Pacific Journal of

Mathematics

INVERSE LIMITS AND MAPPINGS OF MINIMAL
TOPOLOGICAL SPACES

Louis M. FRIEDLER AND DiX HAYES PETTEY




PACIFIC JOURNAL OF MATHEMATICS
Vol. 71, No. 1, 1977
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S. W. Willard has conjectured that every H-closed space
is the continuous image of a minimal Hausdorff space. In
this paper we verify Willard’s conjecture and show as well that
every R-closed space is the continuous image of a minimal
regular space. We also identify conditions sufficient to guar-
antee that an H-closed space be the finite-to-one continuous
image of a minimal Hausdorff space. We give an example of
a nonvacuously E(it) space whose product with itself is neither
R(%) nor R(71), and we obtain a number of results concerning
inverse limits of H-closed spaces and R-closed spaces.

1. Introduction. Throughout this paper, the word map (or
mapping) will always mean a continuous function.

If P is a topological property, then a P-space is called P-closed if
it is closed in every P-space in which it is embedded and minimal
P if there is no strictly coarser P topology on the same underlying
set. For P = Hausdorff [P = regular T,] the P-closed and minimal
P properties will be denoted as H-closed [R-closed] and MH [MR].
In studying mapping properties of MH spaces, S. W. Willard [14]
showed that the Hausdorff spaces whose Hausdorff continuous images
are always MH are precisely the functionally compact spaces of
Dickman and Zame [4] and conjectured that the Hausdorff spaces
which are the continuous images of MH spaces are precisely the H-
closed spaces. An analogous conjecture can be posed for MR and
R-closed spaces. Here we shall prove that every H-closed [R-closed]
space is the image, under an open and perfect mapping, of an MH
[MR] space of the same weight. Since every Hausdorff [regular T]
continuous image of an H-closed [R-closed] space is H-closed [R-closed]
(see [2]), we thereby establish both of the above mentioned conjec-
tures. We also obtain results concerning products of MR spaces
and products of R(u¢) spaces (see §2 for definition) as well as a
number of theorems concerning inverse limits of H-closed spaces and
of R-closed spaces. In §4 we determine conditions that guarantee
that an H-closed space be the image of an MH space under an at-
most-two-to-one mapping.

A set V in a topological space is regularly open if V = int V.
A space is semiregular at o point if that point has a neighborhood
base of regularly open sets. A point of a topological space at which
the space is semiregular will be called a semiregular point of the
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space. A space is said to be semiregular if it is semiregular at
each of its points. It is well-known [2, 3.9] that a Hausdorff space
is MH if and only if it is H-closed and semiregular. The reader is
referred to the survey paper [2] by Berri, Porter and Stephenson
for the standard filterbase and covering characterizations of H-closed,
MH, R-closed and MR spaces and to [5] for information concerning
inverse limits. A point of an H-closed [R-closed] space will be called
a bad point if it is the only cluster point of some nonconvergent
open [regular] filterbase on the space. For an H-closed space, the
bad points are precisely those points at which the space is not semi-
regular.

For an inverse system {Y,; f?}, the following terminology and
notation will be used: the mappings f%: ¥, — Y, will be called bonding
maps, the inverse limit space will be denoted as Y., and the natural
projection from Y. to the space Y, will be denoted as f,. It will
always be assumed that the system is indexed over a nonempty
directed set and that for each a in the index set f¢ is the identity
function on Y,.

We shall let N denote the set of natural numbers.

If « and B are ordinals then [a, 8) will denote the set of all
ordinals greater than or equal to @ and less than B, while [a, 8] will
denote the set [a, B) U {B}.

2. Open perfect mappings. In this section, no separation
axioms will be assumed except where explicitly indicated. Further-
more, “regular” will not imply T,.

The terms H(i), R(i), H(i1) and R(i1) will be used as in [10];
i.e., a topological space is H(¢) [R(7)] if every open filterbase [regular
filterbase] has a cluster point and H(i7) [R(¢7)] if every open filter-
base [regular filterbase] having a unique cluster point is convergent.
For a Hausdorff space, the properties H(7) and H(it) are equivalent,
respectively, to the H-closed and MH properties (see [2, 3.2 and 3.9]).
Likewise, for a regular T, space, properties R(7) and R(it) are
equivalent, respectively, to the properties R-closed and MR [2, 4.14
and 4.15]. A topological space is nonvacwously H(it) [nonvacuously
R(i7)] if it is H(4%) [(R(¢¢)] and has at least one open filterbase
[regular filterbase] with a unique cluster point. As is observed in
[10], a space may be H(ii) [R(¢¢)] without being H(z) [B(¢)]. A non-
vacuously H(¢7) [nonvacuously R(i7)] space is, however, necessarily
H(?) [R(7)]. Furthermore, every continuous image of an H(¢) [R(7)]
space is H(z) [R(?)].

A topological space X will be called strongly H(:i) [strongly R(i1)]
if there is a base 7° for X such that every member of 7° has an
H(¢) [R(7)] complement in X. It is easily verified that every strongly
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H(et) [strongly R(i7)] space is both H(z) and H(i%) [E(7) and R(i7)].
A topological space is said to be strongly minimal regular (ab-
breviated SMR) if it is a strongly R(¢¢), regular T, space.

REmMARK. R. M. Stephenson, Jr., introduced SMR spaces to the
literature in [13], and it is known that not all MR spaces are SMR
(see [9]). This is in contrast to the situation for MH spaces, for it
is not difficult to show that every MH space is strongly H(i7).

For a topological space X we shall let w(X) denote the weight
of X (i.e., the smallest cardinal £ such that X has a base of
cardinality ).

A number of preliminary lemmas will be used in the proof of
the main theorem (Theorem 2.8) of this section. Some of these are
well-known results or immediate corollaries to well-known results and
will therefore be given without detailed proofs.

LEMMA 2.1. Let T be an infinite initial ordinal. Then there
is @ one-to-one function ¢ from [0, 7) X [0, 7) onto [1, T) such that for
each (a, ) in [0, 7) x [0, 7), o(a, 7) > .

