AUTOMORPHISMS OF THE SEMIGROUP OF FINITE COMPLEXES OF A PERIODIC LOCALLY CYCLIC GROUP

Richard Dowell Byrd, Justin Thomas Lloyd, Franklin D. Pedersen and James Wilson Stepp
AUTOMORPHISMS OF THE SEMIGROUP OF
FINITE COMPLEXES OF A PERIODIC
LOCALLY CYCLIC GROUP

RICHARD D. BYRD, JUSTIN T. LLOYD,
FRANKLIN D. PEDERSEN
AND JAMES W. STEPP

In this paper the automorphism group of the semigroup
of finite complexes of a periodic locally cyclic group is
determined.

1. Introduction. Let \(G \) be a group, written additively but not
assumed to be abelian, and let \(F(G) \) denote the collection of finite
nonempty subsets of \(G \). Then \(F(G) \) is a semigroup with respect to
the operation \(A + B = \{ a + b \mid a \in A \text{ and } b \in B \} \). The collection
of automorphisms of \(F(G) \) is a group under the operation of composi-
tion of functions and we shall denote this group by \(\text{Aut } F(G) \). The
automorphism group of \(G \) will be denoted by \(\text{Aut } G \). Since the
collection of singleton subsets of \(G \) is the group of units of \(F(G) \),
we frequently identify \(G \) with \(\{ \{ g \} \mid g \in G \} \). Each automorphism of
\(G \) induces an automorphism of \(F(G) \) in the natural way. These
elements of \(\text{Aut } F(G) \) will be called standard automorphisms. If
\(\alpha \in \text{Aut } G \) and \(\alpha^* \) is the standard automorphism of \(F(G) \) induced by
\(\alpha \), then the mapping which sends \(\alpha \) to \(\alpha^* \) is an isomorphism of
\(\text{Aut } G \) onto the collection of standard automorphisms of \(F(G) \).

Our interest in \(\text{Aut } F(G) \) comes from our study of retractable
groups. In [1] it was shown that the retractions of a torsion-free
abelian group \(G \) generate a large class of nonstandard automorphisms
of \(F(G) \). In particular, it was shown that \(\text{Aut } F(Z) \) is countably
infinite, where \(Z \) denotes the additive group of integers. Since \(\text{Aut } Z \)
has only two elements, it was natural to inquire if the semigroup of
complexes of a finite cyclic group admits nonstandard automorphisms.
For a natural number \(n \), let \(Z_n \) denote the group of integers modulo \(n \).
Clearly \(\text{Aut } F(Z_n) \) and \(\text{Aut } F(Z_2) \) have only standard automorphisms.
In §3 we exhibit nonstandard automorphisms for \(F(Z_3) \), \(F(Z_4) \), and
\(F(Z_5) \) and classify their corresponding automorphism groups. The
only automorphisms of \(F(Z_6) \) are standard. In Theorems 2 and 3
we prove that if \(n \geq 7 \), then \(\text{Aut } F(Z_n) \) has only standard auto-
morphisms and hence, \(\text{Aut } F(Z_n) \) is isomorphic to \(\text{Aut } Z_n \). If \(Q \)
denotes the additive group of rationals and \(G \) is a subgroup of \(Q/Z \),
we can use the preceding results to characterize \(\text{Aut } F(G) \) in terms
of \(\text{Aut } G \). It appears that the absence of retractions (retractable
groups are torsion-free) might restrict the number of nonstandard
automorphisms. In Theorem 4 we show that an automorphism of $F(G)$ is standard if and only if the automorphism is inclusion preserving.

In §2 (Theorem 1) we show that if $A \in F(\mathbb{Z}_n)$ and $\theta \in \text{Aut} F(\mathbb{Z}_n)$, then $|A| = |A\theta|$. This theorem was crucial for our work. Our results are computational in nature and are established through a sequence of lemmas. If X and Y are sets, then $X \setminus Y$ denotes the set of elements in X but not in Y.

2. Preliminaries. We have been unable to determine if the elements of $\text{Aut} F(G)$ preserve the cardinality of subsets of G. The purpose of this section is to prove that the elements of $\text{Aut} F(\mathbb{Z}_n)$ do preserve set cardinality.

Lemma 1. Let G be a finite group and let $A, B \in F(G)$ with $|A| < |B| < |G|$. Then there exists $g \in G \setminus \{0\}$ such that $|A + \{0, g\}| < |B + \{0, g\}|$ and $|B| < |B + \{0, g\}|$.

Proof. To prove the lemma it suffices to take $|B| = |A| + 1$. If $G \setminus A = \{x_1, \ldots, x_{t+1}\}$ and $G \setminus B = \{y_1, \ldots, y_t\}$, let

$$A^* = \{(x_i, x_j), g_{ij} \mid i, j \in \{1, \ldots, t + 1\}, i \neq j, \text{ and } -x_i + x_j = g_{ij}\}$$

and

$$B^* = \{(y_r, y_s), g_{rs} \mid r, s \in \{1, \ldots, t\}, r \neq s, \text{ and } -y_r + y_s = g_{rs}\}.$$

Then $|A^*| = t(t + 1) > t(t - 1) = |B^*|$ and $0 \in A^* \pi_2 \cup B^* \pi_2$.

