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Local properties of unit regular ring elements are inves-
tigated. It is shown that an element of a ring R with unity
is regular if and only if there exists a unit » € R and a group
G such that a <€ uG.

1. Introduction. It is well-known that [15, 7] a ring R is
strongly regular if and only if every ec R is a group member. In
this note we shall use the basic theorem for group members in a
ring to show locally that a ring element ¢ ¢ R (with unity) is unit
regular exactly when there is a unit v ¢ B and a group G in R such
that e¢euG. Hence unit regular rings are, as it were locally a
“rotated” version of strongly regular rings.

We remind the reader that a ring R is called regular if for
every a € R, a ¢ aRa; strongly regular if for every a e R, a € ¢’R, and
unit regular if for every a € R, there is a unit « € R such that aua =
o [3]. Similar definitions hold locally. A ring with unity is called
finite if ab = 1 implies ba = 1. Any solution o~ to axa = a is called
an inner or l-inverse of [1], while any solution a™ to aza = a¢ and
zax = x is called a reflexive or 1-2 inverse of a.

For idempotents ¢ and f in R, ¢ ~ f denotes the equivalence in
the sense of Kaplansky [13] as contrasted with a ~ b which denotes
that ¢ = pbg with p and ¢ invertible.

As usual, similarity will be denoted by =, the right and left
annihilators of ac R will be denoted by o’ = {xcR: ax =0}, ‘0 =
{x ¢ R: xa=0} respectively, while interior direct sums and isomorphisms
are denoted by + and = respectively. A ring R is called faithful if
aR = (0) implies a = 0.

We shall make use of the following fundamental theorem for
group members.

THEOREM 1. Let S be a semigroup and acS. The following

are equivalent.

1. a is a group member.

2. a has a group inverse af in S which satisfies axa = a, var =
z and ax = xa.

3. a has a commutative inmer inverse a~ which satisfies axa =
a, and ar = xa.

4. aS =eS, Sa = Se and aceSe for some idempotent ec S.

5. aca’SN Sa’.
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6. aca aSaa™ for some inner tnverses a, &~ in S.

7. aS = a*S for some reflexive inverse a* in S.

7a. Sa = Sa* for some reflevive inverse at in S.

8. aS = a~aS for some inner inverse &~ in S.

8a. Sa = Saa~ for some imner inverse a~ in S.

If in eddition S = R is a faithful ring, these are equivalent to

9. R=aR+ a'.

9a. R = Ra + ‘a.

In any of the above cases a* and ¢ = aa* are unique and the
mazimal subgroup containing a is given by

1) H, = {z e S: z* exists, z2* = aa’ = ¢}
) ={reS:28 = a8, Sz = Sa, x € aSa} .
Proof. For a proof of the equivalence of (1)—(5); we refer to
[14, 7, 8].
(1) = (6): Clearly, a = a*a’at.
(6) = (7): Let a = a azaa™ for some zeS and set a* =a aca".

Then ¢ = ¢ ae~azaa~ = a*azaa~ e a*S.
On the other hand, since @® = a(a"azaa™)a = aza, we have a =
e e, and a’a = a*=a"a’. Hence ot = a ae~ = a (¢ d’a”)a~ =

o afa~a” = a a¥(a”) = a(a”) caS, and so a™S = aS.

(7) = (8): Obvious, since ¢*S = a*aS.

8)=(1): If aS=a"aS, then ¢*=a ax for some z. Hence
o an® = a® or a @’ = @

Similarly, ¢ @ = ay for some y, and so ¢ = a*y. By a result of
Drazin [2] the index of @ equals one and of exists.

The results 7a and 8a follow by symmetry.

We remark that an element a € R for which aR = a™R or Ra =
Rot for some a*, generalizes so called EP elements [16, 7, 1] for
which ¢k = ¢ "R = ¢'R, R »-regular, where a' is the Moore-Penrose
inverse of @. Thus in a =-regular ring, an EP element belongs to
some group G.

