) - e )([X]) + 1)
for ¢(L) the Chern class of L and [X] the canonical generator of
H(X, Q). (In particular, the expression 1/2(¢(L)* + ¢(L)-¢,) lies in

the image of the natural mapping H*(X, Z) - H*(X, Q) for every
L, even though the rational class ¢, may not.)

Proof. Denote by P = {x,, ---, z,} the set of singular points of
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X, let m: X — X be a resolution of singularities, and let C = Ui, C,
be the decomposition of the exceptional curve C = n~'(P) into its
irreducible branches. Now the exact sequence

HYX, @ — HX, @ — H*C, Q) — 0

of Lemma 1 admits the natural splitting ¢*' given (in the obvious
bases) by the inverse to the nonsingular intersection matrix (C,-C;).
Thus we have the internal direct sum

H(X,Q =im (@) H &

for & the rational subspace spanned by the Poincaré duals C} of
the curves C,. In particular for & e H*X, @) the first Chern class
of the compact complex manifold X we have

(1) & = 1) + X t.C*

for some cohomology class ¢, € HXX, Q) and some rational numbers
t.. Note then that for any a e HYX, @),

(2) ¢, -¥a) = w¥(c) - TH @) .

Next, the Leray spectral sequence for the sheaf Z3(zx*L) and
the map 7 gives

(3) W (L) — x(Px(x* L)) = dim H*(X, R'm,Z%x*L)) .

(Here 7,7%(n*L) = (L) by normality.) But since = is a biholo-
morphism off C the sheaf Rz,.~73(n*L) (the first derived sheaf of
Z#w*L) via w) is supported on P, and since (L) is free in a
neighborhood of P we have in fact

Rr,o3r7*L) ~ Rt % .

Thus (3) becomes

(4) WD) — Y&x(x* L)) = dim H(X, R'7.%)
= %) — XT3,

or

(5) X(Zx@* L)) — Y Tx) = UPH(L) — Ux) -

Finally we note that for [X], [X] the natural generators of
H(X, Q), H(X, Q), respectively, the fact that = is orientation pre-
serving and a homeomorphism off a proper subvariety means that

(6) (X1 = [X].
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Putting (2), (5), and () together with Riemann-Roch on X for
the line bundle 7*L and naturality of Chern classes and cup prod-
ucts now completes the proof. Namely, if ¢, ¢ denote the Chern
class maps respectively on X and X, then for ¢, ¢ HXX, Q) as in
(1), if L — X is any holomorphic line bundle we have

%(c(L)z + o(L) - ) ([X]) = %(6@:*1:)2 + &@*L) - 7)) X])
= %—(6(7:%)2 + &a*L)- E)(X])

= (Zx(w*L)) — (%)
= (L)) — W) -

REMARK. The class ¢, € H(X, Q) thus selected is unique only
up to an element in the kernal of the mapping =, H¥(X, Q) —
H*X, Q). Of course the class ¢, - a e H¥X, Q) is nevertheless well-
defined va e H(X, @), for ker m, is precisely the null eigen space of
the cup product pairing (not necessarily nonsingular for singular
surfaces) on X. ¢, is obviously independent of the particular re-
solution 7.

II. Calculation of the term Y(%). For singular surfaces X
the analytic index y(<%) is evidently not determined by a nice set
of global topological invariants. In this section we calculate this
index by an algorithm which exhibits explicitly its dependence on
the nature of the singular points.

For any irreducible compact analytic space Y of dimension =
denote by ¢(Y) = 3*, (—1)dim H*(Y, R) the topological Euler num-
ber. By both abuse and confusion of notation, then, we may define
the “nth Chern class” ¢,(Y) of Y by simply putting

(YY) = e(Y)E(Y)

for £(Y) either the natural generator of H**(Y, Z) or its natural
image in H*(Y, @), or in H*(Y, R), etc., as convenience dictates.

Now if Y is the singular set of Y, Y as above, a resolution
7: Y— Y of the singularities of Y is called normal if the hyper-
surface Z = n7(2) consists of a collection of manifolds Z, meeting
(if at all) transversally, with Z,N Z; connected Vi,j and with
dm(Z,NZ;NZ,) =<n— 8, 1, j, k distinct. In particular, if Y is a
surface and Z a curve, then Z; meets Z; in at most one point and
Z;NZ;NZ,= @. Normal resolutions always exist by Hironaka
[10].

