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Let D be the interior of the unit ecircle in C, D¢ its
exterior and 7T the unit circumference. We consider certain
piecewise holomorphic functions that are holomorphic in D
and also in D¢°. This paper deals with those piecewise holo-
morphic functions that are representable by means of complex
Poisson-Stieltjes integrals on 7T'; we call this set of functions
P,. The set of all piecewise holemorphic functions (holo-
morphic in D and in D°) we call P. Earlier work—see Rolf
Nevanlinna, Eindeutige Analytische Funktionen, Springer,
Berlin, 1953 and referemces there—dealt with positive
(Herglotz-Riesz) or real (Nevanlinna) measures; we shall use
here the entire space M of bounded complex Borel measures
on T. This gives the theory more flexibility. We consider
characterizations of functions in P representable by means
of complex Poisson-Stieltjes integrals, uniqueness questions,
the nature of the mapping between the subset P, of P of
representable functions and M, as well as the ring structures
in M (under convolution) and P, (Hadamard products), and
questions of derivatives and integrals. We end with an ap-

plication to Fourier-Stieltjes moments relative to measues
in M.

We call a func‘Eion Fe P representable if there is a measure
meM so that F = SPgdm + k where P, = P, (z) = (e" + z)/(e** — 2) is
the complex Poisson kernel, & is a piecewise constant function in P,
and where the limits of integration are omitted when they are 0

and 27 respectively. A function Fe P is said to be of real type if
FzY) = — F(z) for all ze DU D°. The functions

(1) G =Gyele) = %(F(z) — FGE), H = Hiz) = — %(imz) +iFG)

are of real type; we have FF= G + +H and FeP, if and only if G
and H are in P,.—The decomposition of the complex measure m into
its real and imaginary parts is given by m = (1/2(m + m))+
#((A/27)(m — m)) = (Rem) + i{(Im m) where m is defined as usual by

gdm = \g dm for continuous functions g on T. If the represent-
able function FeP, is given by F = SPodm +k, then G,=
SPgd(Re m) + 120 — k) and H, = SPcd(Im m) + (1200 + B). — If
me M, we write Mm; = Se'“tdm.
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106 GERHARD K. KALISCH

The following theorem characterizes the elements of P, among
those of P.

THEOREM 1. The function F € P is representable if and only if
there 18 a constant By such that

(2) g[F('r ety — F(r~e*)| dt < B, for all r€[0,1).

Note that if F' is of real type this becomes Nevanlinna’s condi-
tion glRe F(ret)| dt < B, for all r€[0,1); we deduce our theorem
from Nevanlinna’s.

Proof. The representability of F implying that of G and H,
Nevanlinna’s theorem asserts the existence of constants B, and By
such that

(3) S]Re G(r ¢)| dt < B,, SlRe H(r¢")| dt < B,

for all »€[0,1). Thus, since 2ReG(z) = Re F(z) — Re F(Z™') and
2Re H(z) = Im F(z) — Im F(z™*), (3) implies (2). Conversely, let F
satisfy (2. Then G and H given by (1) satisfy (3):
1/2 g 'Re F(re") — Re F(r'e")| dt = g |Re G(r ¢*)| dt < 1/2 glF('re“) -
F(re')| dt < By and similarly 1/2 S[Im F(re®) — Im F(r~e®)| dt=
§|Re H(re™)| dt < By so that by Nevanlinna’s theorem there exist
measures m, and m, in M which are real such that G = \P,dm, + k&,
and H = SPgolm2 + k, (for suitable constants %k, k,) so that F =
SPG(dml +idmy) + (b, + k) = SPodm + kb With m = m, + g, k= b, + ik,
and FeP.

Representations F' = SPodm + & are clearly not unique: adding a
multiple aL of Lebesgue measure (¢ €C) to m merely changes the
constant: F = SPCd(m +aL) + & with ¥ =k — 27a in D and k'=

k -+ 2za in D°. It is, however, possible to standardize, and thus to
make unique, the representations. This is done in the following
theorem which also presents an inversion formula expressing m and
k in terms of F.

THEOREM 2. If F = SPcdml k= SPodmz + I, with k, the same

constant in D and in D° and similarly for k, then m, =m, and
k,=1Fk,. If FeP, and if we define

(4) ma(t) = (1/47:)11;3152 (F(re™) — F(r-'e)ds
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(4) ke = %(F(O) + F(c0)) both in D and D°,
then

(5) F:SPode—{-kF

uniquely.

