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Classical potential theory is studied in the constructive
framework. Green’s functions are constructed for a large
family of open regions.

0. Introduction. A constructive (as opposed to idealistic) theory
is one in which every theorem is an explicit or implicit assertion about
some computations. For example, an existence theorem gives a
(general but not necessarily efficient) routine for the construction.

From this point of view, certain classical theorems become less
meaningful, as they assert the existence of mathematical objects
without providing means of their construction. An example in
potential theory is the Perron-Wiener-Brelot method of obtaining
Dirichlet solutions. Solutions for the Dirichlet problem are proved
to exist as the infimum of a certain family of superharmonic func-
tions associated to the boundary function. As the infimum of an
infinite family cannot in general be calculated in finitely many steps,
Perron-Wiener-Brelot’s theorem, that the infimum (when certain
conditions are satisfied) is the solution, has a less interesting con-
structive interpretation, namely if we can construct the solution,
then it is the infimum of a certain family of functions—the wrong
direction as far as computation of the solution is concerned.

In this article we attempt to examine classical potential theory
from the constructive standpoint. The first step, also the harder
one, is to give precise computational meaning to the basic notions.
For instance, what kind of computations do we perform with a
superharmonic function? We believe the answer to be its averages
on balls rather than its evaluation at all points in an open set. Aec-
cordingly, a superharmonic function is defined as an integrable funec-
tion (with certain properties) without the requirement that it be
everywhere defined. (The reader familiar with the literature in
constructive mathematics realizes, of course, that everywhere defined
functions on E¢ which are not also continuous have not yet been
encountered). Thus the measure-theoretic approach is adopted to
replace the usual pointwise approach. For example, convergence for
superharmonic functions is always L,-convergence, rather than the
usual pointwise convergence. L,-convergence also furnishes con-
venient numerical measures of rates of convergence. Thus we are
able to talk about convergence in a constructive sense.

The main objective of this article, beyond a constructive formu-
lation of potential theory, is the construction of Green functions for
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a large class of regions. The generalized Dirichlet solutions can thus
be obtained for these regions.

Although the definitions and the statements of theorems will be
explained in detail, many proofs are left out because, with the outline
provided, the patient reader will find it easy to obtain constructive
proofs by modifying the usual classical proofs. We will give only
the proofs which are substantially different from their classical
counterparts. Moreover, classical theorems whose constructive intent
is clear, such as Herglotz’s theorem, (see Helms 1969), will be left
out entirely. The reader can amuse himself in finding the more or
less routine constructive proofs. Also, there are many theorems
which are already constructive, e.g., Harnack’s inequality for har-
monic functions. We will use them without hesitation, and refer
the reader to classical references. The constructive measure theory
of Bishop (Bishop 1967, Bishop and Cheng 1972) will also be used
without further comment.

1. Superharmonic functions. Let R be a nonempty open subset
of EYd = 2), equipped with the Lebesgue measure. A measurable
function v on R is said to be locally integrable if it is integrable
on every ball well contained in B. (A subset K is well contained
in R if some metric neighborhood of K is contained in R. In symbols
KcR). Local L-convergence will mean L,-convergence on all such
balls.

Write B,. for the closed ball in B¢ with center 2z and radius »
(r > 0), and write R, for {re R: B,.c R}. If w is locally integrable
on R, write u, for the continuous function on R, whose value at «
is the average of u over B,.. Our attention will be centered upon
those properties of w which are related to these averages. For this
reason, we assume in the following that every locally integrable
function w has been “regularized” by redefining u(x) = lim,_, %,(x)
with the domain of w being those 2 where the limit exists in
[-o0, «]. For zecR,, the average of u# on 0B,, may not be defined.
When it is defined, we denote it by u"(x).

DerFINITION 1.1. A locally integrable function » on R is said to
be superharmonic if for all » > 0 we have w = u, a.e. on R,; har-
monic if = is replaced by =. A measurable function » on R is
said to be lower semi-continuous if it is the a.e. limit of an increasing
sequence of continuous functions on E.

