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EXT IN PRE-ABELIAN CATEGORIES

FRED RICHMAN AND ELBERT A. WALKER

A natural definition for Ext is given in an arbitrary
pre-abelian category. Ext is an additive bifunctor from the
category to abelian groups, the five lemma and the 3 X 3
lemma hold, and Ext” may be defined in the usual projective-
less way to yield the standard exact sequence of Ext’s.
Examples are given of what Ext is in various specific pre-
abelian categories.

1. Semi-stable kernels and cokernels. Throughout this paper
we shall be dealing with a pre-abelian category, that is, an additive
category with kernels and cokernels. If f:A— B and & B'— B,
then we can complete the pullback diagram

Pt p

|

A— B

by setting P = Ker V' (f @ (—¢&)) where V': B€) B— B is the codiagonal
map. We say that B is the pullback of f along & Dually, we can
construct pushouts. In an abelian category pushouts and pullbacks of
kernels (cokernels) are kernels (cokernels). In pre-abelian categories
only half of this is true.

THEOREM 1. Pullbacks of kernels are kernels. Specifically, if
f=%kerg and B is the pullback of f along & then B = ker gé&.
Dually, pushouts of cokernels are cokernels.

Proof. Let a be the pullback of £ along f so we have the
following diagram

If g&n =0, then &\ = f$ so, by the pullback property, there is a
map 6 such that 80 =\ (and af = ¢). To show that @ is unique,
suppose B0 = 0. Then £86 = fad = 0 so @d = 0 since f is a kernel
and hence monic. But 86 =0 and ad = 0 imply that 6 = 0 by the
pullback property.
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Pushouts of kernels need not be kernels, or even monic. In the
category of abelian p-groups with no elements of infinite height,
the kernels are the p-adically closed subgroups. If B is a direct
sum of cyclic groups of order p” for n =1,2,3, --- and B is the
torsion subgroup of the corresponding product, and

Glp] = {geG: pg = 0},
then the diagram
B[p] —— B

1 l

B[pl/Blp] — B/BI[»]

is a pushout in the category. The top row is a kernel while the
bottom row is the zero map.

DEFINITION. A kernel (cokernel) is said to be semi-stable if
every pushout (pullback) is a kernel (cokernel).

Since a pushout of a pushout is a pushout, a pushout of a semi-
stable kernel is a semi-stable kernel. The product of kernels need
not be a kernel. In the example above B[p]— B[p] is a kernel, and
B[p] — B is a kernel, but the composite B[p]— B is not a kernel.
However we have the following.

THEOREM 2. The product of semi-stable kernels (cokernels) is a
semi-stable kernel (cokernel).

Proof. Let f: A— B and g: B— C be semi-stable kernels. Con-
sider the diagram

AL, Ba

o, I

Ja’lﬂ;c@icm

b

C/B=—C/B

where f7, ¢/, and (gf) are the cokernels of f, g, and gf. The upper
right square is a pushout so N is a kernel. Suppose (gf)¢ = 0.
Then ¢g'¢ =0 so &£ =g¢4. But Mg = (9f)gs = (9f)YE=0 and N is
monic (since it is a kernel) so f'¢ = 0 and hence ¢ = fy whereupon
& = gf+4r. Since gf is monic ++ is unique whence gf is a kernel of
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(gfY. Thus the composite of semi-stable kernels is a kernel.
To show that gf is a semi-stable kernel consider the diagram

A-L.p %, ¢

L]

A e

where the two squares are pushouts. Both bottom arrows are semi-
stable kernels, so their composite is a kernel. But the composite is
a pushout of gf along «. Hence gf is a semi-stable kernel.

2. Stable exact sequences. A sequence K is a diagram A—{»B—g—>0
such that gf = 0. A morphism between two sequences E and E’ is
a triple (a, B, 7) of maps such that f'a = Bf and ¢’8 = 7g. We say
that E is left exact if f is a kernel of g, right exact if g is a cokernel
of f, and exact if it is both left exact and right exact.

Suppose E is a sequence and a: A— A" and B:C'— C. Then we
can construct sequences aF and EB as follows. To construct a¥
pushout f along «.

