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Let S be a strong semilattice Y of monoids. If S is right
nonsingular then Y is nonsingular. The converse is true
when S is a sturdy semilattice Y of right cancellative
monoids. Should S have trivial multiplication then each
monoid of more than one element has as its index an atom
of Y. Finally, if S is a right nonsingular strong semilattice
Y of principal right ideal Ore monoids with onto linking
homomorphisms then Q(S), the maximal right quotient semi-
group of S, is a semilattice Q(Y) of groups.

1. Introduction. Let Y be a semilattice and let {S,}..r be a
collection of pairwise disjoint semigroups. For each pair a, 8€Y
with @ = 8, let Ay S.—S; be a semigroup homomorphism such
that +r,. is the identity mapping and if a > 8 > 7 then A, =
PrgrWase Let S = Uzer S, with multiplication

axb = Ya,up(@)yrs,q6(D)

for ¢S, and beS;. The semigroup S is called a strong semi-
lattice Y of semigroups S,. If, in addition, each +,, is one-to-one
then S is called a sturdy semilattice of semigroups. The Dbasic
terminology in use throughout this paper can be found in [1], [7],
and [9]. Note that a semilattice of groups [1, p. 128] is a strong
semilattice of semigroups. In [6], McMorris showed that if M is a
semilattice X of groups G,, then Q(M), the maximal right quotient
semigroup of M, is also a semilattice of groups. Hinkle [2] con-
structed Q(M) and showed that its indexing semilattice is Q(X).

Let S be a semigroup with 0. A right ideal D of S is dense
if for each s, s,, se€S with s, # s,, there exists an element de¢ D
such that s,d # s,d and sd e D. A right ideal L of S is N-large if
for each nonzero right ideal R of S, RN L =+ {0}. It is easy to see
that dense implies N-large. If each N-large right ideal of S is also
dense then S is said to be right monsingular. If a semigroup is
commutative or each one-sided ideal is two-sided then we will use
the term nonsingular. Let T be a right S-system with 0[5] then
the singular congruence «» on T is a right congruence defined for
¢, beT by avysb if and only if as =bs for all s in an N-large
right ideal of S. McMorris [8] showed that 5 = 45, the identity
congruence on S, if and only if S is right nonsingular.

Recently it has been shown [4], [5] that if S is a commutative
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nonsingular semigroup then Q(S) is a semilattice of groups. How-
ever, since S is commutative it is uniguely expressible as a semi-
lattice Y of archimedian semigroups [1, p. 135]. Thus we investi-
gate right nonsingular strong semilattices of semigroups.

Henceforth we require that both S and Y be semigroups with
0. If for ¢e Y, S, is a monoid then the identity will be denoted
by e,. Also a semigroup homomorphism which takes the identity
of one semigroup to the identity of the other is called a momnoid
homomorphism.

LEMMA 1.1. If S 4s o strong semilattice Y of right cancella-
tive monoids S,, then for each a, BEY with A =B, +.; 1S @
monoid homomorphism and Y 1is isomorphic to the semilattice K
of idempotents of S.

LeMMA 1.2. Let S be a strong semilattice Y of monoids S,
With e s & Monoid homomorphism for « = pLecY. If L is an N-
large right tdeal of S, then A ={oceY|LNS,* @} ts an N-large
ideal of Y.

Proof. To see that A is N-large let B be a nonzero ideal of
Y and define B= J..xS.. Let te BN S; and se S, for some BSe¢ R
and o€ Y. Then txs = s ,5(E)V,05(8) €S,5. But S, & B since ScR
an ideal of Y. Dually we can show that sxte S,; and so B is a two-
sided ideal of S. Since L is an N-large right ideal of S then
LN B=+#1{0} so there exists 0#7reLNB. But then reS;, for
0+#0cR and so 026cANR and A is N-large. It is easy to
show that A is an ideal of Y.

LeMMA 1.8. Let S be o strong semilattice Y of monoids S,
with .z @ monoid homomorphism for « =2 BeY. If T is an N-
large ideal of Y, then L = User Si s an N-large ideal of S.

Proof. We saw in the proof of Lemma 1.2 that L is an ideal
of S. To see that L is N-large we let B be a nonzero right ideal
of S, and define R={ceY|BNS,#* @}. Since R is a nonzero
ideal of Y and T is N-large then RN T = {0}. Thus there exists
0~06eRNT for which S, C L, and so there exists 0 =« te B L.