Proof. Since [1, 7) and [0, 7) x [0, 7) are of the same cardinality,
there is a one-to-one function ¢ from [1, 7) onto [0, 7) X [0, 7). For
each a in [1, 7), let ¢,(a) denote the first coordinate of ¢(a). We
now define, inductively, a function g from [1, 7) into [1, 7) as follows.
Suppose that S e[l, 7) and that for each « in [1, B), g(a) has been
defined. Since 7 is an initial ordinal, the set

[6(8) + 1, 7) — {9(@)|@e[L, B)}

is nonempty. Define g(8) to be the least member of this set. The
function g thus defined is clearly one-to-one. We assert that g takes
[1, 7) onto itself. For if Ae[l, z) then, since ¢ takes [1,7) onto
[0, 7) X [0, 7) and since the cardinality of [1, A) is less than that of
{(@ M el0,7) x [0, 7)[@ <), the set {Be[l, 7)|g(B) =N 4B <M
must be nonempty. The least member of this set will necessarily
be taken onto A by g. Now by defining ¢ to be the function gg™,
we obtain the required function from [0, 7) x [0, ) onto [1, 7).

LEMMA 2.2. Let £ be a cardinal and ¥ an ordinal of cardinality
less than or equal to k. If an inverse system of topological spaces,
wndexed over [0,7), is such that every space in the system is of
weight less than or equal to k, then the itnverse limit space is of
weight less than or equal to £. (This result follows easily from [5,
2.3(2), p. 428].)
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LEMMA 2.3. The tnverse limit of Hausdorf [regular] spaces is
a Hausdorff [regular] space. (This is an immediate consequence of
the fact that the inverse limit is a subspace of the product of the
spaces in the system.)

LEMMA 2.4. Let {Y.; fi} be an inverse system of topological
spaces. If each bonding map is open and each projection f,: Y., — Y,
18 onto, then each projection is open. (This follows easily from [5,
2.3(2), p. 428].)

LemMMA 2.5. Let {Y,; 2} be an inverse system of topological
spaces. If each bonding map is perfect and onto and has Hausdorf
point tnverses, then each projection f,: Y.,— Y, 18 perfect and onto
and has Hausdorff point inverses.

Proof. Let <& denote the directed set over which the system
is indexed. For each a in &r and each point s of Y,, each of the
sets (f2)7*(s) (B = @) is a nonempty compact Hausdorff space; there-
fore (f.)7(s), which is homeomorphic to Hﬁ(f 7(s) (B = a), is non-
empty, compact and Hausdorff [5, 2.4, p. 429]. It remains only to
be shown that each f, is closed. Assume that for some B in & and
some closed set K in Y., f5(K) is not closed in Y;. Let z be a point
of Clfs(K) — fs(K). Since (f5)'(z) is compact and does not intersect
K, [5, 2.3(2), p. 428] implies that for some finite subset {a(l), a(2),
<+, a(n)} of &7 there are opensets V,, V,, -+, V,in Y01, Yae, o s Yatws
respectively, such that (f;)'(z) is contained in U, (fuw)) (V) and
Ur, (fa)™(V;) does not intersect K. Choose 7 in & such that
Y= max {8, a(l), a(2), - - -, a(n)}. Let W, denote the set U, (fLw) (V).
Then W, is an open set in Y, such that W, N f,(K) = @ and such
that (f3)"'() C W,. But since f} is closed and z is in the closure of
Jif(K), this is impossible. Hence, we have a contradiction and our
proof is complete.

LEMMA 2.6. Suppose that ¥ is an ordinal greater than 0 and
that {Y.; i} is an inverse system over [0, ¥). Suppose, furthermore,
that for each a in [0, ), K, is a subspace of Y,, and that for each
B in [0,7) and each a in [0, B, fE|K; is @ homeomorphism from
K; onto K,. If K denotes the subspace (M (f.) '(K)(a <7) of Y.,
then for each @ in [0, V), f.| K is a homeomorphism from K onto K,.

Proof. Since K may be regarded as the inverse limit of the
system {K,; f%| K;}, the desired conclusion follows as a result of basic
properties of inverse systems. (See [5, p. 427].)

LEMMA 2.7. If X 1s a topological space and if there exists an
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open perfect mapping from X onto an H(i) [R(3)] space, then X is
an H(7) [R(7)] space. (The proof is routine and thus omitted.)

THEOREM 2.8. Let Y be a topological space of infinite weight
and © the least ordinal of cardinality w(Y). Then there exists an
inverse system {Y,; i} of topological spaces, indexed over [0, T), such
that

(1) Y,=1;

(2) 4f Y, is Hausdorff [regular] the then inverse limit space
Y. ts Hausdorff [regular];

(8) foreach ¢ in [0, T); the projection f, is open, perfect and
onto;

(4) for each point x of Y., there is a subspace K of Y., such
that x € K and K is taken homeomorphically onto Y by f;

(5) w(Y.) =w(Y);

(6) foreach a in [0, 7) and each H(z) [R(3)] subspace S of Y,
(f2)%(S) is a strongly H(ii) [strongly R(it)] subspace of Y.

Proof. By Lemma 2.1, there exists a one-to-one function ¢ from
[0, ) x [0, 7) onto [1,7) such that for each ordered pair («,?) in
[0, 7) x [0, 7), o(a,¥) > a. Using this function, we shall define
inductively the inverse system {Y,; fZ}. For each B in [0, 7) the
space Y; will be chosen so that w(Y,) < w(Y), and at the Bth stage
of the induction we shall choose, in addition to the space Y, and the
mappings fia < B), a base {Us;|7e€]0, )} for Y,. We proceed as
follows.

Let Y,=Y and let f)} denote the identity mapping on Y,
Choose a base {U, |7 €]0, 7)} for Y,.