A-L.p % ¢

| A

aLp
The map ¢ from P to C such that ¢8 = g and ¢f’ = 0 exists and is
unique by the property of pushouts. The sequence A'— P —C is

denoted by aF. We construct ES dually.

LEMMA 3. The pushout diagram K — aE is characterized by the
property that any morphism (6, -, +) from K to F factors through
o unique morphism (@, -, -) from «B to F. Dually, the pullback
diagram ER — E is characterized by the property that any morphism
(-, -, BO) from F to E factors through o unique morphism (-, -, )
from F to ES.

Proof. Follows immediately from the universal properties of
pushouts and pullbacks.

THEOREM 4. If E is a sequence, then

(v, a)E = a(a,E)
(EBI)BZ = E(BuBz)
(aE)B = a(EP)
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Proof. All three equalities follow easily by diagram chasing
using the characterizations of the preceding lemma.

THEOREM 5. If E is right exact, then «F is right exact. If
E is left exact, then EB is left exact. Hence if aF is left exact
and EB is right exact, then (aE)B = a(ER) is exact.

Proof. Let the situation E — «FE be written out as

AL, p % ¢

SRR

AN i B2, g

Suppose 4f" = 0. Then ¢f'a =0 so ¢rf = 0. Hence ¢\ = g for a
unique . We shall show that ¢ = 60g’. Now ¢f =0=14609f and
on = g = 0g'\, so ¢ — ¢’ kills both A and f'. But since B’ is a
pushout, we have ¢ — g’ = 0. The second statement is proved
dually. The third is immediate from the first two and Theorem 4.

Our objective is to define Ext (C, A). An element of Ext (C, A4)
should be an exact sequence. Moreover we would like Ext (C, A) to
be a functor. In abelian categories if a: A— A’ we get a map from
Ext (C, A) to Ext (C, A") by taking F to aFE. In pre-abelian cate-
gories aF need not be exact even when E is, as we saw in the category
of abelian p-groups with no elements of infinite height. Accordingly
we restrict our attention to those exact sequence that remain exaect
upon composition with maps.

DEFINITION. An exact sequence K is said to be a stable if aF
and EB are exact for all maps @ and 8. A map is said to be a
stable kernel (cokernel) if it is the kernel (cokernel) map in a stable
exact sequence.

If F is exact, then aF is right exact by Theorem 5. Hence if
the kernel of E is semi-stable, then «F is exact. Dually, if the
cokernel of E is semi-stable, then EB is exact. So if the kernel and
cokernel of E are semi-stable, then E is stable. Conversely if F is
stable, then its kernel and cokernel are clearly semi-stable. By
Theorems 4 and 5 if E is stable, then so are a¥ and EB.

3. The five lemma. The proof of the five lemma in an easy
diagram chase if you have elements. In a pre-abelian category the
notion of a stable cokernel allows this diagram chase to be carried
out using pullbacks.

THEOREM 6. Let E be an exact sequence with a semi-stable



EXT IN PRE-ABELIAN CATEGORIES 525

cokernel, and let B’ be a left exact sequence. If (1, ¢,1): E— F',
then ¢ 18 an tsomorphism.

Proof. Consider the diagram

AS.x-".B

|, bl

A——-—>B———+C

I, b,

.p-L¢

where the rows are Eg’, E and E’. Then g¢g'(¢p —0)=0 so0
o — o = f'o for some p:X—A since f' =kerg’. We have
J'0& = oné = f' so p& =1 since f’ is monic. Thus (1 — o) =0 so
there is a #: B"— X such that 6o = 1 — £p since ¢ is a semi-stable
cokernel and hence ¢ = coker & In particular pdo = 0 and oo = o
so, since o is epic, we have p0 =0 and 60 =1. Then ¢\ =
(f'e + 0)8 = 1. Moreover ¢ is monie for if ¢6 = 0 then go = ¢'¢6 = 0
so & = fe, since f = ker g, and we have 0 = ¢d = ¢fc = f'e so ¢, and
hence 6, is 0. Thus ¢\0p = ¢ 50 Mg = 1 and N0 = ¢,

COROLLARY 7. If E and F are exact, either E or F s stable,
and (a, «, B): E— F, then aFE = FR in the sense that there is ¢ map
1, ¢, 1): «E — FB such that ¢ is an isomorphism.