2. Right nonsingular strong semilattices of semigroups. In
studying a semigroup M which is a semilattice X of groups G,
Johnson and McMorris [3] showed that if M is nonsingular then the
set F of idempotents of M is a nonsingular semilattice. Note that
under these conditions the idempotents of M are central, every
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one-sided ideal is two-sided, and X is isomorphic to E. Here we
consider a weaker structure and obtain the results of Johnson and
MeMorris.

THEOREM 2.1. Let S be a strong semilattice Y of monoids S,
With ., & monoid homomorphism for a=pLeY. If S is right
nonsingular, then Y is nonsingular.

Proof. Let T be an N-large ideal of Y and define L=U;cr S;.
Since S is right nonsingular then L is a dense right ideal of S for,
by Lemma 1.3, L is an N-large right ideal of S. Let &, €Y such
that @ = 8. Then e, # ¢; and there exists an x € L such that e,xx+
esxx where 2€S;. Thus 6eT and ad #= B6 for if otherwise

Cu* L = "//‘a,aﬁ(ea)"pﬁa,M(x) = ’l/f‘.s,aa(x)
Va,85(%) = Pp,55(€6)V5,55(X) = €5%

which is a contradiction. Thus T is dense in Y.

THEOREM 2.2. Let S be a sturdy semilattice Y of right can-

cellative monoids S,. If Y 1is monsingular, then S is right non-
singular.

Proof. Let L be an N-large right ideal of S and let z # y,
zeS. Since L is N-large then z7'L = {se€S|z*se L} is an N-large
right ideal of S and so is L* = L N2'L. By Lemma 1.2, A ={c¢
Y|L*NS,# @} is an N-large ideal of Y, and since Y is nonsingular
then A is dense in Y. We now consider the following two cases:

Case 1. Suppose that zeS, and yeS;, with @+ 8. Since A
is dense there exists 6 A such that ad = B8é. Hence there exists
a teL*N S, such that z+te L and te L. Since ad # Bd then S,; N
Si; = @ and so xxt = y=t,

Case 2. Suppose that z,y<cS, and define [0,a] ={oeY |0
o < a}. Since [0, a] is a nonzero ideal of Y, then there exists
0~06cAN[0, . Thus there is a teL* with teL and zxteL.
Now a+t = yst for if otherwise then o, (@)t = 9r.,(¥)t. But S; is
right cancellative 80 r, (@) = ¥.,,(%¥). Since 4, , is one-to-one then
& = y which is a contradiction.

Thus in both cases L is a dense right ideal of S.

COROLLARY 2.3. Let S be a sturdy semilattice Y of right
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cancellative monoids S,. Then S is right nonsingular if and only
if Y is nonsingular.

If each 4, (@ > B) is the trivial homomorphism; that is, it takes
all elements to the identity, we say that S has trivial multipnlica-
tion.

THEOREM 2.4. Let S be a strong semilattice Y of monoids S,
and let S have trivial multiplication. If S ts right nonsingular,
then |S.| >1 implies a is an atom (a minimal nonzero element)
of Y.

Proof. Let |S,]>1 and let 2, y€S, with z#y. Also let L
be an N-large right ideal of S. Since S is right nonsingular, L is
dense and so there exists z€S such that z+z = y*z and ez € L.
We claim that if ze€S; then &« < 8. To see this we consider the
following two cases:

Case 1. If a is not related to 8 then a > aB and B > agB.
Thus 2#2 = Yees(B)V5,08(2) = €aslas = €ap aNA Y52 = Voo 0s(Y)Vs,05(2) =
€.sas = €,5. This is a contradiction since zxz # yxz.

Case 2. If B < a then 2%z = . ;(¥)9s,:(2) = €2 = 2 and y*z =
Yo s(Y)rs,6(2) = €2 = 2. Again this is a contradiction.

Let B be an N-large ideal, L* and 2z as before. Then a < 8
implies aB = a e B.

Finally, we suppose that « is not an atom of Y. Then there
exists 0 € Y such that 0 < d < a. Define [ ={ocY|0d = 0or 0=0}.
It is easy to see that I is an N -large ideal of Y but a¢I which
is a contradiction.

