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The main theorem is that if B is a hereditary C*-sub-
algebra of A which is not contained in any proper closed
two-sided ideal, then under a suitable separability hypothesis
A & ¢ is isomorphic to B R 2, where % is the C*-algebra
of compact operators on a separable infinite-dimensional
Hilbert space. In the special case where A =C & % and
B = pAp for some projection p in the double centralizer
algebra, M(A), of A such that »p commutes with C Q 1 < M(A),
the theorem follows from a result of Dixmier and Douady
[12]. In fact p must be defined by a continuous mapping
from the spectrum C of C to the strong grassmanian. Thus
p defines a continuous field of Hlibert spaces on C and [12]
implies that the countable direct sum of this field with itself
is trivial. Our proof amounts to an abstraction of [12].
The theorem also leads to an abstraction and generalization
of some results of Douglas, Fillmore, and us on extensions
of C*-algebras ([6, §3]). The final section of the paper con-
tains a generalization of the Dauns-Hofmann theorem which
is needed to justify some of our remarks.

1. Preliminaries. If B is a C*-subalgebra of A, B is called
hereditary if acA, beB, 0<a <b imply acB. B is full if{it is
not contained in any proper closed two-sided ideal of A.

We will be particularly concerned with hereditary subalgebras
which are related to the double centralizer algebra, M(A), of A.
An element of M(A) is a pair z = (S, T'), where S and T are linear
operators on A such that a-S®) = T(a)-b for all ¢, bc A. M(A) is
the universal C*-algebra containing A as a two-sided ideal. S and
T are the restrictions to A of the left and right multiplications by
2. The strict topology of M(A) is the weakest topology in which
the maps z—2xa and a — ax are continuous for each @ € A, where
A has the norm topology. Any nondegenerate representation, ,
of A extends uniquely to a representation, 7, of M(A) on the same
Hilbert space. For further details on M(A) the reader is referred
to [8] and [3].

If p is a projection in M(4), pAp is a hereditary subalgebra of
A which will be called a corner.

LemMmA 1.1. If p is a projection in M(A), the following are
equivalent:
1. For any nondegenerate representation, w, of A, #(p) # 0.
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2. For any irreducible representation, «, of A, %(p) = 0.

3. pAp is full.

4. pA is not contained in any proper closed two-sided ideal of
A.

5. Ap is not contained in any proper closed two-sided ideal of
A,

6. The norm-closed two-sided ideal of M(A) generated by p in-
cludes A.

7. D 18 not contained in any proper strictly closed two-sided
ideal of M(A).

Proof. 1= 2 is obvious.

2=3. If pAp is not full, there must be an irreducible represen-
tation 7# which vanishes on the two-sided ideal generated by pAp.
Thus #(p)-7w(A)-7(p) = 0. Since the strong closure of w(A4) contains
1, #(p) = 0.

3=4 and 5. Obvious because pAp = p4A N Ap.

4 or 5= 6. The ideal considered in 6 obviously includes pA and
Ap.

6="T. A is strictly dense in M(4).

T=1. The kernel of % is strictly closed. Thus if #(p) =0 and
» generates a strictly dense ideal, # and = must be 0.

p will be called full if it satisfies the conditions of 1.1.

A hereditary subalgebra need not be a corner. Let A** be the
Banach space double dual of A. A** is a W*-algebra, and any non-
degenerate representation, w, of A extends uniquely to a W*-re-
presentation, w**, of A**. The hereditary subalgebras of A cor-
respond one-to-one to the open projections (see [2]) of A**. The
subalgebra corresponding to » is (pA**p)N A, and p is open if and
only if this is weak* dense in pA**p.