Thus all functions F € P, have a (unique) representation with the
constant the same in D and D°. We do not wish to confine ourselves
to this representation in view of Theorems 4-7 below.

Proof. If F=G + iH as in (1), then Nevanlinna’s theory says
that there are measures m, and my and constants k; and k5 given

by mg(t) = (1/zn)hmm§ Re G(r ¢)ds = (1/4m)lim, ;, S’(Re F(r ei*)—
Re F(r~le™))ds, G = SPgde + ky with ke=1/2(G(0)+ G(==))=1/2(G(0)—
G(0)) = ¢ Im G(0) with similar expressions for my, ky, H. Thus m;
and %k, are as given in (4) and (5) is therefore true. The uniqueness

results from this: If F = \P,dm + k where k& is the same constant
in D and D°, then F(0) = m(T) + k, F(<) = — m(T) + k so that
2k = F(0) + F(e). If now F = SPCdml + k= SPCdmZ +k, then
P.dm = 0 where m = m, — m, so that #m; =0 for all integers j
and m = 0, m, = m,.—Note that (4) and (5) can also be deduced
directly from our hypothesis (2) and the expressions

F(z) = (1/477:)§(e“ + r72)/(e* —r ) (F(re*y — Fre™))dt + k(| 2| <r<1)
F(z) = (1/471:)S(e“ + r2)/(e —rz)(F(re) — F(r e ))dt + k(| z|>r"*>1) .

Condition (2) which characterizes representability can be used to
introduce a mnatural norm in P. If FeP, define [|F|,=

SUPosr <1 \| F(re®) — F(r~*e*)|dt and || F|| = [| F'|l, + |kz|. The following
lemma relates || F'||, to ||my| for m;<c M.

LEMMA. || Fll, = 247 [|mp]| < 6 [[F[l,.

Proof. (1) We have for m € M the definition ||m|| = Var|*[m]=
supz>.x |m(t,) — m(t,_,)| over all partitions E: 0 = t,<t,<.--<t, = 2%
with I, = [t,—, t]. Let Du(r, s) = D(r, s) = F(re®*) — F(r~¢*). Then

llmp|| = (1/47) sup, lim, Zklg, Der, s)ds} where we have used (4).
Thus || m]| < (1/4m)sup; lim, S \D(r, 3)| ds=(1/47r)limrgl D(r, 8)| ds=
(1/47) || F|l. ’
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(2) When F, and F, are in P, we have ||F, + F,|[, < || F.ll,+
[| F;]|, since

(6) |Fy+ Bl = sup {1Dy, + D, < sup 1Dy,
+ sup| Dy, = [IF.lly + | il

Thus if F =G + ¢H as in (1), we have ||F|, <G|, + ||H||, and
since 2mgy = My + My and 2imy = my — M we have ||mg|| £ |lmz|
and [|my||Z]|my|l. We next establish the inequality || G ||, < 127 || m¢]|.
We have G = G, — @G, corresponding to a decomposition m; = m, — m,
for positive measures m, and m,. We also have ||G|, Z ||G,]|, + || G.llo
If some function F, € P, has nonnegative real part and so corresponds
to a positive measure m, we have ||F||, = Zlim,SRe F(re*)dt=
47 Re F(0) = dzom(T) = 4 & ||m,||. Let now m(t) = Var|i[me] and
my(t) = my(t) — mg(t). Then |[m,|| = [|mg]] and [[m,]| = 2 ||my| so that
NGl = Gl + [|Gallo £ 127 [[me|| < 127 |[mp|| and similarly [[Hf|, <
127 ||mz||, i.e., the first inequality asserted in the lemma is proved.

THEOREM 3. The function F—||F|| = ||F]l, + |kz| 18 ¢ nmorm
on P.. The mapé: M x C— P, given by (m, k)i— F = SPcdm +k s
o 1-1 linear bicontinuous map of the Banach space M x C (with
usual norm topology) onto P, (relative to the norm topology based
on ||[F||) so that, n particular, P, is & Banach space with its
norm. A sequence (mj;, k;) converges to (m, k,) where the conver-
gence of the measures is weak* and that of the k; the ordinary
convergence of complex numbers if and only +f F;— F, for the cor-
responding functions uniformly on compact sets and there exists a
constant B with || F;|| < B for all positive j.