PROPOSITION 3. Let X be a normal compact two-dimensional
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complex analytic space with singular set P = {x, ++-x,} and let x:
X — X be any mormal resolution of the singularities of X with
exceptional curve C = Ui~ C, C, irreducible. Denote by 7,¢e
H*C, Q) = @ the generator corresponding to the curve C;, by ¢(C) + C*
the vector 33, (e(C) + CH7,, and by || || the norm on this rational
vector space givem in the basis {7V, ++,7,} by the inverse (E,;) to
the positive definite matriz —(C,-C;). Let ¢,e H(X, Q) be as in
Proposition 2 and let ¢, = ¢,(X) € HYX, Q) be as imimediately above
the topological Euler class. Then

) = (& + e)(XD) + eC) — 7
~ [1e(C) + C*|) + 3, dim (R'z, %), -
Proof. The proof is a straightforward calculation. By equation
(4) of the proof of Proposition 2
X% = %) + dim H(X, R'7, (%))
=1 + 2, dim (B'7, %), .
By Riemann-Roch on X,
WD) = 2@ + EXD
From the exact sequence
- — H(X,Q — H'X,Q — H(C,Q—> -+,
1 =1, of Lemma 1 we obtain
e(X) — dim H'(X, R) = (e(X) — dim H (X, R)) + (e(C) — dim H*(C, R)) .

But X and X are connected, while C has as many topological com-
ponents as X has singular points, namely . Thus

@EIXD = @)([XD '+ eC) — 7 .

And finally, putting ¢, = n*(c,) + 3., t.C! as per the definition
of ¢,, we have

@ENXD = (@*(e) + SLCHUXD
= @ XD + 3 100 Cilty
= @XD + 3 (5 tier- o)X= B3 - ol
= @HXD — 3 @lo)(CDEDE )CD
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= (XD — 3 (C)) + CYE;)e(C) + C)
= @H(X]) — [1e(C) + C*[ .

Putting this list of facts together proves the theorem.

We want to restate this result slightly, the better to exhibit
its “algorithmic” character. The advantage below in substituting
the sheaf R'z. 7 for R'zm,.~3 is simply that it more often vanishes.
(A simple sufficiency test for (R'x,.%), = 0 is given, following Laufer
[13], in [4], page 49.)

PROPOSITION 4 (Theorem 2 of the introduction). For X, m: X —
X as in Proposition 3, the index ¥(7%) satisfies

12/() = (¢t + &)X + 5 + 10 3y g, + 11g(C) — [[e(C) + C*]2
+ Z;',dim (R'7 o 2)s

where s is the number of components of the exceptional curve C =
7 (P), g, 18 the genus of C, g(C) the “number of cycles in the dual
graph of C” = dim HYC, R) — 3;_, dim HYC,, R); where the vector
e(C) + C* and the morm || ||. are as im Proposition 3, and where
% 18 the locally principle ideal subsheaf of &% comsisting of those
germs which vanish on C.

Proof. We continue calculating where we left off in Proposi-
tion 3:

(*) €C)—r =dim H(C, R) — dim H'C, R) + dim H*C, R) — r

=7~ (X200 + 9C) + 57
=8—2(ggi> - 9(C) .

To relate R'mw,~z to R'n.. %, we consider a connected component
C’ of C and a (small) strongly pseudoconvex neighborhood U of C
such that z(U) is Stein. Without loss of generality we may suppose
that C’' = Ui, with C; N (U;«:C;) # @ for ¢ >1. For each i =
1,2, -.-,8 put
n, = >, C;+C, = number of curves C; that meet C, for j < 7.
i<t
Following Laufer [13] denote by .7 the ideal sheaf of C; and suc-
cessively for ¢ =1, 2, --., s’ consider the exact sequences
0—@S— @ %——*ﬂ’oi®ﬂz(@[0j]“)—>0,
i<i

e jsi—1
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for [C,]* the dual of the line bundle of the divisor C; on X. On
U we have the induced sequences

- — HY(U, @ %)— H(C, , @ [C]7e)

jsi—1

— HY(T, ®f> H(O, ® /5 %, HYC, Ze @G )
— HY(O, @ 5) — -+~ .