LeMMA 1.2. If Bis the hereditary subalgebra of A correspond-
ing to the opem projection p, the following are equivalent:

1. For any nondegenerate representation, , of A, w**(p) = 0.

2. For any irreducible representation, @, of A, w**(p) # 0.

3. B s full.

4. The norm-closed two-stded ideal of A** gemerated by p in-
cludes A.

5. p 1s mot contained in any proper weak*-closed two-sided
ideal of A**,

Proof. 1= 2 is obvious.
2=3. If B is not full, some irreducible representation, =,
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vanishes on B. Since p is in the weak* closure of B and #n** is
continuous from the weak* topology of A** to the weak operator
topology, w**(p) = 0.

3 = 4. The ideal of 4 includes B.

4=>5, A is weak* dense in A**,

5=1, If #**(p) =0, 5 and the weak* continuity of #** imply
7** and 7 = 0.

If A and B are C*-algebras A @.:. B denotes the completion of
the algebraic tensor product with respect to the smallest C*-norm.
If # and p are faithful representations of A4 and B, 7®p is a
faithful representation of A @.:.» B. The abbreviated symbol 4 & B
will be used if all C* tensor products are known to agree. See [15]
and its references for further details on tensor products. £ (5#)
denotes the algebra of bounded operators on the Hilbert space %
and 7 (2#) the ideal of compact operators. The abbreviated
symbols & and %" may be used if 5# is separable and infinite-
dimensional. C*-algebras A and B are called stably isomorphic if
AR .2 and B .2 are isomorphic, A is stable if A and AR 2%
are isomorphic. A positive element ¢ of a C*-algebra A is called
strictly positive if ¢(e) > 0 for every state ¢ of A. Two equivalent
conditions are that Ae be norm dense in A and that e not be con-
tained in any proper hereditary C*-subalgebra of A. A has a strictly
positive element if and only if A4 has a countable approximate
identity, and this is always so if A is separable. (See [1].) A, the
spectrum of A, denotes the set of equivalence classes of irreducible
representations of A with the hull-kernel topology. ([10]).

A continuous field of Hilbert spaces E, on a topological space
X is given by ({E,}, I'), where E, is a Hilbert space for each xe X
and I" is a space of functions ¢ on X such that #(z) € E, and certain
axioms are satisfied. See [12] for the precise definition and further
details. The strong grassmanian, &, is the set of projections in &
with the strong operator topology. A continuous function, f: X — &,
give rise to a continuous field which is a complimented subfield of
the countable rank trivial field. f, and f, give rise to isomorphic
fields if and only if there is a (double-) strongly continuous function
u: X — & such that w*(x)-u(x) = fi(x) and w(z)-u*(x) = fy(x) for all
zeX.

If Ais a separable C*-algebra, Ext (4) is the set of equivalence
classes of *-monomorphisms 7: 4 — &/ 2. Ext(A) has a natural
semigroup structure and is known to be a group in many cases. A
*-monomorphism 6: A— B induces a homomorphism 6*: Ext (B) —
Ext(4) by 7—700.) Ext(4) = Ext (A& .2%7) and hence Ext (4) =
Ext (B) whenever A and B are stably isomorphic. For further
details see [6], [5], [17], [9].
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2. The main theorem. If I is a dense two-sided ideal of the
C*-algebra A, 1.7.2 of [10] asserts the existence of an increasing
approximate identity of A consisting of elements of I. It is con-
venient to begin with a slight refinement of this.

THEOREM 2.1. If R s a (not necessarily closed) right tdeal of
A which generates a dense two-sided ideal, then A has an increasing
approximate identity comsisting of finite sums 3, r}r;, r;€R.

Proof. We apply the argments of [10] to the dense two-sided
ideal I = R*-R. Only one new point arises: We need to know that
for any self-adjoint element, , of I, © < 3 ¢fc; for suitable ¢; e R.
This follows from 2:Re a*b = a*b+b*a < a*a+b*b. A typical member
of the approximate identity will be given by »; = ¢;(¢ + 3, efe,) ™3,
for ¢ > 0.

LemMA 2.2, If p is a full projection in M(A), ec A, and ¢ > 0,
then there are a, @y -+, @, € A such that > afpa, £1 and

1 — S afpalell <c.