Case 1. There exists $g \in A^* \pi_2 \setminus B^* \pi_2$. Then $g = -x_i + x_j$ for some $i \neq j$. Since $x_i \in A$, $x_j = x_i + g \in A + g$ and since $x_i \in A$, $x_i \in A \cup (A + g) = A + \{0, g\}$. Thus $|A + \{0, g\}| < |G|$. If $y \in G \setminus B$, then there exists $z \in G$ such that $z + g = y$, and $g \neq 0$ implies that $z \neq y$. Since $g \in B^* \pi_2$, we have that $z \in G \setminus B$. Hence $z \in B$ and so $y \in B + g$. Therefore we have that

$$|A + \{0, g\}| < |G| = |B + \{0, g\}|$$

and

$$|B| < |B + \{0, g\}|.$$

Case 2. $A^* \pi_2 \subseteq B^* \pi_2$. Since $|A^*| > |B^*|$, there exists $g \in A^* \pi_2$ such that if

$$J = \{(x_i, x_j), ((x_i, x_j), g) \in A^*\}$$

and

$$K = \{(y_r, y_s), ((y_r, y_s), g) \in B^*\},$$

then $|J| > |K|$. Let $J = \{(x_i, x_i), \ldots, (x_m, x_m)\}$ and $K = \{(y_1, y_1), \ldots, (y_t, y_t)\}$.
\[
\cdots, (y_{r_n}, y_{s_n}), \text{ where } m > n. \text{ If } 1 \leq k \leq m, \text{ then } x_{j_k} = x_{i_k} + g \text{ and since } x_{i_k}, x_{j_k} \in A, x_{j_k} \in A + \{0, g\}. \text{ If } x \in G\backslash (A \cup \{x_{j_1}, \ldots, x_{j_m}\}), \text{ then } x = z + g \text{ for some } z \in G, z \neq x. \text{ Since } x \in J_{\alpha_2}, \text{ we have that } z \in A. \text{ Thus } x \in A + \{0, g\}. \text{ Consequently, } A + \{0, g\} = G\backslash \{x_{j_1}, \ldots, x_{j_m}\}. \text{ Similarly, } B + \{0, g\} = G\backslash \{y_{s_1}, \ldots, y_{s_n}\} \text{ and so } |A + \{0, g\}| < |B + \{0, g\}|.
\]

Suppose (by way of contradiction) that \(|B| = |B + \{0, g\}| \). Then \(B = B + \{0, g\} = G\backslash \{y_{s_1}, \ldots, y_{s_n}\} \) and hence \(n = t \) and \(m = t + 1 \). Thus for each \(x_i, x_i + g = x_j \) for some \(x_j \). Then \(x_i + 2g = x_i + g = x_k \), for some \(k, 1 \leq k \leq t + 1 \). It follows, by induction, that \(x_t + \langle g \rangle \subseteq G\backslash A \) for each \(i, 1 \leq i \leq t + 1 \), and so \(G\backslash A \) is a union of cosets of \(\langle g \rangle \). Therefore, \(o(g) | (t + 1) \). Similarly, \(o(g) | t \) and this is a contradiction as \(g \neq 0 \). Hence, \(|B| < |B + \{0, g\}| \).

If \(A \) is an element of the semigroup \(F(G) \), define \(1A = A \) and for \(n > 1 \), define \(nA = (n - 1)A + A \). Note that \(nA \) does not necessarily equal \(\{na \mid a \in A\} \).

Lemma 2. Let \(G \) be a finite abelian group. If \(A \in F(G) \) and \(|A + kA| = |kA| \) for some \(k \geq 1 \), then \(|lA + kA| = |kA| \) for all \(l \geq 1 \).

Proof. The equality holds for \(l = 1 \). Assume that \(l \geq 1 \) and that \(|lA + kA| = |kA| \). If \(a \in lA \), then \(|lA + kA| = | -a + lA + kA| \) and since \(kA \subseteq -a + lA + kA \), we have that \(kA = -a + lA + kA \). Therefore, \(|kA| = |A + kA| = |A + (-a + lA + kA)| = |(l + 1)A + kA| \). By induction, the lemma holds for all \(l \geq 1 \).

The proof of the next lemma is straightforward and will be omitted.

Lemma 3. Let \(G \) be a group and let \(H \) be a finite subgroup of \(G \). If \(\theta \in \text{Aut } F(G) \), then

1. \(\theta F(H) \) is a semigroup isomorphism of \(F(H) \) onto \(F(H\theta) \);
2. \(H \) and \(H\theta \) are isomorphic subgroups of \(G \);
3. if \(\theta | G \) is the identity, then \(H = H\theta \).

Lemma 4. If \(G \) is a finite group, \(b \in G\backslash \{0\} \), and \(\theta \in \text{Aut } F(G) \), then \(|\{0, b\}\theta| = 2 \).

Proof. Let \(\theta \in \text{Aut } F(G) \) and \(\eta \) be the standard automorphism of \(F(G) \) induced by \((\theta | G)^{-1} \). Since \(\eta \) preserves set cardinality, \(|A\theta\eta| = |A\theta| \) for all \(A \in F(G) \), and \(\theta\eta | G = \iota \) where \(\iota \) denotes the identity mapping of \(G \). Thus we may assume that \(\theta | G = \iota \). If \(n = o(b) \) and \(H = \langle b \rangle \), then \(H = (n - 1)\{0, b\} \). By Lemma 3, \(H = H\theta = (n - 1)(\{0, b\}\theta) \). Further, \(n - 1 \) is the smallest natural number such
that \((n-1)((0,b)\theta) = H\). If \(A = (0,b)\theta\), then \(A \subseteq H\) and \((n-1)A = H\). If \(B \subseteq G\), \(|B| > 2\), and \(k \geq 1\), then by induction and Lemma 2, \(|(k+1)B| > k+2\) or \(|(k+1)B| = |kB|\). In particular, if \(|A| > 2\), then since \(|(n-2)+1)A| = n\), we must have that \(n = |(n-1)A| = |(n-2)A|\). Thus \((n-2)A = H\), and this is a contradiction.

Corollary 1. Let \(G\) be a finite group and \(a, b \in G\) with \(a \neq b\). If \(\theta \in \text{Aut } F(G)\), then \(|\{a, b\}\theta| = 2\).