We have defined lower semi-continuity as a measure-theoretic
property rather than a topological one. The term lower semi-con-
tinuity is retained only becanse of the lack of a better name.
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It ean trivially be verified that a superharmonic funection is lower
semi-continuous, and that sums, minimums, positive constant multi-
ples, as well as local L,-limits of superharmonic functions are again
superharmonic. Later we will prove that the a.e. limit of non-
negative superharmonic functions is also superharmonic. In case u,
is the wmth partial sum of a series of nonnegative superharmonic
functions, the a.e. limit will also be the local L,-limit, hence obviously
superharmonic.

We next give the constructive version of the classical minimal
principle. Suppose u is superharmonic on R and suppose K is a
compact set well contained in R. Classically the infimum of % on
K exists because of idealistic considerations, and is attained because
of lower semi-continuity, the latter also coupled with idealistic argu-
ments. However, there is in general no way to compute this infimum.
To see this, construct a superharmonic funetion which is discon-
tinuous at one point. More specifically, let z, be a sequence in E°*
converging to 0, but each unequal to 0. We will see later that the
functions |x — z,|™" are superharmonic on E°® Borrowing this fact,
let ¢, be a sequence of positive numbers such that > ¢,|z,|™ con-
verges. >,c¢,|® — z,|”" converges a.e. and is therefore superhar-
monic in x. Now let ¥ be a point in E°® for which we are unable
to decide whether (a) ¥y 0 or (b) ¥ == z, for all n. Let K = {y}.
If we could compute the infimum of u = 3,¢,|- — %,|™ on K, then
either the infimum would be < 3je¢,|z.|™ + 1, in which case we
would have y # z, for all n, or the infimum would be > 3¢, |z,.|™
in which case we would know % == 0. Such a counter-example in
the style of Brouwer can be modified to show that the infimum can
also exist on K without being attained. For these reasons, superhar-
monic functions will be characterized by a lower bound principle,
rather than the classical minimal prineciple.

Let u be a lower semi-continuous function on B. We say that
u satisfies the lower bound principle on R if, for every positive
number a, for every harmonic function 2~ on R, and for every com-
pact set K well contained in R, there exists a positive-measured
subset A of B — K such that (v — h)(4) — a < (u — K)(K) a.e. (i.e.,
for almost every € K and a.e. yc A we have u(y) — i(y) —a <
u(x) — h(x)). In the cases of interest, u is locally integrable, and
the lower bound principle is satisfied on R iff, given «a, h, and K,
there exists y € B — K such that u(y) — i(y) — a < (u — h)(K). (Recall
that u is regularized.)

THEOREM 1.2. Let w be a locally integrable, lower semi-con-
tinuous function on R such that w(x) < u,.(x) for some xe R,(r > 0).
Then there exists an open set R', compact set K, harmonic function
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h on R', such that xe Kc R'c B,, and such that for some a >0
we have w A h —h — a > u(x) — h(z) on R — K.

The integrability condition will later be dropped. Thus a lower
semi-continuous function u on R is superharmonic if it satisfies the
lower bound principle on every open subset of R. The converse
follows (although not immediately) from the next theorem.

THEOREM 1.3. Let u be a locally integrable function on R and
let K be a compact subset well contained in B. Suppose u(x) <u — a
on R — K for some xc K and a > 0. Then there exists an arbi-
trarily small r > 0 and z € R, such that w(z) < u.(?).

The characterization of superharmonic functions by the lower
bound principle leads, as in the classical theory, to a third definition
of superharmonic functions: a locally integrable function w on R is
superharmonic iff u, = u, on R, whenever 0 < r < s.

We next note that, although a superharmonic function is defined
only a.e. on R, the averages u"(x) are defined and continuous on R,.
First a real variable lemma which most likely is known although
we fail to locate it in the literature.

LEEMA 1.4. Let ¢ and + be concave functions on the interval
b
(@, b) with finite L,-norms (i.e., |||, = S |p| exists and similarly
Jor ). Then on any proper subinterval [a + h, b — h] we have

max [ — | < 57 ([[@[l + [|¥ () lle — ¥ .

[a+h,b—h]

Using this lemma, we are able to prove the following theorem,
parts (i) and (ii) of which are of course well known.

THEOREM 1.5. Let u and v be superharmonic functions on R
aond let ye R,. Then the following hold.

(i) For every tc(0,s) we have u, T u in L,(0B,;) as r]0; in
particular u'(y) s defined.