Proof. Apply 2.1 to R = pA. Choose the a, so that > afpa,
is a suitable member of the approximate identity.

LeMMA 2.83. If p is a full projection in M(A) and A has a
strictly positive element, e, then there are a, a, ---, € A such that
S akpa, = 1, with convergence in the strict topology of M(A).

Proof. We construct recursively n, <m,<-:--n,and a,, 1 <t < n,,
such that with s, = X" a¥pa;, s, < 1 and ||(1 — s,)e|| < 1/k. Suppose
this is given for k. By 2.2 we choose b, ---, b,, € A such that with
s’ =3bpb;, s £1 and ||(1 — s)"*(1 — ") — s,)"%|| <1/k + 1. Let
Mpps = Ny + m and @,,,; = b1 — s,)"%

Since ¢- A is dense in A4, it is now clear that s, converges strictly
to 1. For z € A the sequence z*(1 — 3 a*pa,)x is monotone decreasing
and a subsequence converges to 0. Hence the sequence converges
to 0. Since |[|(1 — S afpa)z] < ||a*@A — Sirafpa)z||'’?, the lemma
is proved.

We fix a set of matrix units {e;;} which generate 2. We will
consistently use without reference the fact that M(A) @uim M(B) is
a subalgebra of M(4A Q... B) (cf. [3, 3.8]).

LEMMA 2.4. If p is a full projection in M(A) and A has a

1 A result of D. Voiculescu, [17], which we do not need here, eliminates the need
for # to be assumed one-to-one.



STABLE ISOMORPHISM OF HEREDITARY SUBALGEBRAS OF C*-ALGEBRAS 339

strictly positive element, then there 1is a partial isometry ue€
M(AR.2") such that w*u =1R e, and uu* < pQ 1.

Proof. Choose a,, @, +-- as in 2.8 and let 4 = >7pa; Re,. It
is routine to show that the infinite series converges in the strict
topology of M(A® 2¢7). In fact, since finite sums >, b;, X e;, are
dense in A Q .2 and since with %, = > pa;, ® e, [|u,|| = L uru, =
Srarpa, P e,), it is sufficient to show that u,.(0 X e;,) and (bR e;)u,
converge for all be A and all 5, k. The second is obvious since
bR e (pa;,Re,) =0 for ¢ #= k. For the first, note that

| (U — ) (D €0) |2
= [ (0* @ 1) (U — Up)* (U — )b K €52)

< ||b*(§la2‘pai)bll —0
by 2.3.

LEMMA 2.5. With the same hypotheses there is ve M(AQ 2¢)
such that v*v =1 and vv* = p® 1.

Proof. Let N be the set of natural numbers and write N =
U7 N; where the N,’s are disjoint infinite subsets. Let e; = 3y, 1®
e; € M(AR 2). We construct recursively a sequence {v,} of partial
isometries in M(A ® .2¢7) such that vfv, are mutually orthogonal,
0% are mutually orthogonal, > ofv, = Jre;, S viv, < D1 ey,
St S (P QD)-Dre;, and v = (p®1). Sre;. Once this
is done, it is routine to define » = 3.7 v, with strict convergence.

To construet v,, , we use a partial isometry w such that w*w = e,
and ww* < (p X 1)-¢,. w exists by an easy argument based on 2.4.
Let v,,_, = w(S\re; — S vfv,). To construet v,,, we use a partial
isometry ' such that w*w’ <e,., and w'w'* = (p ® 1)-e,. The ex-
istence of w' is obvious. Let v, = (p® L)-[D2e; — "t vvi]-w'.

COROLLARY 2.6. If A has a strictly positive element and B is
Sull cormer of A, then A and B are stably isomorphic. The stable
isomorphism is induced by o partial tsometry in M(AQ 2%).

Proof. B® .27 can be identified with (p ®1)- AR Z (p R 1).
The isomorphism of B® .72 with A® .% is induced by the v of
2.5.