Lemma 5. If \(G\) is a finite group and \(A \in F(G)\) with \(|A| = |G| - 1\), then \(|A\theta| = |A|\) for all \(\theta \in \text{Aut } F(G)\).

Proof. As in Lemma 4, we may assume \(\theta|G = 1\). Let \(a, b \in G\) with \(a \neq b\). Since \(|\{a, b\}| + |A| = |G| + 1\), \(\{a, b\} + A = G\) [3, Theorem 1]. Suppose (by way of contradiction) that \(A\theta = B\), where \(|B| < |A|\). Then there exists \(x, y \in G\) with \(x \neq y\). Since \(x \notin \{0, x-y\} + B\), \(\{0, x-y\} \neq G\). By the preceding corollary, \(\{0, x-y\} = \{a, b\}\theta\) for some \(a, b \in G\) with \(a \neq b\). But then
\[
\{a, b\} + A = G = G\theta = (\{a, b\} + A)\theta = \{0, x-y\} + B \neq G ,
\]
a contradiction. Hence, \(|A\theta| = |A|\).

If \(A, B \in F(G)\) and \(A = g + B\) for some \(g \in G\), then \(A\) is said to be a (left) translate of \(B\). Clearly \(F(G)\) is the union of mutually disjoint translation classes. Moreover, if \(G\) is abelian and \(\theta \in \text{Aut } F(G)\), then \(\theta\) is completely determined by its action on the group of units of \(F(G)\) and a system of representatives for the translation classes.

Lemma 6. Let \(\theta \in \text{Aut } Z_n\) and \(\{0, 1\}\theta = g + \{0, 1\}\). If \(1 \leq a \leq n - 1\), then there exists \(h \in Z_n\) such that \(\{0, a\}\theta = h + \{0, a\}\).

Proof. The translation class of \(\{0, a\}\) is the same as the translation class of \(\{0, n-a\}\). Thus we may assume that \(a \leq n/2\). If \(n\) is even and \(a = n/2\), then \(\{0, a\}\) is the only subgroup of \(Z_n\) of order 2. By Lemma 3, \(\{0, a\}\theta = \{0, a\}\). Therefore, we may further assume that \(1 \leq a < n/2\). By induction we may assume that we have verified the lemma for all \(b\) such that \(1 \leq b < a < n/2\). If \(\{0, a\}\theta = y + \{0, t\}\), then, since \(\{0, t\} = t + \{0, n-t\}\), we may assume \(t \leq n/2\) and since \(\theta\) maps a translation class onto a translation class, \(a \leq t\). Now we have the equation \((a-1)\{0, 1\} + \{0, a\} = (2a-1)\{0, 1\}\) and, taking the image of both sides under \(\theta\), we obtain
\[
(a-1)g + (a-1)\{0, 1\} + y + \{0, t\} = (2a-1)g + (2a-1)\{0, 1\} .
\]
Hence, \(\{0, 1, \ldots, a-1, t, t+1, \ldots, t+a-1\}\) is a translate of
Since \(t + a - 1 < n - 1 \), \(t = a \) is the only possible solution.

Theorem 1. If \(A \in F(Z_n) \) and \(\theta \in \text{Aut} F(Z_n) \), then \(|A\theta| = |A| \).

Proof. Let \(\{0, 1\} \theta = g + \{0, b\} \). Since \((n - 1)\{0, 1\} = Z_n\), \(b \) is a generator for \(Z_n \). Let \(\Phi \) be the standard automorphism of \(F(Z_n) \) induced by the automorphism of \(Z_n \) that maps \(b \) to 1. Now \(\Phi \) preserves cardinality and hence, \(\theta \Phi \) will preserve cardinality if and only if \(\theta \) preserves cardinality. Thus we may assume that \(\{0, 1\} \theta = g + \{0, 1\} \). Suppose (by way of contradiction) that there exists \(B \in F(Z_n) \) such that \(|B\theta| \neq |B| \). We may assume that if \(A \in F(G) \) with \(|A| > |B| \), then \(|A\theta| = |A| \). Thus, \(|B\theta| < |B| \) and by Lemma 5, \(|B| < n - 1 \). By Lemma 1, there exists \(x \in Z_n \) such that \(|B| < |B + \{0, x\}| \) and \(|B\theta + \{0, x\}| < |B + \{0, x\}| \), and by Lemma 6, \(\{0, x\} \theta = h + \{0, x\} \), for some \(h \). Therefore,

\[
|\{(B + \{0, x\})\theta\}| = |B \theta + h + \{0, x\}|
= |B \theta + \{0, x\}| < |B + \{0, x\}|
= |(B + \{0, x\})\theta| .
\]

This is a contradiction and hence, \(|A\theta| = A \) for all \(A \in F(Z_n) \).