For a proof of (9) = (1) for the case where R has a unity 1 or
is regular, we refer to [7]. When R is faithful we have to proceed
as follows. R=aR+ a"=a=ar +mn,an = 0=a = a(as + m) + n,
for some se R, mea’. Hence a* = a*b, for some beaR. Also a(ax) =
0=axcaR N a® = (0), so that (¢*)° = a’. Hence R = a&’R + (¢¥’. It
then follows that b = (a%? since

(@ — a*ha?) = a¥(a*h — ba?) = a*ba’d — b) = 0.

Because ¢’ commutes with @, it follows by a result of Drazin [2]
that (@¥’a = a(@®?. Now (a — a¥(a?*a)R = (¢ — a*(a*)fa)aR = (0) and
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hence if R is faithful, ¢ = a*(a®%e = a*(a(a’)¥). One may now repeat
the above argument to show that af = a(a?)* = a*aa’.

That (1) = (9) is clear.

Before giving our main result several remarks should be made
here.

REMARK 1. The condition “faithful” may be replaced by the
weaker condition

(1.2) for every reR 7°N°R = (0).

This may not be dropped entirely as seen from the example

0 «a . 01
R = {[ } o is a real number}, a =[ :l, aR=(0),a" =R
00 0 0

and ‘R = R. Here R = aR + a°, yet af clearly does not exist since
a® = 0.

REMARK 2. For a regular ring R with unity, (1.1) may be
written as [10]

(1.3) H,={xeR:x = pa = aq for some units p and gq}.

REMARK 8. If o has a unique reflexive inverse a* then a* exists,
and if « has a unique idempotent of the form aea® then aca’R.
Hence if either of them hold globally, then R is stronly regular. These
results are easy consequences of the fact that the class {a*} of all
reflexive inverses of a is given by [9],

[et + 1 — ata)Rla[at + R(L — aa™)] .

2. Main results, We begin with several preliminary results
which will be used in our main theorem.

LemMA 1. If R is a ring with unity 1, and 1f ¢é:aR — bR is
a module isomorphism, where a and p = ¢(a) are regular elements,
then Ra = Rp and pR = bR.

Proof. ¢(a)=¢(aa"a)=¢(aa")a and ¢(a) = pp™p—a=¢ (pp7)p=
6 (pp )¢(a). The following is given in [10].

LEMMA 2. If a and b are regular elements in o ring R with
unity 1, then

aR =bR and Ra = Rb+——=0>b=ua = av
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for some units u, v in R.

LEMMA 3. Let R be a ring with unity 1 and a and b be regular
elements in R. Then the following are equivalent:

(i) b~

(ii) aea” ~bb" and a a~ bbb, for some, and hence all o, b~;

(iii) e ~bb",1—aa " ~1—56b", and 1 —-aa~1-—>bb, for
some and hence all a=, b™;

(iv) aR = bR and R/aR = R/bR, R/Ra = R/Rb.

Proof. (i) = (ii): If b = pagq, for some units p and ¢, then for
any particular ¢, ¢'a p ' e {b”}, and hence paap ' €{bb7}, ¢ 'a"ag €
{b7b}. Now for any a~e{a"}, b= {b7}, aa™ ~ aa™, bb= ~ bb~ and thus
ae” ~ aa” ~ paa 'pt A bb=.

(ii) = (i): Let aa” = ubbu',a @ = v b bv. Then aR = ubvR,
Ra = Rubv. Lemma 2 now ensures that a = ubvp = qubv for some
units p, ¢ and thus « b,

The equivalence of (ii) and (iii) is well-known since aa™ ~ bb™ =
aa” ~bb” and 1 — aa”™ ~ 1 — bb~, while aa™ ~ bb™ =a a ~ b7b, [11].