Since U is pseudoconvex, this last group vanishes ([1], Proposition
27, page 256, or [9], Satz 1, page 355, supplies the proof), so r, is
always surjective. Also, ¢, is injective. for if 7 = 1 we have simply
the sequence % — 73— &, and C,, being compact, admits only
constant holomorphic functions, while if ¢ > 1, then the bundle
®i<:[C;]7'|o, is strictly negative and admits only the zero section.
Thus since all these groups are finite dimensional we may simply
count dimensions:

dim HYU, ® %) = dim HY(T, ®f) + dim HYC,, &%, (® [Ci e,

jsi-1

and by Riemann-Roch on C; this last group has dimension

jni—(l—gi) for 7+>1

dim HY(C,, 76, (@ [Ci]7'e,) = ;
i<i [91 fOr = 1 °

Adding these equations (and noting that the sheaf @,.._, .7 = &3
for 1 =1 and Q;; S5 = %, for 1 = s’) then gives the coneclusion

dim H(T, 2) = dim B0, %) + 3,00+ 33 (0, — 1) .

But it is easy to check that this last number is just the number
g(C) of cycles in the dual graph of C’. Thus shrinking U to the
singular point # = 7(C’) and summming over the connected com-
ponents of C yields the relation
¢ SdimBror = 5 din 7.5 + 30+ 9(C) -
zE zE€ =1

(cf. [5], Lemma 2, where we take a closer look at this relation for
negatively embedded curves C on surfaces).

Putting equations (*) and (**) together with the conclusion to
Proposition 3 now completes the proof.

CoMPOSITE RIEMANN-ROCH THEOREM 5. Let (X, &%) be a normal
two-dimensional compact complex analytic space. Then there is a
rational cohomology class ¢, € H¥(X, Q), and an integer R(X) de-
pending only on the germs of the singular points, such that for
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any holomorphic line bundle L on X we have the “Hirzebruch-
Riemann-Roch” equation

W) = (L) + o)+ ) + (et + &) (XD + 2R

Jor x(L) the analytic index of L, c,e HYX, Q) the Euler class, and
[X]1e H(X, Q) the matural positive generator. Furthermore, R(X)
be computed from any mormal resolution 7: X — X of the singu-
larities of X according to the formula

R(X)=s+ IOi‘,gi + 11g(C) — ||e(C) + C*|2 + Zpdim (R )
with motation as in the previous propositions.

III. Remarks and applications. (1) At first glance it might
appear that this “Riemann-Roch correction term” R(X) is faily com-
plicated. In any particular example, however, its calculation is
completely straightforward. Given a singular point x € X there are
at least two standard methods for explicitly constructing a resolu-
tion m of singularities. (One is by successive monoidal transforma-
tions and the other is Hirzebruch’s method [11] of piecing together
branched coverings of C2.) Given the resolution, the numbers s, g,,
and g(C) can be read off immediately, as can the intersection
matrix (C;-C;) whose inverse gives the norm || ||.. The last term
dim (R'7,.%,), may be trickier but it can always be computed by
the technique of the last part of the proof of Proposition 4, as is
shown in [13], Chapter 6. Furthermore, for some special kinds of
singularities we may get a simplification of the formula for R due
to vanishing of some of the terms. If X has only rational double
points, for instance, everything in sight vanishes and we have simply

R(X)=s,

the number of curves in the minimal resolution.

(2) In some cases the cohomology class ¢, is actually the Chern
class of a holomorphic line bundle K. For instance if the singu-
larities of X are Gorenstein (i.e., if the canonical bundle K, on the
set of regular points X, of X is trivial in a neighborhood of each
singular point), then, as is clear from the definition of ¢, ¢, is just
the Chern class of the bundle K = K, extended (uniquely up to an
analytic isomorphism) to X. In this case we may call the bundle
K so defined the “canonical line bundle of X” and obtain the
formula
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1 (L)) ——%L-(L — K) + (&)
1, g 1
= _2—L (L— K) + 12(K + eX) + R(X)) .

To specialize further to the case where X is locally a hyper-
surface, Laufer shows in [15] that the term R(X) is equal to the
sum g of the Milnor numbers p(x,) of the singular points. This
gives the pretty result

() HL) = 2L+ (L = K) + (K" + o(X) + 19
mentioned in the introduction. Since in general Milnor’s g is to be
regarded as the natural analogue in higher dimensions of the notion
of “multiplicity” in the classical theory of plane curves, the result
(1) and its variants can be interpreted as a generalization to dimen-
gsion two of a part of the theory surrounding the various formulas
involving the “number of nodes and cusps” of an algebraic curve.
Our “first Chern class” ¢,, for instance, corresponds to the “virtual
genus” §= Ky-D + D? of a singular curve D contained in a non-
singular surface S in the formula

0= 3+ 33mp— 1)

for g the genus of D (i.e., of the nonsingular model) and the g, the
multiplicities of the singular points.