THEOREM 2.5. Let S be a strong semilattice Y of right can-
cellative monoids S,. If Y is nonsingular and |S,| > 1 implies «
is an atom of Y, then S is right nonsingular.

Proof. Let x#y, z¢ S and let L be an N-large right ideal of
S. If 28, and ye€S, with @ = 8 by the same argument as in
Theorem 2.2, Case 1 there exists feL such that xxt # yxt and
z2st ¢ L. Hence assume that z, y€S,, then since |S,| > 1, a is an
atom of Y and [0, ] is a nonzero ideal of Y. Thus there exists
teL NS, such that z+teL and xxt == yxt, for if otherwise x =y
since S, is right cancellative and this would be a contradiction.

Note that if |S,| > 1 implies @ is an atom of Y, then S has
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trivial multiplication.

COROLLARY 2.6. Let S be a strong semilattice Y of right can-
cellative monoids S, and assume S has trivial multiplication.
Then S is right nonsingular if and only if E is nonsingular and
|S:]| > 1 implies that e, is an atom of E.

3. The maximal right quotient semigroup. Since McMorris
[6] showed that the maximal right quotient semigroup of a semilat-
tice of groups is a semilattice of groups, a natural question arises;
which strong semilattices of semigroups have for their maximal
right quotient semigroup a semilattice of groups? In this section,
we let S be a strong semilattice Y of right cancellative principal
right ideal monoids S, with the linking homomorphisms onto.

LemmA 3.1. If aS, is o dense principal right ideal of S, then
¥, 5(@)S; 18 @ dense principal right ideal of S; for ¢ = 8.

Proof. The proof is straightforward and is omitted.

Let a,8€eY with a= 8 and let Q(S,), Q(S;) be the maximal
right quotient semigroup of S, and S, respectively. The members
of these equivalence classes will be denoted [f]. and [g]; with the
subscripts being dropped if there is no confusion.

We can extend +,,.:S,—S; to a mapping Ps? Q(S,) — Q(Sp)
defined by [fl.—[f]; where if f:aS,— S, then f: ., ﬁ(a)Sﬁ——»Sp is
defined by . s(a)s — . s(f(@)s for seS; Note that f is an S,
homomorphism since if &S, then F(yus(@)s)t = (Yes(f(@)s)t =
Ve, s(f(@))(88) = F (¥a,5(@)(s1)) = F (¥a,5(@)8)E)-

We next show that ¢, is independent of the representative we
choose from [f]. Hence let [f] =[g], then f and ¢ agree on a
dense right ideal of S,, call it D, found in the intersection of their
domains D; and D, respectively. Since S, is a principal right ideal
semigroup then D; = gSa, D, :ACS“ and D = 28, for some a,¢, x¢c
S.. Now 4,,s([f]) = [f] where f: y,,4(a)S; — S, defined by v s(a)s —
Vas(f(@)s, and ¢.4([g]) =[] where G§: . s(c)S;— S; defined by
P, 5(C)s — P, 5(g(c))s. We claim f and § agree on the dense right
ideal g 5(®)Ss S Ve, 5(@)Ss N Yra5(€)Ss.  Since xS, <= aS. N ¢S, it is easy
to see that 4, s(®)S, S Y. s(@)Ss N Yre 5(¢)S;.  Furthermore, since xS,
is dense in S, then by Lemma 3.1, v,(2)S, is dense in S;. Hence
let ¥, (@) € V0 s(@)Ss then F(v,s(®)s) = F (as(@)¥as(t) Where te S,
since . is onto. Since v, is a semigroup homomorphism, it
follows that F(yr,s(®)8) = F(¥us(@h)) = vras(f (@) = (g (at)) =
FPas (@) = §Vas(@Fas®) = §(#as(@)s). Thus the claim is estab-
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lished.

THEOREM 38.2. Let S = sy S be a strong semilattice Y of
right cancellative principal right ideal monoids S, with . onto
Jor a=zBeY. If T = Ueer S,) with multiplication defined by

[Fladgle = feas([F12)85.06([9]1e)

where [fl. € Q(S,), [9]s € Q(Ss) and éu s, 6s,.5 are defined as above,
then T is a strong semilattice Y of monoids Q(S,).