(ii) uX(y) vs a concave function of ¢t~ (if the dimension d is
>2) or of —logt (if d = 2).

(iii) Suppose [r + &, s — a] is a proper subinterval of (r,s)
where 0 < r < s. Then for telr + a,s — ], we have

where ¢, 18 a constant depending only on d.
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Following Helms (1969) we let PI(x, B) denote the Poisson integral

2 2
_l_S " — |y —dw| dp(z)
orles |z — X

where ¢ is a measure on the boundary 6B of a ball B = B,,, and
where o, is the total surface area of the unit sphere B,. If u# has
a density f relative to the surface area measure, we also write
PI(f, B) for PI(¢, B). The reader is referred to Helms (1969) for
basic facts about PI(y, B). The previous theorem shows that if
is superharmonic on R and if B,.c R, then PI(u, B) is defined.
Using Theorem 1.2, it can be shown that if v is defined to be % on
R — B, to be PI(u, B) on B, then v is also superharmonic and % = v.

2. Green functions. With the lower bound principle charac-
terization of superharmonic functions, it is easy to show that for
x € B¢, the function u,(y) = |y — 2|7 if d = 3, u,(y) = —log |y — 2|
if d = 2, is superharmonic an E% We will sometimes write U(z, y)
for w.(v).

DEFINITION 2.1. A harmonic function 2 on R is called the
greatest harmonic minorant of a superharmonic function » on R if
h<w on R and if for every ¢ >0 and compact set K< R there
exist an open set R’ and compact set K’ such that Kc R cK'cR
and such that for every harmonic function v on R’ with v <% on
R’ we have v < h + ¢ on K.

Note the ¢ — d form of our definition. Note also that & is unique.

DIFINITION 2.2. Suppose U(z, -) has a greatest harmonic minorant
H(z, ) on R for every e R. Then G(z, y) = Ulz, y) — H(x, y) is
called the Green function for R. We also write A, for H(z, -).

By showing first that the families {H(-, ¥)},ex and {H(®, *)}.cx
are equicontinuous on any compact set K< R, it is easy to prove
that H is continuous on R if it exists. In particular G: R X R—
[0, o] is continuous in the extended sense.

It is well known that for the interior B of a ball B,, in E4d = 3),
the function Gz, y) = Ulx, y) — r* % — 2|79y — 2* 17" is the
Green function for B. Here z* is the inverse of x relative to o6B.
The condition in 2.1 can be verified by using the fact that for a
fixed x€ B we have Ggy(x, y)—0 as y approaches 0B. Likewise
Gy(z, y) = log |z — z||y — 2*|/r|y — x| is the Green function for B
in E¢ Note that Gy(z, ) = Gx(y, 2).

Let R be an open set which has a Green function G. Let ¢ and
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v be measures on R and let m; denote the uniform measure on a
ball with positive radius, i.e., m; is the Lebesgue measure on B
divided by the volume | B| of B. We adopt the convention of writing
pf or fu for Sf(x)d/x(x), writing #F for SF(x, Ydp(x), writing Fp for
SF(-, y)du(y), and pFy for SF(x, Yy @ v(z, y), provided the inte-
grals exist.

Let ¢ be a measure on R such that for all Bc R, the Green
function G is integrable relative to # @ m;. (This is always the case
if ¢ has compact support.) We will call #G the potential of . The
potential of p is superharmonic on R, and is harmonic away from
the support of . The Riesz decomposition theorem says that every
superharmonic function can be decomposed on a ball B into a potential
and a harmonic function. The constructive proof depends on the
following continuity theorem.

THEOREM 2.3. Let R be an open set with Green function G.
Let f be a continuous function on R with compact support well
contained in some integrable open set S of R. Let ¢ >0 be arbi-
trary. Then there exists 6 > 0 such that for any measures b, t
whose potentials are defined, and for any harmonic function on R

MM&MG~mG—M<5ﬂwhwﬂmf—mﬂ<a

THEOREM 2.4 (Riesz decomposition). Let u be a superharmonic
function on the open set R. Let B be the interior of some ball B,,
well contained in R. Then there exists a measure f on B such
that w = Gyt + PI(u, B) on B, where G is the Green function for
B. Moreover p is unique.