Proof. By duality it suffices to consider the case where E is
stable. By Lemma 38 the map (e, -, 8): E— F factors through a
unique map (1, -, 8): ¥ — F which factors through a unique map
1, -, 1): cE— FB. Since aF is stable exact and FB is left exact
the conclusion follows from Theorem 6.

The five lemma need not hold for exact sequences that are not
stable. We will give an example where it fails, in the category of
valuated abelian groups, at the end of the paper.

4. The functor Ext. We define Ext (C, A) to be the set of
stable exact sequences A — -— C where two sequences are considered
equal if there is a map (1, ¢, 1;) between them with ¢ an
isomorphism. Then Theorems 4 and 5 imply that Ext(C, 4) is a
bifunctor —covariant in A and contravariant in C. To turn
Ext (C, A) into an abelian group we define the usual Baer sum of
two stable exact sequences K, and E, by

E +E,= V(El EBEZ)A



526 FRED RICHMAN AND ELBERT A. WALKER

where 4:C—C@ C is the diagonal map and Vi AP A— A is the
codiagonal map. The proof that this turns Ext (C, A) into an abelian
group follows MacLane [3, pp. 70-71]. The only difficulty that is
peculiar to the present situation is the stability of E, P E..

THEOREM 8. If K, and K, are stable exact sequences, then
E D E, is a stable exact sequence.

Proof. Let E, be A,— B,—C,. The map AP A, —~B P A, is
a pushout of A, — B, and so is a semi-stable kernel. The map
B, P A,— B, B, is a pushout of A,— B, and so is a semi-stable
kernel. By Theorem 2 the map A, P A,— B, P B, is a semi-stable
kernel. Dually the map B, B, — C, P C, is a semi-stable cokernel.
Thus F, @ E, is stable exact.

We now have all we need to follow the proof in [3, pp. T0-71]
that Ext (C, A) is an abelian group, and in fact an additive bifunctor.

5, Products of stable maps. As in the case of proper monics
in relative homological algebra in abelian categories, the key to
proving exactness of the sequence of Ext’s at one point is that the
product of stable kernels (cokernels) is a stable kernel (cokernel).

THEOREM 9. Iffandgare stable kernels, then gf is a stable kernel.

Proof. Let ALBLB/A and BLcL C/B be stable exact se-
quences. Consider the diagram

4182, pa

b, I

QLC%C/A

LT

At M
where (gf) is a cokernel of gf and the lower right hand square is
a pullback. Since gf is a semi-stable kernel it suffices to show that

v is the cokernel of p. Consider the diagram

By M

lr

|$ C/A

L]

B2, ¢c-21s¢B
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where ¢" and \' are cokernels of g and », and the right hand square
is a pullback, so the top row is exact. There is a unique map
e:G— Y such that ¢¢ = 0 and 2'¢ = v since Y is a pullback and
My = N(gf)o = ¢g'0. Consider the map from Y to C/A given by

Th' — ()¢ .

Then N7YR' — N(9f)'¢ = g'¢ — 9’6 =0 so Yh' — (gf)'¢ = A0 because \
is a kernel since g is a stable kernel. Consider the pullback diagram

Az % v

b b

A— B —— B/A.

Define 0: Z — G by vo = k'’ and po = g8 + ¢a’. This is OK because
G is a pullback and

(97) (9B + ¢a') = Mf'B + (gf) s = N’ + (gf) ¢’ = Th'a .

Define 0*: G — Z by a’c* = ¢ and Bo* = 0. This is ok because 7 is
a pullback and \e = (V2" — (gf)¢)e =W — (gf)0 =0 and ) is a
kernel so ¢ = 0. Since poc* = (g8 + ¢a')o* = ¢ = p and voo* =
Wa'c* = h'e = v, we have go* = 1.

