T^n-ACTIONS ON SIMPLY CONNECTED $(n + 2)$-MANIFOLDS

DENNIS McGAVRAN
In this paper we show that, for each \(n \geq 2 \), there is a unique, closed, compact, connected, simply connected \((n + 2)\)-manifold, \(M_{n+2} \), admitting an action of \(T^n \) satisfying the following condition: there are exactly \(n \) \(T^1 \)-stability groups \(T_1, \ldots, T_n \) with each \(F(T_i, M_{n+2}) \) connected. In this case we have \(T^n \cong T_1 \times \cdots \times T_n \). Any other action \((T^n, M_{n+2})\), \(M_{n+2} \) simply connected, can be obtained from an action \((T^n, M_{n+2})\) by equivariantly replacing copies of \(D^4 \times T^{n-2} \) with copies of \(S^2 \times D^2 \times T^{n-3} \). As an application, we classify all actions of \(T^n \) on simply connected \((n + 2)\)-manifolds for \(n = 3, 4 \).

Several results have been obtained about \(T^n \)-actions on \((n + 2)\)-manifolds. Orlik and Raymond have obtained various classification theorems for the cases \(n = 1, 2 \) (see [11], [12] and [14]). Various general results have been obtained in [4] and [5] for \(n > 2 \). This paper is a continuation of the work done in [4]. We also obtain classification theorems similar to those of [12] for \(n = 3, 4 \).

In [4] it was shown that, for each \(n \), there exist actions of \(T^n \) on simply connected \((n + 2)\)-manifolds. Here we prove the following.

Theorem. For each \(n \), there is a unique closed, compact, connected, simply connected \((n + 2)\)-manifold \(M_{n+2} \) admitting an action of \(T^n \) satisfying the following conditions:

(i) There are exactly \(n \) \(T^1 \)-stability groups \(T_1, \ldots, T_n \).

(ii) Each \(F(T_i, M_{n+2}) \) is connected.

Furthermore, \(T^n \cong T_1 \times \cdots \times T_n \).

We then show that any action \((T^n, M_{n+2}), M_{n+2} \) a closed, compact, connected, simply connected \((n + 2)\)-manifold, can be obtained from an action \((T^n, M_{n+2})\) by equivariantly replacing copies of \(D^4 \times T^{n-2} \) with copies of \(S^2 \times D^2 \times T^{n-3} \).

The above results are applied to two specific cases. We show that if \(T^3 \) acts on a simply connected 5-manifold, \(M \), then \(M \) is \(M_5 = S^5 \) or a connected sum of copies of \(S^2 \times S^3 \). For \(T^1 \)-actions on simply connected 6-manifolds, \(M \), we show that \(M \) is \(M_6 = S^5 \times S^3 \) or \(M \) is a connected sum of copies of \(S^2 \times S^4 \) and \(S^3 \times S^3 \).

1. **Preliminaries.** We shall use standard terminology and notation throughout (e.g. see [2]). Unless otherwise stated, all mani-
folds are closed, connected and compact. All actions are assumed to be locally smooth and effective.

Let \((G, M)\) and \((G, N)\) be two \(G\)-actions. We shall use \((G, M) \equiv_{eq} (G, N)\) or \(M \equiv_{eq} N\) to mean that \(M\) and \(N\) are equivariantly homeomorphic. Given actions \((G, M)\) and \((H, N)\), \((G \times H, M \times N)\) will indicate the obvious product action.

The \(n\)-dimensional torus \(T^n = S^1 \times \cdots \times S^1\) (\(n\) factors) can parameterized as:

\[
T^n = \{(e^{i\phi_1}, \ldots, e^{i\phi_n}) \mid 0 \leq \phi_i \leq 2\pi\}
\]

We simplify this as \(T^n = \{ (\phi_1, \ldots, \phi_n) \mid 0 \leq \phi_i \leq 2\pi \}\). Similarly, we write:

\[
D^n = \{(r_1, \theta_1, \ldots, r_{[n+1/2]}, \theta_{[n+1/2]}) \mid \sum r_i^2 \leq 1, 0 \leq \theta \leq 2\pi, \theta_{[n+1/2]} = 0 \text{ if } n \text{ odd}\}
\]

Of course for \(S^n\), we have \(\sum r_i^2 = 1\).