3. Determination of \(\text{Aut} F(Z_n) \). Let \(G \) be a group, \(H \) be the group of standard automorphisms of \(F(G) \), and \(K \) be the group of automorphisms of \(F(G) \) that are the identity on the group of units of \(F(G) \). Then \(K \) is a normal subgroup of \(\text{Aut} F(G) \), \(H \cap K = \{e\} \), and \(\text{Aut} F(G) = KH \). If \(\theta \in K \) and \(G \) is abelian, then \(\theta \) is uniquely determined by its action on a system of representatives of the translation classes of \(F(G) \). Clearly \(F(Z_n) \) admits only standard automorphisms. The verification of the following assertions are computational (some are lengthy) and will be omitted. If \(G = Z_3 \), then there exists \(\theta \in \text{Aut} F(G) \) with \(\theta|G = \iota, \{0, 1\} \theta = \{0, 2\}, \{0, 1, 2\} \theta = \{0, 1, 2\} \), \(K = \{\iota, \theta, \theta^2\} \), \(H = \{\iota, \beta\} \) where \((1)\beta = 2 \), and \(\beta^{-1}\theta \beta = \theta^2 \). Thus, \(\text{Aut} F(G) = KH \) and is isomorphic to \(S_3 \), the symmetric group of degree 3. If \(G = Z_4 \), then there exists \(\theta \in \text{Aut} F(G) \) with \(\theta|G = \iota, \{0, 1\} \theta = \{0, 3\}, \{0, 2\} \theta = \{0, 2\}, \{0, 1, 2\} \theta = \{0, 2, 3\}, \{0, 1, 2, 3\} \theta = \{0, 1, 2, 3\} \), \(K = \{\iota, \theta, \theta^2, \theta^3\} \), \(H = \{\iota, \beta\} \), where \((1)\beta = 3 \), and \(\beta^{-1}\theta \beta = \theta^3 \). Thus, \(\text{Aut} F(G) = KH \) and is isomorphic to \(D_4 \), the dihedral group of order 8. If \(G = Z_6 \), then there exists \(\theta \in F(G) \) with \(\theta|G = \iota, \{0, 1\} \theta = \{2, 4\}, \{0, 2\} \theta = \{3, 4\}, \{0, 1, 2\} \theta = \{1, 3, 4\}, \{0, 1, 2, 3\} \theta = \{2, 3, 4\}, \{0, 1, 2, 3, 4\} \theta = \{0, 1, 2, 3, 4\} \), \(K = \{\iota, \theta\} \), \(H = \{\iota, \gamma, \gamma^2, \gamma^3\} \), where \((1)\gamma = 2 \), and \(\theta \gamma \gamma = \gamma \theta \). Thus, \(\text{Aut} F(G) = KH \) and is isomorphic to the direct product of \(Z_2 \) and \(Z_4 \). Finally, if \(G = Z_8 \), then \(K = \{\iota\} \)
and \(\text{Aut } F(G) \) is isomorphic to \(\text{Aut } G \).

The remaining portion of this paper is devoted to showing that \(\text{Aut } F(G) \) consists only of standard automorphisms if \(G \) is a subgroup of \(Q/Z \) and \(|G| \geq 7 \), and hence \(\text{Aut } F(G) \) is isomorphic to \(\text{Aut } G \). The proofs of the next three lemmas are straightforward and will be omitted.

Lemma 7. If \(A \in F(G) \) and \(L(A) = \{ g \mid g + A = A \} \), then \(L(A) \) is a subgroup of \(G \) and \(A \) is a union of right cosets of \(L(A) \). If \(G \) is finite, then the number of translates of \(A \) is the index of \(L(A) \) in \(G \).

Lemma 8. If \(G \) is a finite group, \(A \in F(G) \), and \(|A| = |G| - 1 \), then \(L(A) = \{ 0 \} \) and all subsets of \(G \) of cardinality \(|G| - 1 \) belong to the translation class of \(A \).

Lemma 9. If \(a \) is a generator of \(Z_n \) and \(A = k\{0, a\} \), where \(1 < k \leq n - 2 \), then \(L(A) = \{ 0 \} \).

For the remainder of this paper we shall assume that \(n \geq 7 \).

Lemma 10. If \(\theta \in \text{Aut } F(Z_n) \) and \(\{0, 1\} \theta = \{0, 1\} \), then \(\{0, r\} \theta = \{0, r\} \) for every \(r \in Z_n \setminus \{0\} \) and \(\theta | Z_n \) is the identity.

Proof. We first assume that \(1 < r \leq n/2 \). If \(r = n/2 \), then \(\{0, r\} \) is a subgroup of \(Z_n \) and by Lemma 3, \(\{0, r\} \theta = \{0, r\} \) since it is the only subgroup of order two. Thus we may suppose that \(1 < r < n/2 \). By Lemma 6, \(\{0, r\} \theta = h + \{0, r\} \) for some \(h \in Z_n \). Now

\[
(r - 1)\{0, 1\} + \{0, r\} = (2r - 1)\{0, 1\}.
\]

If we apply \(\theta \) to each side of this equation, we have that

\[
(r - 1)\{0, 1\} + h + \{0, r\} = (2r - 1)\{0, 1\}.
\]

It follows from Lemma 9 that \(h = 0 \) and so \(\{0, r\} \theta = \{0, r\} \).

We now show that \((1) \theta = 1 \). We do this by considering separately the cases where \(n \) is even and \(n \) is odd.

Case 1. \(n \) is even. Then \(\{0, 1\} + \{0, 1, 3\} = \{0, 1, 2, 3, 4\} = 4\{0, 1\} \). Applying \(\theta \) to this equation we have \(\{0, 1\} + \{a, b, c\} = 4\{0, 1\} \). It follows that \(\{a, b, c\} = \{0, 1, 3\} \) or \(\{a, b, c\} = \{0, 2, 3\} \). Now the following equalities hold:

\[
\frac{n - 4}{2}\{0, 2\} + \{0, 1, 3\} = (n - 1) + (n - 2)\{0, 1\}
\]
and

\[(2) \quad \frac{n - 4}{2} (0, 2) + (0, 2, 3) = 2 + (n - 2)(0, 1).\]

Suppose that \(\{0, 1, 3\} \theta = \{0, 2, 3\}\). Then, using (1), we obtain

\[
\frac{n - 4}{2} (0, 2) + (0, 2, 3) = (n - 1) \theta + (n - 2)(0, 1).
\]

Using this equation, equation (2), and Lemma 9, we have that \((n - 1) \theta = 2\) which is a contradiction since 2 is not a generator of \(Z_n\). Thus \(\{0, 1, 3\} \theta = \{0, 1, 3\}\). Applying \(\theta\) to equation (1) and by Lemma 9, we have \((n - 1) \theta = n - 1\) and hence, \((1) \theta = 1\).