For each 8 in [1, 7), let Z; denote the inverse limit of the system
{Yea; flosasr<s, and for each a in [0, B) let ¢ denote the projection
from Z, into Y,. Now let (A, ) = ¢7*(8). Then 8>\, so U,, has
already been chosen. Let V; = (47)"(U,,) and define Y, to be the
space obtained from Z; x {1, 2} by identifying (2, 1) with (z, 2) for
each z in Z; — V,. Let f§ be the identity mapping on Z; and p,
the natural projection from Y, onto Z;. For each a in [0, B), define
f% to be the function ¢fp,. Then each f% is continuous and, for
0=Za<v<pB, wehave f2 = f1ff. Finally, it follows from Lemma
2.2 that w(Z;) = w(Y) and, consequently, that w(Y;) £ w(Y). Choose
a base {U,|7¢€]0, 7)} for Y,.

By our construction, condition (1) of the conclusion of the theorem
is immediately satisfied. To establish condition (2) it is sufficient, in
light of Lemma 2.3, to show that if Y, is Hausdorff [regular] then
Y, is Hausdorff [regular] for each a in [0,7). This follows by
induction, for if 0 < 8 < r and Y, is Hausdorff [regular] for each «
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in [0, B) then by Lemma 2.3, Z, is Hausdorff [regular]. Since the
Hausdorff [regular] property is certainly preserved by (ps)™, Y, is
also Hausdorff [regular].

We prove condition (8) in a similar manner. It follows by induec-
tion and the use of Lemmas 2.4 and 2.5 that for each 8 in [0, 7)
and each « in [0, B], f% is open, perfect and onto and has Hausdorff
point inverses. So, again by Lemmas 2.4 and 2.5, each projection
f. is open, perfect and onto.

Condition (4) is established as follows. For each function g from
[1, 7) into {1, 2}, let K denote the set of all points x of Y. such
that for each a in [1, 7), f.(x) is in Z, X {g(«)}. Then for each x in
Y.. there is some g such that x € K?. We shall now show that each K*°
is taken homeomorphically onto Y(=Y,) by f,. For each g (9:[1, ) —
{1, 2}), let K§ = Y, and, for each B in [1, 7), let K} denote the inter-
section of all sets (f2)"Y(Z. x {g(®)}) such that 0 < @ < B. Then each
K is the intersection of all sets (f2)™(KY%) (o < B), while K* is the
intersection of all () *(K%) (B < 7). It follows by induction and the
use of Lemma 2.6 that for each 8 in [0,7) and each « in [0, 8],
f?1K¢ is a homeomorphism onto K!. Hence, again by Lemma 2.6,
f,/K? is a homeomorphism onto Y.

The proof of condition (5) is now immediate. For it follows
from our construction and Lemma 2.2 that w(Y.) £ w(Y). Since f,
is onto, Y. is nonempty; so by (4), Y. contains a copy of Y as a
subspace. Therefore, w(Y..) = w(Y).

Finally, to establish (6), let @<[0, 7) and suppose that S is an
H(z) [R(3)] subspace of Y,. Let y be a point of (f,)"(S) and let W
be an open neighborhood of y in Y.. It follows from [4, 2.8(2), p.
428] and the way in which the system {Y,; f2} was constructed that
for some B in [1, 7), ¥, e V, x {1, 2} and (/) (V, x {1,2)c W. Such
a £ may be chosen so as to be greater than «. Let 7 be the member
of {1, 2} such that y,€ V, X {4} and let j denote the other member
of {1,2}. Then (f5)™*(V,; x {t}) is an open set that contains y and
lies in W. To complete the proof it is sufficient to show that
(f)7(S) — (Fe) (Vs x {3}) is H(i) [R(?)]. By (3), /. is open, perfect
and onto, which implies that ¢; is open, perfect and onto. Since the
restriction of p; to Z, x {j} is a homeomorphism onto Z;, and since
JE = ¢tps, it follows that the restriction of f% to (¢£)™*(S) x {j} is an
open perfect mapping onto S. So by Lemma 2.7, (45)7*(S) x {j} is
H(s) [R(7)]. Therefore (f,)*(S) — (f5) (Vs x {t}), being the inverse
of (¢5)7%(S) X {j} with respect to f5 is also H(¢) [R(7)] (Lemma
2.7).

COROLLARY 2.9. Ewery H(i) space is the image, under an open
perfect mapping, of a strongly H(ii) space of the same weight.
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COROLLARY 2.10. FEwery H-closed space is the image, under an
open perfect mapping, of a MH space of the same weight.

(In proving either Corollary 2.9 or Corollary 2.10 there are two
cases to consider. For the case where the given space is of finite
weight, and therefore compact, the proof is trivial. For the other
case, the proof follows immediately from Theorem 2.8.)

COROLLARY 2.11. Ewvery nonempty H(i) space is the image,
under o perfect mapping, of a nonvacuously H(ii) space.

Proof. Let Y be a nonempty H(7) space. Then by Corollary 2.9,
there exist a strongly H(i7) space X and a perfect mapping f of X
onto Y. Let X' be the space obtained by adding an extra isolated
point to the space X. Then X' is a strongly H(ii) space with an
isolated point and is, therefore, nonvacuously H(i¢?). To obtain a
perfect mapping ¢ from X’ onto Y, we simply choose g to be a
function from X’ onto Y such that g| X = f.

COROLLARY 2.12. Ewery H(i) [H-closed] space Y can be expressed
as the intersection of the members of a decreasing chain of strongly
H(it) [MH] spaces, each of the same weight as Y.

Proof. If w(Y) is finite then Y is compact and the conclusion
of the theorem is immediate. So suppose that w(Y) is infinite and
let 7 be the least ordinal of cardinality w(Y). Let {Y,; fi} be the
inverse system guaranteed by Theorem 2.8, with Y = Y,. By (3)
and (4) of 2.8, there is a subspace K of Y. such that f,|K is a
homeomorphism of K onto Y. Now for each a in [0, 7), let
X, = (f) ' fALK). Then {X,|aec]0, )} is a decreasing chain and K is
the intersection all X,’s (@< 7). It follows from 2.8(6) that for each
« in [0, 7), X, is strongly H(it) [MH]. Finally, since each of K and
Y. is of weight w(Y) (2.8(5)) and since each X, contains K and lies
in Y., we conclude that each X, is of weight w(Y). So by identify-
ing Y with K, we obtain the desired conclusion.