COROLLARY 2.7. If A is separable and B is a full corner of A,
then the imclusion i: B— A induces an tsomorphism i*: Ext (A) —
Ext (B).
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Proof. Consider the commutative diagram:
', 4

|

where the vertical maps are given by ¢ —a X e,. Since the vertical
maps induce isomorphisms on Ext by [6, 3.15], it is sufficient to show
(1 ®1) is an isomorphism. But by [6, 3.11] + ® 1 induces the same
map from Ext(A® .%") to Ext(B® .%") as the isomorphism of
B&® 2 with AR .%  constructed in 2.6.

THEOREM 2.8. If B is a full hereditary C*-subalgebra of A and
if each of A and B has a strictly positive element, then B is stably
isomorphic to A. There is a canonical set of isomorphisms from
B .2 to AR 5 which agree uwp to automorphisms of A .2
wnduced by unitary elements of M(A R .27).°

Proof. Let C be the C*-subalgebra of A & M, consisting of
sums 3, ¢, ®e,; such that a,eB, e, B-A, a,cA-B, and a,c< A.
Here, M, is the algebra of 2 x 2 complex matrices and {e;;:¢, j = 1, 2}
is a system of matrix units. B is isomorphic to the full corner B e,
of C, and A is isomorphic to the full corner AXe,. Moreover if f,
and f, are strictly positive elements of B and A, then f,Q e, + 1, & €
is a strictly positive element of C. Thus 2.6 implies that A and B
are stably isomorphic.

The isomorphism from B® 2 to A Q .9 is induced by a partial
isometry ve M(C & .2¢7). v can be replaced only by uv where u is
a partial isometry whose initial and final projections are 1 e, ®
1le M(C® %"). Since M(A X %) is a corner of M(C & 2¢") (cf. [3,
4.5]), we may regard w as a unitary in M(A ® .2¢7). Thus the second
sentence of the theorem is proved. (Note that there are no arbitrary
choices in the construction of C.)

COROLLARY 2.9. If A and B are C*-algebras with strictly post-
tive elements, then the following are equivalent:

1. A and B are stably isomorphic.

2. There is a C*-algebra C with a strictly positive element such
that each of A and B 1s isomorphic to o full corner of C.

8. There is a C*-algebra C such that each of A and B ts tso-
morphic to a full hereditary subalgebra of C.

2 The “meaning” of the second sentence is clarified in [7].
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Proof. 1=2. Take C= A& 5. A is isomorphic to the full
corner A ®e, of C. B is isomorphic to the full corner B e, of
B &) .2¢, which is isomorphic to C.

2 =3 is obvious.

3=1. Since A has a strictly positive element, A contains a
separable subalgebra A, such that 4,44, is dense in A. Similarly,
B> B, such that B,BB, is dense in B. Let C, be the C*-subalgebra
of C generated by A, and B, and C, the hereditary C*-subalgebra
generated by C,. Since C, is separable, C, has a strictly positive
element. Since A and B are full hereditary subalgebras of C, 2.8
implies A and B are stably isomorphic.

COROLLARY 2.10. If A is a separable C*-algebra and i: B — A
18 the inclusion of a full hereditary C*-subalgebra, then i*: Ext (A) —
Ext (B) 1s an isomorphism.

Proof. Let C be the C*-algebra constructed in the proof of 2.8,
and define j,: B—~C and j,: A—C by 7,0) =bR e, and j,(a) =a X €.
By 2.7 j¥ and j; are isomorphisms. Thus it is sufficient to prove
(J,°%)* is an isomorphism, and for this it is sufficient to show
(Joo)* = g¥. But j, and j,o¢ both have images contained in
B M,cC. If k, and k, are the corresponding maps from B to
B & M,, it is sufficient to show k* = k¥, and this follows directly
from [6, 3.11].