Case 2. \(n\) is odd. In this case we have the equation

\[
1 + (n - 2)(0, 2) = (n - 2)(0, 1).
\]

By applying \(\theta\) to this equation we conclude that \((1) \theta = 1\).

Next suppose that \(n/2 < r \leq n\). Then \(\{0, r\} = r + \{0, n - r\}\), so that \(\{0, r\} \theta = r \theta + \{0, n - r\} \theta = r + \{0, n - r\} = \{0, r\}\).

Lemma 11. If \(\theta \in \text{Aut} \, F(Z_n)\) and \(\{0, 1\} \theta = \{0, 1\}\), then \(A \theta = A\) for every \(A \in F(Z_n)\).

Proof. By the preceding lemma, \(\{0, r\} \theta = \{0, r\}\) for every \(r \in Z_n \setminus \{0\}\) and \(\theta \mid Z_n\) is the identity. If \(A \in F(Z_n)\) and \(|A| = n - 1\), then \(A\) is a translate of \((n - 2)(0, 1)\) and so \(A \theta = A\). Suppose (by way of contradiction) that there exists \(A \in F(Z_n)\) such that \(A \theta \neq A\). Then \(|A| \leq n - 2\) and we may assume that if \(B \in F(G)\) with \(|A| < |B|\), then \(B \theta = B\). Let \(w \in A \theta \setminus A\) and \(u \in Z_n \setminus A\) with \(w \neq u\). Then \(w \in A + \{0, w - u\}\), but \(w \in A \theta + \{0, w - u\} = (A + \{0, w - u\}) \theta\). By the maximality of \(|A|\), \(|A| \geq |A + \{0, w - u\}| \geq |A|\) and so \(A = A + \{0, w - u\}\). Therefore, \(w - u \in L(A)\) and so \(|L(A)| \geq 2\). By Lemma 7, \(A = \bigcup_{i=1}^{t}(L(A) + a_i)\). Since subgroups of \(Z_n\) are fixed by \(\theta\), all cosets of \(L(A)\) are fixed by \(\theta\). Hence, \(t \geq 2\). Now \(L(A) + u \not\leq A\). Since we have shown that \(w - u \in L(A)\) for every \(u \in Z_n \setminus A\), we have that \(Z_n \setminus A\) is a single coset of \(L(A)\) and hence, \(A\) is the union of all but one coset of \(L(A)\). Let \(a\) be the smallest positive integer such that \(L(A) = \langle a \rangle\). Then \(a > 2\) and a system of representatives for the cosets of \(L(A)\) in \(Z_n\) is \(\{0, 1, \ldots, a - 1\}\). We may assume that \(\{a_1, \ldots, a_t\} \subseteq \{0, 1, \ldots, a - 1\}\). Let \(b \in \{0, 1, \ldots, a - 1\}\) such that \(L(A) + b = L(A) + w\). If \(x = (a - 1) - b\), then \(\{a_i + x, \ldots, a_t + x\}\) is a system of representatives for all but one coset of \(L(A)\). The
coset not included is $L(A) + (a - 1)$. Then $L(A) + \{0, 1, \cdots, a - 2\} = \bigcup_{i=1}^{l} (L(A) + a_i + x) = A + x$. Now $L(A)\theta = L(A)$ and

$$\{0, 1, \cdots, a - 2\}\theta = (a - 2)\{0, 1\}$$

and consequently, $(A + x)\theta = A + x$. Since $x\theta = x$, we have that $A\theta = A$, which is a contradiction. Thus the lemma is proven.

Lemma 12. If $\theta \in \text{Aut} F(Z_n)$ and $\{0, 1\}\theta = c + \{0, 1\}$ for some $c \in Z_n$, then $\{0, a\}\theta = ac + \{0, a\}$ for $1 \leq a < n/2$.

Proof. By Lemma 6, $\{0, a\}\theta = h + \{0, a\}$ for some $h \in Z_n$. If $2 \leq a < n/2$, then $(a - 1)\{0, 1\} + \{0, a\} = (2a - 1)\{0, 1\}$. If we apply θ to this equation we obtain $(a - 1)c + (a - 1)\{0, 1\} + h + \{0, a\} = (2a - 1)c + (2a - 1)\{0, 1\}$. Thus, $(a - 1)c + h \equiv (2a - 1)c \pmod{n}$, and so $h \equiv ac \pmod{n}$.

Lemma 13. Let $a \in Z_n$ with $2 \leq a \leq n/2$. Then

1. if k and l are positive integers such that $k\{0, 1\} + \{0, 1, a\} = l\{0, 1\}$, then $a - 2 \leq k$ and $2a - 2 \leq l$;
2. if k and l are positive integers such that $k\{0, 1\} + \{0, a - 1, a\} = l\{0, 1\}$, then $a - 2 \leq k$ and $2a - 2 \leq l$;
3. if $1 < b < a - 1$, then there exist positive integers k and l such that $k < a - 2$ and $k\{0, 1\} + \{0, b, a\} = l\{0, 1\}$;
4. if $x, y, z \in Z_n$ with $x < y < z < n$ and $(a - 2)\{0, 1\} + \{x, y, z\} = (2a - 2)\{0, 1\}$, then $x = 0$ and $z = a$;
5. $(a - 2)\{0, 1\} + \{0, 1, a\} = (2a - 2)\{0, 1\}$;
6. $(a - 2)\{0, 1\} + \{0, a - 1, a\} = (2a - 2)\{0, 1\}$.