For Corollaries 2.13 through 2.16, which follow, the proofs are
analogous to those of 2.9 through 2.12, respectively.

COROLLARY 2.13. Ewery R(¢) [R(¢) Hausdorff] space is the image,
under an open perfect mapping, of o strongly R(ii) [strongly R(i7)

Hausdorff] space of the same weight.

COROLLARY 2.14. FEwery R-closed space is the image, under an
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open perfect mapping, of a« SMR space of the same weight.

COROLLARY 2.15. Ewery monempty R(i) [R(i) Hausdorff] space
is the image, under o perfect mapping, of a nonvacuously E(i7)
[nonvacuously R(¢7) Hausdorff] space.

COROLLARY 2.16. FEwery R(i) [R(7) Hausdorff; R-closed] space Y
can be expressed as the intersection of the members of o decreasing
chain of strongly R(it) [strongly R(it) Hausdorff; SMR] spaces, each
of the same weight as Y.

It is not known if a product of R-closed spaces is always R-
closed or if a product of MR spaces is always ME. The following
theorem shows that an affirmative answer to the second question
would imply an affirmative answer to the first.

THEOREM 2.17. Let .o7 be a set. If every collection of SMR
spaces indexed over & yields an R-closed product, then every collec-
tion of R-closed spaces indexed over .o yields an R-closed product.

Proof. Let {Y,|ae.o”} be a collection of R-closed spaces. By
Corollary 2.14, there exists a collection {(X,, f.)|ae .7} such that
for each & in .7 X, is an SMRE space and f, is a continuous function
from X, onto Y,. Then IIX, (ac.%) is R-closed. Since the collec-
tion {f,|a@ € %7} induces a continuous function from /77X, onto IIY,,
this implies that 7Y, is R-closed.

In [12] Stephenson gave an example of an R(7) Hausdorff space
whose product with itself is not R(¢). Using Stephenson’s example,
Corollary 2.15, and the method used in the proof of Theorem 2.17,
we obtain an example which answers a question of Scarborough and
Stone [10, p. 138] concerning R(i1) spaces.

ExaAMPLE 2.18. A nonvacuously R(i?) Hausdorff space whose
product with itself is neither R(¢) nor R(i7).

Let Y be the space described by Stephenson in [12]. By
Corollary 2.15, there exists a nonvacuously R(¢7) Hausdorff space X
and a continuous function f from X onto Y. Since f induces a
continuous function from X x X onto Y x Y, we conclude that X x X
is not R(i). But because X is nonvacuously R(iz), X x X will
necessarily have a point which is the unique cluster point of a regular
filterbase on X x X. Since a nonvacuously FR(it) space is always
R(i), this implies that X x X is not E(¢7).
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A topological space is said to be e-compact with respect to a
dense subset D if every ultrafilter on D converges to a point of X.
A space which is e-compact with respect to some dense subset is called
an e-compact space. (There definitions are due to S. Hechler [7].)

In [7] Hechler described a non-e-compact H-closed space.
Stephenson has recently produced an example of a non-e-compact
MH space (see [11]). Corollary 2.9 provides us with another method
of obtaining such an example.

EXAMPLE 2.19. A non-e-compact MH space.

Let Y be a non-e-compact H-closed space. (See, for example
[7, Corollary 3.2, p. 223].) By Corollary 2.9, there is an MH space
X which can be mapped continuously onto Y. Since the continuous
image of an e-compact space is e-compact [7, Theorem 2.3, p. 220],
the space X is not e-compact.

3. Inverse limits. Since inverse limits were shown in §2 to be
useful in constructing pre-images of H-closed and R-closed spaces,
it seems natural to ask about the preservation of minimal properties
by inverse limits. As Example 3.1 below shows, the inverse limit
of H-closed spaces need not be H-closed even if each bonding map
is an open embedding and the system is indexed over the natural
numbers. We can, however, obtain some partial results.

ExAMPLE 3.1. An inverse system of MH spaces such that the
bounding maps are open embeddings but the inverse limit is not
H-closed.

We shall construct a nested sequence of MH spaces such that
each inclusion map is open and the intersection of the spaces is not
H-closed. Let Y, denote the noncompact MH space described in [2]
as Example 3.14. Let

Y,=Y —{a, b}, Y, = Y, — (@15 bizy Gy b}y =00
an+1 = Yw, - {a'ijy bwlz + j =n + 1}: St .

Foreachnin N, Y,,, is an open MH subspace of Y,. But ;- Y,
is the infinite subspace {a}U{b}U{c,}2, of Y,, and since this subspace
has the discrete topology it is not H-closed.

REMARK. In a similar manner it is possible to construct an
example of a nested sequence of R-closed spaces with a non-R-closed
intersection, showing that the inverse limit of R-closed spaces need
not be R-closed. The noncompact R-closed space of [2, Example
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4.19] can be used as the first space of the sequence.

DEFINITION 3.2. A continuous function f: X— Y is said to have
the inverse property if Cl f~(U)= f*(U) for every open set U in Y.

THEOREM 3.3. If{X,; ft} is an inverse system of H-closed spaces
such that each projection f, has the imverse property, them X. 1is
H-closed.