It is interesting to look for invariants under stable isomorphism.
Among the obvious ones are separability, existence of a strictly
positive element, existence of a faithful state, the spectrum, Ext,
being of continuous trace, the element of H*A, Z) corresponding to
a continuous trace algebra A, and being of generalized continuous
trace ([10, 4.7.12]). One noninvariant property that comes immedia-
tely to mind is the existence of (enough) finite-diminsional represen-
tations. This suggests that one attempts to determine which C*-
algebras are stably isomorphic to algebras with finite-dimensional
representations. For the remainder of this section we assume for
simplicity that all C*- algebras considered are separable.

Let FD be the class of C*-algebras all of whose irreducible
representations are finite dimensional, BD, the class of whose irreduci-
ble representations have dimension < n, and BD = U, BD,. The
basic method for using our theorem to prove that A is stably iso-
morphic to an algebra in F'D, for example, is to find an e¢c A such
that 7z(e) is nonzero and of finite rank for each irreducible representa-
tion #. Then B = e¢Ae fulfils the hypotheses of 2.8 and Be FD. The
next corollary contains some examples of what can be proved with
this technique, though it is not best possible.
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COROLLARY 2.11.%* Let A be a separable CCR C*-algebra.

(a) If A is either Hausdorff or (quasi-) compact, them A 1is
stably isomorphic to an algebra in FD.

(b) In particular if A has continuwous trace, (a) applies.

(¢) If A has continuous trace and A is compact, then A is
stably isomorphic to an algebra in BD.

(d) If A has continuous trace and A has finite topological
dimension n, then A is stably isomorphic to an algebra in BD,,,.

(e) If A has continuous trace and A is homeomorphic to S*,
then A is stably isomorphic to an algebra in BD,.

Sketch of proof.

(a) For m,e A, choose ¢, = 0 such that m,(e,) = 0. Let g be a
nonnegative continuous function on R such that g(||7,(e)]|]) = 0 and
¢ vanishes on a neighborhood of 0, and let f, = g(e,). Then 7w, (f,) # 0
and rank z(f,) is finite for all ze A. The sets {x € A: n(f,) # 0} form
an open cover of A. We now use either a compactness or paracom-
pactness argument.

(e) The element f, above can be chosen so that rank zn(f) <1
for all z.

(d) Every open cover of A has a refinement such that no point
of A is in more than n + 1 sets of the refinement.

(e) S"can be covered by two open sets such that A is trivial
over each. (Note that if A is stable and of continuous trace then
according to the results of [12] A arises from a locally trivial .22°
bundle.)

REMARKS.

1. The purpose of 2.11(e) (which is trivial for n = 3) is to im-
prove the counterexample in 6.28 of [5]. The algebra there could
be taken in BD,.

2. It follows from [11] that any algebra in F'D is of generalized
continuous trace. P. Green has recently proved, by combining the
technique of 2.11 with a result on the topology of the spectrum of
a generalized continuous trace algebra, that every (separable) gene-
ralized continuous trace algebra is stably isomorphic to an element
of FD.

3. It is not hard to prove, using [12] and a result of Serre
that a continuous trace algebra A, is stably isomorphic to a C*-
algebra with unit if and only if A is compact and the corresponding

8 We are grateful to P. Green for suggesting the elimination of a redundant hy-
pothesis from (a).

4 There is some overlap between points (¢), (d), and (e) and results of M. Dupré,
Cohomology for classifying categories of Banach bundles, Summary, §6 (preprint).
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element of I?a(fi, Z) is torsion. The same problem for general C*-
algebras appear to be difficult.

3. Relations with other subjects. This paper was motivated
by [6, §3]. The stable isomorphisms found there between a separa-
ble C*-algebra A and a subalgebra B can be put into the following
abstract context: A = C® .22 and B is the full corner defined by a
projection pe M(C® 9¢°) such that p commutes WithA C®1. In
this case p arises from a continuous function from C to Z and
hence defines a continuous field of Hilbert spaces, E, over C. [12,
Cor. 3, p. 260] implies that EP E P -+ is trivial, which implies
the stable isomorphism. It is now clear that the hypothesis that
commute with C® 1 is unnecessary for the stable isomorphism
(though it is necessary for the purposes of [6, §4]). On the other
hand, the application of the result of [12] gives a stronger conclusion
than our results in this context. The extra strength is in the fact
that the partial isometry » of 2.5 also commutes with CR1cC
M(AQ 2¢7). Note, though, that this would be automatic if C is
commutative, since then C® 1 1 is central in MC R 2% & 2¢).
The upshot of this is that there is significant overlap between our
results and a portion of [12] but neither implies the other.