Proof. Clearly (v) and (vi) hold. To see that (i) is true, we observe that if $1 \leq k < a - 2$, then $a - 1 \notin k\{0, 1\} + \{0, 1, a\}$ and so there is no natural number l such that $k\{0, 1\} + \{0, 1, a\} = l\{0, 1\}$. Thus if k and l are natural numbers such that $k\{0, 1\} + \{0, 1, a\} = l\{0, 1\}$, then $a - 2 \leq k$ and so $2a - 2 \leq l$. The proof of (ii) is similar and will be omitted. For (iii), let $1 < b < a - 1$ and $k = \max\{b - 1, a - (b + 1)\}$. If $k = b - 1$, then $k\{0, 1\} + \{0, b, a\} = (a + b - 1)\{0, 1\}$ and $k = b - 1 < a - 2$. If $k = a - (b + 1)$, then $k\{0, 1\} + \{0, b, a\} = (2a - b - 1)\{0, 1\}$ and $k = a - (b + 1) < a - 2$. For (iv) we suppose that $x < y < z$ and $(a - 2)\{0, 1\} + \{x, y, z\} = (2a - 2)\{0, 1\}$. Then we have $\{x, x + 1, \cdots, x + a - 2\} \cup \{y, y + 1, \cdots, y + a - 2\} \cup \{z, z + 1, \cdots, z + a - 2\} = \{0, 1, \cdots, 2a - 2\}$. The elements from $2a - 1$ to $n - 1$ belong to Z_n but not to the right hand side. The left hand side is the union of three consecutive listings and so the elements from $2a - 1$ to $n - 1$ must occur between $x + a - 2$ and $y, y + a - 2$.
and z, or $z + a - 2$ and x. The first two cases cannot occur as this would force y or z to be larger than $n - 1$. Thus, $z + a - 2 = 2a - 2$ and so $z = a$. Then $x = 0$.

Lemma 14. Let $a \in \mathbb{Z}_n$ with $1 < a \leq n/2$ and $\theta \in \text{Aut } F(\mathbb{Z}_n)$ such that $(0, 1)\theta = c + \{0, 1\}$. Then

(i) $\{0, 1, a\} \theta$ is in the translation class of either $\{0, 1, a\}$ or $\{0, a - 1, a\}$;

(ii) $\{0, a - 1, a\} \theta$ is in the translation class of either $\{0, 1, a\}$ or $\{0, a - 1, a\}$;

(iii) if $\{0, 1, a\} \theta$ is in the translation class of $\{0, 1, a\}$, then $\{0, 1, a\} \theta = ac + \{0, 1, a\}$ and $\{0, a - 1, a\} \theta = ac + \{0, a - 1, a\}$;

(iv) if $\{0, 1, a\} \theta$ is in the translation class of $\{0, a - 1, a\}$, then $\{0, 1, a\} \theta = ac + \{0, a - 1, a\}$ and $\{0, a - 1, a\} \theta = ac + \{0, 1, a\}$.

Proof. (i) Let $\{0, 1, a\} \theta = \{x, y, z\}$. By (v) of Lemma 13, $(a - 2)(0, 1) + \{0, 1, a\} = (2a - 2)(0, 1)$. If we apply θ to this equation we obtain the equation

$$(a - 2)c + (a - 2)(0, 1) + \{x, y, z\} = (2a - 2)c + (2a - 2)(0, 1).$$

Thus

$$(a - 2)(0, 1) + \{x - ac, y - ac, z - ac\} = (2a - 2)(0, 1).$$

Without loss of generality we may assume that $0 \leq x - ac < y - ac < z - ac < n$. By Lemma 13 (iv), $x - ac = 0$ and $z - ac = a$. Let $b = y - ac$. Suppose (by way of contradiction) that $1 < b < a - 1$. Then by Lemma 13 (iii), there are positive integers k and l such that $k < a - 2$ and $k(0, 1) + \{x - ac, y - ac, z - ac\} = l(0, 1)$. Thus

$$(a - 2)c + k(0, 1) + \{x, y, z\} = (2a - 2)c + l(0, 1).$$

Applying θ^{-1} to this last equation, we obtain an equation of the form

$$d + k(0, 1) + \{0, 1, a\} = f + l(0, 1).$$

Hence,

$$((a - 2) - k)(0, 1) + k(0, 1) + \{0, 1, a\}$$

$$= (f - d) + ((a - 2) - k + l)(0, 1)$$

and so

$$(a - 2)(0, 1) + \{0, 1, a\} = (f - d) + ((a - 2) - k + l)(0, 1).$$

Hence, $(2a - 2)(0, 1) = (f - d) + ((a - 2) - k + l)(0, 1)$. It follows
that $f \equiv d \pmod{n}$. Therefore, $k\{0, 1 \} + \{0, 1, a \} = \ell \{0, 1 \}$, but this contradicts Lemma 13 (i). Consequently, $\{0, 1, a \} \theta$ is in the class of $\{0, 1, a \}$ or $\{0, a - 1, a \}$.

The proof of (ii) is similar. Parts (iii) and (iv) then follow from what has been shown.

The proof of the next lemma is straightforward and will be omitted.

Lemma 15. If n is even, $a \in \mathbb{Z}_n$, a is odd, and $1 < a \leq n/2$, then

(i) $(n - 4)/2\{0, 2 \} + \{0, 1, a \} = (n - 1) + (n - 2)\{0, 1 \}$;

(ii) $(n - 4)/2\{0, 2 \} + \{0, a - 1, a \} = (a - 1) + (n - 2)\{0, 1 \}$.

Lemma 16. If n is even, $\theta \in \text{Aut} F(\mathbb{Z}_n)$, and $\{0, 1 \} \theta = c + \{0, 1 \}$, then θ is a standard automorphism and $c = 0$ or $c = n - 1$.

Proof. By Lemma 15,

\[1 + \frac{n - 4}{2} \{0, 2 \} + \{0, 1, 3 \} = (n - 2)\{0, 1 \}. \]

By Lemma 14, $\{0, 1, 3 \} \theta = 3c + \{0, 1, 3 \}$ or $\{0, 1, 3 \} \theta = 3c + \{0, 2, 3 \}$.