Example 1.1. We have an action of \(T^n\) on \(D^4 \times T^{n-2}\) defined as follows. If \(t = (\phi_1, \ldots, \phi_n) \in T^n\) and \(z = ((r_1, \theta_1, r_2, \theta_2), (\theta_3, \ldots, \theta_n)) \in D^4 \times T^{n-2}\), let

\[
tz = ((r_1, \theta_1 + a_{11}\phi_1 + \cdots + a_{1n}\phi_n, r_2, \theta_2 + a_{21}\phi_1 + \cdots + a_{2n}\phi_n),
(\theta_3 + a_{31}\phi_1 + \cdots + a_{3n}\phi_n, \ldots, \theta_n + a_{n1}\phi_1 + \cdots + a_{nn}\phi_n)).
\]

This action defines a matrix \(A = (a_{ij})\). For the action to be effective, we must have \(\det(A) \neq 0\). We shall frequently define such an action by giving the matrix \(A\).

We shall often use the following (see [8]). Suppose \(M\) is an \(m\)-manifold with boundary and \(G \cong T^n\) acts on \(M\) with \(m > n\). If \(M^*\) is a closed cone with vertex \(x_0^*\) and \(G_{x_0} \cong T^k\), \(0 \leq k \leq n\) (\(T^0 = \text{id}\)), then \((T^n, M) \equiv_{eq} (T^{n-k} \times T^k, T^{n-k} \times D^{m-n+k})\).

Suppose \(T^n\) acts on a simply connected \((n + 2)\)-manifold \(M\). It was shown in [4] that the orbit space, \(M^*\), will be \(D^2\), with points on the boundary corresponding to singular orbits and interior points corresponding to principal orbits. Isolated points on the boundary correspond to orbits of type \(T^{n-2}\) and the remaining boundary points correspond to orbits of type \(T^{n-1}\). The result mentioned above shows that an invariant tubular neighborhood of an orbit of type \(T^{n-2}\) will be \(D^4 \times T^{n-2}\).

It was also shown in [4] that, for all \(n\), actions of \(T^n\) on simply connected \((n + 2)\)-manifolds exist. The following picture shows how such actions can be constructed.
Each sector of the disk \(D^2 \cong M^* \) represents an invariant tubular neighborhood of an orbit of type \(T^{n-2} \) which, as mentioned above, must be \(D^4 \times T^{n-2} \). These are attached to one another along subspaces of the boundary homeomorphic to \(D^2 \times T^{n-1} \). Another result of [4] is that the circle stability groups of the action must span \(T^n \). Hence, we must have at least \(n \) copies of \(D^4 \times T^{n-2} \).

We shall say that \((T_1, T_2)\) is an adjacent pair of \(T^1\)-stability groups for an action \((T^n, M^{n+2})\), if there is an invariant \(D^4 \times T^{n-2} \) so that the induced action \((T^n, D^4 \times T^{n-2})\) has stability groups \(T_1, T_2 \) and \(T_1 \times T_2 \). \((T_1, T_2, T_3)\) will be called an adjacent triple of \(T^1\)-stability groups if \((T_1, T_2)\) and \((T_2, T_3)\) are adjacent pairs, with invariant copies of \(D^4 \times T^{n-2} \), \((D^4 \times T^{n-2})_1 \) and \((D^4 \times T^{n-2})_2 \), respectively, such that \((D^4 \times T^{n-2})_1 \cap (D^4 \times T^{n-2})_2 \cong D^2 \times T^{n-1} \) and \(0 \times T^{n-1} \subseteq F(T^2, M^{n+2}) \). In this case \((D^4 \times T^{n-2})_1 \) and \((D^4 \times T^{n-2})_2 \) are said to be adjacent.

2. Orbit structure. Suppose \(T^n \) acts on a simply connected \((n + 2)\)-manifold \(M \). As mentioned above, we know that the \(T^1\)-stability groups span \(T^n \). In this section we show that, in certain cases, \(T^n \) is the direct product of the \(T^1\)-stability groups. If \(G \) is a group and \(S \subseteq G \) is a subset let \(\langle S \rangle \) denote the subgroup spanned by \(S \).

Lemma 2.1. If \(T^n \) acts on a simply connected \((n + 2)\)-manifold \(M \), there exists an adjacent triple \((T_1, T_2, T_3)\) such that \(\langle T_1 \cup T_2 \cup T_3 \rangle \cong T_1 \times T_2 \times T_3 \).