Note that ¢ would not be well-defined if we did not use the
(unique) representation of F with & the same in D and D°; see (4),

(5).

Proof. (1) The first part of the theorem is just a summary of
assertions proved earlier. (2) Suppose m;— m, weak*. Then SPcdmj—>
P,dm, pointwise in DU D°; on every compact subset of DU D° the
family {SPCdmj} is uniformly bounded so that by virtue of normal
family theory the convergence chdm,--a gPodmo is uniform on com-

pact sets. The weak* convergence of m; to m, says that the ||m;]]
and hence, by the lemma, the || F;]|, are bounded. The convergence

SPCdmj — SPCdmo uniformly on compacts and the convergence k; — k,
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imply that F;— F, uniformly on compacts and that the || F;| are
bounded.—The converse is similar: If F'; — F, uniformly on compacts
and if the ||F;|| are bounded, then first by the lemma the ||m;||

are bounded and \tdm;—\tdm, on the dense subset {t} of trigono-

metric polynomials on T and this, together with the boundedness
of the ||m;|| implies the weak* convergence of m; to m,.

Note that if we consider the restriction ¢, of ¢ to M, then the
image ¢(M) in P, is the closed subspace consisting of all F with
F(0) + F(oo) =0. Then map ¢, has of course the same properties
as ¢.

Let F(D) and F(D°) be the parts of FFe Pin D and D° respec-
tively. When F is merely in P, the relation between F(D) and
F(D°) is of course totally arbitrary. If, however, F'e P, there is
a relation. First, if we take two arbitrary functions f and g with
the proviso that f be holomorphic in {z; |2] <1 + a} and g holomorphic
in {#;]2z| >1 — b} (for positive ¢ and b) and then combine their re-
strictions to D and D° respectively, then F with F(D) = f and
F(D°) = g will be in P;; otherwise, however, the relation between
F(D) and F(D°) is governed by the following theorems.

THEOREM 4. A fumnction Fe P with F(D) constant is in P, if
and only if F = SPcdm + k where m is absolutely continuous with
derivative fre L, and Fourier series >, e *‘a; and which s the
boundary function of f(z) antiholomorphic tm D given by >, 7'a;.
Similarly F(D°) is constant if and only if F = SPcdm + k with ab-
solutely continuous m whose derivative gr € L, has Fourier series
€, and is the boundary function of g(z) = 3., 2°b; holomorphic
wn D.

Proof. This is just the F. and M. Riesz theorem—the necessities
are obvious. Suppose now that SPodm +k=d, a constant in D,
then m(T) + k = d and, since P, =1 + 23, ¢ %27 in D, we conclude
that SPCdm k= S(l + 25 6t dm 4 ko= d + 2, M2 = d sothat
m; = 0= \e¥dm(j =1, ---) i.e., \e'dm = 0 for all positive integers
4, so that mm is absolutely continuous with derivative ' = f(t) with
Fourier series 3, e"‘@; and the first half of the theorem is proved.
The second half proceeds the same way.

Let M, be the subset of M consisting of absolutely continuous
measures with derivatives g, € L, with Fourier series >, a;e™"".

THEOREM 5. A function f holomorphic in D is the part F(D)
for some function F e P, if and only if distyc,<, (M,, M) £ B< o for
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some constant B where m, 18 the absolutely continuous measure
with derivative flre*) and dist is based on the usual norm in M.

This criterion contains the criteria contained in the Herglotz-
Riesz and Nevanlinna theorems.