Proof. Since by Zorn’s lemma every open filterbase is contained
in a maximal open filter (i.e., an open filterbase which is not properly
contained in an open filterbase), it is sufficient to show that every
maximal open filter on X, converges. So let % be a maximal open
filter on X.. Let 7 be an element of the index set for the system
and let (f)"(#%) ={V open in X,|for some U in %, f(U)< V}.
Then (f,)%(%) is an open filterbase in X, and, since X, is H-closed,
has a cluster point x, in X,. Let W be an open neighborhood of z,
in X,. We assert that for each U in %, (/7)) {W) N U is nonempty.
For assume that U,e% and (f,)*(W)n U,= @. Since U, is open,
this implies that Cl(f,)"(W)nN U, = @ and therefore, since f, has
the inverse property, that (f,)"(W)n U, = @. Then

Uo < (fr)_l(Xr - W) ’

from which it follows that (X, — W)e(f,)"(%). Since x,¢ W and =,
is a cluster point of (f,)¥(%’), this is impossible. Hence, (f;) (W)
intersects each member of 2. But this implies, since Z is a maximal
open filter on X.,, that (f,) (W) e %, and that W e (f,)(%). Therefore
@) converges to xz,. For each «, then, we can find an z, in X,
such that f,(%) converges to z,., We now claim that {x,} is in X..
Suppose v and S are members of the index set and that v < 8.
Then f5(%Z’) converges to x; and [fifs;(%’) converges to fi(x;). But
fifs =f, and f(%) converges to x,; hence, fi(x;) ==2,. So we
conclude that {,} is in X.. It now follows from [5, 3.2(2), p. 428]
that % converges to {x,}. This completes the proof.

THEOREM 3.4. If {X,; fi} is an inverse system of MH spaces
such that each projection f, has the inverse property, them X. is
MH.

Proof. Let % Dbe an open filterbase on X. such that % has a
unique cluster point 2. For each «, let (f,)(Z) = {V open in X, |for
some U in %, f(U) S V}. Then for each @ we have (f,)(%) an
open filterbase, f.(%") a filterbase subordinate to (f,)(%), and =, a
cluster point of f(%'); hence xz, is a cluster point of (f,)(%). Now
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suppose that 7 is an element of the index set and that p is a cluster
point of (f;)i(%’). For every open neighborhood W of » and every
U in % we have, as in the proof of 3.8, (/) (W)NU %= @. Since
X, is H-closed (Theorem 3.3) the open filterbase {(f,)*(W)nN U|W
an open neighborhood of p, Ue %} must have a cluster point % in
X.. Clearly, y, = p. But y is also a cluster point of %/, implying
that ¥y = and p = z,. So for each «, x, is the only cluster point
of (f.)¥(Z) and, therefore, (f,)(%) converges to x,. From this it
follows that f,(%Z’) converges to x, for each a and, consequently,
that % converges to x. Hence, X, is MH.

THEOREM 3.5. If {X,; fi} is an inverse system of monempty H-
closed spaces, indered over a directed set having a cofinal simple
chain, then X, is monempty.

Proof. Since the directed set over which {X,; f%} is indexed has
a cofinal simple chain and since every simply ordered set has a
cofinal well-ordered chain, we may assume that for some nonzero
ordinal 7, {X,; f%} is indexed over [0, 7) (see [5, 2.7, p. 431]). For
each £ in [0,7), let H; =lim X (a < B) and let H, = H; x l[IX,
(> B). Then for each B, 7{—5 is homeomorphic to X; and, conse-
quently, H; is H-closed and nonempty {2, 3.3(c)]. It is easily verified
that {H;|8 < 7} is a nonempty decreasing chain of subsets of I7.X,.
Hence, M H:(B < 7) is nonempty [2, 8.3(e)]. Since a point of M H,;
will necessarily be in X, this completes the proof.

THEOREM 3.6. Let {X,; fi} be an inverse system of H-closed
[R-closed] spaces indexed over a directed set having a cofinal simple
chain. If each bonding map f% is onto then each projection f, is
onto.

Proof. As in the proof of 3.5, we may assume that for some
nonzero ordinal 7 the system is indexed over [0,7). Let 8 be an
ordinal in [0, 7) and let p be a point of X;. We shall identify a
point {y.} of X, such that y; = p. For a in [0, 8], let ¥, = fi(p).
The remaining coordinates of {y,} are chosen inductively as follows.
Suppose that for each a in [0,7), %. has already been chosen.
For each a in [0, 7), choose a neighborhood base <%, at ¥y, and let
F.={(f) (V)| VeZ}). Let & = FA(ax<7). Then, since each
bonding map is onto, % is an open [regular] filterbase on X, and must
have a cluster point in X,. Now, for each « in [0, 7), we have
B, & {(fUW)| W e #}, which implies that y, is the only cluster point
of {fi(W)|We#} in X,. Hence, if we choose ¥, to be a cluster
point of # in X,, then for each « in [0, ¥) we have fU(¥,) = ¥..
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LEmmA 3.7. If {X,; f&} is an inverse system such that each
projection fo: X, — X, 1s onto and each bonding map f5: X, — X,
has the inverse property, then each projection has the imverse
property.

Proof. Let Ube open in X,. Let y be a point of (f,)"(U) and
W an open neighborhood of % in X.. Then there is a 8 greater
than or equal to @ and an open set V in X, such that y,e V and
(f) (V)SW. Since (f4)4(U) = CL(fE)(U) we have y, e Cl(f)(U)
and, therefore, V N (f5)™(U) #+# ©@. Hence,

wn(f)(U)# o,

and we conclude that yeCl (fa)‘_l(U). Since the continuity of f,
implies that Cl(f.) " (U) < (f.)"%(U), this establishes the equality of

CL(f)™(U) and (f)7(0).

THEOREM 3.8. Let {X,; fi} be an inverse system of H-closed
[MH] spaces indexed over a directed set having a cofinal simople
chain. If each bonding map f&1is onto and has the inverse property
then X.. is H-closed |[MH].

Theorem 3.8 follows immediately from 3.6, 3.7, 3.3 and 3.4.
Since every open mapping has the inverse property, we also have
the following corollary.

COROLLARY 3.9. Let {X,; f} be an inverse system of H-closed
[MH] spaces indexed over a directed sel having a cofinal simple
chain. If each bonding map fE is onto and open then X, is H-
closed [MH].