Proof. Let \((T_1, T_2)\) be an adjacent pair so that we have an invariant \((D^4 \times T^{n-2})_1 \) with stability groups \(T_1, T_2 \) and \(T_1 \times T_2 \). Write \(T^n = T_1 \times T_2 \times T^{n-2} \) and parameterize so that the action \((T^n, (D^4 \times T^{n-2})_1)\) is defined by the matrix \(I \) (see 1.1).

Consider an adjacent invariant \((D^4 \times T^{n-2})_2 \) with \(T^1\)-stability
groups T_i and C so that (T_2, T_1, C) is an adjacent triple. The action $(T^n, (D^4 \times T^{n-2})_2)$ will be determined by a matrix of the form

$$A = \begin{pmatrix}
1 & a_{12} & \cdots & a_{1n} \\
0 & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n2} & \cdots & a_{nn}
\end{pmatrix}.$$

We may consider $N = (D^4 \times T^{n-2})_1 \cup f(D^4 \times T^{n-2})_2$, where $f: (D^4 \times T^{n-1})_1 \rightarrow (D^2 \times T^{n-1})_2$ is an equivariant attaching homeomorphism, as an invariant subspace of M. f is determined by A in the following manner. If

$$z = ((r_1, \theta_1, r_2, \theta_2), (\theta_3, \cdots, \theta_n)) \in (D^2 \times T^{n-1})_1 \subseteq (D^4 \times T^{n-2})_1$$

then $f(z) = ((r_1, \theta'_1, r_2, \theta'_2), (\theta'_3, \cdots, \theta'_n))$ where

$$\bar{\theta}' = (\theta'_1 \cdots \theta'_n)^t = A(\theta_1 \cdots \theta_n)^t = A\bar{\theta}.$$

To show that f is equivariant, we ignore the r's for convenience. Let $\alpha = (\varphi_1 \cdots \varphi_n)^t = \bar{\varphi} \in T^n$. Then

$$\alpha(f(z)) = \alpha A\bar{\theta}$$

$$= A\bar{\theta} + A\bar{\varphi}$$

$$= A(\bar{\theta} + \bar{\varphi}) = f(\alpha z).$$

Now note that if, for each j, there exists an $i > 2$ with $a_{ij} \neq 0$, then $f_1: \pi_1((D^2 \times T^{n-1})_1) \rightarrow \pi_1((D^2 \times T^{n-1})_2)$ is injective. In this case, it follows that $\pi_1(N) \cong \mathbb{Z}^{n-1}$. Since M is obtained, as described above, by attaching successive copies of $D^4 \times T^{n-2}$, some attaching map must kill an element of some $\pi_1(D^4 \times T^{n-1})$. Hence, let us assume that $a_{in} = 0$ for all $i > 2$.

It now follows that the stability group C is defined by the following system of equations:

$$\varphi_1 + a_{12}\varphi_2 + \cdots + a_{1n}\varphi_n \equiv 0(2\pi)$$

$$a_{22}\varphi_2 + \cdots + a_{2,n-1}\varphi_{n-1} \equiv 0(2\pi)$$

$$\vdots$$

$$a_{n2}\varphi_2 + \cdots + a_{n,n-1}\varphi_{n-1} \equiv 0(2\pi).$$

Since the action is effective, it follows that $\varphi_2 = \cdots = \varphi_{n-1} = 0$. Hence, $C = \{(-a_{1n}\varphi_n, 0, \cdots, 0, \varphi_n) | 0 \leq \varphi_n \leq 2\pi\}$. It is easy to see that $\langle T_1 \cup T_2 \cup C \rangle \cong T_1 \times T_2 \times C$.

Corollary 2.2. If T^n acts on a simply connected $(n + 2)$-manifold, M, there exists an invariant $D^2 \times S^3 \times T^{n-3}$ with the
standard product action \((T^1 \times T^2 \times T^{n-3}, D^2 \times S^3 \times T^{n-3})\).