Suppose &:G—W and &¢=0. Then voa=h'd’a =0 and
poa = gRa = gf, so o = p 80 foa = 0 so &0 = ta’ for some 7: Y —W.
Define B*: B—Z by &’'8* = —h and BB* = 1. This is ok because
—0h = f' since ANf' = (¢9f)9 = —N0h and \ is a kernel. So 7h =
—7za/B* = —&oB*. Now voB* = h'a’8* =0 and poB* =g — ¢h =0,
so 08* =0 80 th = 0 so z = ok’ for some 6: M — W. It remains to
show that dv=¢&. But dvo =oh'a’ = ra’ = &0, 80 0y = dvoo™ = oo™ = &.
The map 0 is unique because v is epic since vo = h'a’.

We have the following converse to Theorem 9.

THEOREM 10. If fg is a (stable) kernel, and f is a semi-stable
kernel, then g is a (stable) kermnel.

Proof. Consider the following diagram where f’, ¢’, and (fg)
are the cokernels of f, g, and fy.

A28 A

Vo L

zltfl——-—>C——>C/A

S (fg)
J’f’ /
H

C/B.
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We shall show that the upper right square is a pullback, which
proves the theorem by Theorems 4 and 5. Suppose g = (fg)'+.
Then 0 = g = p(f9)' v = f'4r, 80 4 = f6 for a unique 4. We must
show that g0 =¢. But A\g'0 = (f9)f0 = (f9)+ =Np and N\ is a
kernel since f is a semi-stable kernel. Thus ¢'0 =¢ and B is a
pullback.

6. The 3 X 3 lemma. The proof of the 3 X 3 lemma is another
exercise in translating element chases to pullbacks.

THEOREM 11. If in the commutative diagram

A4 2. B Tpa

SR LY

c % p 2. pc

0,k

C/A— D/B— G

the rows and the first two columns are stable exact, then the last
column s stable exact.

Proof. We first show that » = coker g. Now \g’' = WA is epie,
so ) is epic. Suppose & = 0. Then &uf’ = &¢g’'8 = 0 so &g’ = 48’ for
some ¢ since B’ = coker B. Then g¢ha’ = ¢8'g = &9'9 =0 so ¢h =0
s0 ¢ = 4k’ for some + since A’ is the cokernel of . We must show
that yAn =& But 4ng’ = k'8 =¢B8 =&’ and ¢’ is epic. So
» = coker p.

Next we show that g is monic by showing that ker g = 0.
Consider the pullback diagram

X2, K

al 1ker ©
fl

B — B/A

Since o is epic, because f’ is stable, it sufficies to show that
(ker )0 = f'o=0. Now ¢'Bo=pflc=0 so Bo =gr for some
z: X—C. Thus ha't = B'gr = B'Boc =0 so a'ct=0 so 7 =af for
some 0: X — A. Hence Bo = gt = gaf = Bf6 which implies, since B
is monie, that o = f8, whereupon f'c = f'f0 = 0 and we have shown
that ¢ is monic.

To show that ¢¢ = ker A, suppose &\ = 0 and consider the pullback
diagram
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y-£5 x

¢| |-

p-2 pic.

We have h'S'oc = \g'c = Np =0 so B'o = hd for some 6: Y — C/A.
Consider the pullback diagram

Z-5 Y

(| o

c - gjA.

We have 8'ge = ha'e = hit = B'oz, so B'(ot — ge) = 0 80 97 — ge = B¢
for some ¢:Z— B. Now uf'¢ = ¢'8Bs = g’'or kills kert and g is
monie, so f'¢ = vt for some y: Y — B/A since 7 is the pullback of
the stable cokernel a’. Similarly pvr = pf’¢ = ¢'8¢ = g'ot, so
py = g'c = £p kills ker p, so v = np for some 7: X — B/A since o is
a pullback of the stable cokernel g’. But uno = v = &p and p is
epic, so pn = &, and since ¢ is monie, 7 is unique. This completes
the proof that the last column is exact. Finally, Mg’ = #'B’ is a
stable cokernel by Theorem 9 (or rather its dual) and hence X\ is a
stable cokernel by the dual of Theorem 10.