REmMARK. Example 3.1 shows that the requirement that each
bonding map be onto cannot be deleted from the hypothesis of
Theorem 3.8 (or of Corollary 3.9).

QUESTIONS 3.10.

(1) Is there a theorem analogous to 3.5 for R-closed spaces?

(2) Can the requirement that the index set have a cofinal simple
chain be removed from 3.5, 3.6, 3.8 or 3.9?

REMARKS. A mapping f from a space X to a space Y is called
a p-map if for each open cover 7 of Y containing a finite proxi-
mate subcover of Y, f7%(7") contains a finite proximate subcover of
X. (Clearly, every mapping with the inverse property is a p-map.)
It follows from [6, Theorem B] and [8, Theorem 3.7] that the
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inverse limit of a system of H-closed spaces is H-closed if all
bonding maps and projections are p-maps. This result, in combi-
nation with 3.6 and 3.7, yields an alternate proof of the H-closed
case of Theorem 3.8.

The authors are grateful to Professor George Strecker for
bringing paper [6] to their attention.

4. Finite-to-one mappings. Although Corollary 2.10 more than
answers the original question raised by Willard, the method used in
obtaining 2.10 yields pre-images and mappings which are quite com-
plicated. In general, point inverses are very large, even when the
given H-closed space has only finitely many bad points. Since many
of the standard examples on noncompact H-closed spaces (such as [2,
Example 3.13]) are finite-to-one continuous images of MH spaces, it
would seem desirable to have a general method which, for certain
classes of H-closed spaces, would give simpler pre-images and
mappings than those obtained in §2. In this section we show
(Theorem 4.2) that if the given H-closed space has only finitely many
bad points and if each bad point has a countable neighborhood base,
then there is an MH space that is taken onto the given space by an
at-most-two-to-one mapping having the inverse property defined in §3.

Example 4.5 shows that Theorem 4.2 cannot be strengthened so
as to guarantee that the mapping will be open (or even a quotient
mapping), while Example 4.3 shows that the countable neighborhood
base requirement cannot be removed from the hypothesis. Example
4.6 shows that we cannot hope for a result analogous to 4.2 for R-
closed and MR spaces.

LEMMA 4.1. Let Y be an H-closed space, y* a bad point of Y
having ¢ countable netghborhood base, and V a meighborhood of y*.
Then there exists an H-closed space X and an at-most-two-to-one
mapping f of X onto Y such that (1) f has the inverse property,
(2) the restriction of f to f(Y — V) s a homeomorphism, and
(3) X is semiregular at each point x for which either f(x) is semi-
regular in Y or flx) = y*.

Proof. We may assume that V contains no regularly open
neighborhood of y* and that V is the first member of a countable
nested neighborhood base {U,};., at y*. Let F = Uz, (Cly U, — U,).
It is easily verified that for each n in N, F U Cl, U, is closed. Since
Y is Hausdorff we have F' U {y*} = N, (¥ U Cl, U,), and therefore
FU{y*} is closed in Y. Let .7 be the topology of Y, and for each
Uin 7 let U =U—F. Let Y denote the space whose points are
the points of ¥ and whose topology is generated by .7~ U{U'|Ue .7 }.
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The topology of Y’ will be denoted as .77’. It readily follows that
{U,}z_, is a neighborhood base for y* in Y.

We assert that if Ue 7, then Cl,, U’ = Cl,, U= Cl, U. Since we
clearly have Cl,, U £ Cl,, U Z Cl, U, we have only to show that
Cl, US Cl,, U'. Let y be a point of Cl, U and W a .9-open neigh-
borhood of y. It is sufficient to show that W' N U’ = @. Since
yeCly U, there is a point p of U in W. If p¢F then pe W N U’
and we are finished. So suppose that pe F. Since y* is not in F
(and therefore not equal to p), there exists a £ in N such that
peCly U, — U, and p¢Cl, U,, — U,,. Because U,,, & U, this
means that p ¢ Cly U,,,. Therefore, (Wn U) — Cly Uy, is a .F-open
neighborhood of » and must contain a point z of U,. But then
ze U, — Cly U,,,, and since U, — Cl; U,., is a subset of U; this
implies that z¢ F. Hence, we have W' N U’ #= &, and our assertion
is proved.

We next assert that Y’ is H-closed. For let & be a .9 "-open
cover of Y. We may assume that each member of % is in
FZ U{U'|Ue 2 }. Let ¥ denote the collection {Uc 7 |Ue & or
Uez}. Then ¥ is a Z-open cover of Y and has a finite sub-
collection which (with respect to .97) is a proximate cover of Y. Since
for each U in &, Cl, U = Cl,, U = Cl,» U’, it follows that & has a
finite subcollection which (with respect to .77') is a proximate cover

of Y'. Hence, by [2, 3.2], the assertion is verified.

Now let X be the quotient space obtained from Y’ x {1, 2} by
identifying (y, 1) with (y, 2) for each ¥ in Y’ — V’'. Since X is the
union of two H-closed subsets of itself (Y’ x {1} and Y’ x {2}), X is
also H-closed. Let f be the natural projection from X onto Y (i.e.,
for each (y,7) in Y’ x {1, 2}, f(y,?) =y). Then f is a continuous
funetion from X onto Y. Since for each U in &, Cl, U = Cl,. U,
it follows that f has the inverse property.

We wish to show that X is semiregular at each point of f'(y*).
For each (n,4) in N x {1, 2}, let U,, = U, x {i}. Clearly {U,}z, is
a neighborhood base for (y*, 1) in X. Let ke N and let qeCl; U, -
Ui.. Then f(q)eCly U, — Uj, and since

Cy. U, — Ui FSY -V,

this implies that qeCly Uj,. But since U, S V', we have Uj, and
U;, disjoint open sets in X; therefore, q ¢ inty Cl; U;,. We conclude,
then, that for each », inty Cl; U,, = U,,; i.e., the members of {U,.}3_,
are regularly open in X. Hence, (y¥*, 1) is a semiregular point of x.
By analogous argument, (y*, 2) is also a semiregular point of X.
To complete the proof of the lemma, let # be a point of X such
that Y is semiregular at f(x). Since F U {y*} is closed in Y, each
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member of .7’ which misses y* is also a member of 2. Hence, the
subspace Y — {y*} of Y has the same topology as the subspace
Y — {y*} of Y'. Since f(x) is in Y — {y*}, this implies that Y’ is
semiregular at f(x). But f is an open mapping from X onto Y’, so
it now follows that X is semiregular at z.