In case u has continuous second partial derivatives, the above
theorem follows at once from Green’s identity

u:—ﬁw—mﬂﬁ@@mwm+mm3%

(say d =3). In general u can be approximated by such smooth
superharmonic functions wu,. Theorem 2.3 (rather than the usual
compactness argument) then helps the passage to the limit in u, =
Gy, + PI(u,, B).

The Riesz decomposition can be used to show that a family of
nonnegative superharmonic functions bounded at the center of a ball
is uniformly integrable on the ball. To be precise, suppose B,., € R
and ¢ > 0. Then there exists ¢ > 0 such that for all Lebesgue
measurable subset A of B,, with Lebesgue measure m(A4) < J and
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for all nonnegative superharmonic function # on R with u(x) =<1
we have S uw(y)dy < e. As a corollary, we see that the a.e. con-
4

vergence of positive superharmonic functions implies L,-convergence
on balls, and so the limit must also be superharmonic. Theorem 1.2
can now be strengthened by dropping the local integrability require-
ment, for every lower semi-continuous function u is the a.e. limit
of u A n(n— o), the latter being locally integrable.

A subset Z of R is called polar if there exists a superharmonic
function v on R such that v(z) = + o for every ze€Z. (Recall that
v is regularized so that this means lim,, v,(2) = + o« for every
z2eZ.) Since v is locally integrable, a polar set is of zero Lebesgue
measure. The next theorem, which is well known, says that polar
sets are ignorable in a stronger sense. A constructive proof is
presented here as it differs substantially from the classical com-
pactness proof.

THEOREM 2.5. Let Z be a compact volar set in R. Let u be a
superharmonic function on the open set R — Z. If u is locally
bounded from below, then u 1s also superharmonic on R.

Proof. Replacing u by u A n if necessary, we may assume that
4 is bounded from above. Since u is locally bounded from below,
it is locally integrable on R. Let v be any superharmonic function
on R such that v(z) = + « for every ze¢Z. We will show that
v + u is superharmonic. Suppose (v + u)(w,) < (v + u),(%,) for some
w,€ R,. Applying Theorem 1.2, we can find an open set R’, com-
pact set K, bounded harmonic function %, on R’ such that z,ce K<
R' c B,,, and such that for some a > 0 we have

('v + u) N hl - h’l -—a> ('U + u)(xo) - h1(xo) = (’U + u) AN hl(xo) - hl(wo)

a.e. on B — K. So by Theorem 1.3, there exists 7, < 7,/2 such that
(v + w) A b)) < ((v + u) A b)), (®) for some x, € R,. We may even
assume that ((v + u) A k)(x) = (v(z) + w(x)) A h(z). (One should
be careful here because all functions are assumed to be regularized.)
Repeating the argument, we have for each k1 =1,2, ...

(@) + w@)) AR A - A Ra(m) < (v + U AR A <o 0 A R, (@)

where each %, is a bounded harmonic function on R®¥CB,, ,, ,
where z, € R, and where 7, < 7,_,/2. Since the right hand side of
the last displayed inequality is bounded by (&;),(,) = ki), (J =
1, .-+, k), the left hand side must equal »(x,) + u(z,). In particular
(@) + u(@,) < hy(z,). Since both w and h, are bounded on B, ,, there
exists M > 0 such that v(x,) < M for every k. Now |2, — 2,_,| < 7,
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and >, 7, < co. Hence x,— 2 for some x. Moreover, the last dis-
played inequality implies (v + w)(x.) < (v + %), (%) which in turn
implies d(x,, Z) < 7, since v + u is superharmonic on R — Z. Con-
sequently z€Z, and v(x) = + oo. Thus there exists s > 0 so small
that v,(x) > M. But v,(z,) < v(x,) < M and so by the continuity of
v, we have v,(z) < M, a contradiction. Hence (v + u)(®,) = (v + u), (%)
for all z,€R,, namely v + u is superharmonic on R. Similarly
ev + u is superharmonic for all ¢ > 0. But ev + w converges to u
(locally L,) as € —0. Therefore u is also superharmonic.