Proof. By the lemma, one can find an adjacent triple of \(T^1\)-stability groups \((T_2, T_1, T_3)\) so that \(T^n = T_1 \times T_2 \times T_3 \times T^{n-3}\). Let \((D^4 \times T^{n-2})_1\) and \((D^4 \times T^{n-2})_2\) be the adjacent copies of \(D^4 \times T^{n-2}\) corresponding to the adjacent pairs \((T_2, T_1)\) and \((T_1, T_3)\), respectively. Let \(N = (D^4 \times T^{n-2})_1 \cup (D^4 \times T^{n-2})_2\) as in the proof of 2.1 so that we have the action \((T^n, N)\). We have the standard action

\[
(T^n, D^2 \times S^3 \times T^{n-3}) = (T_1 \times (T_2 \times T_3) \times T^{n-3}, D^2 \times S^3 \times T^{n-3})
\]

with weighted orbit space equivalent to \(N^*\). It follows from standard techniques that \(N \cong e_2D^2 \times S^3 \times T^{n-3}\).

In case there are only \(n\) \(T^1\)-stability groups we have the following much stronger result.

Theorem 2.3. Suppose \(T^n\) acts on a simply connected \((n+2)\)-manifold, \(M\), so that there are exactly \(n\) \(T^1\)-stability groups \(T_1, \cdots, T_n\) with each \(F(T_i, M)\) connected. Then \(T^n \cong T_1 \times \cdots \times T_n\).

Proof. First remove nonintersecting neighborhoods \(D^4 \times T^{n-2}\) of each orbit of type \(T^{n-2}\). We obtain a \(T^n\)-manifold with boundary, \(N\), with \(N^*\) as shown below.

Using the Seifert-Van Kampen theorem, it is easy to see that \(\pi_1(N) \cong 0\). Let \(U_{n+1} \cong T^n \times D^2\) be as shown. For each \(i, 1 \leq i \leq n\), choose \(U_i \cong (D^2 \times T^{n-1})\), so that \(F(T_i, N) \subseteq U_i\) and \(U_i \cap U_j = U_{n+1}\), \(1 \leq i < j \leq n\).

Each inclusion \(\pi_1(U_{n+1}) \to \pi_1(U_i)\) has kernel isomorphic to \(Z\), generated by an element \(z_i \in \pi_1(U_{n+1})\) corresponding to \(T_i \subseteq T^n\). Let \(K = \langle z_1, \cdots, z_n \rangle\). For each \(i\), we have the following commutative
The vertical map is the inclusion, ρ_{n+1} is the natural projection and ρ_t is defined to make the diagram commute. By the Seifert-Van Kampen theorem, we then have the commutative diagram.

\[
\begin{array}{ccc}
\pi_1(U_{n+1}) & \xrightarrow{\rho_{n+1}} & \pi_1(U_{n+1})/K \\
\downarrow & & \downarrow \\
\pi_1(U_t) & & \\
\end{array}
\]

Therefore $\rho_{n+1} = 0$ and $K = \pi_1(U_{n+1})$.

Label the T_i's so that $T_i \times \cdots \times T_k$ is a direct product and k is a maximum. Suppose $k < n$. For each $i > k$ we have $\langle T_i \cup \cdots \cup T_i \rangle \cong T^i$. For $1 \leq i \leq k$ let $C_i = T_i$ and for $i > k$ let $C_i \cong T^i$ be such that $\langle T_i \cup \cdots \cup T_i \rangle \cong C_i \times \cdots \times C_i$ and $T_i \not\subseteq C_i \times \cdots \times C_{i-1}$. Parameterize $T^n \cong C_1 \times \cdots \times C_n$ in the obvious manner. For $1 \leq i \leq k$, $T_i = \{0, \cdots, 0, \varphi_i, 0, \cdots, 0\}$ if $0 \leq \varphi_i \leq 2\pi$. For $i > k$, we have $T_i = \{(c_{1i}, \varphi_i), \cdots, c_{ii}, \varphi_i, 0, \cdots, 0\}$ if $0 \leq \varphi_i \leq 2\pi$. Let δ_{ij} be the Kronecker delta. If we write $\pi_1(U_{n+1}) \cong \pi_1(C_i) \times \cdots \times \pi_1(C_n)$, then for $1 \leq i \leq k$, $z_i = (\delta_{1i}, \cdots, \delta_{ni})$ and for $i > k$, $z_i = (c_{1i}, \cdots, c_{ii}, 0, \cdots, 0)$. Since $T_i \cap (C_1 \times \cdots \times C_k) \neq \text{id}$ and $T_i \not\subseteq C_1 \times \cdots \times C_{i-1}$ for $i > k$, we have $c_{ii} > 1$. Therefore,

\[
\det \begin{pmatrix}
1 \\
\vdots \\
1 \\
0 \\
\vdots \\
c_{n+1,k+1} \\
0 \\
\vdots \\
c_{n,n}
\end{pmatrix} \neq 1.
\]

This would imply that $K \neq \pi_1(U_{n+1})$, a contradiction. Therefore $k = n$ and $T^n \cong T_1 \times \cdots \times T_n$.