(i)=(@{v): If b = paqg where p and ¢ are units, then aR = bR
and1 —bb" =p(1 —ae)p =0 —00)R = p(l —ae)R=(1 — aa)R.
Lastly, since bR + 1 — 0" )R = R =aR + 1 — a¢”)R = R/aR =
(I —ae”)R and R/BR = (1 — bb")R, the results follows.

(iv)=(i): If aR= bR and R/aR = R/bR, then (1 —aa" )R =
Rj/aR = RIbR = (1 — bb7)R and so aa~ ~bb",1 —aa” ~1—0bb". It
follows that aa™ ~ bb~. Similarly, a a ~ b7b.

We note in passing that the statement R/aR = R/bR is clearly
equivalent to the statement “aR and bR have all direct summands
isomorphie.”

LEMMA 4. If acR 15 a regular element of R and 1€ R, then

Jor all units u, ve R, {(wav)"} = v {a Ju"

Proof. This is an easy consequence of the fact that the class
of all inner inverses of b is given by (b} =b"4+1 —b"b)R + R(1 —bb").

We now come to the main theorem of this paper, which gives
numerous conditions for a ring element to be unit regular.

THEOREM 2A. Let R be a ring with unity 1 and let a € R. Then
the following are equivalent:
1. aua = a for some unit w in R.
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2. (au)* exists for some unit u in R.

2a. (ua)* exists for some unit u in R.

3. au has a commutative inner inverse for some unit u in R.

3a. wua has a commutative inner inverse for some unit u in R.

4. auR = eR and Rau = Re for some unit w and idempotent
e in K.

4a. uaR = e¢R and Rua = Re for some unit u and idempotent
e in R.

5. acauaR N Raua for some unit w in R.

6. R =aR + u(a®) for some unit u in R.

6a. R = Ra + (a)u for some unit u in R.

Proof. (1)=(2): Clearly, aua = ¢ = (au)’® = au = (au)* exists.

(2) = (1): Observe that au[(au) + (1 — (au)au)]aw = au—auve =
a, where v = (au)* + (1 — (aw)®au) and v = au + 1 — (au)au.

(2) = (2a): ue = u(eu)u* and so (ua)t exists exactly when (au)?
exists.

Since idempotents clearly are group members, it is obvious that
¢ is unit regular precisely when ¢ ¢ uG for some group G and unit
# in R. The equivalence of (2) through (6a) follows immediately
from Theorem 1, applied to the group members au, and ua. For
example, au € (au)’R N R(au)*=a € auaR N Rauwa and (ua)? exists =R =
uaR + (we) = R = aR + u(a’). If we are given in addition that
a € Ris a regular element, then several important additional conditions
may be given for a to be unit regular.

THEOREM 2B. If R is a ring with unity 1 and a € R s @ regular
element, then the following are equivalent to a betng unit regular.

(7)) acua aRaa~u™" for some unit w and some inner 1nverses
a”,a~ in R.

(8) aza =1y, aya~ = x, where ¢, a~ are tnner inverses of a —
T A Y.

(9) ca =ac,ceR=caa” ~ a~ac for some and hence all inner
wmwverses o=, o~ in R.

(10) aa” ~a"a for some and hence all inner inverses a~ in R.

(11) aR = uaaR for some unit u and some inner inverse o~
wn R.

(12) aR = ua*R for some unit u and some reflexive inverse a*
n R.

(13) aR = eR, with & = ¢ = au = ¢ for some unit u in R.

(14) aR = bR with b unit regular=ag=>= for some unit g in R.

(15) aR % bR, with ¢(a), b unit regular = a 2 p.
(16) aR é bR, with ¢(a), bunit regular = R/aR = R/bR,
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together with their left analogues.

Proof. (2) = (7): By Theorem 1(6), (au)*

exists = au € (au) auRau(au)” — au c u ‘o eRaa”
= acu ‘e aRaau™",

for some inner inverses a~, a~ of a. It should be noted that Lemma
4 was also used.