3. Existence of Green functions. In this section let # stand
for a positive superharmonic function on an open set S in E% Let
R be a bounded open subset of S. {B*} will denote a sequence of
open balls in R with the following properties. (i) Each B* is well
contained in S. (ii) Each B* appears infinitely often in the sequence
{B*}. (iii) For every compact set K well contained in R we can find
an integer n so large that K < |J;-, B*.

For each ball Bc S define @(u, B) to be the superharmonic func-
tion which is equal to PI(u, B) on B, and equal to u off B. Write
u® for u, and write «* for @d(u**, B¥). Thus u** = u*. The sequence
u* is said to be obtained by the sweeping process (of Poincaré) for
u in R relative to {B*}. We loosely say that the sweeping process
converges for u if the a.e. limit of w* exists on R. (Classically the
limit always exists, the sequence being positive and decreasing.)
The limit %>~ is then harmonic on R since, for fixed £k, it is the limit
of the subsequence {u’} where j runs through the indices for which
B/ = B* and where %’ is evidently harmonic on B*. This section
studies the constructive convergence of u*: whether it is possible to
find an integer %k so large that «* is arbitrarily close to being har-
monic, in a sense to be made precise. First a lemma about the
continuity of the map @.

LEMMA 3.1. Let B, C denote balls well contained in the ball B'.
Let u, w be superharmonic functions on B'. If C— B (with respect
to the Euclidean metric) and if w-—w (in L,(B’)), then &(w, C)—
O(w, B) (in L(B")).

THEOREM 3.2. If the limit u™ exists for the sweeping process,
then it is the greatest harmonic minorant of w on R in the sense
of Definition 2.1. In particular u” is independent of {B*}. Con-
versely, if w has a greatest harmonic minorant h, them u* | h a.e.

Proof. Suppose u~ exists. Let K be a compact set well con-
tained in R. Let p be an integer so large that K< |J? B*. For



CONSTRUCTIVE FOUNDATIONS OF POTENTIAL THEORY 413

each k, let C*c B* < B"* be concentric balls well contained in S,
such that K< |J%C* also. Let n be so large that u" — u~ < ¢ on
U2 C*, where ¢ is an arbitrary positive number. (n exists because
u* converges to u> uniformly on compact subsets well contained in
R, thanks to Harnack’s inequality.) Let w° = % and w* = @(w**, C¥).
According to the previous lemma, we can make the integral of
[w* — u*| on J? B’* arbitrarily small, if we choose C* close enough
to Bk =1, ---,n). It follows from Theorem 1.5 that we can make
| PI(u", C*) — PI(w", C*)| < e on J:C*. Now let v be any harmonic
function on % C* dominated by u. Then v < @(u, C*) and inductively
v < w". Hence for every k=1, ---, p (again using the lemma) we
have v < PI(w", C*) < PI(u*, C*) + e S u™ + ¢ £ u~ + 2¢ on C: The
condition in Definition 2.1 is thus satisfied with R’ = |J? C*, provided
¢ is so small that K< R..

Conversely, assume that h is a greatest harmonic minorant of
u on RB. Let K be a compact set well contained in R and let ¢ >0
be arbitrary. Let K’ and R’ satisfy the condition in Definition 2.1.
Let p be so large that K’ J? B*. Let w* be obtained from the
sweeping process for u in the region |J?B* relative to {B*™?},
We will later show that w* converges on |J;B*. The limit w> is
harmonic and dominated by % on R’ — |J? B®:. Hecce, by the defini-
tion of R’, we have w*<h + ¢ on K. Choosing &k large enough,
we have w* < h + 2¢ on K. But the sequence {B*=°?} is a sub-
sequence of {B*}. Hence w* = u* if n is chosen large enough. Com-
bining, we see that w* < h + 2¢ on K. As u" = h also, {u"} con-
verges uniformly on compact subsets of R to &, as asserted.