Proof. Note that since S,NS;= @ for a =B then Q(S.) N
Q(S;) = @, and that ¢,, is the identity mapping. We now show
that ¢, Q(S,) — Q(S;s) is a semigroup homomorphism. Let [f], [g]€
Q(S.) then we must show that ¢.(fllg]) = ¢us([/Dgas([gD. To
this end we let 4, :(f]) = [f] and &.s(g]) = [§] where if f:aS,— S,
and g: ¢S, — S, then f: v 5(@)S; — S, defined by r, s(@)s —re s(f(@))s
and §: va,5(c)S; — S, defined by ,s(c)s — vra,s(g(c))s.  Since [f1lg] =
[fg] where fg:97"(aS,) — S, and ¢ aS,) = {x€cS.|g(x) €aS,}, then
for some h e S,, hS. = ¢g~'(@S,) and so Fg: v, #(h)S; — S; defined by

Ve, 8(R)8 = Va,s(fg(R))s.  Thus ¢u([Fllg]) = e, «fg g) =1[fgl. On the
other hand, g.s(IfDg.s([9]) = [FI[d] = [f§] Where f§: 37 (v.q(@)Ss)—
S; and g_l(“h §(@)Sp) = {y € v, A(C)Sﬂ | §(¥) € ¥ra,6(2)Ss}. Hence we must
show that [f ] [fg] that is, fg and fg agree on a dense right
ideal found in the intersection of their domains. Now ¥, s(h)S; <

97 (Va,s(@)Sp) for if e s(R)S € Yra,s(R)Ss then orsp(h)s = Vrgp(R)Va,s(t)
where t€ S, since 4, ; is onto. Thus o, s(R)S = g s(At) = a4, s(c7)
since ht€e¢S, and so ht = ¢r for some r€S,. Hence +,; being a
semigroup homomorphism implies ar, s(h)s = 4rs,s(€)Vre,s(1) € s, 5(€)S5.
Now §(¥a,s(h)8) = Va,5(9(h))s = Ya, (g Ve, 5(t) =V, s((R)E) = P, s(g(RE)) =
. s(@x) since g(ht)caS, and so g(ht) = ax for some xzeS,. Again
since ., is a semigroup homomorphism we ha;ze that §(y.s(h)s) =

Vo (@), 5(3) € g 5(@)Ss. We now claim that fg and fﬁ agree on

Va,s(R)Ss.  Liet ra,p(h)s € Yo 5(h)S, then > g(¥ra,p(R)s) = Yrap(Fg(h))s =
Vo (LGRS =F (P, s(g(R))S = F (e (9 (1))8) = F (G, 6(1))8) = F G, 5(B)8).

Finally, we show that if @ >8> 07 then ¢; ;0.5 = @us. Let
[f1€Q@S,) with f:aS,—S, and let ¢.,([f]) = [f1€Q(S,) where
Fi¥es(@)S; — S, defined by 4o (@)s — a,p(f(@))s.  Let g, 5([fD=[f]e
Q(S;) where f: 4, 5(@)S; — S; defined by v s(@)t — vr.5(f(a))t. Hence
68.0(6,5([FD) = $5.(LF]) = [F1 where 4 ,(va, 5(@)S; — S, is defined
BY 5,5V s(@)8 — V5,5(F(¥as(@))s. To see that f = f, we note that
Vo,Vap = Vao 80 Va,s(@)S; = Vs,s(¥a,s(@))S;. Hence if g ,(v,,5(a))s €
VooV s(@))Ss then Flys,s(Wa,5(0))8) =45 s (F (W, (@)))8 = 5.5 (0, s (@)))5 =
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Yo% as(f(@)8 = rq s(f(@))s.

THEOREM 3.38. Under the hypothesis of Theorem 3.2, S can be
embedded into T.

Proof. Define ®: S— T by s—[)\,] where if se S, then [\].€
Q(S,) and A,: S,— S, is defined by ¢t — st. The mapping @ is one-to-
one for suppose @(s) = @(r) where s€ S, and re€S;.

Case 1. If a + B then &(s) # O(r) since Q(S,) N Q(S;) =

Case 2. If a@ = B then [\]. =[M]. and so A, and A\, agree on
a dense right ideal of S, say D. Hence for deD, sd = \(d) =
M (d) = rd and since S, is right cancellative then s = 7.