(1)= (8): Let aua = a, where u is a unit. Then y = e 2a =
a aye~e =Y = ya~e = a"ay = Yo q, and £ = aya” = auTae" = 4a"% =
2 =aa 2 =wxaa". Also, clearly, ay = za and yue = ya~aue = ya~a =
Y, oux = . Now note that ¥y = a ay ~ uay since uay(l — a a+ua) =
uay =1 — a e + ua)a"ay and so, ¥y = a~ay ~ uay = uxra = u(zau)u .
Next, again zue ~ xaa™ = x, for

(1 — aa™ + aw)zau = zou = 2aa~(1 — aa™ + au) .

And so, y = ¢7'zq, where ¢ = (1 — aa™ + auw)u ‘(1 — ¢ a + ua).

(8) = (9): Since a (caa™)a = a"ac and a(a"ac)a™ = caa~, the result
follows at once from (9).

(9) = (10): Because aa~ ~ aa~ for any a~,a~, we simply set
¢=11n (9).

(10) = (A1): ao " ~a a=aa" = ua au ' for some unit 4 = aR =
ua " aR as desired.

(11) = (12): aR = ue ae aR = wa*aR = ua*R, where a* =a aa".

(12)=(2a): Let aR = ua*R. Then w'aR = a™R = a"™uR =
(u™'a)*R, and hence by Theorem 1(7), (u™'a)* exists.

(1)=(18): If aR = eR and aua = a, u unit, ¢ = ¢, then auR =
¢R—=aue = ¢. Hence auv = ¢, where v = 1 —aqu-+e¢, v ' =1+au—e.
Thus a and e are right associates.

(18) = (14): If aR = bR, bvb = b and v is a unit, then aR = ¢R,
where ¢ = bv. By (138), au = ¢ = bv for some unit ¢. Hence auv*=0>
as desired.

(14) = (1): Since aR = aa R, and aa™ is unit regular, (14) implies
that ag = aa™ for some unit g. Hence aga = a as requested. It is
now clear by symmetry, that the left analogues of the above results
also are equivalent to element a being unit regular.

(14) = (15): Suppose that (14) and hence its left analogue (14a)
both hold.

Now let aR = ¢(a)R = bR and p = ¢(a). Then by Lemma 1,
Ra = Rp and pR = bR, so that by (14) and (14a), pv =b and
ua = p for some units % and v. These are in fact given by
= ()1 + p=p — aa)a=, v = p~(1 — pp= + bb=)(b)7", in which a~,
b=, and p~ are unit inner inverses. Hence b = uav, as desired.
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(15) = (16): This follows immediately from Lemma 3.

(16) = (1): Since aR é e aR, where ¢(a) =a a =0, it follows
that a¢” ~ b,1 — aa~ ~ 1 — b, so that aa™ ~ b.

Hence, by Lemma 3, wav = b = a”"a for some units w«, v, which
implies that uavuav = uav or alvu)a = a, as desired. Alternatively,
(10) could be used.

The remaining results follow again by symmetry.

REMARK 1. In (8), we proved the conjecture made in [12] that
pseudosimilarity implies similarity in a unit regular ring. Pseudo-
similarity, =<, is defined by

DEFINITION 1. 2 =<y if a 2a = ¥y, aya™ = © for some a and its
inner inverses a7, a”.

REMARK 2. The equivalence of (1) and (6) was also proved by
Ehrlich [4] who used endomorphism rings. As shown above it is
actually a simple consequence of the fundamental Theorem 1.

REMARK 3. Part (10) should be compared with the global result
of Vidav [17] and Fuchs [5], which state that a regular ring R is
unit regular exactly when e* = ¢~ f = f*=¢~ f [17] or when aR =
bR = R/aR = R/bR [5].

REMARK 4. The global analogue of (16) is that a regular ring
R is unit regular exactly when aR = bR implies that a«R and bR
have a common direct summand [6].