3. The manifolds M_{n+2} and the construction of actions (T^n, M^{n+2}). In this section we show the existence of basic simply connected $(n + 2)$-manifolds admitting actions of T^n. We then show
how any action of T^n on a simply connected $(n + 2)$-manifold can be obtained from some action (T^n, M_{n+2}).

Theorem 3.1. For each $n = 2$ there exists a unique manifold M_{n+2} admitting an action of T^n satisfying the following condition: there are exactly n T^1-stability groups with each $F(T_i, M_{n+2})$ connected.

Proof. By the construction in [4] there exists a simply connected $(n + 2)$-manifold M and an action $\theta: T^n \times M \to M$ with T^1-stability groups T_1, \cdots, T_n satisfying the stated conditions. Let $\varphi: T^n \times N \to N$ be another such action with T^1-stability groups C_1, \cdots, C_n. We assume the T_i's and C_i's are labeled in a clockwise direction going around the orbit spaces. We must show that $M \cong N$.

By 2.3, $T^n \cong T_1 \times \cdots \times T_n = C_1 \times \cdots \times C_n$. We have the obvious isomorphism $f: T^n \to T^n$ with $f(C_i) = T_i$. Define an action $\theta': T^n \times M \to M$ by $\theta'(t, m) = \theta(f(t), m)$. It is easy to see that the weighted orbit space of this action is equivalent to that for φ. By the equivariant classification theorem of [4], $M \cong N$.

While it is not true that all actions of T^n on M_{n+2} are equivalent, the above proof shows the following

Corollary 3.2. Any two actions of T^n on M_{n+2} are weakly equivalent.

The standard actions (T^2, S^4), (T^3, S^5) and $(T^5, S^3 \times S^3)$ show that $M_4 = S^4$, $M_5 = S^5$ and $M_6 = S^3 \times S^3$. The manifolds M_{n+2}, $n > 4$, have not been identified at this time.

The manifolds M_{n+2} provide a starting point for the construction of T^n-actions on simply connected $(n + 2)$-manifolds.

Theorem 3.3. Suppose T^n acts on a simply connected $(n + 2)$-manifold M. Then the action (T^n, M) can be obtained from an action (T^n, M_{n+2}) by equivariantly replacing copies of $D^4 \times T^{n-2}$ with copies of $S^3 \times D^2 \times T^{n-3}$.

Proof. Consider the action (T^n, M). By 2.2, M contains an invariant $S^3 \times D^2 \times T^{n-3}$. When this is replaced equivariantly with a $D^4 \times T^{n-2}$, the number of T^{n-2}-orbits is decreased by one. If this process is continued, M_{n+2} will be obtained. Reversing the process proves the theorem.

From [4] we know that if T^n acts on a simply connected $(n + 2)$-
COROLLARY 3.4. Suppose T^n acts on a simply connected $(n+2)$-manifold M. Then there are T^1-stability groups T_1, \ldots, T_n such that $T^n \cong T_1 \times \cdots \times T_n$.

Proof. Obtain M_{n+2} from M as in the proof of 3.3. Then $T^n \cong T_1 \times \cdots \times T_n$ where T_1, \ldots, T_n are the T^1-stability groups of the resulting action (T^n, M_{n+2}). However these will also be T^1-stability groups for the original action (T^n, M).

4. The cases $n = 3, 4$. It was noted that $M_4 = S^4$, $M_5 = S^5$ and $M_6 = S^3 \times S^3$. These are the only M_{n+2}'s identified. In fact no explicit actions of T^n on simply connected $(n + 2)$-manifolds have been identified for $n > 4$.

In [12], Orlik and Raymond classify actions of T^2 on simply connected 4-manifolds. In this section we use results of Wall, [16], and Barden, [1], to classify actions of T^3 and T^4 on simply connected 5- and 6-manifolds, respectively.