7. The long exact Ext sequences. We can define the groups
Ext*(C, A) for »=0,1 by letting Ext°(C, A) = Hom (C, 4) and
Ext' (C, A) = Ext (C, A). The elements of Ext"(C, A) for n > 1 are
Yoneda composites

where E,eExt(X,, X;,) and X, =C and X,,, = A subject to the
usual equivalence relation (see [3, pp. 82-87]). There are no further
problems in pursuing the usual treatment of “Ext without projec-
tives.” In particular the proof of Theorem 5.1 in {3] goes through
giving us

THEOREM 12. Let E be a stable exact sequence A— B—C in a
pre-abelian category, and let G be any object in that category. Then
we get am exact sequence of abelian groups

Ext* (B, G) — Ext"' (4, G) — Ext" (C, G) — Ext" (B, G) — Ext" (4, G)
for n=1,2, -,

8. Relative theories. Quite often in abelian categories we are
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more interested in a relative homological algebra than in the absolute
one, For example we may wish to study purity in abelian groups.
The same holds true in pre-abelian categories, as we shall see in
the case of topological abelian groups and valuated abelian groups.
Instead of considering all sequences in Ext (C, A), we select a subset
Pext (C, A) of proper exact sequences such that

1. If EePext(C, A) and a: A— A’, then aK € Pext (C, A').

2. If FePext(C, A) and B: C' — C, then EpB e Pext (C', A).

3. If E ePext(C, A) and E, e Pext(C,, 4,), then E, P FE, is in
Pext (C, D C,, A, D 4,).

4, If A B— B/A and BZ C— C/B are proper exact, then
A C C— C/A is proper exact.

5. If Ker f-—»A—f»B and Ker g —BZ.C are proper exact, then

Ker gf —»AgLC is proper exact.

A kernel (cokernel) is called proper if it is the kernel (cokernel) of a
proper exact sequence. We could, equivalently, write down properties
that must be satisfied by proper kernels (or proper cokernels). Note
that 4 says that the product of proper kernels is a proper kernel,
and 5 says that the product of proper cokernels is a proper cokernel.
These five properties imply that Pext(C, A) is a subgroup of
Ext (C, A). Actually, property 3 is redundant and can be derived
from 1 and 4, or 2 and 5, as in the proof of Theorem 8. More
useful is a remarkable theorem proved by Nunke [2] in abelian
categories, that properties 4 and 5 are equivalent. The proof for
pre-abelian categories follows Nunke’s argument.

THEOREM 13. If products of proper cokernels are proper, then
products of proper kernels are proper.

Proof. Suppose A ER B EiR B/A and B Lc —; C/B are proper exact.

We wish to show that the exact sequence A—» C— @y, —— C/A is proper.
The map k: B/A— C/A is a (proper) kernel since it is a pushout of
g:B—C. Let ¢, and m; be the injection and projection on the 7™
factor of B/A@ C and consider the diagram

BA®CcLE2WD, ¢4
ﬂ'zl , lk
¢ —* —¢B

which commutes since

kr(h @ (9f)) = V(kDE)h D (9f)) = V(kh D k9f)) =V(0Dg) = g'7, .
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We shall show that the diagram is a pullback. Suppose ¢'¢ = k.
If we want a map A into B/AG@C such that 7,n =4 and
V(h @D (gf))N = +», then we must have

W= V(h &b (gf),)(clﬂ‘-lx’ + 6p) = hm N + (gf)'@

so we need Ar\ = v — (9f)¢. But k(v — (9)9) = ky — ¢'6 = 0 s0
such a map m,\ exists and is unique. Conversely, the same calcula-
tions show that if we define » by z,Ax = ¢ and Az = + — (9f)'3,
then 7,xn = ¢ and V(A @ (9f) ) = 4. Thus the diagram is a pullback.

The map (f'@1): B C— B/A@ C is a proper cokernel since it
is a pullback of f’. Hence the map B C— C/A given by

Pk @ @NHN( D1 =7hf S(gf)) = (97 (gDI)

is a proper cokernel, so (gf) is a proper cokernel (it is an easy con-
sequence of property 1 and the five lemma that if a8 is a proper
cokernel then so is a).