One final remark is here needed, namely, if R is a unit regular
ring and if ¢: aR — bR is any isomorphism, then, by Lemma 1, Ra =
R¢(a) and hence by (14a) ¢(a) = ua for some unit u.

We have thus shown:

COROLLARY 1. In a wunit regular ring R, all right module
1somorphisms ¢: aR — bR, are of the form ¢lar) = uar, where u 1is
a unit. Similarly, all left module isomorphisms ¢: Ra — Rb are
of the form ¢(ra) = rav, for some unit v e R.

The converse of these statements always hold.
3. The unit inner inverses. We shall now examine more closely

the class %, of unit inner inverses of a given element ¢ of a unit
regular ring.
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We begin by noting that if aue = a, with % invertible then %,
can be represented as

38.1) Uy = U gy = % yaW

Indeed, if we%/,,, then auwaw = au which implies that euwae =
a and hence uw € %/,, while conversely, if awe = a, w a unit, then
aw(u w)eu = au which implies that v 'w € %/, and hence weu%/,.
The second identity follows similarly.

Since 4%, is independent of the choice of the unit inner inverse
u of a, we have, for any unit inner inverses « and v of a,

(3'2) %a = u?/uu = v%av ’

so that in particular, u™'v € Z,.

Consequently, the set %/, is determined by the set of unit inner
inverses %/, of the idempotent element ¢ = au. When &* = ¢, there
are several representations for %/,. In fact, %, is the set of all
units of the form:

(i) 1+ @A —-ex+ yl —e) {Lfor some z,y;
(ii) e+ 1 —¢ew + s —e for fome v, s;

3.3) (iii) 1+ h — ehe for some h;
(iv) e+ k — eke for some k.
In general, the set %/, or even %/, will not be a union of semi-

groups. For example, if ¢ = H 8] e R,,,, where R,,, denotes the two

by two matrix ring over the real field, then it is easy to see that
—-12 —127  _
[ 1 2Je%, but [ : 2] e,
In fact, it is only for idempotent elements possible to possess
union of semigroups of unit inner inverses.

PROPOSITION 3. Let a be a unit regular element of a ring R
with unity 1.

(i) If the set Z, of unit inner inverses of a is & union of
semigrouns then o’ = a.

(ii) If R is a prime ring and if %, forms a semigroup, then
a=0o0r a=1

Proof. (i) Let aua = a with w a unit. Then u?¢e %/, and au’e = a.
Now consider: au(l + au(l — aw))e = aua + au(l — au)e = a + ¢ —
o = @, which implies that u(1 + a¢(1 — au)) e %,. Thus (u(l — a(l —
ou)))’e %,. Thatis, @ = a(u(l — a1l — au)))’a = (au — a(l — au))u(l —
a(l —au))a = (au® — au + a*u®)(a — a&* + a*) = au’e — aua + c*u’e =
a—a+ a®=dak

(ii) Now suppose that ¢« = ¢ = ¢*. Then clearly 1+ ¢R(1 — e)
and 1+ (1 — ¢)Re are contained in %,. Hence by the semigroup
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assumption, e(1 + eR(1 — e))(1 + (1 — e)Re)e = ¢ which implies that
(3.4) eR(1 — e)Re =0 .

Since R is prime, it follows that either ¢ = 0 or ¢ = 1 as desired.

REMARK 1. In (ii), the primeness cannot be dropped as seen
from the example of semiprime ring R = Z,®P Z,, where Z, denotes
the Galois field of order 2. Here %, = %,y = {(1, 1)} is a semigroup,
yet (1, 0) and (0, 1) are neither zero element nor unity element.

REMARK 2. The same conclusions may be drawn if the element
is just regular and the set {a~} of inner inverses forms a semigroup.
In fact, if aba = a then ab’a = ¢ and also a(d — ba + ba*b)a = a =
a(b — ba + ba’b)ba = a = a = a — aba + a’b’a = a’.

The rest follows as in part (ii).