Case 1. $\{0, 1, 3 \} \theta = 3c + \{0, 1, 3 \}$. Then $\{0, 2, 3 \} \theta = 3c + \{0, 2, 3 \}$.

If we apply θ to equation (1), then by Lemma 12, we obtain that

\[(1) \theta + c + \frac{n - 4}{2} \{0, 2 \} + \{0, 1, 3 \} = (n - 2)c + (n - 2)\{0, 1 \} \]

so that

\[(1) \theta + c + \frac{n - 4}{2} \{0, 2 \} + \{0, 1, 3 \} = (n - 2)\{0, 1 \}. \]

By equation (1), we have that $(1) \theta + c + (n - 1) + (n - 2)\{0, 1 \} = (n - 2)\{0, 1 \}$ and hence, $(1) \theta + c + n - 1 \equiv 0 \pmod{n}$. Consequently, $(1) \theta + c - 1 \equiv 0 \pmod{n}$. By Lemma 15, we have that

\[(2) \frac{n - 4}{2} \{0, 2 \} + \{0, 2, 3 \} = 2 + (n - 2)\{0, 1 \}. \]

Applying θ to this equation we obtain that $-2(1) \theta + c + 2 \equiv 0 \pmod{n}$. Thus, $3c \equiv 0 \pmod{n}$. If $n = 8$, then $c = 0$ and by Lemma 11, $\theta = \iota$. Suppose that $n \geq 10$. Then by Lemma 15, we have that
\[1 + \frac{n-4}{2} \{0, 2\} + \{0, 1, 5\} = (n-2)\{0, 1\} \]

and
\[\frac{n-4}{2} \{0, 2\} + \{0, 4, 5\} = 4 + (n-2)\{0, 1\} . \]

Subcase 1.1. \(\{0, 1, 5\} = 5c + \{0, 1, 5\} \). Then we have that
\[
(1)\theta + (n-4)c + \frac{n-4}{2} \{0, 2\} + 5c + \{0, 1, 5\}
\]
\[= (n-2)c + (n-2)\{0, 1\} . \]

Hence, \((1)\theta + 3c - 1 + (n-2)\{0, 1\} = (n-2)\{0, 1\} \) and so \((1)\theta + 3c - 1 \equiv 0 \pmod{n} \). Since \(3c \equiv 0 \pmod{n} \), we have that \((1)\theta = 1\) and \(c = 0\). Therefore, by Lemma 11, \(\theta = \iota \).

Subcase 1.2. \(\{0, 1, 5\} = 5c + \{0, 4, 5\} \). By an argument similar to the one given in Subcase 1.1, we obtain that \((1)\theta + 3c + 4 \equiv 0 \pmod{n} \). Since \(3c \equiv 0 \pmod{n} \), \((1)\theta \equiv (n-4) \pmod{n} \), but this is impossible as \(n-4\) is not a generator of \(\mathbb{Z}_n \).

Case 2. \(\{0, 1, 3\} = 3c + \{0, 2, 3\} \). Then by Lemma 15 and the same techniques as above, we obtain the congruences \((1)\theta + c + 2 \equiv 0 \pmod{n} \) and \(c - 2(1)\theta - 1 \equiv 0 \pmod{n} \). Then \(3c \equiv (n-3) \pmod{n} \). If \(n = 8\), then \(c \equiv 7 \pmod{8}\) and \((1)\theta = 7\). If \(\eta\) is the standard automorphism of \(F(Z_n)\) that takes 1 to \(-1\), then \(\{0, 1\} = \{0, 1\} \) and so, by Lemma 11, \(\theta = \iota\). Thus, \(\theta = \eta^{-1}\) and hence \(\theta\) is standard. If \(n \geq 10\), then, as in Case 1, \((1)\theta = n - 1\) and \(c = n - 1\). Thus, \(\theta\) is standard.

Theorem 2. If \(n\) is even, then \(\text{Aut } F(Z_n)\) consists only of standard automorphisms and so is isomorphic to \(\text{Aut } \mathbb{Z}_n\).

Proof. If \(\theta \in \text{Aut } F(Z_n)\), then \(\{0, 1\} = h + \{0, r\}\) for some \(h, r \in Z_n\). Let \(\eta\) be the standard automorphism of \(F(Z_n)\) that takes \(r\) to 1. Then \(\{0, 1\} = \{0, 1\} \) for some \(c \in Z_n\). By Lemma 16, \(\theta \eta = \psi\) is a standard automorphism and hence \(\theta = \psi \eta^{-1}\) is standard.

For \(n\) odd, we proceed almost as above.

Lemma 17. If \(n\) is odd, then
(i) \(\frac{n-3}{2} \{0, 2\} + \{0, 1, 3\} = (n-2)\{0, 1\}\);
(ii) \(\frac{n-3}{2} \{0, 2\} + \{0, 2, 3\} = 2 + (n-2)\{0, 1\}\).
THEOREM 3. If n is odd, then $\text{Aut } F(Z_n)$ consists only of standard automorphisms and so is isomorphic to $\text{Aut } Z_n$.

Proof. If $\theta \in \text{Aut } F(Z_n)$, then $\{0, 1\} \theta = h + \{0, r\}$ for some $h, r \in Z_n$. Let γ be the standard automorphism of $F(Z_n)$ that takes r to 1. Then $\{0, 1\} \theta \gamma = c + \{0, 1\}$ for some $c \in Z_n$. If $\{0, 1, 3\} \theta \gamma = 3c + \{0, 1, 3\}$, then we apply $\theta \gamma$ to (i) of Lemma 17 and obtain the congruence $2c \equiv 0$ (modulo n) and so $c \equiv 0$ (modulo n). Thus, by Lemma 11, $\theta \gamma$ is a standard automorphism and consequently, θ is standard. The same conclusion holds if $\{0, 1, 3\} \theta \gamma = 3c + \{0, 2, 3\}$.