Recall that the orbit space, D^2, of an action (T^n, M_{n+2}) has isolated points on the boundary, each corresponding to an orbit of type T^{n-2}.

THEOREM 4.1. Suppose T^n acts on a simply connected 5-manifold M so that there are k distinct orbits of type T^1. If $k = 3$, $M \cong S^5$. If $k > 3$, M is a connected sum of $k - 3$ copies of $S^2 \times S^3$.

Proof. If $k = 3$, then $M \cong M_5 = S^5$. Suppose the theorem is true for some $k \geq 3$. Let T^3 act on M with $k + 1$ orbits of type T^1. M is obtained from a manifold N by equivariantly replacing an $S^1 \times D^4$ with a $D^2 \times S^3$. Since N has k orbits of type T^1, N is a connected sum of $k - 3$ copies of $S^2 \times S^3$ or S^5 if $k - 3 = 0$. By the Mayer-Vietoris sequence

$$H^p(M) \cong \begin{cases} \mathbb{Z} & p = 0, 5 \\ \mathbb{Z}^{k-2} & p = 2, 3 \\ 0 & \text{otherwise} \end{cases}$$

By results in [1], the above construction can be done in \mathbb{R}^7 so M embeds in \mathbb{R}^7. It follows that $\omega_k(\nu^2) = 0$ for all $k \geq 1$, where ν^2 is the normal bundle of M and ω_k is the kth Stiefel-Whitney class. By Whitney Duality, $\omega_k(M) = 0$. Therefore, by [1], M is a connected sum of $k - 2$ copies of $S^2 \times S^3$.

manifold, M, then the T^1-stability groups span T^n. We now have the following.
It is worthwhile to note that M will not be an equivariant connected sum. In fact, equivariant connected sums of codimension two actions cannot exist for $n \geq 3$ since T^n cannot act on S^{n+1} for $n \geq 3$.

It was noted that all T^n-actions on M_{n+2} are weakly equivalent. The following example shows that this is not true for T^n-actions on other simply connected $(n+2)$-manifolds.

Example 4.2. Let T^3 act on S^5 with T^1-stability groups T_1, T_2 and T_3 so that $T^3 = T_1 \times T_2 \times T_3$. Define an action $(T^3, S^3 \times D^2)$ as follows:

$$tz = ((r_1, \theta_1 + \varphi_1 - \varphi_2, r_2, \theta_2 + \varphi_1 - \varphi_3), (r_3, \theta_3 + \varphi_1)).$$

This action has T^1-stability groups T_2, T_3 and

$$T_4 = \{(\varphi_1, \varphi_2, \varphi_3) | \varphi_1 = \varphi_2 = \varphi_3\}.$$

Replace the $D^4 \times S^1 \subseteq S^5$ containing $F(T_2 \times T_3)$ with $S^3 \times D^2$ to obtain an action $(T^3, S^2 \times S^3)$ with T^1-stability groups T_1, T_2, T_3 and T_4. However, we have another action $(T^3, S^2 \times S^3) = (T_1 \times (T_2 \times T_3), S^2 \times S^3)$ with T^1-stability groups T_1, T_3 and T_4 where $F(T, S^2 \times S^3)$ has two components. It is obvious that these actions are not weakly equivalent.

We now consider T^4-actions on 6-manifolds.

Theorem 4.2. Suppose T^4 acts on a simply connected 6-manifold, M, with k orbits of type T^2. Then M is a connected sum of $k - 4$ copies of $S^2 \times S^4$ and $k - 3$ copies of $S^3 \times S^3$.

Proof. For $k = 4$, $M \cong M_6 = S^3 \times S^3$. Assume the theorem is true for some $k \geq 4$, and let T^4 act on M with $k + 1$ orbits of type T^2. M is obtained from a T^4-manifold N by equivariantly replacing $V_1 \cong D^4 \times T^2$ with $V_2 \cong S^3 \times D^2 \times T^1$. Since N has k orbits of type T^2, N is a connected sum of $k - 4$ copies of $S^2 \times S^4$ and $k - 3$ copies of $S^3 \times S^3$. We may assume $N = U \cup V_1$, $M = U \cup V_2$ and $V_i \cap U = S^3 \times T^2$. Applying the Mayer-Vietoris sequence, it is easy to see that $H^4(U) \cong \mathbb{Z}^{k-4}$. Also, by examining the pair $(U, \partial U)$, one can show that $H^2(\partial U) \rightarrow H^2(U, \partial U)$ is injective so that $H^2(U) \rightarrow H^2(\partial U) \cong H^2(T^2 \times S^3)$ is trivial. Therefore, the following sequence is exact.