Proof. For the necessity suppose we have Fe P, with F(D)=f
in D. To show that dist,s,,(m,, M;) = B, we find for each r¢[0, 1)
a measure n, € M, with ||m,—n, || =sup - lgcd(m, - n,)' < B, taken
over all continuous functions ¢ on T. Now m, = f(re') = F(D)(re')=
F(re¢*) and our basic criterion (2) furnishes », with n, = F(D°)(r'e¢)=
F(r~'e®) so that dist(m,, M,) =< ||m,—n.|| < sup, glF(re“)—F(a"“le“) ldt=
B< o,

For the sufficiency, suppose that dist(m,, M,) < B. This implies
by the weak* compactness of bounded sets in M that there exists a
sequence 7; €[0,1) with »; increasing to 1 and measures =, € M, such
that m,—n,—m € M (weak* convergence). Write n,= 3, a;(r)e ‘. Then
L(r) = §P0<f(m“) - a,j('r)e‘“t)dt-——rgPodm as r{l. Now L(r)=
4rf(rz) — 2mf(0) while gPodm furnishes a function (in D°) that is
holomorphic in D°. Thus SPCdm = FeP, yields a function with
F(D) = f + const.

It is clear from this argument and from Theorem 4 that there
are many functions Fe P, with F(D) = f + const.: the difference of
any two of them is characterized in the second half of that theorem.

In addition to its Banach space structure, M has also a ring
structure with respect to convolution of measures. The correspond-
ing ring structure in P, is given by the Hadamard produect: If f
and g have expansions >, ;2 and 3, b;2’ respectively, define f*g
by X,a;b;7°, if f and g have expansions 3),c¢;#77 and >,d;z7 re-
spectively, define f*g by —3,,¢;d;z7%. If F and G are in P, then
the Hadamard product F*G is defined in D and D¢ according to the
rules just mentioned for D and D¢ respectively.

THEOREM 6. If F, and F, are in P, with F; = SPcdmj + k; where
the k; are piecewise constants in P, then F\*F, = F = SPgdm +keP,
and

—my(T)m(T) + kk, + km(T) + kym,(T)
(7) m = 2(m,*m,), k =
+m(TYm(T) — kk, + km,(T) + k;m,(T)

in D and D° respectively.
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Proof. The proof is a simple calculation based on the formula
(m*my); = sy If zeD then SPcd(m,*mz) = m(Tymy(T) +
23, M, 1, ,2° With analogous expansions for F, and F,. We obtain
(FV*Fy)(z) = (my(T) + k)(my(T) + ko) + 4 30, My, M,,2° in D with a
similar equation in D° so that (7) is established.

COROLLARY. The map (F, G) — FxG is continuous in both vari-
ables in the norm of P..

The usual Banach algebra inequality || F*G|| < || F'||||G]| is not
valid in P: take F =G =10 + z in D and equal to 10 + 2! in D°.
The map ¢ of Theorem 3 is thus not an isometry.

o If meM, define F, by

(8) F,= -;—gPCdm + k,, 2%, = —m(T) in D and m(T) in D* .

v

Let P, be the subset of P, consisting of all F' will F(0) = F(c) = 0;
it is a closed subalgebra of P,. The following immediate consequence
of the preceding theorem is worth stating separately.

THEOREM 7. The map +: M— P, given by (8) is a linear conti-
nuous open epimorphism of the Banach algebra M to the Banach
algebra P, with kernel the comstant multiples of Lebesgue measure.

Similar statements are valid about other subalgebras of M x C
and P, e.g., for the subalgebra of M of all m with m(T) = 0 and
the subalgeba of P, of all F' with k, = 0; the kernel of the restric-
tion of « to this subalgebra of M is determined on the basis of
Theorem 4.

Our using complex measures makes the following considerations
possible. We define derivatives of functions in P as usual (i.e., in
D and D¢ separately). If G = F’ for functions in P we call F an
integral of G. We shall use the phrase that F' is differentiable (or
integrable) in P, if F and F’ are in P, Differentiability of F in
P, imposes a strong restriction of F, integrability is much less re-
strictive although infinite integrability is of course very restrictive.
In what follows all functions in P, will be in the standard represen-
tation (5).

THEOREM 8. A function F = SPgdn + k has a derivative F'=
Podm + k' (all in P) if and only if m is absolutely contimuous
with derivative g of bounded variation and g(0) = g(27) =0. If F
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18 differentiable in P, then m(t) = —1 St e dg, m_, =0,k = m(T).
Or equally well: A function G = SPod’f;b + k' has an integral F=
SPodn 4k (all in P) if and only if m_, =0 and ¥ = m(T). If G
is integrable in P, then m s absolutely continuous with derivative
g of bounded variation and ¢(0) = g(2x) = 0, and ¢(t) = zS: e*dm.
Proof. We prove the first version of the theorem. Necessity:
1) If F' = S(—l — 23, 2% dm(t) + K = —,— 2>, M_;27 + k' (ex-
pansion in D°) is to be the derivative of a funection in P, we must
have —7,+k =—m(T)+ k¥ =0 and @m_,=0. (2) Consider
iSPC S:e“dm(s)dt and expand P,. Treat D and D° separately. In

the expansion, change the order of integration and differentiat®;
using 7, =0 and k' = m(T), we see that we have obtained F".

