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It is known from Markov-Kakutani theorem that if T';
(43=12---,J) are continuous affine commuting self-map-
pings on a compact convex subset of a locally convex space,
then the intersection of the sets of fixed points of T; (=
1,2, -..,J) is nonempty. The object of this paper is to show
a result which says more than the above theorem does, and
actually our theorem shows in the case of .J = 2 that the
set of fixed points of AT, + (1 — A)T, always coincides, for
each 1 (0 < 1< 1), with the intersection of the sets of fixed
points of T, and T,.

1. Introduction. In this paper, we deal with a commuting
family of continuous affine self-mappings on a compact convex sub-
set of a locally convex space, and we give a result which seems to
say more than Markov-Kakutani theorem itself does.

Let F(T) denote the set of fixed points of a mapping 7.

We have a following main theorem.

THEOREM. Let K be a compact convexr subset of locally convex
space X, and let T; (j =1,2, -+-,J) be continuous affine commuting
self-mappings on K. Then -, F(T;) s nonempty and equal to
FG_, a;T;) for any a; (7 =1,2, <+, J) such that >/ a; =1, 0<
a; <1 (G=12--,J).

Before proving theorem, we first prove the following lemmas
on which the proof of theorem is based.

LEMMA 1. If T is a continuous affine self-mapping on a com-
pact convexr subset K of a locally convexr space X, then

(@) Jfor any € > 0, there exists an integer N such that &K —
K)=ux,— Tz, for all x, in K and 1= N, where =, is defined for
each positive integer 7,

T, = (1 - N)xi—l + )‘Txi-—l ’ (O <A< 1) ’

(b) @ point of accumulation of {x;}, is a fized point of T.

Proof. (a) Let I denote an identity mapping on K, then we
have
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z, — T,
= (@ — NI + ANT)iwy — T — AT + AT)ix,
= 31 (Gl = NN — Coy(L — NN TR,
where
10—1 = iCi+1 =0.
Put
L,(7) = C1 — Nk — Cp_((1 — N)imrtist for 0Zh=Ee+1.

It is clear that L,(4) =0 if 0 =<h =< h,, and L,(3) <0 if h,<h
1 + 1, where h, is an integer satisfying h, < (s + 1) < h, + 1.
simple calculation shows that

=
A

o it1 X
S L) = 5L L(0)] = Cayll — Wik

Put S(7) = ,C;,(1 — N)*"*pto,  We have, then, by Stiring’s formula
that

ey lim S(z) = 0.

1—00

Since K is convex, we see
i+1 .
2, — Tx, = S, L,(t)Thx,
h=1

= 5(3) 3, (La(i)/S) T,

%

= 86, 3, (LISET ',

(2) e SG)(K — K) .

From this and (1), (a) follows.

(b) Let » be a point of accumulation of {z;}2,. Then there
exists a subsequence {z,}r, which converges to p. Since T is con-
tinuous, for any convex neighborhood U of 0 in X, we can choose
an integer N, such that

(3) »—@uwelUB and Tz — TpelU/3

for all k= N,. Since K — K is compact, because of (a), we can
take an integer N, such that S¢(k)(K — K)c U/3 for all k = N,.
From this and (8), it follows that, if £k = max {N,, N,},

p—Tp=(p— 2w + @ — Tou + (T2 — Tp) e (U/3)
+ (U + (UB =T,
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which implies that p is a fixed point of 7.

LEMMA 2. Under the same assumption of Lemma 1, for any
convex neighborhood U of 0, there exists o number N such that
Sfor any © = N, 2,€ F(T) can be chosen such that x, — z,€ U for
any x in K, where x, 1s the one defined tn Lemma 1 (a).

Proof. Since K is compact and T is continuous, for any convex
neighborhood U of 0, we can take a convex neighborhood V of 0
such that {x + U} N F(T) # @ for any # in K such that x — T in
V. If we take a number N such that S(z)(K—K)cCV for all 4+=N,
it is clear from (2) that, for any ¢« = N, z;, — T, belongs to V for
all z in K. This implies tnat, for any ¢ = N, 2, can be chosen in
{#, + U}N F(T) for all # in K.

Proof of Theorem. Without loss of generality, we can take
J=2. Put @, =N and a, =1 — . It is clear that F(T,) N F(T, C
FOT, + (1 —NT,. Hence we shall show that F(T,) N F(T,)>
FO\T, + (1 — \)T,). Take any point p in FO\T, + (1 — \)T,), which
is nonempty by Lemma 1 (b). Set A = AT, + (1—\) and B=(1—
AT, + NI. Then we have

(4) p=<A;B>p=<A;_B>ip for all <.

By Lemma 2, for any convex neighborhood U of 0, there exists
a number N satisfying that, we can take z,€ F(T,) such that A*Bip—
2,€U/2, for all i = N, and if 0 <7< N, we define z, = zy. Put
w, = >, 27",Cz. Since T, is affine, w, belongs to F(T,). By the
commutativity of T, and T,, we see

(A _2i_ B>”p — Wy = iz:‘(‘,z_nnci(AiBnﬁip — %)

=327, C(ABp — 2)
N-1 n
= 5 27C(AB"'p — 2) + 3, 27".C(A'B"'p — 2)
N-1 n
e (X 2mC)K — K) + (;2-“,,@) U/2.

If we take n such that (33'%'2™,C)(K — K)c U/2, this implies, by
(4), that

p—w,,:<f—l;——B>”p—wneU.
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Since w, € F(T,), it follows that p belongs to F(T,). In the same
way, we see that p belongs to F(T,. Therefore F(T, N F(T,) D
FOT, + (1 — NT,). This completes the proof of theorem.

From the finite intersection property, we have the following
corollary.

COROLLARY (Markov-Kakutani). Let K be a compact convex
subset of a locally conver space. Let F be a commuting family
of continuous affine self-mappings on K. Then there exists ¢ point
p wn K such that Tp = p for each T in F.
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