In general, there is a fairly good analogy between our results
and [12]. In order to elaborate this, we state explicitly two results
of [12]:

I. If E is a separable continuous field over X and E, is «a
trivial field of countably infinite rank over X, where X is para-
compact, then B D E, = E, (Thm. 4, p. 259).

II. If E is separable, E, + 0 for each xc X, and X 1s para-
compact, then E@PE G --- s trivial (Cor. 3, p. 260).

The hypotheses that E be separable and X paracompact are ana-
logous to existence of a strictly positive element. The hypothesis
that E, # 0 for each z is analogous to fullness. A corner is analogous
to a complemented subfield, and a hereditary C*-subalgebra is
analogous to an arbitrary subfield. (If X is locally compact Hausdorff
this is more than just an analogy.) Thus our main theorem is
analogous to II. It may seem that we are dealing only with the
special case of II where F is known a priori to be a subfield of a
trivial field, but actually this is no restriction because of the level of
abstractness. If K and E’ are two fields over X such that K, 0 and
E,+0 for all ze X, then we may form FPE'. If A, A, and C are
the corresponding C*-algebras (change the word “corresponding” to
“analogous” if X is not locally compact Hausdorff), then A and A’ are
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full corners of C and the relationship is the same as that between A,
B, and C in the proof of 2.8 (except that there is no inclusion relation
between A and A’). Thus 2.8 and indeed 2.6 is an adequate analogue
of II. We also see that given two C*-algebras A and A', the forma-
tion of a C*-algebra C like that of 2.8 is analogous to the formation
of the direct sum of two fields. The existence of such a C is
analogous to the fact of two fields having homeomorphic base spaces.
C may not be unique. (Note that one needs to choose a specific
homeomorphism between the base spaces before one can form the
direct sum of fields with different base spaces.)

It seems appropriate to ask, “Under what conditions is it possible
to construct a C*-algebra C having two given C*-algebras 4 and 4’
as “opposite” full corners?” One answer to this question is provided
by the concept of Morita equivalence. See [7] for details.

Thus far our analogy has not mentioned I. Although I was
used in the proof of II in [12], we note that I follows from II in
the special case where E, # 0 for all . To formulate an analogue
of I in general, we assume B is a hereditary C*-subalgebra of A
and define a C*-algebra DcC A R .2 as follows: If de AQ 2 and
d;Re; =1Re.)d(1Re;;), then d € D if and only if d,e B, d,;c B-A,
and d, e A-B. Bisa corner of D defined by the projection p which
may be symbolized by 1® e, (where “1” is the identity of M(B)).
A ® 2 can be identified with the opposite corner, which is defined
by 1 —p=371&Re;; (where “1” is the identity of M(A)).

THEOREM 3.1. If B has a strictly positive element, then there
1s @ partial isometry w e M(D) such that w*u =1 — p and uu* = 1,

Sketch of proof. Let e be a strictly positive element of B. Then
% can be defined by the infinite matrix:

0 e 1 — e’ 1 — ede (1 — e*)*%
0 —(1— e e 1 —e)% (1 —e)é

0 0 —(1 — e¥)/? e (1 — e®)2%?
0 0 0 —(1 — er)? é

0 0 0 0 —(1 — e

Before proceeding further, we prove some things needed to
justify some of the above remarks. Let A and B be C*-algebras,
and let \: B— (&) be a faithful representation. If = is any
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irreducible representation of A, then w @ A is a representation of
A®... B. The direct sum of 7 ®» for all xe A is faithful, since
itis 5% 37) @ N. Thusif f: A~ B, and a € A, there can be at most
one ¢ € A®.im B such that (t @ \) (¢) = (x @ M)(a ® f(w)) for all T e A.
This ¢ (if it exists) will be devoted ¢ @ f. It is easily seen that the
existence and identity of a¢ ® f is independent of the choice of .