Next we show that @ is a semigroup homomorphism. Let z€ S,,
y € S; then O(z+y)=[\,,,].s Where N\, ,: S,;—S,; defined by s—(xxy)s =
Ve at@Vse@)s.  Now  0@01) = [1)dls = Sua(Nd)d.asDals) =
[71(g] = [7d] where [f], [§]€Q(S.) and f: S,; — S, defined by s—
Ve, aﬁ(x)s and §: S’aﬂ——>8ﬁ defined by s-— s p.(¥)s. If se€S, then
F8(s) = F(G(8) = F¥s.as®)s) = Flabsas¥))3 = Vaas@95,05¥)3 = Nyuy(8)-

We identify S with its image in T and note that if S is right
nonsingular we have the diagram

T——T/¥r
uu
= S/, .

THEOREM 3.4. Let R = T[y,. Under the hypothesis of Theorem
3.2 and if S is right nonsingular then iz = ix.

Proof. Suppose that tFrgzt¥. Let ¢,et¥ and t¢,etf then
t.d)rs(t,d) for all de D a dense right ideal of S. Hence for each
deD there exists X, dense in S such that tdz = t,dx for all
zeX,;. Let W = UspdX,;, then t,w = t,w for all we W. If W is
dense in S then #.f, and so t¥ = t¥. To see that W is dense in
S, we let s, #s,, s;€8. Since D is dense then there exists de D
such that s,d # s,d and s, d € D. Since X, , is dense then there exists
veX,, such that (sd)zr # (s,d)x and (sid)x e (s, d)X, . But then
s,(dx) +# s,(dx) and ssdx)e W. Since dxeD and X,, is dense there
exists y € X, such that s, ((dx)y) # s,((dx)y) and s ((dx)y) € X,,. But
W is a right ideal so s,((dx)y) € W with (dx)y € W. This shows that
W is dense in S.
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A right Ore semigroup is a right cancellative semigroup all of
whose nonzero right ideals are N-large. The maximal right quoti-
ent semigroup of a right Ore semigroup R is a group Q(R) =
{ab™* | a, b € R}[2].

THEOREM 3.5. Let S = UuerS. be a strong semilattice Y of
principal right ideal Ore monogids S, with ., onto for a = Be Y.
If S is right nonsingular then Q(S) is & semilattice of groups.

Proof. By Theorem 3.2, T = ..y @(S,) is a strong semilattice
and since each Q(S,) is a group then 7T is a semilattice Y of groups
Q(S,) and so regular with idempotents in the center of T [1, pp.
128-129]. Hence T/4, is regular and its idempotents are in
the center of T/, which makes T/, a semilattice of groups.
McMorris [6] showed that Q(T/+r) is also a semilattice of groups.
By Theorem 3.4, Q(S) ~ Q(T/+,) and so is a semilattice of groups.

THEOREM 3.6. Under the hypothesis of Theorem 3.5, T/y, can
be taken to be the uwmion of the same semilattice Y of groups.

Proof. Since T = ..y Q(S,) where each Q(S,) is a group, we
let ¢, = [e.] € Q(S,). If enre; When a # B8 then e,xx = ezxx for all
x €L an N-large right ideal of S. Since S is right nonsingular then
Y is right nonsingular by Theorem 2.1. Furthermore, A={oc€ Y|LN
S,} # @ is dense in Y. Hence since a #= B there exists de A such
that ad # Bo. Let teL NS, then et = ¢;xt which implies that
CasVs,as(t) = €ps7rs,55(t) Or that @, .,(t) = ¢;:(t). This is a contradiction
since for ad = B4, Q(S.) NQ(S:) = @. Hence e, # e, When
& # 3. Thus in T/+y, there are at least as many idempotents as
there are in 7. Now suppose that g+, is an idempotent of T/v.
Since g € Q(S,) a group then g, € Q(S,)/+4,, also a group. The only
idempotent of Q(S,)/vr, is e,y SO g, = e,r,. Hence in T/+, there
are no new idempotents.

Hinkle [2] showed that Q(T/+,) is a semilattice Q(Y) of groups.
Thus Q(S) is a semilattice @Q(Y) of groups where Y is the semilat-
tice of both S and T/y,. The next theorem is a restatement of
the above results.

THEOREM 3.7. Let S be a strong semilattice Y of principal
right ideal Ore monoids with onto linking homomorphisms. If S
18 right nonsingular then Q(S) is a semilattice Q(Y) of groups.
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