$$0 \rightarrow H^4(V_2) \rightarrow H^4(U \cup V_2) \rightarrow H^4(M) \rightarrow H^4(U) \rightarrow 0.$$

It follows that $H^2(M) \cong \mathbb{Z}^{k-3} \cong H^4(M)$. Since there are no fixed
points, $\chi(M) = 0$, so $H^s(M) \cong \mathbb{Z}^{2k-4}$.

Since $\omega_2(N) = 0$, $\omega_2(U) = 0$, so if $\omega_2(M) \neq 0$, it must be the generator of $K = \ker (H^2(M) \rightarrow H^2(U))$ (with \mathbb{Z}-coefficients). One can choose as a generator of K a two cochain vanishing off L where L^* is as shown below.

Now L is a closed, compact 4-manifold admitting an action of T^3 so, by [13], $L \cong L(p, q) \times S^1$. Since each factor of L is parallelizable, L is and $\omega_2(L) = 0$. Therefore $\omega_2(M) = 0$. The result follows from [16].

REFERENCES

5. S. Kim and J. Pak, *Isotropy subgroups of torus T^n actions on $(n + 2)$-manifolds M^{n+1}*, (to appear).
13. J. Pak, *Actions of the torus T^n on $(n + 1)$-manifolds M^{n+1}*, Pacific J. Math., 44

Received May 20, 1976.

THE UNIVERSITY OF CONNECTICUT
WATERBURY, CT 06710
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, CA 90024

CHARLES W. CURTIS
University of Oregon
Eugene, OR 97403

C. C. MOORE
University of California
Berkeley, CA 94720

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, CA 90007

R. FINN and J. MILGRAM
Stanford University
Stanford, CA 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. WOLF

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of your manuscript. You may however, use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken InsatsuSHA (International Academic Printing Co., Ltd.).
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Krishnaswami Alladi and Paul Erdős, On an additive arithmetic function ... 275
James Bailey and Dale Rolfsen, An unexpected surgery construction of a lens space .. 295
Lawrence James Brenton, On the Riemann-Roch equation for singular complex surfaces .. 299
James Glenn Brookshear, Projective ideals in rings of continuous functions ... 313
Lawrence Gerald Brown, Stable isomorphism of hereditary subalgebras of C*-algebras ... 335
Lawrence Gerald Brown, Philip Palmer Green and Marc Aristide Rieffel, Stable isomorphism and strong Morita equivalence of C*-algebras ... 349
N. Burgoyne, Robert L. Griess, Jr. and Richard Lyons, Maximal subgroups and automorphisms of Chevalley groups .. 365
Yuen-Kwok Chan, Constructive foundations of potential theory .. 405
Peter Fletcher and William Lindgren, On \(w\Delta\)-spaces, \(w\sigma\)-spaces and \(\Sigma^\sharp\)-spaces ... 419
Louis M. Friedler and Dix Hayes Pettey, Inverse limits and mappings of minimal topological spaces .. 429
Robert E. Hartwig and Jiang Luh, A note on the group structure of unit regular ring elements ... 449
I. Martin (Irving) Isaacs, Real representations of groups with a single involution ... 463
Nicolas P. Jewell, The existence of discontinuous module derivations .. 465
Antonio M. Lopez, The maximal right quotient semigroup of a strong semilattice of semigroups .. 477
Dennis McGavran, \(T^n\)-actions on simply connected \((n + 2)\)-manifolds ... 487
Charles Anthony Micchelli and Allan Pinkus, Total positivity and the exact \(n\)-width of certain sets in \(L^1\) .. 499
Barada K. Ray and Billy E. Rhoades, Fixed point-theorems for mappings with a contractive iterate 517
Fred Richman and Elbert A. Walker, Ext in pre-Abelian categories .. 521
Raymond Craig Roan, Weak* generators of \(H^\infty\) and \(l^1\) ... 537
Saburou Saitoh, The exact Bergman kernel and the kernels of Szegö type .. 545
Kung-Wei Yang, Operators invertible modulo the weakly compact operators ... 559