REMARK 3. For an invertible element 1 4+ A — ehe in a unit

regular ring, ehe need not lie in H,. For example, if e = H 8}6

R, and h = [(1) g} then 1 + 7 — ehe = H (1)} is invertible but ehe =
00 =

10 oj ¢ H..

There are five sets of units that appear naturally in the study
of Z7,. These are:
1. P.=1+(0—-¢eRe={ucz,:e(1 —u)(l —e) =0},
2. Q. =1+eR1l—¢e)={uecez,:1 — el — u)e = 0},
3. V.,={ve%,:ev = e},
4. W,={we%,: we = e}, and
5. C,={zcR:ez = ze, z is a unit}.
For example, 1 — aa™ + aa=c W,,— for any inner inverses a~, a~, a=
of a.
It is easily seen that
(i) all these sets are semigroups (in fact monoids).
(ii) PV, =%, Q. W, 7%, V.nNW,={1+1—e)z(l—¢)¢c
Z,. % € R}
(iii) P.NnQ.&V.NW,=zZ.NC,=C.,.
In addition it is known that [14]
(iv) eC, = H, is the maximal subgroup containing e.
Moreover, it is easily shown that
(v) V#%ZW,=%,=PzZ.Q,, for let we#,veV, weW,,
then evuwe = eue = ¢, while conversely 4 = 1-u-1 ensures the first
equality. The second equality follows similarly.
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It should be remarked here that in general P, = V,, Q, =W,, for

again let ¢ = [8 (1)] and © = [ﬁl zﬂ in R,,, with 2, 0 and 1+ 2,
2 4

invertible. Then 1 + (1 — e)z = [1 T “ﬂ e V,, while B” @O] + ye

for any y € R,,,.
Before examining the subgroup H,, let us first prove a global
conjecture made in [11]. We start with

LEMMA 4. Let R be a ring with unity 1. Then the following
two conditions are equivalent.

(i) R is unit regular such that every mnonzero element in R
has o unique imnmer inverse;

(ii) R contains only idempotent elements and invertible ele-
ments.

Proof. (1) = (ii): Suppose @’ # a¢ € R and aua = @, % a unit » = 1.
Then

au(l — a(l — au))e = ¢ = a(l — (1 — ua)a)ua
where (1 — a(l — au))™ =1+ a(l — au) and
Q-0 —-u)a)y*=1+ 1 — ua)a .

Hence by uniqueness, u(1 —a(l —au))=u = (1L — 1 — ua)a)u or
a(l—au) =0= (1 —ua)e. Now a’uw = a = uae® implies by Theorem
1, that « has a group inverse af = uau. Consequently, au = aa* =
a*a = ua. Since a(a* + 1 — aat)a = a and (¢f +1 —aa?) '=a + 1 —aat,
it follows by uniqueness that 4 = uwaw + 1 — au or u(l — au) =1 —
aw. Multiplying this by 1 — eu, we obtain

3.7 A—aw)u(l —au) =1 — au .

Now either 1 —au = 0or 1 — au # 0. Since 1 — au = 0 is idempotent
and (1 — au)l(l — au) = 1 — au, uniqueness implies that v = 1, which
is impossible. Hence au = 1 = ua and « is a unit.

(ii) = (i): It is clear that R is a regular ring. Now let ac R
and ¢ # 0. First suppose ¢ = 1. Then aua = a implies that v = 1
and so is unique. Next, suppose ¢ # 1. If ¢*=a and auo = a,
where w is a unit # 1, then 1 — w is also a unit. For otherwise
(1 —u)=1—u would imply that u®> = w which forces u to equal 1.
Now, since @ is not a unit, a(1 — ) is not a unit. Hence [a(1 — w)]* =
a(l — u). This implies that ¢ = a(l — w)a = ¢* — aue =a* — a = 0,
a contradiction. Hence w = 1 and the unit inner inverse of a is
unique. If @ is a not idempotent then a is a unit and clearly o' is
the only unit inner inverse of «, completing the proof.
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We may now sharpen this to the following.