The formula (1) also shows that in this case the correction term
R(X) is always positive—a fact that is not immediately obvious from
the definition of R(X) as given in Theorem 5.

(8) The conclusion that the expression (1/2)(¢(L)* + ¢(L)-c)([X])
must always be an integer is sometimes a useful one. We close
with an illustration of this fact.

PROPOSITION 6 (Theorem 4 of the introduction). Let X be a
normal compact two-dimensional complex analytic space with vanish-
ing geometric genus v, = dim HXX, &%) and with H*(X, Z) =
H*(P%, Z) and generated by the Chern class of the line dbundle of a
holomorphic divisor I'. Then X 1s a rational projective algebraic
surface homotopy equivalent to P? and each singular point of X is
o rational double point. Indeed, either

(a) X s biholomorphic to P* or

(b) X 14s biholomorphic to a singular surface obtained from
P? by the successive application of precisely 8 monoidal transfor-
mations followed by the collapsing to one or more points of precisely
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8 mnonsingular rational curves, each with self-intersection —2. In
this case I' may be taken to be a momsimgular elliptic curve con-
tained in the regular points of X.

Proof. The desired conclusion is proved in [6], Theorem 6,
under the assumption that the singularities are already known to
be rational double points (in this case p, = 0 is redundant). Thus
it suffices to show that the hypotheses of the present proposition
force this condition upon the singularities.

Let 7: X — X be a resolution of singularities. From the exact
sequence

(*) oo — H(X,Z)— HX, Z)—> H{C, Z)—> - -+

of Lemma 1, vanishing of H¥X, Z) implies the same for H¥X, Z),
whence Poincaré duality on X gives 5(X) =0, b, the first Betti
number. Thus also ¢(X) = (1/2)b,(X) = 0 for ¢(X) = dim HY(X, %)
the irregularity ([12], I, Theorem 3). But in any case ¢(X) < ¢(X)
and p,(X) £ p,(X) ([5], Corollary 3), so in our case all four of these
numbers vanish. In particular, then,
mezpdim (Rlﬁ*ﬁ})x = X(ﬁX) - X(ﬁ}) =0 ’
so each singular point is rational.
As in the proof of Proposition 1 above put

(%) &, = () + S tCF,

t,e@Q, c,e H(X, @). I claim that in fact ¢, is integral. To see this
write ¢, = te([I']), t€Q, and apply proposition 1 to the line bundle
[I"] of the divisor I:

WD) = é—(C([F P+ elD-ed( XD + ()

=2+ 6 + AT
(Here we have used the fact that H*(X, Z) = H*(P? Z) (as rings)
and that H*X, Z)= Z is generated by c¢([I']).) Since 1/2(1 + t)
must thus be an integer, so must ¢.
Now the map &,: HXX, Z)— H*C, Z) is surjective (H¥X, Z)=0
in (*)), so for each ¢ 3 an integral cohomology class @, c H¥X, Z)
such that

1 if j=1

Cf c Q& — .
0 otherwise.
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Hence the rational numbers ¢, in (**) satisfy
t, = (thc;-)°ai =C¢-a —n%c) & .
=1

Since both &, and z*(¢,) = te(w*[I']) are integral, ¢,€ Zvi. But then
¢(X) = ¢(X) = 0 together with (**) gives the bundle isomorphism

Kx = ([T @ @[CI™) .

Restricting this equation to X — C shows that the canonical bundle
K, on the regular points X, of X is isomorphic to the bundle
[I'T%ls,. In particular, K, is trivial in a neighborhood of each
singular point—i.e., the singularities of X are Gorenstein. (The
support of I" may of course pass through singular points of X, but
since by assumption I" is a (Cartier) divisor this does not compromise
local triviality of [I'].)

But Laufer show in [14], Theorem 4.3 and its proof that a
rational singularity is Gorenstein if and only if it is a double point,
and thus the proof is complete.
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