The same comments made in the last section apply here, and
we get Theorem 12 with F a proper exact sequence and Ext" replaced
by Pext~.

9, Pre-abelian categories from radicals. One way pre-abelian
categories arise is as full subcategories of abelian categories. Recall
that a radical R in an abelian category is a functorial subobject
such that R(A4/R(A)) = 0 for every object A.

THEOREM 14. If R is a radical in an abelian category .57, then
the full subcategory &7 of objects A such that R(A) =0 is a pre-
abelian category in which every cokernel is semi-stable.

Proof. If f is a map in .&% then any kernel of f in & is in
& and serves as a kernel there. If g: B— C is a cokernel of f in .97
then hg is a cokernel of f in .&¥ where h is the map C— C/R(C).
To see that cokernels are semi-stable it suffices to observe that ¢ is
a cokernel in .&# if and only if g is a cokernel in .% whose domain
and range are in .& and that pullbacks in .&¥ are pullbacks when
viewed in %7

If we let R be the radical R(A) = p“A = N p"A in the category
of abelian groups .7 we get the pre-abelian category &7 of abelian
groups with no elements of infinite p-height. The exact sequences
A— B—(C in .&¥ are simply those sequences in .5 which are exact
in . Since every cokernel is semi-stable, Ext will be determined
if we characterize the semi-stable kernels.
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THEOREM 15. Let &7 be the category of abelian groups with no
elements of imfinite p-height. Let B be in & and let A B be a
subgroup. Then A is a semi-stable (and hence stable) kernel in &
if and only if

(i) A is p-adically closed in B, i.e., B/A has no elements of
infinite p-height, and

(ii) The p-adic topology on A is the relative topology induced
by the p-adic topology om B, i.e., for each m there is an n such
that AN p"B S p"A.

Proof. Suppose (i) and (ii) hold and consider the pushout
diagram
A C B

¢

A'— B

in the category of abelian groups, where A’ €.5% It suffices to show
that B'€.%2 Now

B =(A'"® B)/K where K = {(aa, —a):acA}.

Suppose (¢, b)e A’ D B represents an element of infinite p-height
in B'. By (i) we may assume that b has maximum p-height in
b4 A. If b0, then the p-height of (¢’ + aa, b — a) is bounded,
contradicting the assumption that (a’, b) represents an element of
infinite p-height in B’. Hence we may assume that b = 0. So there
must exist elements a,€ A such that (¢’ — ae,, @,) has arbitrarily
large height in A’ @ B. Hence @,— 0 in B, and therefore also in
A by (ii), while aa, —a’ in A’. Thus aae, — 0 and aa, — a’, whence
o = 0.

Conversely, suppose A is a semi-stable kernel and «,— 0 in B.
We must show that a¢,—0 in A. Let a: A— Z(p™), where Z(p™)
is the cyelic group of order p™, and consider the pushout diagram

A < B
| ]
Z(p")— B'.

Then a(a,) = 0 eventually, for otherwise we would have 0 = te€ Z(p™)
such that ¢ = a(a,) for infinitely many %, giving ¢ infinite height in
B'. So a, must be eventually in p"4 (or we could find a bad «).
Since this holds for arbitrary m, we have a,—0 in A.

10. Topological abelian groups. Another way in which pre-
abelian categories arise is by imposing additional structure on the
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objects of an abelian category. In the category of (Hausdorff)
topological abelian groups the kernel of a map f: A — B is its group
kernel, and the cokernel of f is gotten by dividing B by the closure
of f(A) and imposing the quotient topology. Thus kernels are
precisely the closed subgroups and cokernels are the onto maps that
are open (since the map onto a quotient group with the quotient
topology is open).

THEOREM 16. In the category of topological abelian growups
every exact sequence is stable.