For the remainder of this section assume that S is an open ball
well containing R, and denote its Green function by Gs. From the
above theorem we see that R has a Green function if the sweeping
process converges for all u,(x e R), the choice of B* and S being
immaterial. Our next task is to show that the sweeping process
does converge for a large family of open regions K. First we in-
troduce two assumptions on R which are classically trivial, but
which spell out necessary numerical data about R in our computa-
tions. Assumptions: (i) R is bilocated, i.e., we are able to compute
the distance from any point in E? to R and to —R, (ii) R is strongly
Lebesgue measurable, i.e., given any ¢ < 0 we can find a compact
set K € R such that any Lebesgue measurable set contained in R — K
has measure at most e. With these two assumptions, it is easy to
see that if ! converges a.e. on R then it also converges a.e. on
E¢, Thus u7 may be regarded as a superharmonic function on E<.
By Theorem 2.4, we can write 4y = ¢,Gs + h on S, where g, is a
unique measure independent of S, and % is harmonic on S. The
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measure p, is supported by oR since 2 is harmonic on R as well
as off B. Averaging over z in a ball B,, € R and using the uniqueness

of the decomposition, we have ]By,[“lg sdz = p,. So p, is called
B

the harmonic measure relative to R and z, (see e.g., Helms 1969).
In particular, for every continuous funection f on oR, we see that
u.f is harmonic in # on R. Thus, if we can construct the Green
function for R, or equivalently show that u exists for all xe R,
then f,f is the generalized Dirichlet solution for the boundary
function f.

In the following we consider the sweeping process as an opera-
tion on measures on E? with compact support. More precisely, let
¢ be such a measure relative to which the open ball B is measurable.
Define ¥'(#, B) to be the measure whose value at a continuous func-
tion f on K¢ is

v BYf =\ faprwon | | oo —la—yPa—oldo@dp()
where we have let B,, be B, and o the surface area measure on
0B, We will write p* or ¥'(y, BY, ---, B*) for ¥(¥(- - -(¢¢, BY)---), B").
The next lemma states some well known properties of 7.

LeMMA 3.3. (1) ¥ 4s linear tn p, and |¥(y, B)| = | ¢l

(2) %(y, B) is supported by —B, and by 0B +f p(—B) = 0.

(8) If p is supported by B,, then for every measurable subset
C of 9B

(@r)o3'so(C) | p| = ¥(py, B)C) = @2r)az’s™o(C)[ 2] .
(4) 9(nU, B) =¥y, B)U.

LEMMA 3.4. Let ¢ and a be positive real numbers. Then there
exists v = r(e, @) > 0 such that for every measure p on E° supported
by the r-neighborhood C, of some (d — 2)-dimensional sphere C (i.e.,
C is the intersection of two spheres in E°) having radius a, with
pUZ1 on E% we have || < &.

The proof of this lemma is typical in classical potential theory,
and is sketched as follows. Let v be the measure on C with density
1. Elementary calculation then shows that vU = ¢;log (a/r) on oC,,
where ¢; is a constant. Thus the harmonic functions » = pU and
g = (¢;log (a/r))'wvU on E; — C, obeys h < g. In particular i(z) <
g(x) where x is the center of C. But g(z) = (¢;log (a/r))'v,_,, where
v, , is the total surface area of the unit sphere in F?'. Similarly
mz) = (e + r)***| ¢]. Combining, we see that |¢] < e7'y,_.a*"¥/log (a/r)=
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g, if we let r = a exp (—cz'y,_,a% %/¢).
LeEMMA 3.6, Let D, a, ¢ be positive real numbers and let n be

a positive integer. Then there exists a positive number a, = a,(D, a, &)
with the following properties. Suppose R is the union of open

balls B', -++, B* whose diameters are at most D and whose centers
are at least & units apart, and suppose ¢(@B* — B* — --- — B¥') =
ooB— B*'— -+ — B — ... - BY), 1£j<k=<n and A signifies

omission). Suppose ft is o measure supported by R (@B'U---UJB")
with total mass || > ¢ and with pU < 1. Then

V(¢ B.)JOF) =z a,

where B, = {B'} and B, is the finite sequence of balls obtained from
B._. by adjoining B!, ---, B*™' in the front and adjoining B" at
the end. (For example B, = {B', B% B® B', B? B*, B', B%, B? B%.)