THEOREM 4.2. If Y 1is an H-closed space having only finitely
many bad points, and f at each of these bad points there is a
countable neighborhood base, then Y 4s the at-most-two-to-one image
of an MH space under a mapping having the inverse property.

Proof. Since Y is Hausdorff, we may separate the finitely many
bad points by disjoint open sets. The desired result is then obtained
by applying Lemma 4.1 finitely many times.

ExampLE 4.3. An H-closed space that has only one bad point
but is not the finite-to-one continuous image of an MH space.

Let I denote the closed real-line interval from 0 to 1 and % the
usual topology on I. Let 5 be the collection of all countable
infinite subsets H of I — {0} such that, with respect to %/, 0 is the
only limit point of H. Now {U — H|Ue %, He 57} is a base for a
topology .9~ on I. We shall let Y denote the space (I, .7 ). Since
Z < 7, Y is Hausdorff. Since every member of .7~ that lies in
I — {0} is also a member of %/, Y is semiregular at every point of
I — {0}. And for each V in .7 there is a U in % such that VS U
and Cl,V = Cl, U. Hence, it follows from the compactness of (I, %)
that every open cover of Y has a finite subcollection which is a
proximate cover of Y; i.e., Y is H-closed.

Assume that for some MH space X there is a finite-to-one
mapping f from X onto Y. For each n in N, let B, denote the
inverse (with respect to f) of the open interval (0, 1/») in I. Then
{B,!me N} is an open filterbase on X and must have a cluster point
pin X. Since f%(0) is finite and X is Hausdorff, we can choose an
open neighborhood W of p such that f'(0) — {p} € X — W. Clearly,
every cluster point of {B,|n € N}is in f7%(0), so p is the only cluster
point of {B,|ne N} in W. Then {B, N W|n c N} is an open filterbase
with unique cluster point p and must therefore converge to p. For
each » in N, choose a point z, of B, W. Then {f(x,)|nec N} is a
member of £#, which implies that W — Uy, f*f(xz,) is an open
neighborhood of p. But since no member of {B, N W|ne N} is in
W — Uz, ff(z,), we have a contradiction. Hence, we conclude that
Y is not the finite-to-one continuous image of an MH space.
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QUESTION 4.4. Is every first countable H-closed space the finite-
to-one continuous image of an MH space?

CONJECTURE. Let I® denote the unit square in the plane, bd I*
the boundary of I? in the plane, and 7~ the usual relative topology
on I*. Let Y be the first countable H-closed space obtained by
giving to I* the topology {V — F'|Ve 7; F<bdI?}. Then Y is not
the image, under a finite-to-one mapping, of an MH space.

The following example shows that Theorem 4.2 cannot be
strengthened so as to guarantee that the given H-closed space be
the finite-to-one image of an MH space under a quotient mapping.

ExAMPLE 4.5. A first countable H-closed space that has only
one bad point but is not the finite-to-one image of an MH space
under a quotient mapping.

Let I denote the closed real-line interval from 0 to 1 and % the
usual topology on I. For each m in N, let A,={(1/2)n(n+1)+1|n € N,
1eNU{0},0 =7 = m} and let C,, = {l/a|ac A,}. Then for every m
in N, C,,, — C, is the range of an infinite sequence in I — {0} which
(with respect to %) converges to 0. The collection

z U{U — C,|Ue 7, m € N}

is a base for a topology .7~ on I. The topological space (I, .9),
which we shall denote as Y, is first countable and H-closed and has
only 0 as a bad point.

Assume that for some MH space X there is a finite-to-one
quotient mapping f of X onto Y. Let Z, ={Uec% |0c U}. Since
S740) is finite and X is Hausdorff, we can choose for each p in f7%(0)
an open set W, in X such that pe W, and W, N f7%(0) = {p}. Let
W denote the union of these W,’s. Now because f is a quotient
mapping and Y is first countable, it follows that f is pseudo-open;
i.e., for each ¥ in Y, every neighborhood of f~'(y) in X is taken by
f onto a neighborhood of ¥ in Y (see [1, Theorem 4]). Thus, for
some V in %, and some j in N, V — C; < f(W). Since C;,, — C; is
infinite and f'(0) is finite, there is some ¢ in f7%(0) such that W ,N
f7C;,,) is infinite; and since every member of %, contains all but
finitely many members of C;,, we have, for each U in %/,

W, 0 U)N S Ci) # @ .

Now let & ={W,N fY(U)|Ue%,}. Clearly, W,—f(C;,,) is an open
neighborhood of ¢ and contains no member of the open filterbase
. Since X is MH, <Z must have a cluster point distinct from gq.
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But such a cluster point must lie in f~'(0) and also in W,. This
contradicts the fact that W, n f7(0) = {g}.

EXAMPLE 4.6. An R-closed space that has a countable neigh-
borhood base at its only bad point but is not the finite-to-one
continuous image of an MR space.

Let S be an R-closed non-MRE space which has only one bad
point and which has a countable neighborhood base at that bad point
(such as the space of [2, 4.19]). Let S, S,, S;, -+ be disjoint copies
of S with p, D, D, --- the respective bad points. Now for each =
in N identify p, with p,, and let p* denote this point. Define a
topological space Y as follows. The points of Y will be the points
of Uz, S, (with the p,’s identified). A set V in the space will be
open if and only if (1) for each % in N, V' N S, is open in S,, and
(2) if p* € V then V contains S, for all but finitely many %. It is
not difficult to show that Y is R-closed, that p* is the only bad
point of Y, and that Y has a countable neighborhood base at p*.