The following theorem gives a characterization of standard automorphisms for arbitrary groups. It was proven in [1, Theorem 5] and, for completeness, we repeat the proof here.

THEOREM 4. If G is a group and $\theta \in \text{Aut } F(G)$, then θ is a standard automorphism if and only if $A, B \in F(G)$ with $A \subseteq B$ implies that $A\theta \subseteq B\theta$.

Proof. Clearly if θ is a standard automorphism, then θ preserves set containment. Conversely suppose that θ is inclusion preserving, let $\alpha = \theta|G$, and θ_a be the standard automorphism of $F(G)$ induced by α. We proceed by induction on the cardinality of the sets in $F(G)$. If $A \in F(G)$ such that $|A| = 1$, then $A\theta = A\theta_a$. Assume that for all $A \in F(G)$ with $|A| \leq k$, $A\theta = A\theta_a$, and let $B \in F(G)$ with $|B| = k + 1$. If $D = B\theta_a$, then there exists $C \in F(G)$ such that $C\theta = D$. Since θ is inclusion preserving, if $b \in B$, then $b\alpha = b\theta \in B\theta$. Hence, $B\theta_a \subseteq B\theta$. If $x \in C$, then $x\alpha \in C\theta = D$. Thus, $x\alpha = b\alpha$ for some $b \in B$ and so $x = b$. Therefore, $C \subseteq B$. If $C \neq B$, then, by the inductive hypothesis, $C\theta = C\theta_a = D = B\theta_a$ and so $C = B$. Therefore, $C = B$ and so $B\theta = C\theta = D = B\theta_a$. Thus, θ is the standard automorphism θ_a.

We now extend our results to a larger class of groups.

THEOREM 5. If G is a subgroup of Q/Z such that $|G| > 5$, then $\text{Aut } F(G)$ consists only of standard automorphisms and hence $\text{Aut } F(G)$ is isomorphic to $\text{Aut } G$.

Proof. If G is finite, then G is cyclic with $|G| > 5$ and so $\text{Aut } F(G)$ consists only of standard automorphisms. Suppose that G is infinite and let $A, B \in F(G)$ with $A \subseteq B$, and let $\theta \in \text{Aut } F(G)$. Then there is a finite cyclic subgroup H of G such that $B \subseteq H$ and $|H| > 5$. Since H is the only subgroup of G of order $|H|$, we have, by Lemma 3, $H = H\theta$. Thus, $\theta|F(H) \in \text{Aut } F(H)$ and so $\theta|F(H)$ is a
standard automorphism of $F(H)$. Hence, $A\theta \subseteq B\theta$. By Theorem 4, θ is a standard automorphism of $F(G)$.

COROLLARY 2. If P denotes the set of prime integers and $q \in P$, then $\text{Aut} F(Z(q^\infty))$ is isomorphic to $\text{Aut} Z(q^\infty)$ and $\text{Aut} F(Q/Z)$ is isomorphic to $\prod_{p \in P} \text{Aut} F(Z(p^\infty))$.

Proof. By [2, p. 221–222], Q/Z is isomorphic to $\sum_{p \in P} Z(p^\infty)$ and $\text{Aut} Q/Z$ is isomorphic to $\prod_{p \in P} \text{Aut} Z(p^\infty)$. With these observations the corollary is an immediate consequence of the theorem.

REFERENCES

Received March 25, 1977

UNIVERSITY OF HOUSTON
HOUSTON, TX 77004

AND

SOUTHERN ILLINOIS UNIVERSITY
CARBONDALE, IL 62901
Kazuo Anzai and Shiro Ishikawa, *On common fixed points for several continuous affine mappings* ... 1
Bruce Alan Barnes, *When is a representation of a Banach \(*\)-algebra Naimark-related to a \(*\)-representation* .. 5
Richard Dowell Byrd, Justin Thomas Lloyd, Franklin D. Pedersen and James Wilson Stepp, *Automorphisms of the semigroup of finite complexes of a periodic locally cyclic group* .. 27
Donald S. Coram and Paul Frazier Duvall, Jr., *Approximate fibrations and a movability condition for maps* .. 41
Kenneth R. Davidson and Che-Kao Fong, *An operator algebra which is not closed in the Calkin algebra* .. 57
Garret J. Etgen and James Pawlowski, *A comparison theorem and oscillation criteria for second order differential systems* 59
Philip Palmer Green, *C\(^*\)-algebras of transformation groups with smooth orbit space* ... 71
Charles Allen Jones and Charles Dwight Lahr, *Weak and norm approximate identities are different* .. 99
G. K. Kalisch, *On integral representations of piecewise holomorphic functions* ... 105
Y. Kodama, *On product of shape and a question of Sher* 115
Heinz K. Langer and B. Textorius, *On generalized resolvents and \(Q\)-functions of symmetric linear relations (subspaces) in Hilbert space* ... 135
Albert Edward Livingston, *On the integral means of univalent, meromorphic functions* ... 167
Wallace Smith Martindale, III and Susan Montgomery, *Fixed elements of Jordan automorphisms of associative rings* ... 181
R. Kent Nagle, *Monotonicity and alternative methods for nonlinear boundary value problems* .. 197
Richard John O’Malley, *Approximately differentiable functions: the r topology* ... 207
Mangesh Bhalchandra Rege and Kalathoor Varadarajan, *Chain conditions and pure-exactness* ... 223
Christine Ann Shannon, *The second dual of \(C(X)\)* 237
Sin-ei Takahasi, *A characterization for compact central double centralizers of \(C^*\)-algebras* ... 255
Theresa Phillips Vaughan, *A note on the Jacobi-Perron algorithm* 261
Arthur Anthony Yanushka, *A characterization of \(PSp(2m, q)\) and \(P\Omega(2m + 1, q)\) as rank 3 permutation groups* .. 273