Proof. The lemma is trivially true for n = 1. Let D, «, ¢ and
n >1 be given, and assume that a,., has been constructed for
D, a,¢/3. Letr = (D, a, ) > 0 be so small that for every measure
v supported by the set Ui (B* — B?) N oB* (where B, --:-B™ are
arbitrary balls as in the hypothesis) with vU <1, we have |[v| <
(¢ A\ @,_)/6. The number » exists because of the previous lemma
and because the balls have diameters at most D and centers at least
« apart. We will show that

@, = (¢/3) A D707 r(r" "o /n)e A a,-,)/6

has the desired properties. Thus let B, ---, B" and ¢ be as given
in the hypothesis. Write R’ for B*'U --- U B*'. The

¥y, B, -+, B"") = ¥(¢|R', B, --+, B*") + p|oR' N B
= {T(#| R, B, ---, B")| R’}
+ {¥(¢| R, B, -+, B")|(9R" — B")}
+ {¥(#|R, B, ---, B*)[(R' N B*) + p1|0R' N B"}
=y + VY, + vy, say.
Since |v,| + |v.| + |vs] = || > ¢, at least one of the following alterna-
tives holds.

(i) |y, > ¢/3. Then, since v, is supported by R’ — B" COR,
we have

(¢, B.)OR) =2 ¥ (v, 8.1y B)OR) = v,(0R) = |1, > ¢/3 = a, .

(ii) |v| > ¢/3. Note that v, is supported by oR'. Hence
U(vsy Buy) =¥ On the other hand, since v, U< pU=<1 and so
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V,(0R' N (B® — B?)) < ¢/6 by the choice of », we have y,(B?) > ¢/6.
Therefore

(e, B,)OR) = ¥ (vs, B.-i, B")GR)
= ¥(v,, B")(OR)
> ¥(v,| B, BY(®B"* — B* — --- — B
= D %7'r(ri o, n)(e/6)

=a, .

(iii) |v,| > ¢/3. Then, since y,U < 1 and since vy, is supported by
R'n@B'U---UdB""), the induction hypothesis implies Z(v,,5,_)(0R') >
&,_,.. Hence if we write v,v, for (v, B,_)|(OR — B") and
¥(v, B,_)|0R' N B™ respectively, then either |v,| > a,_,/3 or |v;| >
a,_./3. Thus the arguments in (i) or (ii) can be repeated with v, or
y; respectively, ¢ being replaced by a,_,, in either case yielding again
(¢, B,)OR) = a,.

THEOREM 3.6. Let R be the unton of the open balls B!, ---, B*
with distinct centers. Then the sweeping process for u, (€ R)
relative to {B* ™"} converges.

Proof (given for d = 8 only). Since @(u, B) = u in general, it
suffices to prove that the sweeping process converges for some
subsequence of B* = B*™1* We may assume that ze B' so that
0,U=u, < M for some M >0 on —B'. (Here §, is the unit mass
at z.) In particular 6:U = u! < M on E,;. Let ¢ > 0 be arbitrary.
Let pp =%(0,, B', ---, B*). Then clearly # is supported by 6B*'U---U
0B". Let B, and «, be constructed for the balls B!, ---, B* and for
¢ as in the previous lemma. Let v, stand for the sequence £,
repeated k& times. Let N be an integer greater than a,’. Suppose
Uy, Yy (R) > . Then (g, 7, )(R) > ¢ for all k < N. Hence

Ty, Y)OR) = U(t, Y- )OR) + T(¥ (2, Tx-1) | R, B,)OR)
= ¥, 7y )OR) + a,

= Na, > 1,

a contradiction. Hence Z(y, 7y)(R) <e. Therefore ¥(y, 7.)(R) |0,
and ¥(y,v,) converges (w*) to some measure supported by oR. As
a consequence, 9(u,, B', ---, B", 7,) = ¥(¢, 7,)U converges (locally L))
to some u;.

In the proof of the next theorem we need a simple consequence
of Theorem 3.1: if the sweeping process for a superharmonic func-
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tion u converges on the open subsets B and R, to u~ and > re-
spectively, then u~ = w*" provided RC R'.

THEOREM 3.7. Let f be continuous function on K¢ such that
f@)— + o as |x]— . Then except for a countable set of real
numbers a, the open set R(a) = {x e E% f(x) < a} has a Green function.