Thus F = SPcdn + k=1 S P, S;“dm(s)dt + const.; the uniqueness as-
sertion of Theorem 2 then imoplies that n is absolutely continuous
whose derivative g(t) = 'igteisdm(s) which is of bounded variation
with ¢(0) =0 and g(27) - w_, = 0; this also shows that m(t)=
—igte"’*dg(s) as desired.—Sufficiency: Suppose F = SPCdn + k with
abso(iutely continuous n whose derivative g is of bounded variation
and ¢(0) = g(27) = 0: to show that F is differentiable in P, with

F' = SPcdm + m(T) where m(t) = —1 St e *dg(s) and 7_, = 0; the
last equation is immediate: 7_, = g(27r0) — ¢(0) = 0. Consider now
chdm + m(T) where m is defined as above. Again we proceed by
expanding P, and treat D and D° separately. Thus SPcdm + m(T)=
—'ig Pe dg(t) — 1 Se“”dg(t). After expanding, we integrate by parts
and observe that we have obtained F’ as expected.

This completes the proof of the theorem.

The second part of the following corollary is again a result of
the F. and M. Riesz theorem on analytic measures.

COROLLARY. A function F = SPCdm 18 infinitely differentiable
wn P, if and only if m e C, and m'9(0) = m'9(2x) = 0 for all positive
integers j. A function in P, is infinitely integrable in P, if and
only if it is zero in D-.

The preceding results can all be phrased in terms of Fourier-
Stieltjes moments. We single out the following application. It is
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clear that if {jn;} is a moment sequence corresponding to the mea-
sure m, then {n;} is also a moment sequence whose measure = is
absolutely continuous with derivative of bounded variation 4 m. This
can also be read from Theorem 8; the hypothesis in the necessity
part of that theorem which says that F be in P, can be replaced
by demanding merely that FeP. We consider in the following
theorem a certain kind of perturbation of the multiplier sequence
{7} of {jn;}; we obtain the same conclusion as for that latter sequence.

THEOREM 9. If {a;n;} is @ moment sequence and if the analytic
Junctions 3, (7 — a;)z' and 3, (5 + a_;)z have radii of convergence
greater then 1, then {m;} 18 a moment sequence corresponding to an
absolutely continuous measure whose derivative is of bounded vari-
ation.

Proof. We note that the function F defined in D by >, a;n;#
and in D° by —3, a_;n_;z77 is in P, since {a;n;} is a moment sequence
by hypothesis. We shall show that {jn;} is a moment sequence; we
show first that the function G defined in D by 3, jn;2 and in D°
by 3. jin_;z7% is in P,; we use the criterion (2) of Theorem 1. We
have

G(re™) — G(r~'e™) = 3, ri(jn;e"t — jn_;e~ ")
() B le P[(J — anet — (J + a_)n_e]

+ Zl ri(a;ne’t + a_;n_je” ) .

We show next that the sequence {n;} is bounded: since {a;n;} is a
moment sequence, it is bounded, say, |am;| < B; since the power
series mentioned in the statement of the theorem have radii of con-
vergence greater than 1, we will have for sufficently large j the
inequalities |j — a;] < land |j + a_;] < 1sothat|a;| = |j| — 1 whence
[n;]£B as desired. We now take absolute values in (9) and integrate
with respect to £. Thus

[160e) — 6o at = || ftre®) — 5Tre™ | dt
+ SIF(M“) — Flrtey| dt = T(r) + To(r)

where f and g are the analytic functions with radii of convergence
greater than 1 mentioned in the theorem. Thus T,(») < B, for all
r€(0,1) and Ty(r)<B, since FeP,. Thus GeP, {jn;} is a moment
sequence and the theorem is proved.

Analogous problems for several variables and also for regions
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other than D and D° such as complementary half planes will be
dealt with in another paper.
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