Assume that for some MR space X there is a finite-to-one
mapping f from X onto Y.

We first claim that for each » in N, f7%(S,) is an MR subspace
of X. For suppose that m ¢ N and that <# is a regular filterbase
on f7!(S,) having a unique cluster point x. If x¢ f~'(p*) then, since
S (p*) is finite, there is some B’ in <& such that B’ N f(p*) = O;
since f7X(S,) — f(»*) is open in X and closed in X — f~*(p*), it follows
that {Be.<#|B < B’} is a regular filterbase in X which must con-
verge to z both in X and in f7YS,). If zef'(p*) then there is
some B” in &# such that B N (f~(p*) — {«}) = O; therefore,

{BUU|Be<z, B< B”, U is an open neighborhood of x in X}

is a regular filterbase on X which must converge to x both in X
and in f7'(S,). Hence, each f7'(S,) is an MR subspace of X.

Now for each #» in N, let <Z, be a nonconvergent regular filter-
base on S, having p* as its only cluster point, and let .<Z;' denote
the collection {f%(G)|G € <%,}. Then for each n, <Z;' is a regular
filterbase on f7'(S,) with each of its cluster points in f~(p*) and
such that for some neighborhood W, (in f7YS,)) of f'(»*) no
member of <Z;' is contained in W,. Letgq, ---, g, denote the points
of f'(p*) and choose open neighborhoods V,, ---, V, of q, +--, ¢,
respectively, such that the closures of the V,’s are disjoint.

We assert that for each n, f%(S,) — U%, V., # @. For assume
the contrary, i.e., that for some m in N, f(S,) S U.. V.. Since
the Vs are disjoint, it follows that each set V, N f7(S,) is both
open and closed in f7(S,). For each ¢ (1 <17 =< k) there are two
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possibilities. If ¢ is such that each member of <#;' intersects V,
then {BN V,|Bec.<Z;} is a regular filterbase on f~'(S,) and must
converge to ¢,. In this case choose B, to be a member of <Z;' such
that B,N V., < W,. If ¢ is such that some member of <Z;' misses
V., choose B, to be such a member of <#;'. Then for each i,
B,nNV,Z W,. Now let B be a member of <#;* which lies in N, Bi.
We have U, (BN V)< W,; i.e., BZ W,. But since no member
of &', is contained in W, this gives us a contradiction.

So for each % we can choose 2, to be a point of f7(S,) — U~. V..
Now, for each %, let <2, denote the collection of all open neighbor-
hoods in X of the set {2, 211, Znsor -} Let & = U2, &2, It is
not difficult to verify that <# is a regular filterbase on X and that
& can have no cluster point in X — f~%(»*). But the open set
X — UL, V, is a member of .<Z and misses the neighborhood J%, V,
of f'(p*). Hence, we are forced to the contradictory conclusion
that <# has no cluster point.

5. Continuous MR images. In this section we shall make use
of the following definition.

DEFINITION 5.1. A regular 7, space X is said to be R-func-
tionally compact if for each regular T, space Y and each mapping
f from X onto Y, f is closed.

The theorem below characterizes R-functionally compact spaces
and shows their relationship to spaces whose regular T, continuous
images are always ME. Since (a) = (c) (below), every R-functionally
compact space is MR. However, M. P. Berriozabal and C. F.
Blakemore [3] have recently described an example of a nonclosed
mapping of an MR space onto a regular T, space, so not every MR
space is R-functionally compact.

THEOREM 5.2. Let X be a regular T, space. Then conditions (a)
and (b), below, are equivalent and either of these implies condition
(c).

(a) The space X is R-functionally compact.

(b) For each closed set F' in X and each regular filterbase %
for which F = NZ(=N%), Z is a neighborhood filterbase for F.

(¢) Every regular T, continuous image of X is MR.

Proof. The results (a)=(¢) and (b)=(a) can be. obtained by
arguments essentially the same as those given in the proofs of [4,
Theorem 3] and [14, Theorem 2.1], respectively. The proof of
(a) = (b), which follows, is a modification of the second half of the
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proof of [4, Theorem 3]. Suppose that % is a regular filterbase
on X and that F= N%. Let W be an open neighborhood of F.
We shall show that some member of % is contained in W. Define
Y to be the decomposition of X whose only nondegenerate element
is F', and let f be the natural projection of X onto Y. We choose
a base 77 for a topology on Y as follows: a subset V of Y is in
7" if and only if (1) f~%(V) is an open subset of X — F, or (2)
f(V)ez. It is easily seen that Y is Hausdorff. Since the restric-
tion of f to X — F' is a homeomorphism onto Y — f(F"), it is clear
that Y is regular at each point of ¥ — f(F'). For each V in 7° con-
taining f(F), f(Cly V) = Cly f7(V), and since % is regular this
implies that Y is regular at f(¥). Thus, Y is a regular T, space.
It now follows from the R-functional compactness of X that f(X — W)
is closed in Y and, therefore, that Y — f(X — W) is an open neigh-
borhood of f(F). So for some V in 7 we have f(F)eV and
VY- f(X— W) Consequently, f"(V)ez and f(V)<Z W.

QUESTIONS 5.3.
(1) Does condition (c) of Theorem 5.2 imply condition (a)?
(2) Is every R-functionally compact space necessarily compact?

An affirmative answer to 5.3(2) would imply that every regular
T, space having each of its closed sets R-closed is compact, thus
answering a question of B. Banaschewski (see [2, Problem 14]).
However, we conjecture that the answer to 5.3(2) is no.

Addendum. It has come to our attention that at about the same
time that our research for this paper was being completed, R. F.
Dickman, Jr., and T. O. Vinson, Jr., obtained results very similar
to our Corollaries 2.10 and 3.9. Specifically, they proved (1) that
every H-closed space is the image, under an open mapping, of an
MH space, and (2) that the inverse limit of a system of H-closed
spaces is H-closed if all bonding maps are open and onto.
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