Proof (given for d = 3 only). Let 2 be an arbitrary point in
E? We will first show that the sweeping process for u, converges
for all but countably many «. It suffices to consider those a’s in
[0,1]. Let S be a ball containing R(1), and let » be any positive
integer. Construct a step function ¢, on [0, 1] in the following
manner. For each k= 1,2, ---,2? let R, be a union of finitely open
balls such that R((k — 1)27?) c R* € R(k27?). This is possible since f
is continuous. By the previous theorem, the sweeping process for
%, converges on R,, say to the limit u{"'. Define g, to be the step
function whose value on ((k — 1)27?, k277] is S w. In view of the
remark before this theorem, g, is a decreassing funetion on [0, 1].
Moreover, if n > p, then the values of g, on (k — 1)27?, k27?] lie in
the interval [g,((k — 1)277, g, (k + 1)277)]. Consequently g, converges
a.e. (Lebesgue) to a function g. The function g, being decreasing,
is continuous except at countably many points. Suppose a is a point
at which g is continuous. Let & > 0 be arbitrary. Then there exist
a’, a” such that (i) ¢’ < a < a”, (ii) g(a’) — g(a@”) < e, and (iii) g,—¢g
at o’ and o”. Pick p so large that g,(a’) — g,(a”) < 3¢, and that
o <(k—127<k27?<a<(j—1)27?<j27<qa" for some k,j =
1, -..,2?. Then we have g,(a') = g,(k27?) = ¢,(427%) = ¢,(¢""), whence
9,(k277) — g,(4277) < 3e. Equivalently S w — S ud < 3¢, Now let
{B‘} be a sequence of open balls associatfed to R(g) as in the beginning
of this section. By the definition of %!, there exists a sequence of

balls C* --.,C? such that S o(u,, C*, ---, C? — S w® < e and C'U
N S
-~ UC'C R, < R(k2?) C R(a). Let i be so large that

SS(D(um, B, .-+, B) < SS(D(um, Clyeer G t6 .

Combining, we see that for any given ¢, there exist 4, 7 as above
with S O(u,, B, -+, BY) < g,(j2°7) + 4e < S O(u,, B!, -+, B) + de. It
follows? that g &(u,, B, ---, BY) converges Sas 42— oo, The Monotone
convergence thseorem then implies that @(u,, B, ---, B*) converges
a.e. as ©— o, In other words the sweeping process for u, on R(a)

converges. Now let {z,,} be a dense sequence in E¢ We already
know that except a countable set of a’s, the sweeping process con-
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verges for every u,.,, on R(a). Now let ¢ be a fixed number not
in the exceptional set. Suppose z € B(a). By passing to a subsequence
we may assume xz(n)—x. Let {B*} be a sequence of open balls
associated to R(a). There is no loss of generality in assuming that
xeB'. Let € >0 be arbitrary. Then for some n large enough we
have ®(u,,, BY) + ¢ = O(u,, B') = O(u,.,, B') — ¢, according to Lemma
3.1. Hence

Q(ux(n), Bl, *t Y Bk) +ez= @(um Bl’ %y Bk) = @(um(m’ Bly % Bk) — €.

Since S O(Uymy, B, + -+, B¥) converges, we see that \ &(u,, B', -+, B*)—
S S
S O(u,, B, +++, B¥*?) < 2¢ if k is large enough. By the monotone
N

convergence theorem we see that the sweeping process for #, on
R(a) converges. Theorem 3.2 therefore implies that R(a) has a Green
function.

COROLLARY 3.8. If an open set R 1is such that R ={xecKE%
2z =2, + rf(2)z for some r¢[0,1) and z€dB,} where 2z, is a fixed
point in R and where f is a continuous function on the unit sphere
0B, then R has a Green function. In particular o bounded convex
open set has a Green function.

Proof. We may assume that x, = 0. Define a continuous func-
tion F on E* by F(x) =r if = rf(2)2. Then clearly R = R(1) =
{x: F(z) < 1}. By the previous theorem, there exists ¢ > 0 such that
R(a) has a Green function. The observation that R(1) = o 'R(a)
together with a scaling argument yields the assertion.

The author wishes to thank the Department of Mathematical
Sciences of New Mexico State University, where a major part of
this paper is prepared during the author’s visit, and to thank Pro-
fessors R. Blumenthal and F. Richman for helpful conversations.
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