Proof. Let A— B— C be an exact sequence, let a: A— A’ and
consider the diagram
A c B
|
A'— (A’ D B)/K

where K = {(aa, —a):a€ A}. To show that this is a pushout it
suffices to prove that K is closed in A’ B and hence (A’ @ B)/K,
with the quotient topology from A’ B, is Hausdorff. Suppose
(¢',b)¢ K. Then, if b¢ A, we have (¢, b)e A’ @ (B\A) which is an
open set disjoint from K. If be A, then —ab # o’ so we can find
disjoint open sets U’ and V' in A’ so that ¢’€ U’ and —abe V.
Then —a*V' = ANV for some open set V in B. So (a/, b) is in
the open set U’ P V which is disjoint from K for if ve VN A then
a(—wv) € V' which is disjoint from U’.

To show that A £ B is a semi-stable kernel we must show that
A’ is imbedded homeomorphically as a closed subset of (4’ B)/K.
It is certainly mapped one-to-one and continuously into (4’ & B)/K.
Moreover its image is the kernel of the induced map (4’ @ B)/K — B/A
so it is a closed subset. To show that the imbedding is a home-
omorphism, suppose U < A’ is an open set containing zero. Choose
an open set VS A’ such that V+ V< U and 0eV. Then a'V
is open is A and so @'V = AN W for some open set Win B. Now
(V& W)/K is an open set in (A’ P B)/K containing zero. We claim
that A N (VG W)/K)< U. In factif (v, w) + (aa, —a) = (v + aq, 0),
then w = a so aacV so v + aac U.

To show that the cokernel §: B— C is semi-stable, let v: C’'—C
and consider the pullback diagram

B¢

L f

X—C
]
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where X = {(b,c)e B C":0b = v¢'}. To show that ¢ is an open
map, suppose UZ X is an open set containing zero. Then there
exist open sets VS Band W < C' containing zero such that
(Ve W)n X< U. We may assume that YW £ 6V since 6V is open.
Thus W < gU.

The locally compact abelian groups form a full subecategory of
the topological abelian groups that is closed under kernels, cokernels,
and extensions. Hence the exact sequences in this category are also
all stable and of the form A £ B-— B/A where A is closed in B and
B-+B/A is an open map. Moskowitz [4] studied this set-up,
determining the projectives and injectives. With these he defined
Ext via resolutions for those groups that had them, which are very
few. The theory we present defines Ext”(C, A) in a natural way
for any pair of locally compact abelian groups and any %. It is an
easy consequence of the exact sequence of Ext’s that this agrees
with the resolution definition whenever resolutions exist.

Back in the category of topological abelian groups we obtain a
relative theory if we consider the class of exact sequences A— B —C
which split as topological spaces in the sense that the map B—C
admits a continuous cross-section. It is easily checked that these
sequences form a proper class. This is the natural setting for
free topological abelian groups which are projective here and allow
one to define the relative Ext" in terms of projective resolutions.
Nummela [1] uses these resolutions to determine that the relative
projective dimension of a compact abelian group is 1.

11. Valuated abelian p-groups. This was the motivating ex-
ample for the theory presented in this paper. Let p be a fixed
prime. Then a valuation v on an abelian p-group G assigns to each
2 ¢ @G an ordinal number vz, or the symbol <, such that

(1) o(r + y) 2 min (vz, vy)

(2) wvpx > vx

(3) wvux = vx if p does not divide wu.

Such objects arise naturally in abelian group theory as subgroups
G & H where v is the height function on H restricted to G. The
category of valuated abelian groups will be the subject of a forth-
coming paper by the authors. We state here, without proof, some
of the results of that paper.

(1) A map A— B is a stable kernel if and only if A is a
subgroup of B with the induced valuation, and every coset of A
contains an element of maximum value.

(2) A map B—C is a semi-stable cokernel if and only if B
maps onto C and every element ¢ of C comes from an element in B
whose value is arbitrarily close to the value of ¢ (in particular if
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the value of ¢ is o or a nonlimit, then it must come from an
element of the same value).

The category of valuated p-groups provides an example of the
failure of the five lemma for exact sequences. Let G be a p-group
such that p“G is not divisible, and let B be a basic subgroup of G.
Let H be the valuated group gotten from G by setting vz equal to
the height of = if x¢ p“G and vax = ~ if xep“G. Then we have
the five lemma set-up

B— H— D

o

B— G —D

where D is the divisible group G/B. But G and H are clearly not
isomorphic as valuated groups.
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