LEMMA 8.2. a X f ewists for all acA +f and only if f s
bounded and continuous.

Proof. Assume a & f exists for all «. The closed graph theorem
implies that the linear map ¢ —a ® f is bounded and hence that f
is bounded. To any state +» on A corresponds a linear contraction
Ry: AQ.in B— B such that Ry(a ®b) = 4(a)-b [16]. If 7 is a re-
presentation of A4 and 6 a cyclic vector such that +(a) = (z(a)d, )
for all ac A4, then Ry can be constructed by identifying Ao Ry
with the compression of 7 @1 to C6 R 527 If + is a pure state,
Ry(a Q f) = ¥(a)f(z). Also the assignment « — Ry is continuous
from the weak™ topology to the strong operator topology. Now if
a net {,} converges to = in A, choose a state o defining 7 and an
a € A such that «+(a) # 0. Then by passing to a subnet if necessary,
we can choose states 4, defining 7, such that +, — +» weak* ([10,
3.4.11]). Thus Ry (¢ @ f) = yu(@)f(Te) — y(a)f(7) = Ry(e ® f), and
hence f(z,) — f(z). Therefore f is continuous.

Now assume f is bounded and continuous, a <€ A, and further
that ||e||=]flle=1. For each n=1,2 --- let K, ={reA:
[|z(a)|] = 1/n} and let L, be the closed convex hull of f(K,). L, is
compact since K, is. By the Dugundji extension theorem ([13]) there
is a continuous retraction r,: B— L,. Let {U,} be a finite open cover
of L, consisting of sets of diameter less than 1/n, and let {¢,} be a
partition of unity for L, subordinate to {U,}. Choose b,e¢L, N U,
for each ¢ and define g,: A — B by g,(x) = S (¢po 7,0 f())-b,. Then
a g, exists, since it is 3 (g;o7r, o fla ® b,. Here we are using the
Dauns-Hofmann theorem (see [14] and references), which implies
that for any bounded continuous scalar valued function » on A there
is an element ha of A such that m(ha) = h(z)w(a) for all re A. In
this case h = ¢,or,of. If weK,, then ||g.(r) — f(x)|| < 1/n. Thus
for all me ||z ® Me® g,) — @@ Ne® (7)) < 2/n. It follows
that {¢ & g¢,} is a Cauchy sequence and its limit fulfils the definition
of a® f.

THEOREM 3.3. The elements of M(A @uni B) which commute with
A X1 can be identified naturally with the bounded strictly continu-
ous functions F: A — M(B).
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Proof. If e M(A @ B) commutes with A ® 1, then for each
e A (r ®N~(x) commutes with 7(4) ®1. Thus @R N)"@) =1®
T(z), for some Tx&)e L (). AR T(x) (wla)R@nDd) = rnla)®
T(nb) and (w(a) @ M)A QR T(w)) = nla) Q@ Mb)T(r) are each in
(T @ M)(A Qui B) for all ac A, be B. It follows that T(m)Mb) and
AMD)T(x) are in A(B). (Choose a unit vector ¢ such that +(a) =
(r(a)d, 6) # 0 and apply Ry.) This means that T(x) = X(F(x)) for
some unique F(w)e M(B). (See [3, p. 277] for example.) Now for
each be B we have functions Fb and bF from A to B defined by
7w — F(z)b and 7w —bF(x). We have just seen that z(a ® b) fulfils
the definition of a @ Fb and (a®b)x fulfils the definition of a Q) bF.
Thus 3.2 implies F'b and bF are continuous, and hence F' is strictly
continuous. It is clear that «x is determined by F.