THEOREM 4. Let R be a unit regular ring. If every monzero
element of R has a unique unit inner inverse then either R is a
Boolean ring or R is a division ring.

Proof. Suppose R is neither Boolean nor a division ring. Then
there exists @ € R such that a* # @ and there are  #0,y = 0 in R
such that xy = 0, (since it is well-known that a regular integral
domain must be a field). By Lemma 4, o is a unit and « and y are
idempotents. Now, consider element az. If (ax)? = ax then

aza—1)x =0— (xa —1)x =0 —2x=xax—a =1,

by the uniqueness of unit inner inverses of z. This yields a con-
tradiction. On the other hand, if (ax)* + ax then ax must be a unit
which implies that  is a unit and thus that y = 0, which again is
a contradiction. Thus R must be either a division ring or a Boolean
ring.

Let us now consider briefly the maximal subgroup
H,={xcR: 2R = ¢R, Rz = Re}

which contains the idempotent element ¢ c B. We begin with a global
result.

PROPOSITION 5. If R is a regular ring with unity 1 and e 1is
an idempotent element in R, then

(3.8) H, = {eue: eueve = ¢ = eveue, u, v units in R} .

This says that the e-units in eRe are all of the form eue for some
l-unit uw e R.

Proof. It is well-known that

H, = {ere: erese = ¢ = esere; r, s € R}
= {ere: ereR = eR, Rere = Re} .

By Lemma 3, for erec H, there are units u,v in R such that
ereu = ¢ = vere, which implies that (ere)(eue) = e = (eve)(ere).. The
uniqueness of e-inverses ensures that eue = eve.

Now again by Lemma 3, since eueR = e¢R and Reue = Re, there
are units w, z in R, such that euew = ¢ = zeue. Consequently, euewe =
¢ = ezeue. And so, by uniqueness, ewe = ¢ze = ere. Hence we may
replace in each element ere the element » by a l-unit weR.
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Conversely, it is easily seen that this set is contained in H,.
We remark that when R is a finite regular ring [11] we may
shorten this to

(3.9) H, = {eue: eueve = e; w, v units in R}.

Suppose now again that eua = ¢ = ava, with w, v units in R,
Then if we set ¢ = au, f = av, we have ac H,,u™, and more gener-
ally, acN{H, v uec%,}. Since eR = fR = aR, it follows that
ef =f, fe=e¢ and that e~f. In fact,if w=1—¢e+f=1+e—f)"1=
1 — a(u — v), then ew = wf = f and thus

(3.10) wHw™ = H,,

that is, the subgroups H,, and H,, are isomorphic. It follows similarly
that

(3-11) Hua, = /”L}—:l'zlxu?'l’_1 L4

because ¢ H,, = uw '¢u c H,,. And so, the subgroups H,,, H,,, H,.,
H,, are all isomorphic.

4. Conclusions. We have seen that an element e« < R is unit
regular exactly when e € uG for some unit v and group Gin B. In
the same way that the concept of a Drazin inverse a’(see [1, 2])
generalizes that of a group inverse af to the case that (a*)* exists
for some k=1, we may generalize the concept of a unit regular
element.

DEFINITION 2. (i) An element a € R is k-unit regular if o¢* is unit
regular for some k = 1.

(ii) An element @€ R is unit-Drazin invertible if there is a unit
u e R such that (ua)* is a group member for some % = 1.

By Theorem 2, the former is equivalent to R = a*R + u(a*)’,
while the latter reduces to the existence of (ua).

In closing we mention of few open problems relating to %, in
a unit regular ring. Let ¢ be an idempotent element.

1. For what h is 1 + h — ehe invertible?

2. For what z is 1 + (1 — e)x invertible?

3. How are %/, and H, related?

4. What sort of subgroup is N {H,.: % € %,}?

5. For what type of regular semigroups does Theorem 2, 1-2
remain valid?
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