Conversely, suppose F (bounded, strictly continuous) is given.
We wish to define bounded linear maps L, R: A@.u B— A®... B
such that Lie ®b) = a @ Fb and Rla®bd) = a X bF for all acA,
be B. Since these expressions are defined by 3.2 and bilinear on
A x B, L and R are deﬁnedAon the algebraic tensor product. Since
[lell = sup {[|(w @ N)(c)||: we A}, we see that [ L], [|RB] = [ F|..
Hence L and R can be defined on 4 @... B. Again applying 7 & ,
we see easily that cL(¢’) = R(e¢)-¢’, so that the pair (L, R) defines an
element € M(A @unix B). It is obvious that

@@N(@) = (TQ€MN (1K Fx)) ,

so that x commutes with A @ 1 and the proof is complete.

It is known that the topological product A X B is homeomorphi-
cally identified with a dense subset of (A @... B)”". A byproduct of
3.3 is that these spaces have the same Stone-Cech compactification.’

COROLLARY 3.4. Every bounded continuwous complex -valued func-
tion on A X B extends to (A @i B)".

Proof. We compute the center, Z, of M(A@..B). xzcZ if
and only if x commutes with A®1 and 1® B. Thus % is given by
F: A — M(B), and the range of F' must be in the center of M(B).
Smce the Dauns-Hofmann theorem identifies the center of M(B) with
C,,(B), the space of bounded continuous complex-valued functions on
B, z is described by a bounded strictly continuous function from A
to Cb(B) But a direct application of the Dauns-Hofmann theorem
identifies Z with C,(A ®uin B)”. Thus we need only show that the
bounded strictly continuous functions from A to C,(B) are the same
as the elements of C,(A x B). We need:

5 In [4] it is shown that if A or B is nuclear, then Prim (4 ® B) = Prim 4 X Prim B.
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LEMMA 8.5. The restriction of the strict topology of M(B) to a
bounded subset of Cy(B) coincides with the topology of uniform con-
vergence on compact sets.

Proof. Suppose {f.} is a net in C,(B), f.—f uniformly on com-
pact Asubsets, Nfelle = M for all a, and beB. For ¢ >0 let K, =
{peB:|lp®)]l = ¢}. Then K, is compact. |[(fu — /)bl = sup{|fu(0) —
£l p®)|: p € B} < max (sup {|£u(0) — £(0)]: p € K.)-||b]|, 2€ M). Since
¢ is arbitrary, this implies f,b — fb. Hence f,— f strictly.

Conversely, assume f,— f strictly. For any compact K there
exists 0 < ee B such that ||p(¢)|| =1 for pec K. (This is an easy
argument using the lower semi-continuity of ||p(e)|l.) Then f,e— fe
clearly implies that f,— f uniformly on K.

Now an elementary point-set topological argument completes the
proof of 3.4. We need the local (quasi-) compactness of B, but the
fact that B may not be Hausdorff causes no difficulty.

We now return to the case where A =C®.% and p is a
projection in M(A) which commutes with C® 1. In [6, §4] similar
hypotheses were used to construct an endomorphism m, of Ext (C). m,
is constructed by following the natural map Ext (C) = Ext (CQ %)
with the map {*: Ext (4) — Ext (C), where {:C— A is defined by
) =(¢cX®1)-p. In order for this to make sense, we need (¢ Q L)p
to be in A for all ceC. According to 3.2 and the proof of 3.8 this
happens precisely when the map P: C — & which defines p satisfies:

1. P(r) is finite rank for all zeC.

2. P is norm-continuous. m, will equal m,, if there is a partial
isometry < M(A) such that % commutes with C® 1, w*u = p, and
wu* = p,. Thus we are dealing with a class of ordinary vector
bundles over C. The bundles which arise are precisely the pull-backs
of bundles over the complete regularization of C. Note that none
of the results of §2 are needed to define m,.
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